Integration of Game Theoretic and Tree Theoretic Approaches to Conway Numbers

Karol Pak
Faculty of Computer Science
University of Białystok
Poland

Abstract

Summary. In this article, we develop our formalised concept of Conway numbers as outlined in 9. We focus mainly pre-order properties, birthday arithmetic contained in the Chapter 1, Properties of Order and Equality of John Conway's seminal book. We also propose a method for the selection of class representatives respecting the relation defined by the pre-ordering in order to facilitate combining the results obtained for the original and tree-theoretic definitions of Conway numbers.

MSC: 12J15 03H05 68V20
Keywords: surreal numbers; Conway's game; Mizar
MML identifier: SURREALO, version: 8.1.14 5.76.1456

Introduction

We present a formal analysis of the contents of Chapter 1, Properties of Order and Equality of John Conway's seminal book. This section focuses on the pre-order structure of Conway numbers.

Then, using the developed concept of Conway numbers, we thoroughly analyse the properties of surreal birthday arithmetic. We prove the The Simplicity Theorem (see Theorem 11 on p. 23 [3]) which can be expressed informally as follows when x is given as a number, it is always the simplest number lying between the L_{x} and the R_{x}, where simplest means earliest created. It also makes it easier to manipulate birthday numbers in the context of pre-ordering surreal numbers.

In the final part, we select the representatives of the equivalence classes that are defined by the relation equivalence relation \approx on surreal numbers such that $x \approx y$ iff $x \leqslant y$ and $y \leqslant x$. Representatives have a minimum-birthday as well as minimal-birthday as well as the left and right components of each representative having the smallest cardinality and such representatives as members.

The formalisation is mainly based on [3, 4, 5, 6], but also uses selected ideas proposed in [1, 2, 10].

1. Preorder of Surreal Numbers

From now on $\alpha, \beta, \gamma, \theta$ denote ordinal numbers, X denotes a set, o denotes an object, and x, y, z, t, r, l denote surreal numbers.

The functor $\mathbf{1}_{\text {No }}$ yielding a surreal number is defined by the term
(Def. 1) $\left\langle\left\{\mathbf{0}_{\mathrm{No}}\right\}, \emptyset\right\rangle$.
Now we state the propositions:
(1) If $y \in \mathrm{~L}_{x} \cup \mathrm{R}_{x}$, then $\mathfrak{b o r n} y \in \mathfrak{b o r n} x$.
(2) $\mathrm{L}_{x} \neq\{x\} \neq \mathrm{R}_{x}$. The theorem is a consequence of (1).
(3) Preorder of Surreal Numbers - Reflexivity, Conway Ch. 1 Th. 0(III):
$x \leqslant x$.
Proof: Define \mathcal{P} [ordinal number] \equiv for every surreal number x such that $x \in \operatorname{Day} \$_{1}$ holds $x \leqslant x$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
(4) Preorder of Surreal Numbers - Transitivity, Conway Ch. 1 Th. 1:
If $x \leqslant y \leqslant z$, then $x \leqslant z$.
Proof: Define \mathcal{P} [ordinal number] \equiv for every surreal numbers x, y, z such that $x \leqslant y \leqslant z$ and (\mathfrak{b} orn $x \oplus \mathfrak{b o r n} y$) $\oplus \mathfrak{b}$ orn $z \subseteq \$_{1}$ holds $x \leqslant z$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
(5) $\mathrm{L}_{x} \preceq\{x\} \preceq \mathrm{R}_{x}$.

Proof: Define \mathcal{P} [ordinal number] \equiv for every surreal number x such that born $x \subseteq \$_{1}$ holds $\mathrm{L}_{x} \preceq\{x\} \preceq \mathrm{R}_{x}$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
(6) Preorder of Surreal Numbers - Total, Conway Ch. 1 Th. 2(ii): If $y \nless x$, then $x \leqslant y$. The theorem is a consequence of (5) and (4).
(7) If α is finite, then Day α is finite.

