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Summary. In this article, we develop our formalised concept of Conway
numbers as outlined in [9]. We focus mainly pre-order properties, birthday ari-
thmetic contained in the Chapter 1, Properties of Order and Equality of John
Conway’s seminal book. We also propose a method for the selection of class repre-
sentatives respecting the relation defined by the pre-ordering in order to facilitate
combining the results obtained for the original and tree-theoretic definitions of
Conway numbers.
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Introduction

We present a formal analysis of the contents of Chapter 1, Properties of
Order and Equality of John Conway’s seminal book. This section focuses on the
pre-order structure of Conway numbers.

Then, using the developed concept of Conway numbers, we thoroughly ana-
lyse the properties of surreal birthday arithmetic. We prove the The Simplicity
Theorem (see Theorem 11 on p. 23 [3]) which can be expressed informally as
follows when x is given as a number, it is always the simplest number lying
between the Lx and the Rx, where simplest means earliest created. It also makes
it easier to manipulate birthday numbers in the context of pre-ordering surreal
numbers.
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In the final part, we select the representatives of the equivalence classes that
are defined by the relation equivalence relation ≈ on surreal numbers such that
x ≈ y iff x ¬ y and y ¬ x. Representatives have a minimum-birthday as well as
minimal-birthday as well as the left and right components of each representative
having the smallest cardinality and such representatives as members.

The formalisation is mainly based on [3, 4, 5, 6], but also uses selected ideas
proposed in [1, 2, 10].

1. Preorder of Surreal Numbers

From now on α, β, γ, θ denote ordinal numbers, X denotes a set, o denotes
an object, and x, y, z, t, r, l denote surreal numbers.

The functor 1No yielding a surreal number is defined by the term

(Def. 1) 〈〈{0No}, ∅〉〉.
Now we state the propositions:

(1) If y ∈ Lx ∪Rx, then born y ∈ bornx.

(2) Lx 6= {x} 6= Rx. The theorem is a consequence of (1).

(3) Preorder of Surreal Numbers – Reflexivity, Conway Ch. 1
Th. 0(iii):
x ¬ x.
Proof: Define P[ordinal number] ≡ for every surreal number x such that
x ∈ Day$1 holds x ¬ x. For every ordinal number δ such that for every
ordinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For every ordinal
number δ, P[δ]. �

(4) Preorder of Surreal Numbers – Transitivity, Conway Ch. 1
Th. 1:
If x ¬ y ¬ z, then x ¬ z.
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y, z such
that x ¬ y ¬ z and (bornx⊕ born y)⊕ born z ⊆ $1 holds x ¬ z. For every
ordinal number δ such that for every ordinal number γ such that γ ∈ δ
holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �

(5) Lx � {x} � Rx.
Proof: Define P[ordinal number] ≡ for every surreal number x such that
bornx ⊆ $1 holds Lx � {x} � Rx. For every ordinal number δ such that
for every ordinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For
every ordinal number δ, P[δ]. �

(6) Preorder of Surreal Numbers – Total, Conway Ch. 1 Th. 2(ii):
If y 6¬ x, then x ¬ y. The theorem is a consequence of (5) and (4).
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(7) If α is finite, then Dayα is finite.
Proof: Define P[natural number] ≡ Day$1 is finite. For every natural
number n such that P[n] holds P[n + 1]. For every natural number n,
P[n]. �

(8) If bornx is finite, then Lx is finite and Rx is finite.
Proof: Daybornx is finite. Lx ∪Rx ⊆ Daybornx. �

Let us consider x and y. Let us note that the predicate x ¬ y is reflexive
and connected. We introduce the notation y  x as a synonym of x ¬ y.

2. Equivalence Relation of Preorder

Let us consider x and y. We say that x ≈ y if and only if

(Def. 2) x ¬ y ¬ x.

Note that the predicate is reflexive and symmetric. Now we state the proposi-
tions:

(9) If x ¬ y < z, then x < z.

