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Introduction

In this paper, using the Mizar system [1], [11], we introduce multidimensional
measure spaces and the integration ([14], [2]) of functions on these spaces (for
interesting survey of formalizations of real analysis in another proof-assistants
like ACL2 [10], Isabelle/HOL [9], Coq [3], see [4]). It is the continuation of the
mechanisation of this topic as developed in [5] and [8]. In constructing measures
on multidimensional spaces [12], we constructed a finite sequence of Cartesian
product spaces of sets in Section 1. In Section 2, using Fubini’s Theorem [6], we
have constructed measures on general multidimensional spaces by introducing
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measures one by one into the finite sequence of direct product spaces obtained
in Section 1. In Section 3, integrals on the m-dimensional Cartesian product
measure space obtained in Section 2 are presented, and the concept of sequen-
tially integrable, which is useful in considering integrability [7] for functions on
multidimensional spaces, is introduced and its effectiveness is shown.

1. Preliminaries

Let m, n be non zero natural numbers and X be a non-empty, m-elements
finite sequence. Assume n ¬ m. The functor ElmFin(X,n) yielding a non empty
set is defined by the term

(Def. 1) X(n).

Let m be a natural number. A family of σ-fields of X is an m-elements finite
sequence defined by

(Def. 2) for every natural number i such that i ∈ Segm holds it(i) is a σ-field of
subsets of X(i).

Now we state the proposition:

(1) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of σ-fields S of X. If n ¬ m, then S(n) is
a σ-field of subsets of ElmFin(X,n).

Let m be a non zero natural number and X be a non-empty, m-elements
finite sequence. The functor

∏
FinSX yielding a non-empty, m-elements finite

sequence is defined by

(Def. 3) it(1) = X(1) and for every non zero natural number i such that i < m

holds it(i+ 1) = it(i)×X(i+ 1).

The functor
∏
FSX yielding a set is defined by the term

(Def. 4) (
∏
FinSX)(m).

Observe that
∏
FSX is non empty. Now we state the proposition:

(2) Let us consider a non zero natural number m, a natural number k, and
a non-empty, m-elements finite sequence X. If k ¬ m, then X�k is a non-
empty, k-elements finite sequence.

Let m, n be non zero natural numbers and X be a non-empty, m-elements
finite sequence. Assume n ¬ m. The functor SubFin(X,n) yielding a non-empty,
n-elements finite sequence is defined by the term

(Def. 5) X�n.

Let S be a family of σ-fields of X. Assume n ¬ m. The functor SubFin(S, n)
yielding a family of σ-fields of SubFin(X,n) is defined by the term

(Def. 6) S�n.
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Assume n ¬ m. The functor ElmFin(S, n) yielding a σ-field of subsets of
ElmFin(X,n) is defined by the term

(Def. 7) S(n).

Let m be a non zero natural number. Note that a family of σ-fields of X is
a family of semialgebras of X. Let S be a family of σ-fields of X.

A family of σ-measures of S is an m-elements finite sequence defined by

(Def. 8) for every natural number i such that i ∈ Segm there exists a σ-field S3
of subsets of X(i) such that S3 = S(i) and it(i) is a σ-measure on S3.

Let m, n be non zero natural numbers and M be a family of σ-measures of
S. Assume n ¬ m. The functor SubFin(M,n) yielding a family of σ-measures
of SubFin(S, n) is defined by the term

(Def. 9) M�n.
Assume n ¬ m. The functor ElmFin(M,n) yielding a σ-measure on ElmFin(S,
n) is defined by the term

(Def. 10) M(n).

Now we state the proposition:

(3) Let us consider non zero natural numbers m, i, j, k, and a non-empty,
m-elements finite sequence X. Suppose i ¬ j ¬ k ¬ m.
Then (

∏
FinS SubFin(X, j))(i) = (

∏
FinS SubFin(X, k))(i).

Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ j, then (
∏
FinS SubFin(X,

j))($1) = (
∏
FinS SubFin(X, k))($1). For every natural number n such that

P[n] holds P[n+ 1]. For every natural number n, P[n]. �

Let us consider non zero natural numbers m, n and a non-empty, m-elements
finite sequence X. Now we state the propositions:

(4) If n ¬ m, then (
∏
FinSX)(n) = (

∏
FinS SubFin(X,n))(n). The theorem

is a consequence of (3).

