# Multidimensional Measure Space and Integration ${ }^{1}$ 

Noboru Endou<br>National Institute of Technology, Gifu College<br>2236-2 Kamimakuwa, Motosu, Gifu, Japan<br>Yasunari Shidama<br>Karuizawa Hotch 244-1<br>Nagano, Japan


#### Abstract

Summary. This paper introduces multidimensional measure spaces and the integration of functions on these spaces in Mizar. Integrals on the multidimensional Cartesian product measure space are defined and appropriate formal apparatus to deal with this notion is provided as well.


MSC: 28A35 68V20
Keywords: measure in product spaces; iterated integral
MML identifier: MEASUR13, version: 8.1.14 5.76.1452

## Introduction

In this paper, using the Mizar system [1, [11, we introduce multidimensional measure spaces and the integration ([14], [2]) of functions on these spaces (for interesting survey of formalizations of real analysis in another proof-assistants like ACL2 [10], Isabelle/HOL [9], Coq [3], see [4). It is the continuation of the mechanisation of this topic as developed in [5 and [8]. In constructing measures on multidimensional spaces [12], we constructed a finite sequence of Cartesian product spaces of sets in Section 1. In Section 2, using Fubini's Theorem [6], we have constructed measures on general multidimensional spaces by introducing

[^0]measures one by one into the finite sequence of direct product spaces obtained in Section 1. In Section 3, integrals on the $m$-dimensional Cartesian product measure space obtained in Section 2 are presented, and the concept of sequentially integrable, which is useful in considering integrability [7] for functions on multidimensional spaces, is introduced and its effectiveness is shown.

## 1. Preliminaries

Let $m, n$ be non zero natural numbers and $X$ be a non-empty, m-elements finite sequence. Assume $n \leqslant m$. The functor $\operatorname{ElmFin}(X, n)$ yielding a non empty set is defined by the term
(Def. 1) $\quad X(n)$.
Let $m$ be a natural number. A family of $\sigma$-fields of $X$ is an $m$-elements finite sequence defined by
(Def. 2) for every natural number $i$ such that $i \in \operatorname{Seg} m$ holds $i t(i)$ is a $\sigma$-field of subsets of $X(i)$.
Now we state the proposition:
(1) Let us consider non zero natural numbers $m$, $n$, a non-empty, $m$-elements finite sequence $X$, and a family of $\sigma$-fields $S$ of $X$. If $n \leqslant m$, then $S(n)$ is a $\sigma$-field of subsets of $\operatorname{ElmFin}(X, n)$.
Let $m$ be a non zero natural number and $X$ be a non-empty, $m$-elements finite sequence. The functor $\prod_{\text {FinS }} X$ yielding a non-empty, $m$-elements finite sequence is defined by
(Def. 3) $\quad i t(1)=X(1)$ and for every non zero natural number $i$ such that $i<m$ holds $i t(i+1)=i t(i) \times X(i+1)$.
The functor $\prod_{F S} X$ yielding a set is defined by the term
(Def. 4) ( $\left.\prod_{\text {FinS }} X\right)(m)$.
Observe that $\prod_{F S} X$ is non empty. Now we state the proposition:
(2) Let us consider a non zero natural number $m$, a natural number $k$, and a non-empty, $m$-elements finite sequence $X$. If $k \leqslant m$, then $X \upharpoonright k$ is a nonempty, $k$-elements finite sequence.
Let $m, n$ be non zero natural numbers and $X$ be a non-empty, $m$-elements finite sequence. Assume $n \leqslant m$. The functor $\operatorname{SubFin}(X, n)$ yielding a non-empty, $n$-elements finite sequence is defined by the term
(Def. 5) $\quad X \upharpoonright n$.
Let $S$ be a family of $\sigma$-fields of $X$. Assume $n \leqslant m$. The functor $\operatorname{SubFin}(S, n)$ yielding a family of $\sigma$-fields of $\operatorname{SubFin}(X, n)$ is defined by the term
(Def. 6) $\quad S \upharpoonright n$.

Assume $n \leqslant m$. The functor $\operatorname{ElmFin}(S, n)$ yielding a $\sigma$-field of subsets of $\operatorname{ElmFin}(X, n)$ is defined by the term
(Def. 7) $S(n)$.
Let $m$ be a non zero natural number. Note that a family of $\sigma$-fields of $X$ is a family of semialgebras of $X$. Let $S$ be a family of $\sigma$-fields of $X$.