(10) If x ≈ y and y ≈ z, then x ≈ z.
(11) Conway Ch. 1 Th. 2(i):

Lx � {x} � Rx.
Proof: Lx � {x}. �

(12) Let us consider a non empty, surreal-membered set S. Suppose S is finite.
Then there exist surreal numbers M3, M2 such that

(i) M3, M2 ∈ S, and

(ii) for every x such that x ∈ S holds M3 ¬ x ¬M2.
Proof: Define P[natural number] ≡ for every non empty, surreal-membe-
red set S such that $1 = S there exist surreal numbers M3, M2 such that
M3, M2 ∈ S and for every x such that x ∈ S holds M3 ¬ x ¬ M2. For
every natural number n such that P[n] holds P[n + 1] by [8, (55)]. For
every natural number n, P[n]. �

(13) Suppose x < y. Then

(i) there exists a surreal number x2 such that x2 ∈ Rx and x < x2 ¬ y,
or

(ii) there exists a surreal number y3 such that y3 ∈ Ly and x ¬ y3 < y.

The theorem is a consequence of (11).

(14) Suppose Ly � {x} � Ry. Then 〈〈Lx ∪Ly, Rx ∪Ry 〉〉 is a surreal number.
Proof: Consider α being an ordinal number such that x ∈ Dayα. Consider
β being an ordinal number such that y ∈ Dayβ. Set X = Lx ∪Ly. Set
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Y = Rx ∪Ry. X � Y. For every object x such that x ∈ X ∪Y there exists
an ordinal number θ such that θ ∈ α ∪ β and x ∈ Dayθ. �

(15) Suppose Ly � {x} � Ry and z = 〈〈Lx ∪Ly, Rx ∪Ry 〉〉. Then x ≈ z. The
theorem is a consequence of (11).

Now we state the propositions:

(16) The Simplicity Theorem for Surreal Numbers:
Suppose Ly � {x} � Ry and for every z such that Ly � {z} � Ry holds
bornx ⊆ born z. Then x ≈ y.
Proof: Set X = Lx ∪Ly. Set Y = Rx ∪Ry. Reconsider z = 〈〈X, Y 〉〉 as
a surreal number. Lx � {x} � Rx. Ly � {y} � Ry. Lz � {z} � Rz.
Lx � {z}. {x} � Rz. Ly � {z}. x ≈ z. {y} � Rz. {z} � Ry. Lz � {y}.
�

(17) If X � {x} and x ¬ y, then X � {y}. The theorem is a consequence of
(4).

(18) If {x} � X and y ¬ x, then {y} � X. The theorem is a consequence of
(4).

(19) If x ≈ y, then 〈〈Lx ∪Ly, Rx ∪Ry 〉〉 is a surreal number. The theorem is
a consequence of (11), (17), (18), and (14).

(20) If x ≈ y and z = 〈〈Lx ∪Ly, Rx ∪Ry 〉〉, then x ≈ z. The theorem is
a consequence of (11), (17), (18), and (15).

(21) {x} � {y} if and only if x < y.

(22) 〈〈{x}, {y}〉〉 is a surreal number if and only if x < y. The theorem is
a consequence of (21).

(23) Let us consider a surreal number M2. Suppose for every y such that
y ∈ Lx holds y ¬M2 and M2 ∈ Lx. Then

(i) 〈〈{M2}, Rx 〉〉 is a surreal number, and

(ii) for every y such that y = 〈〈{M2}, Rx 〉〉 holds y ≈ x and born y ⊆
bornx.