Proof: Define \mathcal{P} [natural number] \equiv Day $\$_{1}$ is finite. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number n, $\mathcal{P}[n]$.
(8) If $\mathfrak{b o r n} x$ is finite, then L_{x} is finite and R_{x} is finite.

Proof: Dayborn x is finite. $\mathrm{L}_{x} \cup \mathrm{R}_{x} \subseteq$ Dayborn x.
Let us consider x and y. Let us note that the predicate $x \leqslant y$ is reflexive and connected. We introduce the notation $y \geqslant x$ as a synonym of $x \leqslant y$.

2. Equivalence Relation of Preorder

Let us consider x and y. We say that $x \approx y$ if and only if (Def. 2) $x \leqslant y \leqslant x$.

Note that the predicate is reflexive and symmetric. Now we state the propositions:
(9) If $x \leqslant y<z$, then $x<z$.
(10) If $x \approx y$ and $y \approx z$, then $x \approx z$.
(11) Conway Ch. 1 Th. 2(I):
$\mathrm{L}_{x} \ll\{x\} \ll \mathrm{R}_{x}$.
Proof: $\mathrm{L}_{x} \ll\{x\}$.
(12) Let us consider a non empty, surreal-membered set S. Suppose S is finite.

Then there exist surreal numbers M_{3}, M_{2} such that
(i) $M_{3}, M_{2} \in S$, and
(ii) for every x such that $x \in S$ holds $M_{3} \leqslant x \leqslant M_{2}$.

Proof: Define \mathcal{P} [natural number] \equiv for every non empty, surreal-membered set S such that $\$_{1}=\overline{\bar{S}}$ there exist surreal numbers M_{3}, M_{2} such that $M_{3}, M_{2} \in S$ and for every x such that $x \in S$ holds $M_{3} \leqslant x \leqslant M_{2}$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [8, (55)]. For every natural number $n, \mathcal{P}[n]$.
(13) Suppose $x<y$. Then
(i) there exists a surreal number x_{2} such that $x_{2} \in \mathrm{R}_{x}$ and $x<x_{2} \leqslant y$, or
(ii) there exists a surreal number y_{3} such that $y_{3} \in \mathrm{~L}_{y}$ and $x \leqslant y_{3}<y$. The theorem is a consequence of (11).
(14) Suppose $\mathrm{L}_{y} \ll\{x\} \ll \mathrm{R}_{y}$. Then $\left\langle\mathrm{L}_{x} \cup \mathrm{~L}_{y}, \mathrm{R}_{x} \cup \mathrm{R}_{y}\right\rangle$ is a surreal number. Proof: Consider α being an ordinal number such that $x \in \operatorname{Day} \alpha$. Consider β being an ordinal number such that $y \in \operatorname{Day} \beta$. Set $X=\mathrm{L}_{x} \cup \mathrm{~L}_{y}$. Set
$Y=\mathrm{R}_{x} \cup \mathrm{R}_{y} . X \ll Y$. For every object x such that $x \in X \cup Y$ there exists an ordinal number θ such that $\theta \in \alpha \cup \beta$ and $x \in \operatorname{Day} \theta$.
(15) Suppose $\mathrm{L}_{y} \ll\{x\} \ll \mathrm{R}_{y}$ and $z=\left\langle\mathrm{L}_{x} \cup \mathrm{~L}_{y}, \mathrm{R}_{x} \cup \mathrm{R}_{y}\right\rangle$. Then $x \approx z$. The theorem is a consequence of (11).
Now we state the propositions:
(16) The Simplicity Theorem for Surreal Numbers:

Suppose $\mathrm{L}_{y} \ll\{x\} \ll \mathrm{R}_{y}$ and for every z such that $\mathrm{L}_{y} \ll\{z\} \ll \mathrm{R}_{y}$ holds $\mathfrak{b o r n} x \subseteq \mathfrak{b o r n} z$. Then $x \approx y$.
Proof: Set $X=\mathrm{L}_{x} \cup \mathrm{~L}_{y}$. Set $Y=\mathrm{R}_{x} \cup \mathrm{R}_{y}$. Reconsider $z=\langle X, Y\rangle$ as a surreal number. $\mathrm{L}_{x} \ll\{x\} \ll \mathrm{R}_{x} . \mathrm{L}_{y} \ll\{y\} \ll \mathrm{R}_{y} . \mathrm{L}_{z} \ll\{z\} \ll \mathrm{R}_{z}$. $\mathrm{L}_{x} \ll\{z\} .\{x\} \ll \mathrm{R}_{z} . \mathrm{L}_{y} \ll\{z\} . x \approx z .\{y\} \ll \mathrm{R}_{z} .\{z\} \ll \mathrm{R}_{y} . \mathrm{L}_{z} \ll\{y\}$.
(17) If $X \ll\{x\}$ and $x \leqslant y$, then $X \ll\{y\}$. The theorem is a consequence of (4).
(18) If $\{x\} \ll X$ and $y \leqslant x$, then $\{y\} \ll X$. The theorem is a consequence of (4).
(19) If $x \approx y$, then $\left\langle\mathrm{L}_{x} \cup \mathrm{~L}_{y}, \mathrm{R}_{x} \cup \mathrm{R}_{y}\right\rangle$ is a surreal number. The theorem is a consequence of (11), (17), (18), and (14).
(20) If $x \approx y$ and $z=\left\langle\mathrm{L}_{x} \cup \mathrm{~L}_{y}, \mathrm{R}_{x} \cup \mathrm{R}_{y}\right\rangle$, then $x \approx z$. The theorem is a consequence of $(11),(17),(18)$, and (15).
(21) $\{x\} \ll\{y\}$ if and only if $x<y$.
(22) $\langle\{x\},\{y\}\rangle$ is a surreal number if and only if $x<y$. The theorem is a consequence of (21).
(23) Let us consider a surreal number M_{2}. Suppose for every y such that $y \in \mathrm{~L}_{x}$ holds $y \leqslant M_{2}$ and $M_{2} \in \mathrm{~L}_{x}$. Then
(i) $\left\langle\left\{M_{2}\right\}, \mathrm{R}_{x}\right\rangle$ is a surreal number, and
(ii) for every y such that $y=\left\langle\left\{M_{2}\right\}, \mathrm{R}_{x}\right\rangle$ holds $y \approx x$ and $\mathfrak{b o r n} y \subseteq$ $\mathfrak{b o r n} x$.

Proof: $\left\{M_{2}\right\} \ll R_{x}$. For every object o such that $o \in\left\{M_{2}\right\} \cup \mathrm{R}_{x}$ there exists θ such that $\theta \in \mathfrak{b o r n} x$ and $o \in \operatorname{Day} \theta$. For every surreal number x_{1} such that $x_{1} \in \mathrm{~L}_{x}$ there exists a surreal number y_{1} such that $y_{1} \in \mathrm{~L}_{y}$ and $x_{1} \leqslant y_{1}$. For every surreal number x_{1} such that $x_{1} \in \mathrm{~L}_{y}$ there exists a surreal number y_{1} such that $y_{1} \in \mathrm{~L}_{x}$ and $x_{1} \leqslant y_{1}$. \square
(24) Let us consider a surreal number M_{3}. Suppose for every y such that $y \in \mathrm{R}_{x}$ holds $M_{3} \leqslant y$ and $M_{3} \in \mathrm{R}_{x}$. Then
(i) $\left\langle\mathrm{L}_{x},\left\{M_{3}\right\}\right\rangle$ is a surreal number, and
(ii) for every y such that $y=\left\langle\mathrm{L}_{x},\left\{M_{3}\right\}\right\rangle$ holds $y \approx x$ and born $y \subseteq$ $\mathfrak{b o r n} x$.