A family of $\sigma$-measures of $S$ is an $m$-elements finite sequence defined by
(Def. 8) for every natural number $i$ such that $i \in \operatorname{Seg} m$ there exists a $\sigma$-field $S_{3}$ of subsets of $X(i)$ such that $S_{3}=S(i)$ and $i t(i)$ is a $\sigma$-measure on $S_{3}$.
Let $m, n$ be non zero natural numbers and $M$ be a family of $\sigma$-measures of $S$. Assume $n \leqslant m$. The functor $\operatorname{SubFin}(M, n)$ yielding a family of $\sigma$-measures of $\operatorname{SubFin}(S, n)$ is defined by the term
(Def. 9) $\quad M \upharpoonright n$.
Assume $n \leqslant m$. The functor $\operatorname{ElmFin}(M, n)$ yielding a $\sigma$-measure on $\operatorname{ElmFin}(S$,
$n)$ is defined by the term
(Def. 10) $M(n)$.
Now we state the proposition:
(3) Let us consider non zero natural numbers $m, i, j, k$, and a non-empty, $m$-elements finite sequence $X$. Suppose $i \leqslant j \leqslant k \leqslant m$. Then $\left(\prod_{\text {FinS }} \operatorname{SubFin}(X, j)\right)(i)=\left(\prod_{\text {FinS }} \operatorname{SubFin}(X, k)\right)(i)$.
Proof: Define $\mathcal{P}$ [natural number] $\equiv$ if $1 \leqslant \$_{1} \leqslant j$, then $\left(\prod_{\text {FinS }} \operatorname{SubFin}(X\right.$, $j))\left(\$_{1}\right)=\left(\prod_{\text {FinS }} \operatorname{SubFin}(X, k)\right)\left(\$_{1}\right)$. For every natural number $n$ such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$.
Let us consider non zero natural numbers $m, n$ and a non-empty, $m$-elements finite sequence $X$. Now we state the propositions:
(4) If $n \leqslant m$, then $\left(\prod_{\text {FinS }} X\right)(n)=\left(\prod_{\text {FinS }} \operatorname{SubFin}(X, n)\right)(n)$. The theorem is a consequence of (3).
(5) If $n<m$, then $\left(\prod_{\text {FinS }} X\right)(n+1)=\left(\prod_{\text {FinS }} \operatorname{SubFin}(X, n)\right)(n) \times \operatorname{ElmFin}(X$, $n+1)$. The theorem is a consequence of (4).
(6) Let us consider a non zero natural number $n$, and a non-empty, $(n+1)$ elements finite sequence $X$. Then $\prod_{F S} X=\prod_{F S} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X$, $n+1)$. The theorem is a consequence of (4).
Let us consider non zero natural numbers $m, n, k$ and a non-empty, $m$ elements finite sequence $X$. Now we state the propositions:
(7) If $k \leqslant n \leqslant m$, then $\operatorname{SubFin}(X, k)=\operatorname{SubFin}(\operatorname{SubFin}(X, n), k)$.
(8) If $k \leqslant n \leqslant m$, then $\operatorname{ElmFin}(X, k)=\operatorname{ElmFin}(\operatorname{SubFin}(X, n), k)$.

Let us consider non zero natural numbers $m, n$ and a non-empty, $m$-elements finite sequence $X$. Now we state the propositions:
(9) If $n<m$, then $\prod_{\text {FS }} \operatorname{SubFin}(X, n+1)=\prod_{F S} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X, n+$ $1)$. The theorem is a consequence of (8), (6), and (7).
(10) If $n<m$, then $\left(\prod_{\text {FinS }} \operatorname{SubFin}(X, n+1)\right)(n+1)=\left(\prod_{\text {FinS }} \operatorname{SubFin}(X, n)\right)(n)$ $\times \operatorname{ElmFin}(X, n+1)$. The theorem is a consequence of (9).
(11) Let us consider non zero natural numbers $n$, $i$, a non-empty, $(n+1)$ elements finite sequence $X$, and a family of $\sigma$-fields $S$ of $X$. Suppose $i \leqslant n$. Then $\prod_{F S} \operatorname{SubFin}(X, i)=\prod_{F S} \operatorname{SubFin}(\operatorname{SubFin}(X, n), i)$. The theorem is a consequence of (7).
(12) Let us consider non zero natural numbers $m, n, k$, a non-empty, $m$ elements finite sequence $X$, and a family of $\sigma$-fields $S$ of $X$. Suppose $k \leqslant n \leqslant m$. Then $\operatorname{ElmFin}(S, k)=\operatorname{ElmFin}(\operatorname{SubFin}(S, n), k)$.
(13) Let us consider non zero natural numbers $m, n, k$, a non-empty, $m$ elements finite sequence $X$, a non-empty, $n$-elements finite sequence $Y$, and a family of $\sigma$-fields $S$ of $X$. Suppose $n \leqslant m$ and $Y=X \upharpoonright n$. Then $\operatorname{SubFin}(S, n)$ is a family of $\sigma$-fields of $Y$.
Proof: For every natural number $i$ such that $i \in \operatorname{Seg} n$ holds $(\operatorname{SubFin}(S, n))(i)$ is a $\sigma$-field of subsets of $Y(i)$.
(14) Let us consider non zero natural numbers $m, n, k$, a non-empty, $m$ elements finite sequence $X$, and a family of $\sigma$-fields $S$ of $X$. Suppose $k \leqslant n \leqslant m$. Then $\operatorname{SubFin}(S, k)=\operatorname{SubFin}(\operatorname{SubFin}(S, n), k)$.
(15) Let us consider a non zero natural number $m$, and a non-empty, $m$ elements finite sequence $X$. Then there exists a function $F$ from $\prod_{\mathrm{FS}} X$ into $\Pi X$ such that $F$ is one-to-one and onto.
Proof: Define $\mathcal{P}$ [non zero natural number] $\equiv$ for every non-empty, $\$_{1-}$ elements finite sequence $X$, there exists a function $F$ from $\prod_{\mathrm{FS}} X$ into $\Pi X$ such that $F$ is one-to-one and onto. $\mathcal{P}[1]$ by [13, (2)]. For every non zero natural number $n$ such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every non zero natural number $n, \mathcal{P}[n]$.
(16) Let us consider non zero natural numbers $m$, $n$, a non-empty, $m$-elements finite sequence $X$, and a family $P$ of semialgebras of $\prod_{\text {FinS }} X$. Suppose $n \leqslant m$. Then $P(n)$ is a semialgebra of sets of $\prod_{F S} \operatorname{SubFin}(X, n)$. The theorem is a consequence of (4).
Let us consider non zero natural numbers $m, n, k$, a non-empty, m-elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$-measures $M$ of $S$. Now we state the propositions:
(17) If $k \leqslant n \leqslant m$, then $\operatorname{ElmFin}(M, k)=\operatorname{ElmFin}(\operatorname{SubFin}(M, n), k)$.
(18) If $k \leqslant n \leqslant m$, then $\operatorname{SubFin}(M, k)=\operatorname{SubFin}(\operatorname{SubFin}(M, n), k)$.