(5) If n < m, then (
∏
FinSX)(n+1) = (

∏
FinS SubFin(X,n))(n)×ElmFin(X,

n+ 1). The theorem is a consequence of (4).

(6) Let us consider a non zero natural number n, and a non-empty, (n+ 1)-
elements finite sequenceX. Then

∏
FSX =

∏
FS SubFin(X,n)×ElmFin(X,

n+ 1). The theorem is a consequence of (4).

Let us consider non zero natural numbers m, n, k and a non-empty, m-
elements finite sequence X. Now we state the propositions:

(7) If k ¬ n ¬ m, then SubFin(X, k) = SubFin(SubFin(X,n), k).

(8) If k ¬ n ¬ m, then ElmFin(X, k) = ElmFin(SubFin(X,n), k).

Let us consider non zero natural numbers m, n and a non-empty, m-elements
finite sequence X. Now we state the propositions:
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(9) If n < m, then
∏
FS SubFin(X,n+1) =

∏
FS SubFin(X,n)×ElmFin(X,n+

1). The theorem is a consequence of (8), (6), and (7).

(10) If n < m, then (
∏
FinS SubFin(X,n+1))(n+1) = (

∏
FinS SubFin(X,n))(n)

×ElmFin(X,n+ 1). The theorem is a consequence of (9).

(11) Let us consider non zero natural numbers n, i, a non-empty, (n + 1)-
elements finite sequence X, and a family of σ-fields S of X. Suppose i ¬ n.
Then

∏
FS SubFin(X, i) =

∏
FS SubFin(SubFin(X,n), i). The theorem is

a consequence of (7).

(12) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of σ-fields S of X. Suppose
k ¬ n ¬ m. Then ElmFin(S, k) = ElmFin(SubFin(S, n), k).

(13) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, a non-empty, n-elements finite sequence Y,

and a family of σ-fields S of X. Suppose n ¬ m and Y = X�n. Then
SubFin(S, n) is a family of σ-fields of Y.
Proof: For every natural number i such that i ∈ Seg n holds
(SubFin(S, n))(i) is a σ-field of subsets of Y (i). �

(14) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of σ-fields S of X. Suppose
k ¬ n ¬ m. Then SubFin(S, k) = SubFin(SubFin(S, n), k).

(15) Let us consider a non zero natural number m, and a non-empty, m-
elements finite sequence X. Then there exists a function F from

∏
FSX

into
∏
X such that F is one-to-one and onto.

Proof: Define P[non zero natural number] ≡ for every non-empty, $1-
elements finite sequence X, there exists a function F from

∏
FSX into∏

X such that F is one-to-one and onto. P[1] by [13, (2)]. For every non
zero natural number n such that P[n] holds P[n+ 1]. For every non zero
natural number n, P[n]. �

(16) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family P of semialgebras of

∏
FinSX. Suppose

n ¬ m. Then P (n) is a semialgebra of sets of
∏
FS SubFin(X,n). The

theorem is a consequence of (4).

Let us consider non zero natural numbers m, n, k, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures M of
S. Now we state the propositions:

(17) If k ¬ n ¬ m, then ElmFin(M,k) = ElmFin(SubFin(M,n), k).

(18) If k ¬ n ¬ m, then SubFin(M,k) = SubFin(SubFin(M,n), k).
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2. Construction of m-dimensional Measure Space

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, and S be a family of σ-fields of X. The functor σFldFSProd(S) yielding
a family of σ-fields of

∏
FinSX is defined by

(Def. 11) it(1) = S(1) and for every non zero natural number i such that i < m

there exists a σ-field S3 of subsets of
∏
FS SubFin(X, i) such that S3 = it(i)

and it(i+ 1) = σ(MeasRect(S3,ElmFin(S, i+ 1))).

Now we state the proposition:

(19) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of σ-fields S of X. Suppose n ¬ m. Then
(σFldFSProd(S))(n) is a σ-field of subsets of (

∏
FinSX)(n).