Proof: $\mathrm{L}_{x} \ll\left\{M_{3}\right\}$. For every object o such that $o \in \mathrm{~L}_{x} \cup\left\{M_{3}\right\}$ there exists θ such that $\theta \in \mathfrak{b o r n} x$ and $o \in \operatorname{Day} \theta$. For every surreal number x_{1} such that $x_{1} \in \mathrm{R}_{y}$ there exists a surreal number y_{1} such that $y_{1} \in \mathrm{R}_{x}$ and $y_{1} \leqslant x_{1}$. For every surreal number x_{1} such that $x_{1} \in \mathrm{R}_{x}$ there exists a surreal number y_{1} such that $y_{1} \in \mathrm{R}_{y}$ and $y_{1} \leqslant x_{1}$.
(25) If $x \leqslant y$ and $z=\langle\{x, y\}, X\rangle$ and $t=\langle\{y\}, X\rangle$, then $z \approx t$. The theorem is a consequence of (23).
(26) If $z=\langle\{x, y\}, X\rangle$, then $\langle\{x\}, X\rangle$ is a surreal number.

Proof: Set $b=\mathfrak{b o r n} z .\{x\} \ll X$. For every object o such that $o \in\{x\} \cup X$ there exists θ such that $\theta \in b$ and $o \in \operatorname{Day} \theta$.
(27) If $x \leqslant y$ and $z=\langle X,\{x, y\}\rangle$ and $t=\langle X,\{x\}\rangle$, then $z \approx t$. The theorem is a consequence of (24).
(28) If $z=\langle X,\{x, y\}\rangle$, then $\langle X,\{x\}\rangle$ is a surreal number.

Proof: Set $b=\mathfrak{b o r n} z . X \ll\{x\}$. For every object o such that $o \in X \cup\{x\}$ there exists θ such that $\theta \in b$ and $o \in \operatorname{Day} \theta$.
Let X, Y be sets. We say that $X \lessdot Y$ if and only if
(Def. 3) for every surreal number x such that $x \in X$ there exist surreal numbers y_{1}, y_{2} such that $y_{1}, y_{2} \in Y$ and $y_{1} \leqslant x \leqslant y_{2}$.
One can verify that the predicate is reflexive.
We say that $X \leftrightarrow Y$ if and only if
(Def. 4) $\quad X \lessdot Y$ and $Y \lessdot X$.
One can verify that the predicate is reflexive and symmetric.
Now we state the propositions:
(29) Let us consider sets $X_{1}, X_{2}, Y_{1}, Y_{2}$. Suppose $X_{1} \leftrightarrow X_{2}$ and $Y_{1} \leftrightarrow Y_{2}$ and $x=\left\langle X_{1}, Y_{1}\right\rangle$ and $y=\left\langle X_{2}, Y_{2}\right\rangle$. Then $x \approx y$.
(30) Let us consider sets X, Y. If $X \subseteq Y$, then $X \lessdot Y$.
(31) Let us consider sets $X_{1}, X_{2}, Y_{1}, Y_{2}$. If $X_{1} \lessdot X_{2}$ and $Y_{1} \lessdot Y_{2}$, then $X_{1} \cup$ $Y_{1} \lessdot X_{2} \cup Y_{2}$.
(32) If $x \approx y$, then $\{x\} \lessdot\{y\}$.