## 2. Construction of m-dimensional Measure Space

Let $m$ be a non zero natural number, $X$ be a non-empty, $m$-elements finite sequence, and $S$ be a family of $\sigma$-fields of $X$. The functor $\sigma \operatorname{FldFS}_{\operatorname{Prod}}(S)$ yielding a family of $\sigma$-fields of $\prod_{\text {FinS }} X$ is defined by
(Def. 11) $i t(1)=S(1)$ and for every non zero natural number $i$ such that $i<m$ there exists a $\sigma$-field $S_{3}$ of subsets of $\prod_{F S} \operatorname{SubFin}(X, i)$ such that $S_{3}=i t(i)$ and $i t(i+1)=\sigma\left(\operatorname{MeasRect}\left(S_{3}, \operatorname{ElmFin}(S, i+1)\right)\right)$.
Now we state the proposition:
(19) Let us consider non zero natural numbers $m$, $n$, a non-empty, $m$-elements finite sequence $X$, and a family of $\sigma$-fields $S$ of $X$. Suppose $n \leqslant m$. Then $\left(\sigma\right.$ FldFS $\left._{\text {Prod }}(S)\right)(n)$ is a $\sigma$-field of subsets of $\left(\prod_{\text {FinS }} X\right)(n)$.
Let $m$ be a non zero natural number, $X$ be a non-empty, $m$-elements finite sequence, and $S$ be a family of $\sigma$-fields of $X$. The functor $\prod_{\text {Field }} S$ yielding a $\sigma$-field of subsets of $\prod_{F S} X$ is defined by the term
(Def. 12) $\quad\left(\sigma\right.$ FldFS $\left._{\text {Prod }}(S)\right)(m)$.
Now we state the propositions:
(20) Let us consider non zero natural numbers $m, n, k$, a non-empty, $m$ elements finite sequence $X$, and a family of $\sigma$-fields $S$ of $X$. Suppose $k \leqslant n \leqslant m$. Then $\left(\sigma \operatorname{FldFS}_{\text {Prod }}(S)\right)(k)=\left(\sigma \operatorname{FldFS}_{\text {Prod }}(\operatorname{SubFin}(S, n))\right)(k)$. Proof: Define $\mathcal{P}$ [natural number] $\equiv$ if $1 \leqslant \$_{1} \leqslant n$, then $\left(\sigma \operatorname{FldFS}_{\text {Prod }}(S)\right)$ $\left(\$_{1}\right)=\left(\sigma \operatorname{FldFS}_{\text {Prod }}(\operatorname{SubFin}(S, n))\right)\left(\$_{1}\right)$. For every natural number $i$ such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $i, \mathcal{P}[i]$.
(21) Let us consider non zero natural numbers $m$, $n$, a non-empty, $m$-elements finite sequence $X$, and a family of $\sigma$-fields $S$ of $X$. Suppose $n<m$. Then $\prod_{\text {Field }} \operatorname{SubFin}(S, n+1)=\sigma\left(\operatorname{MeasRect}\left(\prod_{\text {Field }} \operatorname{SubFin}(S, n), \operatorname{ElmFin}(S, n+\right.\right.$ $1))$ ). The theorem is a consequence of (8), (12), (7), and (20).
Let $m$ be a non zero natural number, $X$ be a non-empty, $m$-elements finite sequence, $S$ be a family of $\sigma$-fields of $X$, and $M$ be a family of $\sigma$-measures of $S$. The functor $\sigma \operatorname{MesFS}_{\text {Prod }}(M)$ yielding a family of $\sigma$-measures of $\sigma \operatorname{FldFS}_{\operatorname{Prod}}(S)$ is defined by
(Def. 13) $\quad i t(1)=M(1)$ and for every non zero natural number $i$ such that $i<m$ there exists a $\sigma$-measure $M_{3}$ on $\prod_{\text {Field }} \operatorname{SubFin}(S, i)$ such that $M_{3}=i t(i)$ and $i t(i+1)=\operatorname{Prod} \sigma-\operatorname{Meas}\left(M_{3}, \operatorname{ElmFin}(M, i+1)\right)$.
Now we state the proposition:
(22) Let us consider non zero natural numbers $m$, $n$, a non-empty, $m$-elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$-measures
$M$ of $S$. Suppose $n \leqslant m$. Then $\left(\sigma \operatorname{MesFS}_{\operatorname{Prod}}(M)\right)(n)$ is a $\sigma$-measure on $\prod_{\text {Field }} \operatorname{SubFin}(S, n)$.
Proof: Set $P_{1}=\sigma \operatorname{MesFS}_{\text {Prod }}(M)$. Define $\mathcal{L}[$ natural number $] \equiv$ if $1 \leqslant$ $\$_{1} \leqslant m$, then there exists a non zero natural number $k$ such that $k=\$_{1}$ and $P_{1}\left(\$_{1}\right)$ is a $\sigma$-measure on $\prod_{\text {Field }} \operatorname{SubFin}(S, k)$. For every natural number $i$ such that $\mathcal{L}[i]$ holds $\mathcal{L}[i+1]$. For every natural number $n, \mathcal{L}[n]$.
Let $m$ be a non zero natural number, $X$ be a non-empty, $m$-elements finite sequence, $S$ be a family of $\sigma$-fields of $X$, and $M$ be a family of $\sigma$-measures of $S$. The functor Measure $\operatorname{Prod}(M)$ yielding a $\sigma$-measure on $\prod_{\text {Field }} S$ is defined by the term
(Def. 14) $\quad\left(\sigma \operatorname{MesFS}_{\text {Prod }}(M)\right)(m)$.
We say that $M$ is $\sigma$-finite if and only if
(Def. 15) for every natural number $i$ such that $i \in \operatorname{Seg} m$ there exists a non empty set $X_{2}$ and there exists a $\sigma$-field $S_{3}$ of subsets of $X_{2}$ and there exists a $\sigma$ measure $M_{3}$ on $S_{3}$ such that $X_{2}=X(i)$ and $S_{3}=S(i)$ and $M_{3}=M(i)$ and $M_{3}$ is $\sigma$-finite.
Now we state the propositions:
(23) Let us consider non zero natural numbers $m, n, k$, a non-empty, $m$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$ measures $M$ of $S$. Suppose $k \leqslant n \leqslant m$. Then $\left(\sigma \operatorname{MesFS}_{\text {Prod }}(\operatorname{SubFin}(M, n))\right)$ $(k)=\left(\sigma \operatorname{MesFS}_{\operatorname{Prod}}(\operatorname{SubFin}(M, k))\right)(k)$. The theorem is a consequence of (7), (14), (8), (12), and (17).
(24) Let us consider non zero natural numbers $m$, $n$, a non-empty, $m$-elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$-measures $M$ of $S$. Suppose $n \leqslant m$. Then $\left(\sigma \operatorname{MesFS}_{\text {Prod }}(M)\right)(n)=$ Measure $_{\text {Prod }}(\operatorname{SubFin}(M, n))$.
Proof: Define $\mathcal{P}$ [natural number] $\equiv$ if $1 \leqslant \$_{1} \leqslant m$, then there exists a non zero natural number $k$ such that $k=\$_{1}$ and $\left(\sigma \operatorname{MesFS}_{\text {Prod }}(M)\right)\left(\$_{1}\right)=$ Measure ${ }_{\text {Prod }}(\operatorname{SubFin}(M, k))$. For every natural number $i$ such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $i, \mathcal{P}[i]$.
(25) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$ measures $M$ of $S$. Then Measure $\operatorname{Prod}(M)=\operatorname{Prod} \sigma$-Meas (Measure $_{\text {Prod }}(\operatorname{Sub}$ $\operatorname{Fin}(M, n))$, $\operatorname{ElmFin}(M, n+1))$. The theorem is a consequence of $(24)$.
(26) Let us consider a non empty set $X$, a field $S$ of subsets of $X$, a set sequence $E$ of $S$, and a natural number $i$. Then (the partial unions of $E)(i) \in S$.
Proof: Define $\mathcal{P}$ [natural number] $\equiv$ (the partial unions of $E)\left(\$_{1}\right) \in S$. For every natural number $n$ such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every
natural number $n, \mathcal{P}[n]$.
(27) Let us consider non empty sets $X, Y$, a $\sigma$-field $S_{1}$ of subsets of $X$, a $\sigma$ field $S_{2}$ of subsets of $Y$, a $\sigma$-measure $M_{1}$ on $S_{1}$, and a $\sigma$-measure $M_{2}$ on $S_{2}$. Suppose $M_{1}$ is $\sigma$-finite and $M_{2}$ is $\sigma$-finite. Then $\operatorname{ProdMeas}\left(M_{1}, M_{2}\right)$ is $\sigma$-finite.
Proof: Set $M=\operatorname{ProdMeas}\left(M_{1}, M_{2}\right)$. Consider $E_{1}$ being a set sequence of $S_{1}$ such that for every natural number $n, M_{1}\left(E_{1}(n)\right)<+\infty$ and $\cup E_{1}=X$. Consider $E_{2}$ being a set sequence of $S_{2}$ such that for every natural number $n, M_{2}\left(E_{2}(n)\right)<+\infty$ and $\bigcup E_{2}=Y$. Set $F_{1}=$ the partial unions of $E_{1}$. Set $F_{2}=$ the partial unions of $E_{2}$. Define $\mathcal{G}$ (natural number) $=\left(F_{1}\left(\$_{1}\right) \times\right.$ $\left.F_{2}\left(\$_{1}\right)\right)\left(\in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)\right)$. Consider $E$ being a function from $\mathbb{N}$ into $\sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$ such that for every element $i$ of $\mathbb{N}, E(i)=\mathcal{G}(i)$.