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, and S be a family of σ-fields of X. The functor

∏
Field S yielding

a σ-field of subsets of
∏
FSX is defined by the term

(Def. 12) (σFldFSProd(S))(m).

Now we state the propositions:

(20) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of σ-fields S of X. Suppose
k ¬ n ¬ m. Then (σFldFSProd(S))(k) = (σFldFSProd(SubFin(S, n)))(k).
Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ n, then (σFldFSProd(S))
($1) = (σFldFSProd(SubFin(S, n)))($1). For every natural number i such
that P[i] holds P[i+ 1]. For every natural number i, P[i]. �

(21) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of σ-fields S of X. Suppose n < m. Then∏
Field SubFin(S, n+ 1) = σ(MeasRect(

∏
Field SubFin(S, n),ElmFin(S, n+

1))). The theorem is a consequence of (8), (12), (7), and (20).

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, S be a family of σ-fields of X, and M be a family of σ-measures of S.
The functor σMesFSProd(M) yielding a family of σ-measures of σFldFSProd(S)
is defined by

(Def. 13) it(1) = M(1) and for every non zero natural number i such that i < m

there exists a σ-measure M3 on
∏
Field SubFin(S, i) such that M3 = it(i)

and it(i+ 1) = Prodσ -Meas(M3,ElmFin(M, i+ 1)).

Now we state the proposition:

(22) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures
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M of S. Suppose n ¬ m. Then (σMesFSProd(M))(n) is a σ-measure on∏
Field SubFin(S, n).
Proof: Set P1 = σMesFSProd(M). Define L[natural number] ≡ if 1 ¬
$1 ¬ m, then there exists a non zero natural number k such that k = $1 and
P1($1) is a σ-measure on

∏
Field SubFin(S, k). For every natural number i

such that L[i] holds L[i+ 1]. For every natural number n, L[n]. �

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, S be a family of σ-fields of X, and M be a family of σ-measures of
S. The functor MeasureProd(M) yielding a σ-measure on

∏
Field S is defined by

the term

(Def. 14) (σMesFSProd(M))(m).

We say that M is σ-finite if and only if

(Def. 15) for every natural number i such that i ∈ Segm there exists a non empty
set X2 and there exists a σ-field S3 of subsets of X2 and there exists a σ-
measure M3 on S3 such that X2 = X(i) and S3 = S(i) and M3 = M(i)
and M3 is σ-finite.

Now we state the propositions:

(23) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, a family of σ-fields S of X, and a family of σ-
measuresM of S. Suppose k ¬ n ¬ m. Then (σMesFSProd(SubFin(M,n)))
(k) = (σMesFSProd(SubFin(M,k)))(k). The theorem is a consequence of
(7), (14), (8), (12), and (17).

(24) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures
M of S. Suppose n ¬ m. Then (σMesFSProd(M))(n) =
MeasureProd(SubFin(M,n)).
Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ m, then there exists a non
zero natural number k such that k = $1 and (σMesFSProd(M))($1) =
MeasureProd(SubFin(M,k)). For every natural number i such that P[i]
holds P[i+ 1]. For every natural number i, P[i]. �

(25) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, and a family of σ-
measuresM of S. Then MeasureProd(M) = Prodσ -Meas(MeasureProd(Sub
Fin(M,n)),ElmFin(M,n+ 1)). The theorem is a consequence of (24).

(26) Let us consider a non empty set X, a field S of subsets of X, a set
sequence E of S, and a natural number i. Then (the partial unions of
E)(i) ∈ S.
Proof: Define P[natural number] ≡ (the partial unions of E)($1) ∈ S.
For every natural number n such that P[n] holds P[n + 1]. For every
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natural number n, P[n]. �

(27) Let us consider non empty sets X, Y, a σ-field S1 of subsets of X, a σ-
field S2 of subsets of Y, a σ-measure M1 on S1, and a σ-measure M2 on
S2. Suppose M1 is σ-finite and M2 is σ-finite. Then ProdMeas(M1,M2) is
σ-finite.
Proof: Set M = ProdMeas(M1,M2). Consider E1 being a set sequence of
S1 such that for every natural number n,M1(E1(n)) < +∞ and

⋃
E1 = X.