3. Representative of Equivalence Class With a Unique Set of Properties

Let x be a surreal number. The functor $\mathfrak{b o r n} \approx x$ yielding an ordinal number is defined by
(Def. 5) there exists a surreal number y such that born $y=i t$ and $y \approx x$ and for every surreal number y such that $y \approx x$ holds it $\subseteq \mathfrak{b o r n} y$.
The functor $\mathfrak{B o r n} \approx x$ yielding a surreal-membered set is defined by
(Def. 6) $y \in$ it iff $y \approx x$ and $y \in$ Dayborn $\approx x$.
One can check that $\mathfrak{B o r n} \approx x$ is non empty. Let α be a non empty, surrealmembered set. We say that x is α-smallest if and only if
(Def. 7) $x \in \alpha$ and for every y such that $y \in \alpha$ and $y \approx x$ holds $\overline{\overline{\mathrm{L}_{x}}} \oplus \overline{\overline{\mathrm{R}_{x}}} \subseteq$ $\overline{\overline{\mathrm{L}_{y}}} \oplus \overline{\overline{\mathrm{R}_{y}}}$.
Observe that there exists a surreal number which is α-smallest. Now we state the propositions:
(33) If $x \approx y$, then $\mathfrak{b o r n} \approx x=\mathfrak{b}$ orn $\approx y$. The theorem is a consequence of (4).
(34) If $x \approx y$, then $\mathfrak{B o r n} \approx x=\mathfrak{B o r n} \approx y$.
(35) If $y \in \mathfrak{B o r n} \approx x$, then $\mathfrak{b o r n} y=\mathfrak{b}$ orn $\approx y=\mathfrak{b}$ orn $\approx x$. The theorem is a consequence of (33).
(36) $\langle\emptyset, \operatorname{Day} \alpha\rangle,\langle\operatorname{Day} \alpha, \emptyset\rangle \in(\operatorname{Daysucc} \alpha) \backslash(\operatorname{Day} \alpha)$. The theorem is a consequence of (11).
From now on n denotes a natural number. Let α be a set. The functor made of α yielding a surreal-membered set is defined by
(Def. 8) $o \in$ it iff o is surreal and $\mathrm{L}_{o} \cup \mathrm{R}_{o} \subseteq \alpha$.
Let α be an ordinal number. The functor unique $\mathbf{N o} \mathrm{op}(\alpha)$ yielding a transfinite sequence is defined by
(Def. 9) dom it $=\operatorname{succ} \alpha$ and for every ordinal number β such that $\beta \in \operatorname{succ} \alpha$ holds $i t(\beta) \subseteq \operatorname{Day} \beta$ and for every $x, x \in i t(\beta)$ iff $x \in \bigcup \operatorname{rng}(i t\lceil\beta)$ or $\beta=\mathfrak{b o r n} \approx x$ and there exists a non empty, surreal-membered set Y such
 number.
Let us consider o. One can verify that (unique $\left.\mathbf{N o}_{\mathbf{o}} \mathrm{op}(\alpha)\right)(o)$ is surreal-membered. Now we state the propositions:

Proof: Define \mathcal{P} [transfinite sequence, ordinal number, surreal number] \equiv $\$_{3} \in \bigcup \operatorname{rng} \$_{1}$ or $\$_{2}=\mathfrak{b o r n} \approx \$_{3}$ and there exists a non empty, surrealmembered set Y such that $Y=\mathfrak{B o r n} \approx \$_{3} \cap$ made of $\bigcup \operatorname{rng} \$_{1}$ and $\$_{3}=$
the Y-smallest surreal number. Define \mathcal{H} (transfinite sequence) $=\{e$, where e is an element of Daydom $\$_{1}$: for every x such that $x=e$ holds $\left.\mathcal{P}\left[\$_{1}, \operatorname{dom} \$_{1}, x\right]\right\}$. Set $S_{1}=$ unique $_{\text {No }}$ op (α). Set $S=$ unique $_{\mathbf{N o}}$ op (β). Set $S_{2}=S \upharpoonright \operatorname{succ} \alpha$. dom $S_{1}=\operatorname{succ} \alpha$ and for every ordinal number β and for every transfinite sequence L_{1} such that $\beta \in \operatorname{succ} \alpha$ and $L_{1}=S_{1} \upharpoonright \beta$ holds $S_{1}(\beta)=\mathcal{H}\left(L_{1}\right)$. dom $S_{2}=\operatorname{succ} \alpha$ and for every ordinal number γ and for every transfinite sequence L_{2} such that $\gamma \in \operatorname{succ} \alpha$ and $L_{2}=S_{2} \upharpoonright \gamma$ holds $S_{2}(\gamma)=\mathcal{H}\left(L_{2}\right) . S_{1}=S_{2}$.
(38) Suppose $x \in$ unique $\left._{\mathbf{N o}} \mathrm{op}(\alpha)\right)(\beta)$. Then
(i) $\mathfrak{b o r n} \approx x=\mathfrak{b o r n} x \subseteq \beta$, and
(ii) $x \in\left(\right.$ unique $\left._{\text {No }} \operatorname{op}(\alpha)\right)(\mathfrak{b o r n} x)$, and
(iii) $x \notin \bigcup \operatorname{rng}\left(\right.$ unique $_{\text {No }} \mathrm{op}(\alpha) \upharpoonright \mathfrak{b}$ orn $\left.x\right)$.