For every natural number $i, E(i)=F_{1}(i) \times F_{2}(i)$. For every natural number $i, E(i) \in \sigma\left(\operatorname{MeasRect}\left(S_{1}, S_{2}\right)\right)$. For every object $z, z \in \bigcup E$ iff $z \in X \times Y$. Define $\mathcal{Q}$ [natural number] $\equiv M_{1}\left(F_{1}\left(\$_{1}\right)\right), M_{2}\left(F_{2}\left(\$_{1}\right)\right) \in \mathbb{R}$. For every natural number $i$ such that $\mathcal{Q}[i]$ holds $\mathcal{Q}[i+1]$. For every natural number $i, \mathcal{Q}[i]$. For every natural number $i, M(E(i))<+\infty$.
(28) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$ measures $M$ of $S$. Then Measure Prod $(M)=\operatorname{ProdMeas(Measure~}{ }_{\text {Prod }}$ (SubFin $(M, n)), \operatorname{ElmFin}(M, n+1))$. The theorem is a consequence of (25).
(29) Let us consider a non zero natural number $m$, a non-empty, $m$-elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$-measures $M$ of $S$. Suppose $M$ is $\sigma$-finite. Then Measure $\operatorname{Prod}^{( }(M)$ is $\sigma$-finite.
Proof: Define $\mathcal{P}$ [natural number] $\equiv$ for every non zero natural number $n$ for every non-empty, $n$-elements finite sequence $X$ for every family of $\sigma$-fields $S$ of $X$ for every family of $\sigma$-measures $M$ of $S$ such that $M$ is $\sigma$-finite and $\$_{1}=n$ holds Measure $\operatorname{Prod}(M)$ is $\sigma$-finite. $\mathcal{P}[1]$. For every non zero natural number $i$ such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every non zero natural number $k, \mathcal{P}[k]$.
Let us consider non zero natural numbers $m$, $n$, a non-empty, m-elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$-measures $M$ of $S$. Now we state the propositions:
(30) If $n \leqslant m$ and $M$ is $\sigma$-finite, then $\operatorname{SubFin}(M, n)$ is $\sigma$-finite.