Consider E2 being a set sequence of S2 such that for every natural number
n, M2(E2(n)) < +∞ and

⋃
E2 = Y. Set F1 = the partial unions of E1.

Set F2 = the partial unions of E2. Define G(natural number) = (F1($1)×
F2($1))(∈ σ(MeasRect(S1, S2))). Consider E being a function from N into
σ(MeasRect(S1, S2)) such that for every element i of N, E(i) = G(i).

For every natural number i, E(i) = F1(i) × F2(i). For every natural
number i, E(i) ∈ σ(MeasRect(S1, S2)). For every object z, z ∈

⋃
E iff

z ∈ X ×Y. Define Q[natural number] ≡ M1(F1($1)), M2(F2($1)) ∈ R. For
every natural number i such that Q[i] holds Q[i + 1]. For every natural
number i, Q[i]. For every natural number i, M(E(i)) < +∞. �

(28) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, and a family of σ-
measures M of S.Then MeasureProd(M)=ProdMeas(MeasureProd(SubFin
(M,n)),ElmFin(M,n+ 1)). The theorem is a consequence of (25).

(29) Let us consider a non zero natural number m, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures
M of S. Suppose M is σ-finite. Then MeasureProd(M) is σ-finite.
Proof: Define P[natural number] ≡ for every non zero natural number
n for every non-empty, n-elements finite sequence X for every family of
σ-fields S of X for every family of σ-measures M of S such that M is
σ-finite and $1 = n holds MeasureProd(M) is σ-finite. P[1]. For every non
zero natural number i such that P[i] holds P[i + 1]. For every non zero
natural number k, P[k]. �

Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures M of
S. Now we state the propositions:

(30) If n ¬ m and M is σ-finite, then SubFin(M,n) is σ-finite.
Proof: Set X6 = SubFin(X,n). Set S6 = SubFin(S, n). Set M6 = SubFin
(M,n). For every natural number j such that j ∈ Seg n there exists a non
empty set X3 and there exists a σ-field S4 of subsets of X3 and there
exists a σ-measure M4 on S4 such that X3 = X6(j) and S4 = S6(j) and
M4 = M6(j) and M4 is σ-finite. �
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(31) If n ¬ m and M is σ-finite, then ElmFin(M,n) is σ-finite.

3. Integrability of Functions on (n+ 1)-dimensional Space

Now we state the propositions:

(32) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, and a partial function f from

∏
FSX to R. Suppose f

is integrable on MeasureProd(M). Then there exists a partial function g

from
∏
FS SubFin(X,n)× ElmFin(X,n+ 1) to R such that

(i) f = g, and

(ii) g is integrable on ProdMeas(MeasureProd(SubFin(M,n)),ElmFin(M,

n+ 1)), and

(iii)
∫
f d MeasureProd(M) =

∫
g d ProdMeas(MeasureProd(SubFin(M,n)),

ElmFin(M,n+ 1)).

The theorem is a consequence of (28), (6), and (21).

(33) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, and a partial

function g from
∏
FS SubFin(X,n)× ElmFin(X,n+ 1) to R.

SupposeM is σ-finite and f is integrable on MeasureProd(M) and f = g

and for every element y of ElmFin(X,n+1), (Integral1(MeasureProd(SubFin
(M,n)), |g|))(y) < +∞. Then

(i) for every element y of ElmFin(X,n+1), ProjPMap2(g, y) is integrable
on MeasureProd(SubFin(M,n)), and

(ii) for every element V of ElmFin(S, n+1), Integral1(MeasureProd(SubFin
(M,n)), g) is V -measurable, and

(iii) Integral1(MeasureProd(SubFin(M,n)), g) is integrable on ElmFin(M,

n+ 1), and

(iv)
∫
g d ProdMeas(MeasureProd(SubFin(M,n)),ElmFin(M,n+ 1)) =∫
Integral1(MeasureProd(SubFin(M,n)), g) d ElmFin(M,n+ 1), and

(v) Integral1(MeasureProd(SubFin(M,n)), g) ∈ theL1 functionsof ElmFin
(M,n+ 1).