Proof: {M2} � Rx. For every object o such that o ∈ {M2} ∪ Rx there
exists θ such that θ ∈ bornx and o ∈ Dayθ. For every surreal number
x1 such that x1 ∈ Lx there exists a surreal number y1 such that y1 ∈ Ly
and x1 ¬ y1. For every surreal number x1 such that x1 ∈ Ly there exists
a surreal number y1 such that y1 ∈ Lx and x1 ¬ y1. �

(24) Let us consider a surreal number M3. Suppose for every y such that
y ∈ Rx holds M3 ¬ y and M3 ∈ Rx. Then

(i) 〈〈Lx, {M3}〉〉 is a surreal number, and
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(ii) for every y such that y = 〈〈Lx, {M3}〉〉 holds y ≈ x and born y ⊆
bornx.

Proof: Lx � {M3}. For every object o such that o ∈ Lx ∪{M3} there
exists θ such that θ ∈ bornx and o ∈ Dayθ. For every surreal number x1
such that x1 ∈ Ry there exists a surreal number y1 such that y1 ∈ Rx
and y1 ¬ x1. For every surreal number x1 such that x1 ∈ Rx there exists
a surreal number y1 such that y1 ∈ Ry and y1 ¬ x1. �

(25) If x ¬ y and z = 〈〈{x, y}, X〉〉 and t = 〈〈{y}, X〉〉, then z ≈ t. The theorem
is a consequence of (23).

(26) If z = 〈〈{x, y}, X〉〉, then 〈〈{x}, X〉〉 is a surreal number.
Proof: Set b = born z. {x} � X. For every object o such that o ∈ {x}∪X
there exists θ such that θ ∈ b and o ∈ Dayθ. �

(27) If x ¬ y and z = 〈〈X, {x, y}〉〉 and t = 〈〈X, {x}〉〉, then z ≈ t. The theorem
is a consequence of (24).

(28) If z = 〈〈X, {x, y}〉〉, then 〈〈X, {x}〉〉 is a surreal number.
Proof: Set b = born z. X � {x}. For every object o such that o ∈ X∪{x}
there exists θ such that θ ∈ b and o ∈ Dayθ. �

Let X, Y be sets. We say that X l Y if and only if

(Def. 3) for every surreal number x such that x ∈ X there exist surreal numbers
y1, y2 such that y1, y2 ∈ Y and y1 ¬ x ¬ y2.

One can verify that the predicate is reflexive.
We say that X ↔ Y if and only if

(Def. 4) X l Y and Y lX.

One can verify that the predicate is reflexive and symmetric.
Now we state the propositions:

(29) Let us consider sets X1, X2, Y1, Y2. Suppose X1 ↔ X2 and Y1 ↔ Y2 and
x = 〈〈X1, Y1〉〉 and y = 〈〈X2, Y2〉〉. Then x ≈ y.

(30) Let us consider sets X, Y. If X ⊆ Y, then X l Y.

(31) Let us consider sets X1, X2, Y1, Y2. If X1 lX2 and Y1 l Y2, then X1 ∪
Y1 lX2 ∪ Y2.

(32) If x ≈ y, then {x}l {y}.
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3. Representative of Equivalence Class With a Unique Set of
Properties

Let x be a surreal number. The functor born≈x yielding an ordinal number
is defined by

(Def. 5) there exists a surreal number y such that born y = it and y ≈ x and for
every surreal number y such that y ≈ x holds it ⊆ born y.

The functor Born≈x yielding a surreal-membered set is defined by

(Def. 6) y ∈ it iff y ≈ x and y ∈ Dayborn≈x.

One can check that Born≈x is non empty. Let α be a non empty, surreal-
membered set. We say that x is α-smallest if and only if

(Def. 7) x ∈ α and for every y such that y ∈ α and y ≈ x holds Lx ⊕ Rx ⊆
Ly ⊕ Ry .

Observe that there exists a surreal number which is α-smallest. Now we state
the propositions:

(33) If x ≈ y, then born≈x = born≈y. The theorem is a consequence of (4).

(34) If x ≈ y, then Born≈x = Born≈y.

(35) If y ∈ Born≈x, then born y = born≈y = born≈x. The theorem is a con-
sequence of (33).