Proof: Set $X_{6}=\operatorname{SubFin}(X, n)$. Set $S_{6}=\operatorname{SubFin}(S, n)$. Set $M_{6}=\operatorname{SubFin}$ $(M, n)$. For every natural number $j$ such that $j \in \operatorname{Seg} n$ there exists a non empty set $X_{3}$ and there exists a $\sigma$-field $S_{4}$ of subsets of $X_{3}$ and there exists a $\sigma$-measure $M_{4}$ on $S_{4}$ such that $X_{3}=X_{6}(j)$ and $S_{4}=S_{6}(j)$ and $M_{4}=M_{6}(j)$ and $M_{4}$ is $\sigma$-finite.
(31) If $n \leqslant m$ and $M$ is $\sigma$-finite, then $\operatorname{ElmFin}(M, n)$ is $\sigma$-finite.

## 3. Integrability of Functions on $(n+1)$-dimensional Space

Now we state the propositions:
(32) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, a family of $\sigma$ measures $M$ of $S$, and a partial function $f$ from $\prod_{\mathrm{FS}} X$ to $\overline{\mathbb{R}}$. Suppose $f$ is integrable on Measure $\operatorname{Prod}(M)$. Then there exists a partial function $g$ from $\prod_{\text {FS }} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X, n+1)$ to $\overline{\mathbb{R}}$ such that
(i) $f=g$, and
(ii) $g$ is integrable on $\operatorname{ProdMeas}\left(\right.$ Measure $_{\operatorname{Prod}}(\operatorname{SubFin}(M, n)), \operatorname{ElmFin}(M$, $n+1)$ ), and
(iii) $\int f \mathrm{~d}$ Measure $_{\operatorname{Prod}}(M)=\int g \mathrm{~d} \operatorname{ProdMeas}\left(\right.$ Measure $_{\operatorname{Prod}}(\operatorname{SubFin}(M, n))$, $\operatorname{ElmFin}(M, n+1))$.
The theorem is a consequence of (28), (6), and (21).
(33) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, a family of $\sigma$ measures $M$ of $S$, a partial function $f$ from $\prod_{\mathrm{FS}} X$ to $\overline{\mathbb{R}}$, and a partial function $g$ from $\prod_{\text {FS }} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X, n+1)$ to $\overline{\mathbb{R}}$.

Suppose $M$ is $\sigma$-finite and $f$ is integrable on Measure $\operatorname{Prod}(M)$ and $f=g$ and for every element $y$ of $\operatorname{ElmFin}(X, n+1)$, (Integral1(Measure ${ }_{P r o d}$ (SubFin $(M, n)),|g|))(y)<+\infty$. Then
(i) for every element $y$ of $\operatorname{ElmFin}(X, n+1)$, $\operatorname{ProjPMap} 2(g, y)$ is integrable on Measure ${ }_{\text {Prod }}(\operatorname{SubFin}(M, n))$, and
(ii) for every element $V$ of $\operatorname{ElmFin}(S, n+1)$, Integral1(Measure ${ }_{\text {Prod }}$ (SubFin $(M, n)), g)$ is $V$-measurable, and
(iii) Integral1(Measure Prod $(\operatorname{SubFin}(M, n)), g)$ is integrable on $\operatorname{ElmFin}(M$, $n+1$ ), and
(iv) $\int g \mathrm{~d} \operatorname{ProdMeas}\left(\right.$ Measure $\left._{\operatorname{Prod}}(\operatorname{SubFin}(M, n)), \operatorname{ElmFin}(M, n+1)\right)=$ $\int \operatorname{Integral1}\left(\right.$ Measure $\left._{\text {Prod }}(\operatorname{SubFin}(M, n)), g\right) \mathrm{d} \operatorname{ElmFin}(M, n+1)$, and
(v) Integral1(Measure $\operatorname{Prod}(\operatorname{SubFin}(M, n)), g) \in$ the $L^{1}$ functionsof ElmFin $(M, n+1)$.
Proof: There exists a partial function $g_{0}$ from $\prod_{\text {FS }} \operatorname{SubFin}(X, n) \times$ ElmFin $(X, n+1)$ to $\overline{\mathbb{R}}$ such that $f=g_{0}$ and $g_{0}$ is integrable on ProdMeas(Measu$\left.\operatorname{re}_{\operatorname{Prod}}(\operatorname{SubFin}(M, n)), \operatorname{ElmFin}(M, n+1)\right)$ and $\int f \mathrm{~d}$ Measure $_{\operatorname{Prod}}(M)=\int g_{0}$
d ProdMeas(Measure $\operatorname{Prod}(\operatorname{SubFin}(M, n)), \operatorname{ElmFin}(M, n+1))$. For every natural number $j$ such that $j \in \operatorname{Seg} n$ there exists a non empty set $X_{3}$ and there exists a $\sigma$-field $S_{4}$ of subsets of $X_{3}$ and there exists a $\sigma$-measure $m_{1}$ on $S_{4}$ such that $X_{3}=(\operatorname{SubFin}(X, n))(j)$ and $S_{4}=(\operatorname{SubFin}(S, n))(j)$ and $m_{1}=(\operatorname{SubFin}(M, n))(j)$ and $m_{1}$ is $\sigma$-finite. Measure $\operatorname{Prod}(\operatorname{SubFin}(M, n))$ is $\sigma$-finite.
Let $n$ be a non zero natural number, $X$ be a non-empty, $(n+1)$-elements finite sequence, $f$ be a partial function from $\prod_{F S} X$ to $\overline{\mathbb{R}}$, and $x$ be an element of $\prod_{F S} \operatorname{SubFin}(X, n)$. The functor $\operatorname{ProjPMap1}(f, x)$ yielding a partial function from $\operatorname{ElmFin}(X, n+1)$ to $\overline{\mathbb{R}}$ is defined by
(Def. 16) there exists a partial function $g$ from $\prod_{F S} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X, n+$ 1) to $\overline{\mathbb{R}}$ such that $f=g$ and $i t=\operatorname{ProjPMap} 1(g, x)$.