Proof: There exists a partial function g0 from
∏
FS SubFin(X,n)×ElmFin

(X,n+1) to R such that f = g0 and g0 is integrable on ProdMeas(Measu-
reProd(SubFin(M,n)),ElmFin(M,n+1)) and

∫
f d MeasureProd(M) =

∫
g0
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d ProdMeas(MeasureProd(SubFin(M,n)),ElmFin(M,n+1)). For every na-
tural number j such that j ∈ Seg n there exists a non empty set X3 and
there exists a σ-field S4 of subsets of X3 and there exists a σ-measure m1
on S4 such that X3 = (SubFin(X,n))(j) and S4 = (SubFin(S, n))(j) and
m1 = (SubFin(M,n))(j) and m1 is σ-finite. MeasureProd(SubFin(M,n))
is σ-finite. �

Let n be a non zero natural number, X be a non-empty, (n + 1)-elements
finite sequence, f be a partial function from

∏
FSX to R, and x be an element

of
∏
FS SubFin(X,n). The functor ProjPMap1(f, x) yielding a partial function

from ElmFin(X,n+ 1) to R is defined by

(Def. 16) there exists a partial function g from
∏
FS SubFin(X,n)×ElmFin(X,n+

1) to R such that f = g and it = ProjPMap1(g, x).

Now we state the propositions:

(34) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, and a family of σ-
measuresM of S. Then

∏
Field S = σ(MeasRect(

∏
Field SubFin(S, n),Elm−

Fin(S, n+ 1))). The theorem is a consequence of (21).

(35) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, and a partial

function f3 from
∏
FS SubFin(X,n)× ElmFin(X,n+ 1) to R.

Suppose M is σ-finite and f = f3 and f is integrable on MeasureProd(M)
and for every element x of

∏
FS SubFin(X,n), (Integral2(ElmFin(M,n +

1), |f3|))(x) < +∞. Then

(i)
∫
fd MeasureProd(M) =

∫
f3 d ProdMeas(MeasureProd(SubFin(M,n)),

ElmFin(M,n+ 1)), and

(ii) for every element x of
∏
FS SubFin(X,n), ProjPMap1(f3, x) is inte-

grable on ElmFin(M,n+ 1), and

(iii) for every element U of
∏
Field SubFin(S, n), Integral2(ElmFin(M,n+

1), f3) is U -measurable, and

(iv) Integral2(ElmFin(M,n+1), f3) is integrable on MeasureProd(SubFin

(M,n)), and

(v)
∫
f3 d ProdMeas(MeasureProd(SubFin(M,n)),ElmFin(M,n + 1)) =∫
Integral2(ElmFin(M,n+ 1), f3) d MeasureProd(SubFin(M,n)), and

(vi) Integral2(ElmFin(M,n+1), f3) ∈ theL1 functions of MeasureProd(Sub-

Fin(M,n)).

The theorem is a consequence of (6), (28), (29), (30), (31), and (21).
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(36) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, a partial function

f1 from
∏
FS SubFin(X,n)×ElmFin(X,n+1) to R, and a partial function

f2 from
∏
FS SubFin(X,n+1) to R. Suppose M is σ-finite and f = f1 and

f = f2 and f is integrable on MeasureProd(M) and for every element
x of

∏
FS SubFin(X,n), (Integral2(ElmFin(M,n + 1), |f1|))(x) < +∞.

Then
∫
f2 d MeasureProd(SubFin(M,n+ 1)) =

∫
Integral2(ElmFin(M,n+

1), f1) d MeasureProd(SubFin(M,n)). The theorem is a consequence of (35).

(37) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, an element E of∏

Field S, and a partial function g from
∏
FS SubFin(X,n)×ElmFin(X,n+

1) to R.
Suppose M is σ-finite and E = dom f and f is E-measurable and f =

g. Then g is integrable on ProdMeas(MeasureProd(SubFin(M,n)),ElmFin
(M,n+1)) iff

∫
Integral2(ElmFin(M,n+1), |g|) d MeasureProd(SubFin(M,

n)) < +∞. The theorem is a consequence of (6), (34), (30), (29), and (31).