(36) 〈〈∅, Dayα〉〉, 〈〈Dayα, ∅〉〉 ∈ (Daysuccα) \ (Dayα). The theorem is a conse-
quence of (11).

From now on n denotes a natural number. Let α be a set. The functor made
of α yielding a surreal-membered set is defined by

(Def. 8) o ∈ it iff o is surreal and Lo ∪Ro ⊆ α.

Let α be an ordinal number. The functor uniqueNoop(α) yielding a transfi-
nite sequence is defined by

(Def. 9) dom it = succα and for every ordinal number β such that β ∈ succα
holds it(β) ⊆ Dayβ and for every x, x ∈ it(β) iff x ∈

⋃
rng(it�β) or

β = born≈x and there exists a non empty, surreal-membered set Y such
that Y = Born≈x ∩made of

⋃
rng(it�β) and x = the Y -smallest surreal

number.

Let us consider o. One can verify that (uniqueNoop(α))(o) is surreal-membe-
red. Now we state the propositions:

(37) Suppose α ⊆ β. Then uniqueNoop(β)� succα = uniqueNoop(α).
Proof: Define P[transfinite sequence, ordinal number, surreal number] ≡
$3 ∈

⋃
rng $1 or $2 = born≈$3 and there exists a non empty, surreal-

membered set Y such that Y = Born≈$3 ∩ made of
⋃

rng $1 and $3 =
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the Y -smallest surreal number. Define H(transfinite sequence) = {e, whe-
re e is an element of Daydom $1 : for every x such that x = e holds
P[$1, dom $1, x]}. Set S1 = uniqueNoop(α). Set S = uniqueNoop(β). Set
S2 = S� succα. domS1 = succα and for every ordinal number β and for
every transfinite sequence L1 such that β ∈ succα and L1 = S1�β holds
S1(β) = H(L1). domS2 = succα and for every ordinal number γ and for
every transfinite sequence L2 such that γ ∈ succα and L2 = S2�γ holds
S2(γ) = H(L2). S1 = S2. �

(38) Suppose x ∈ (uniqueNoop(α))(β). Then

(i) born≈x = bornx ⊆ β, and

(ii) x ∈ (uniqueNoop(α))(bornx), and

(iii) x /∈
⋃

rng(uniqueNoop(α)�bornx).

Proof: Set M = uniqueNoop(α). DefineM[ordinal number] ≡ x ∈M($1)
and $1 ∈ succα. Consider δ being an ordinal number such that M[δ] and
for every ordinal number E such thatM[E] holds δ ⊆ E. x /∈

⋃
rng(M�δ).

Consider Y being a non empty, surreal-membered set such that Y =
Born≈x ∩ made of

⋃
rng(M�δ) and x = the Y -smallest surreal number.

�

(39) If θ ⊆ α ⊆ β, then (uniqueNoop(α))(θ) = (uniqueNoop(β))(θ). The
theorem is a consequence of (37).

(40) Suppose α ⊆ β and β ∈ succ γ. Then (uniqueNoop(γ))(α) ⊆ (uniqueNoop
(γ))(β).

Let x be a surreal number. The functor UniqueNo(x) yielding a surreal
number is defined by

(Def. 10) it ≈ x and it ∈ (uniqueNoop(born≈x))(born≈x).

Now we state the propositions:

(41) If x ≈ y, then UniqueNo(x) = UniqueNo(y). The theorem is a consequ-
ence of (33) and (4).

(42) 0No = UniqueNo(0No). The theorem is a consequence of (38).

Let x be a surreal number. We say that x is unique surreal if and only if

(Def. 11) x = UniqueNo(x).

One can verify that 0No is unique surreal and there exists a surreal number
which is unique surreal. Now we state the propositions:

(43) If x is an unique surreal number and o ∈ Lx ∪Rx, then o is an unique
surreal number. The theorem is a consequence of (38), (1), and (39).