Now we state the propositions:
(34) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, and a family of $\sigma$ measures $M$ of $S$. Then $\prod_{\text {Field }} S=\sigma\left(\operatorname{MeasRect}\left(\prod_{\text {Field }} \operatorname{SubFin}(S, n)\right.\right.$, Elm$\operatorname{Fin}(S, n+1)))$. The theorem is a consequence of $(21)$.
(35) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, a family of $\sigma$ measures $M$ of $S$, a partial function $f$ from $\prod_{\mathrm{FS}} X$ to $\overline{\mathbb{R}}$, and a partial function $f_{3}$ from $\prod_{F S} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X, n+1)$ to $\overline{\mathbb{R}}$.

Suppose $M$ is $\sigma$-finite and $f=f_{3}$ and $f$ is integrable on Measure $\operatorname{Prod}^{( }(M)$ and for every element $x$ of $\prod_{F S} \operatorname{SubFin}(X, n)$, (Integral2 $(\operatorname{ElmFin}(M, n+$ $\left.\left.1),\left|f_{3}\right|\right)\right)(x)<+\infty$. Then
(i) $\int f \mathrm{~d}$ Measure $_{\operatorname{Prod}}(M)=\int f_{3} \mathrm{~d} \operatorname{ProdMeas}\left(\right.$ Measure $_{\operatorname{Prod}}(\operatorname{SubFin}(M, n))$, $\operatorname{ElmFin}(M, n+1))$, and
(ii) for every element $x$ of $\prod_{F S} \operatorname{SubFin}(X, n)$, $\operatorname{ProjPMap1}\left(f_{3}, x\right)$ is integrable on $\operatorname{ElmFin}(M, n+1)$, and
(iii) for every element $U$ of $\prod_{\text {Field }} \operatorname{SubFin}(S, n)$, Integral2 $(\operatorname{ElmFin}(M, n+$ $\left.1), f_{3}\right)$ is $U$-measurable, and
(iv) Integral2(ElmFin $\left.(M, n+1), f_{3}\right)$ is integrable on Measure Prod $^{(S u b F i n}$ $(M, n))$, and
(v) $\int f_{3} \mathrm{~d} \operatorname{ProdMeas}\left(\right.$ Measure $\left._{\operatorname{Prod}}(\operatorname{SubFin}(M, n)), \operatorname{ElmFin}(M, n+1)\right)=$ $\int \operatorname{Integral2}\left(\operatorname{ElmFin}(M, n+1), f_{3}\right) \mathrm{d}$ Measure $_{\text {Prod }}(\operatorname{SubFin}(M, n))$, and
(vi) Integral2(ElmFin $\left.(M, n+1), f_{3}\right) \in \operatorname{the} L^{1}$ functions of Measure ${ }_{\text {Prod }}$ (Sub$\operatorname{Fin}(M, n))$.
The theorem is a consequence of $(6),(28),(29),(30),(31)$, and (21).
(36) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, a family of $\sigma$ measures $M$ of $S$, a partial function $f$ from $\prod_{\mathrm{FS}} X$ to $\overline{\mathbb{R}}$, a partial function $f_{1}$ from $\prod_{\text {FS }} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X, n+1)$ to $\overline{\mathbb{R}}$, and a partial function $f_{2}$ from $\prod_{\mathrm{FS}} \operatorname{SubFin}(X, n+1)$ to $\overline{\mathbb{R}}$. Suppose $M$ is $\sigma$-finite and $f=f_{1}$ and $f=f_{2}$ and $f$ is integrable on Measure $\operatorname{Prod}^{(M)}$ and for every element $x$ of $\prod_{\text {FS }} \operatorname{SubFin}(X, n)$, (Integral2 $\left.\left(\operatorname{ElmFin}(M, n+1),\left|f_{1}\right|\right)\right)(x)<+\infty$. Then $\int f_{2} \mathrm{~d}_{\text {Measure }}^{\text {Prod }}(\operatorname{SubFin}(M, n+1))=\int \operatorname{Integral2}(\operatorname{ElmFin}(M, n+$ 1), $\left.f_{1}\right) \mathrm{d}$ Measure ${ }_{\text {Prod }}(\operatorname{SubFin}(M, n))$. The theorem is a consequence of (35).
(37) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, a family of $\sigma$ measures $M$ of $S$, a partial function $f$ from $\prod_{F S} X$ to $\overline{\mathbb{R}}$, an element $E$ of $\prod_{\text {Field }} S$, and a partial function $g$ from $\prod_{\text {FS }} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X, n+$ 1) to $\overline{\mathbb{R}}$.