Let n be a non zero natural number, X be a non-empty, (n + 1)-elements
finite sequence, S be a family of σ-fields of X, M be a family of σ-measures of
S, and f be a partial function from

∏
FSX to R. The functor IntegralFS(M,f)

yielding an (n+ 1)-elements finite sequence is defined by

(Def. 17) it(1) = f and for every natural number i such that 1 ¬ i < n+ 1 there
exists a non zero natural number k and there exists a partial function g

from
∏
FS SubFin(X, k)× ElmFin(X, k + 1) to R such that k = n+ 1− i

and g = it(i) and it(i+ 1) = Integral2(ElmFin(M,k + 1), g).

We say that f is sequentially integrable on M if and only if

(Def. 18) for every non zero natural number k such that k < n + 1 there exi-
sts a partial function G from

∏
FS SubFin(X, k + 1) to R and there exi-

sts a partial function H from
∏
FS SubFin(X, k) to R such that G =

(IntegralFS(M,f))(n+1−k)andH = (IntegralFS(SubFin(M,k+1), |G|))(2)
and for every element x of

∏
FS SubFin(X, k), H(x) < +∞.

Now we state the propositions:

(38) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, and a partial function f from

∏
FSX to R.

Suppose M is σ-finite and f is sequentially integrable on M and f is
integrable on MeasureProd(M). Let us consider a non zero natural num-
ber k. Suppose k < n + 1. Then there exists a partial function g from



Multidimensional measure space and integration 191

∏
FS SubFin(X, k + 1) to R such that

(i) g = (IntegralFS(M,f))(n+ 1− k), and

(ii) g is integrable on MeasureProd(SubFin(M,k + 1)).

Proof: Define P[natural number] ≡ if 1 ¬ $1 < n + 1, then there exi-
sts a non zero natural number j and there exists a partial function g

from
∏
FS SubFin(X, j + 1) to R such that j = n + 1 − $1 and g =

(IntegralFS(M,f))($1) and g is integrable on MeasureProd(SubFin(M, j +
1)). P[1]. For every non zero natural number k such that P[k] holds
P[k + 1]. For every non zero natural number k, P[k]. �

(39) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, and a partial

function g from
∏
FS SubFin(X,n)×ElmFin(X,n+1) to R. Suppose f = g.

Then

(i) (IntegralFS(M,f))(1) = f , and

(ii) (IntegralFS(M,f))(2) = Integral2(ElmFin(M,n+ 1), g).

(40) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, and a partial function f from

∏
FSX to R. Suppose M

is σ-finite and f is sequentially integrable on M and f is integrable on
MeasureProd(M). Let us consider a non zero natural number k.

Suppose k < n.Then there exists a partial function F5 from
∏
FS SubFin

(X, k) × ElmFin(X, k + 1) to R and there exists a partial function G2
from

∏
FS SubFin(X, k + 1) to R and there exists a function F4 from∏

FS SubFin(X, k) into R such thatG2 = F5 andG2 = (IntegralFS(M,f))(n
+1−k) and F4 = (IntegralFS(M,f))(n+1−(k−1)) and F4 = Integral2(Elm-
Fin(M,k+ 1), F5) and G2 is integrable on MeasureProd(SubFin(M,k+ 1))
and
∫
G2 d MeasureProd(SubFin(M,k+1)) =

∫
F5 d ProdMeas(MeasureProd

(SubFin(M,k)),ElmFin(M,k+1)) and for every element x of
∏
FS SubFin

(X, k), ProjPMap1(F5, x) is integrable on ElmFin(M,k + 1).
For every element U of

∏
Field SubFin(S, k), F4 is U -measurable and F4

is integrable on MeasureProd(SubFin(M,k)) and
∫
F5 d ProdMeas(Measu-

reProd(SubFin(M,k)),ElmFin(M,k+1)) =
∫
F4 d MeasureProd(SubFin(M,

k)) and F4 ∈ the L1 functions of MeasureProd(SubFin(M,k)) and∫
G2 d MeasureProd(SubFin(M,k+1))=

∫
F4 d MeasureProd(SubFin(M,k)).

The theorem is a consequence of (7), (8), (14), (12), (18), (17), (30),
(38), (9), (6), (39), (35), and (36).
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