Proof: Set $M=$ unique $_{\text {No }}$ op (α). Define $\mathcal{M}[$ ordinal number $] \equiv x \in M\left(\$_{1}\right)$ and $\$_{1} \in \operatorname{succ} \alpha$. Consider δ being an ordinal number such that $\mathcal{M}[\delta]$ and for every ordinal number E such that $\mathcal{M}[E]$ holds $\delta \subseteq E . x \notin \bigcup \operatorname{rng}(M \upharpoonright \delta)$. Consider Y being a non empty, surreal-membered set such that $Y=$ $\mathfrak{B o r n} \approx x \cap$ made of $\bigcup \operatorname{rng}(M\lceil\delta)$ and $x=$ the Y-smallest surreal number.
(39) If $\theta \subseteq \alpha \subseteq \beta$, then $\left(\right.$ unique $\left._{\mathbf{N o}_{\mathbf{o}} \mathrm{op}}(\alpha)\right)(\theta)=\left(\right.$ unique $_{\left.\mathbf{N o}_{\mathbf{o}} \mathrm{op}(\beta)\right)(\theta) \text {. The }}$ theorem is a consequence of (37).
 $(\gamma))(\beta)$.
Let x be a surreal number. The functor Unique $_{\mathbf{N o}}(x)$ yielding a surreal number is defined by
(Def. 10) it $\approx x$ and it $\in\left(\right.$ unique $_{\text {No }}$ op $\left.\left(\mathfrak{b o r n}_{\approx x}\right)\right)\left(\right.$ born $\left._{\approx x}\right)$.
Now we state the propositions:
(41) If $x \approx y$, then $\operatorname{Unique}_{\mathbf{N o}}(x)=\operatorname{Unique}_{\mathbf{N o}}(y)$. The theorem is a consequence of (33) and (4).
(42) $\mathbf{0}_{\mathbf{N o}}=$ Unique $_{\mathbf{N o}}\left(\mathbf{0}_{\mathbf{N o}}\right)$. The theorem is a consequence of (38).

Let x be a surreal number. We say that x is unique surreal if and only if
(Def. 11) $\quad x=$ Unique $_{\text {No }}(x)$.
One can verify that $\mathbf{0}_{\mathbf{N o}}$ is unique surreal and there exists a surreal number which is unique surreal. Now we state the propositions:
(43) If x is an unique surreal number and $o \in \mathrm{~L}_{x} \cup \mathrm{R}_{x}$, then o is an unique surreal number. The theorem is a consequence of (38), (1), and (39).
(44) If L_{x} is non empty and finite and x is an unique surreal number, then $\overline{\overline{\mathrm{L}_{x}}}=1$. The theorem is a consequence of (12), (38), and (23).