Suppose $M$ is $\sigma$-finite and $E=\operatorname{dom} f$ and $f$ is $E$-measurable and $f=$ $g$. Then $g$ is integrable on $\operatorname{ProdMeas}\left(\right.$ Measure $_{\operatorname{Prod}}(\operatorname{SubFin}(M, n))$, ElmFin $(M, n+1))$ iff $\int \operatorname{Integral2}(\operatorname{ElmFin}(M, n+1),|g|)$ d Measure $\operatorname{Prod}^{(S u b F i n}(M$, $n))<+\infty$. The theorem is a consequence of (6), (34), (30), (29), and (31).
Let $n$ be a non zero natural number, $X$ be a non-empty, $(n+1)$-elements finite sequence, $S$ be a family of $\sigma$-fields of $X, M$ be a family of $\sigma$-measures of $S$, and $f$ be a partial function from $\prod_{\mathrm{FS}} X$ to $\overline{\mathbb{R}}$. The functor $\operatorname{Integral}_{\mathrm{FS}}(M, f)$ yielding an $(n+1)$-elements finite sequence is defined by
(Def. 17) $\quad i t(1)=f$ and for every natural number $i$ such that $1 \leqslant i<n+1$ there exists a non zero natural number $k$ and there exists a partial function $g$ from $\prod_{\mathrm{FS}} \operatorname{SubFin}(X, k) \times \operatorname{ElmFin}(X, k+1)$ to $\overline{\mathbb{R}}$ such that $k=n+1-i$ and $g=i t(i)$ and $i t(i+1)=\operatorname{Integral2(ElmFin}(M, k+1), g)$.
We say that $f$ is sequentially integrable on $M$ if and only if
(Def. 18) for every non zero natural number $k$ such that $k<n+1$ there exists a partial function $G$ from $\prod_{F S} \operatorname{SubFin}(X, k+1)$ to $\overline{\mathbb{R}}$ and there exists a partial function $H$ from $\prod_{F S} \operatorname{SubFin}(X, k)$ to $\overline{\mathbb{R}}$ such that $G=$ $\left(\operatorname{Integral}_{\mathrm{FS}}(M, f)\right)(n+1-k)$ and $H=\left(\operatorname{Integral}_{\mathrm{FS}}(\operatorname{SubFin}(M, k+1),|G|)\right)(2)$ and for every element $x$ of $\prod_{\text {FS }} \operatorname{SubFin}(X, k), H(x)<+\infty$.
Now we state the propositions:
(38) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, a family of $\sigma$ measures $M$ of $S$, and a partial function $f$ from $\prod_{F S} X$ to $\overline{\mathbb{R}}$.

Suppose $M$ is $\sigma$-finite and $f$ is sequentially integrable on $M$ and $f$ is integrable on Measure ${ }_{\text {Prod }}(M)$. Let us consider a non zero natural number $k$. Suppose $k<n+1$. Then there exists a partial function $g$ from
$\prod_{\mathrm{FS}} \operatorname{SubFin}(X, k+1)$ to $\overline{\mathbb{R}}$ such that
(i) $g=\left(\operatorname{Integral}_{\mathrm{FS}}(M, f)\right)(n+1-k)$, and
(ii) $g$ is integrable on Measure ${ }_{\operatorname{Prod}}(\operatorname{SubFin}(M, k+1))$.

Proof: Define $\mathcal{P}$ [natural number] $\equiv$ if $1 \leqslant \$_{1}<n+1$, then there exists a non zero natural number $j$ and there exists a partial function $g$ from $\prod_{\mathrm{FS}} \operatorname{SubFin}(X, j+1)$ to $\overline{\mathbb{R}}$ such that $j=n+1-\$_{1}$ and $g=$ ( $\left.\operatorname{Integral}_{\mathrm{FS}}(M, f)\right)\left(\$_{1}\right)$ and $g$ is integrable on Measure ${ }_{\operatorname{Prod}}(\operatorname{SubFin}(M, j+$ 1)). $\mathcal{P}[1]$. For every non zero natural number $k$ such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every non zero natural number $k, \mathcal{P}[k]$.
(39) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, a family of $\sigma$ measures $M$ of $S$, a partial function $f$ from $\prod_{\mathrm{FS}} X$ to $\overline{\mathbb{R}}$, and a partial function $g$ from $\prod_{\mathrm{FS}} \operatorname{SubFin}(X, n) \times \operatorname{ElmFin}(X, n+1)$ to $\overline{\mathbb{R}}$. Suppose $f=g$. Then
(i) $\left(\operatorname{Integral}_{\mathrm{FS}}(M, f)\right)(1)=f$, and
(ii) $\left(\operatorname{Integral}_{\mathrm{FS}}(M, f)\right)(2)=\operatorname{Integral} 2(\operatorname{ElmFin}(M, n+1), g)$.
(40) Let us consider a non zero natural number $n$, a non-empty, $(n+1)$ elements finite sequence $X$, a family of $\sigma$-fields $S$ of $X$, a family of $\sigma$ measures $M$ of $S$, and a partial function $f$ from $\prod_{\mathrm{FS}} X$ to $\overline{\mathbb{R}}$. Suppose $M$ is $\sigma$-finite and $f$ is sequentially integrable on $M$ and $f$ is integrable on Measure $_{\text {Prod }}(M)$. Let us consider a non zero natural number $k$.