(44) If Lx is non empty and finite and x is an unique surreal number, then
Lx = 1. The theorem is a consequence of (12), (38), and (23).
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(45) If Rx is non empty and finite and x is an unique surreal number, then
Rx = 1. The theorem is a consequence of (12), (38), and (24).

(46) Lx ⊕ Rx = 0 if and only if x = 0No.

(47) Lx ⊕ Rx = 1 if and only if there exists a surreal number y such that
x = 〈〈∅, {y}〉〉 or x = 〈〈{y}, ∅〉〉.
Proof: If Lx ⊕ Rx = 1, then there exists a surreal number y such that
x = 〈〈∅, {y}〉〉 or x = 〈〈{y}, ∅〉〉 by [7, (86),(76)]. �

Let X be a set. We say that X is unique surreal-membered if and only if

(Def. 12) if o ∈ X, then o is an unique surreal number.

Note that every set which is empty is also unique surreal-membered. Let x
be an unique surreal number. One can verify that Lx ∪Rx is unique surreal-
membered and {x} is unique surreal-membered. Let X, Y be unique surreal-
membered sets. One can check that X ∪ Y is unique surreal-membered. Let x
be a surreal number. One can check that UniqueNo(x) is unique surreal. Now
we state the propositions:

(48) If x is an unique surreal number, then bornx = born≈x. The theorem is
a consequence of (38).

(49) Suppose for every z such that z ∈ Born≈x and Lz ∪Rz is unique surreal-
membered and x 6= z holds Lx ⊕ Rx ∈ Lz ⊕ Rz and x ∈ Born≈x and
Lx ∪Rx is unique surreal-membered. Then x is an unique surreal number.
Proof: Set c = UniqueNo(x). Set β = born≈x. born≈c = β and Born≈c =
Born≈x. born≈c = born c. c /∈

⋃
rng(uniqueNoop(β)�β). Consider Y being

a non empty, surreal-membered set such that Y = Born≈c ∩ made of⋃
rng(uniqueNoop(β)�β) and c = the Y -smallest surreal number. x ∈

Born≈c. Lx ∪Rx ⊆
⋃

rng(uniqueNoop(β)�β). �

(50) If x is an unique surreal number and y is an unique surreal number and
x ≈ y, then x = y. The theorem is a consequence of (41).

(51) Let us consider a surreal number c. Suppose born c = born≈c and Lc �
{x} � Rc. Then born c ⊆ bornx.
Proof: Define P[ordinal number] ≡ there exists y such that Lc � {y} �
Rc and born y = $1. Consider α such that P[α] and for every β such that
P[β] holds α ⊆ β. Consider y such that Lc � {y} � Rc and born y = α.
born≈c = born≈y. �

(52) Let us consider unique surreal numbers c, x. Suppose Lc � {x} � Rc
and x 6= c. Then born c ∈ bornx. The theorem is a consequence of (48),
(51), (50), (13), (1), (11), (17), (18), and (3).

(53) Suppose bornx = born≈x and bornx is not limit ordinal. Then there
exist surreal numbers y, z such that
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(i) x ≈ z, and

(ii) z = 〈〈Ly ∪{y}, Ry 〉〉 or z = 〈〈Ly, Ry ∪{y}〉〉.
Proof: Consider β being an ordinal number such that bornx = succβ.
Define L[object] ≡ for every z such that z = $1 holds born z ∈ β and
z < x. Consider L being a set such that o ∈ L iff o ∈ Dayβ and L[o].
Define R[object] ≡ for every z such that z = $1 holds born z ∈ β and
x < z. Consider R being a set such that o ∈ R iff o ∈ Dayβ and R[o].
L � R. For every object o such that o ∈ L ∪ R there exists θ such that
θ ∈ β and o ∈ Dayθ. Reconsider L3 = 〈〈L, R〉〉 as a surreal number. L3 6≈ x.
�
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