If R_{x} is non empty and finite and x is an unique surreal number, then $\overline{\overline{\mathrm{R}_{x}}}=1$. The theorem is a consequence of (12), (38), and (24).
(46) $\overline{\overline{\mathrm{L}_{x}}} \oplus \overline{\overline{\mathrm{R}_{x}}}=0$ if and only if $x=\mathbf{0}_{\mathrm{No}}$.
(47) $\overline{\overline{\mathrm{L}_{x}}} \oplus \overline{\overline{\mathrm{R}_{x}}}=1$ if and only if there exists a surreal number y such that $x=\langle\emptyset,\{y\}\rangle$ or $x=\langle\{y\}, \emptyset\rangle$.
Proof: If $\overline{\overline{\mathrm{L}_{x}}} \oplus \overline{\overline{\mathrm{R}_{x}}}=1$, then there exists a surreal number y such that $x=\langle\emptyset,\{y\}\rangle$ or $x=\langle\{y\}, \emptyset\rangle$ by [7, (86),(76)].
Let X be a set. We say that X is unique surreal-membered if and only if
(Def. 12) if $o \in X$, then o is an unique surreal number.
Note that every set which is empty is also unique surreal-membered. Let x be an unique surreal number. One can verify that $\mathrm{L}_{x} \cup \mathrm{R}_{x}$ is unique surrealmembered and $\{x\}$ is unique surreal-membered. Let X, Y be unique surrealmembered sets. One can check that $X \cup Y$ is unique surreal-membered. Let x be a surreal number. One can check that $U_{n i q u e}^{N o}(x)$ is unique surreal. Now we state the propositions:
(48) If x is an unique surreal number, then $\mathfrak{b o r n} x=\mathfrak{b}$ orn $\approx x$. The theorem is a consequence of (38).
(49) Suppose for every z such that $z \in \mathfrak{B o r n} \approx x$ and $\mathrm{L}_{z} \cup \mathrm{R}_{z}$ is unique surrealmembered and $x \neq z$ holds $\overline{\overline{\mathrm{L}_{x}}} \oplus \overline{\overline{\mathrm{R}_{x}}} \in \overline{\overline{\mathrm{~L}_{z}}} \oplus \overline{\overline{\mathrm{R}_{z}}}$ and $x \in \mathfrak{B o r n}_{\approx} x$ and $\mathrm{L}_{x} \cup \mathrm{R}_{x}$ is unique surreal-membered. Then x is an unique surreal number. Proof: Set $c=$ Unique $_{\mathbf{N o}}(x)$. Set $\beta=\mathfrak{b o r n}_{\approx} x$. $\mathfrak{b o r n} \approx c=\beta$ and $\mathfrak{B o r n}_{\approx} \approx=$ $\mathfrak{B o r n} \approx x$. born $\approx c=\mathfrak{b o r n} c . c \notin \bigcup \operatorname{rng}\left(\right.$ unique $\left._{\text {No }} \mathrm{op}(\beta) \upharpoonright \beta\right)$. Consider Y being a non empty, surreal-membered set such that $Y=\mathfrak{B o r n} \approx c \cap$ made of \bigcup rng (unique $\mathbf{N o}_{\mathbf{o p}}(\beta) \upharpoonright \beta$) and $c=$ the Y-smallest surreal number. $x \in$ Born $_{\approx} c . \mathrm{L}_{x} \cup \mathrm{R}_{x} \subseteq \bigcup \mathrm{rng}\left(\right.$ unique $_{\text {No }}$ op $\left.(\beta) \upharpoonright \beta\right)$.
(50) If x is an unique surreal number and y is an unique surreal number and $x \approx y$, then $x=y$. The theorem is a consequence of (41).
(51) Let us consider a surreal number c. Suppose born $c=\mathfrak{b o r n} \approx c$ and $\mathrm{L}_{c} \ll$ $\{x\} \ll \mathrm{R}_{c}$. Then $\mathfrak{b o r n} c \subseteq \mathfrak{b o r n} x$.
Proof: Define \mathcal{P} [ordinal number] \equiv there exists y such that $\mathrm{L}_{c} \ll\{y\} \ll$ R_{c} and born $y=\$_{1}$. Consider α such that $\mathcal{P}[\alpha]$ and for every β such that $\mathcal{P}[\beta]$ holds $\alpha \subseteq \beta$. Consider y such that $\mathrm{L}_{c} \ll\{y\} \ll \mathrm{R}_{c}$ and born $y=\alpha$. born $\approx c=\mathfrak{b o r n} \approx y$.
(52) Let us consider unique surreal numbers c, x. Suppose $\mathrm{L}_{c} \ll\{x\} \ll \mathrm{R}_{c}$ and $x \neq c$. Then $\mathfrak{b o r n} c \in \mathfrak{b}$ orn x. The theorem is a consequence of (48), (51), (50), (13), (1), (11), (17), (18), and (3).
(53) Suppose $\mathfrak{b o r n} x=\mathfrak{b o r n}_{\approx x} x$ and $\mathfrak{b o r n} x$ is not limit ordinal. Then there exist surreal numbers y, z such that
(i) $x \approx z$, and
(ii) $z=\left\langle\mathrm{L}_{y} \cup\{y\}, \mathrm{R}_{y}\right\rangle$ or $z=\left\langle\mathrm{L}_{y}, \mathrm{R}_{y} \cup\{y\}\right\rangle$.