Suppose $k<n$. Then there exists a partial function $F_{5}$ from $\prod_{\mathrm{FS}}$ SubFin $(X, k) \times \operatorname{ElmFin}(X, k+1)$ to $\overline{\mathbb{R}}$ and there exists a partial function $G_{2}$ from $\prod_{\mathrm{FS}} \operatorname{SubFin}(X, k+1)$ to $\overline{\mathbb{R}}$ and there exists a function $F_{4}$ from $\Pi_{\mathrm{FS}} \operatorname{SubFin}(X, k)$ into $\overline{\mathbb{R}}$ such that $G_{2}=F_{5}$ and $G_{2}=\left(\operatorname{Integral}_{\mathrm{FS}}(M, f)\right)(n$ $+1-k)$ and $F_{4}=\left(\operatorname{Integral}_{\mathrm{FS}}(M, f)\right)(n+1-(k-1))$ and $F_{4}=\operatorname{Integral} 2(E l m-$ $\left.\operatorname{Fin}(M, k+1), F_{5}\right)$ and $G_{2}$ is integrable on Measure ${ }_{\operatorname{Prod}}(\operatorname{SubFin}(M, k+1))$ and $\int G_{2} \mathrm{~d} \operatorname{Measure}_{\operatorname{Prod}}(\operatorname{SubFin}(M, k+1))=\int F_{5} \mathrm{dProdMeas}\left(\right.$ Measure $_{\text {Prod }}$ $(\operatorname{SubFin}(M, k)), \operatorname{ElmFin}(M, k+1))$ and for every element $x$ of $\prod_{\mathrm{FS}}$ SubFin $(X, k), \operatorname{ProjPMap} 1\left(F_{5}, x\right)$ is integrable on $\operatorname{ElmFin}(M, k+1)$.

For every element $U$ of $\prod_{\text {Field }} \operatorname{SubFin}(S, k), F_{4}$ is $U$-measurable and $F_{4}$ is integrable on Measure ${ }_{\text {Prod }}(\operatorname{SubFin}(M, k))$ and $\int F_{5}$ dProdMeas(Measu$\left.\operatorname{re}_{\text {Prod }}(\operatorname{SubFin}(M, k)), \operatorname{ElmFin}(M, k+1)\right)=\int F_{4} \mathrm{~d}$ Measure $_{\text {Prod }}(\operatorname{SubFin}(M$, $k)$ ) and $F_{4} \in$ the $L^{1}$ functions of Measure ${ }_{\operatorname{Prod}}(\operatorname{SubFin}(M, k))$ and $\int G_{2} \mathrm{~d} \mathrm{Measure}_{\text {Prod }}(\operatorname{SubFin}(M, k+1))=\int F_{4} \mathrm{~d}_{\text {Measure }}^{\text {Prod }}(\operatorname{SubFin}(M, k))$.

The theorem is a consequence of (7), (8), (14), (12), (18), (17), (30), (38), (9), (6), (39), (35), and (36).

## References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pakk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
[3] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Improving real analysis in Coq: A user-friendly approach to integrals and derivatives In Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs - Second International Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer Science, pages 289-304. Springer, 2012. doi 10.1007/978-3-642-35308-6_22
[4] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: A survey of proof assistants and libraries. Mathematical Structures in Computer Scıence, 26:1196-1233, 2015.
[5] Noboru Endou. Improper integral. Part II. Formalized Mathematics, 29(4):279-294, 2021. doi:10.2478/forma-2021-0024
[6] Noboru Endou. Fubini's theorem on measure. Formalized Mathematics, 25(1):1-29, 2017. doi 10.1515/forma-2017-0001
[7] Noboru Endou. Fubini's theorem. Formalized Mathematics, 27(1):67-74, 2019. doi 10.2478/forma-2019-0007.
[8] Noboru Endou. Absolutely integrable functions. Formalized Mathematics, 30(1):31-51, 2022. doi 10.2478/forma-2022-0004
[9] Jacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In Mark Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics, pages 145-161. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-44659-0.
[10] Ruben Gamboa. Continuity and Differentiability, pages 301-315. Springer US, 2000. ISBN 978-1-4757-3188-0. doi 10.1007/978-1-4757-3188-0_18.
[11] Adam Grabowski and Christoph Schwarzweller. Translating mathematical vernacular into knowledge repositories. In Michael Kohlhase, editor, Mathematical Knowledge Management, volume 3863 of Lecture Notes in Computer Science, pages 49-64. Springer, 2006. doi https://doi.org/10.1007/11618027_4 4th International Conference on Mathematical Knowledge Management, Bremen, Germany, MKM 2005, July 15-17, 2005, Revised Selected Papers.
[12] Johannes Hölzl and Armin Heller. Three chapters of measure theory in Isabelle/HOL. In Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Interactive Theorem Proving (ITP 2011), volume 6898 of LNCS, pages 135-151, 2011.
[13] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51-59, 2011. doi $10.2478 / \mathrm{v} 10037-$ 011-0009-2.
[14] M.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.


[^0]:    ${ }^{1}$ This work was supported by JSPS KAKENHI 23K11242.