Proof: Consider β being an ordinal number such that $\mathfrak{b o r n} x=\operatorname{succ} \beta$. Define $\mathcal{L}[$ object $] \equiv$ for every z such that $z=\$_{1}$ holds $\mathfrak{b o r n} z \in \beta$ and $z<x$. Consider L being a set such that $o \in L$ iff $o \in \operatorname{Day} \beta$ and $\mathcal{L}[o]$. Define $\mathcal{R}[$ object $] \equiv$ for every z such that $z=\$_{1}$ holds $\mathfrak{b o r n} z \in \beta$ and $x<z$. Consider R being a set such that $o \in R$ iff $o \in \operatorname{Day} \beta$ and $\mathcal{R}[o]$. $L \ll R$. For every object o such that $o \in L \cup R$ there exists θ such that $\theta \in \beta$ and $o \in \operatorname{Day} \theta$. Reconsider $L_{3}=\langle L, R\rangle$ as a surreal number. $L_{3} \not \approx x$.

References

[1] Maan T. Alabdullah, Essam El-Seidy, and Neveen S. Morcos. On numbers and games. International Journal of Scientific and Engineering Research, 11:510-517, February 2020.
[2] Norman L. Alling. Foundations of Analysis Over Surreal Number Fields. Number 141 in Annals of Discrete Mathematics. North-Holland, 1987. ISBN 9780444702265.
[3] John Horton Conway. On Numbers and Games. A K Peters Ltd., Natick, MA, second edition, 2001. ISBN 1-56881-127-6.
[4] Philip Ehrlich. Conway names, the simplicity hierarchy and the surreal number tree. Journal of Logic and Analysis, 3(1):1-26, 2011. doi 10.4115/jla.2011.3.1.
[5] Philip Ehrlich. The absolute arithmetic continuum and the unification of all numbers great and small. The Bulletin of Symbolic Logic, 18(1):1-45, 2012. doi 10.2178/bsl/1327328438.
[6] Philp Ehrlich. Number systems with simplicity hierarchies: A generalization of Conway's theory of surreal numbers Journal of Symbolıc Logic, 66(3):1231-1258, 2001. doi 10.2307/2695104
[7] Sebastian Koch. Natural addition of ordinals. Formalized Mathematics, 27(2):139-152, 2019. doi 10.2478/forma-2019-0015.
[8] Karol Pąk. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
[9] Karol Pąk. Conway numbers - formal introduction. Formalized Mathematics, 31(1): 193-203, 2023. doi 10.2478/forma-2023-0018
[10] Dierk Schleicher and Michael Stoll. An introduction to Conway's games and numbers. Moscow Mathematical Journal, 6:359-388, 2006. doi 10.17323/1609-4514-2006-6-2-359388.

Accepted December 12, 2023

