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Introduction

In this paper, Problems 84, 94, 99 from Section IV, 170, 173, 174, 175, 177,
179, 186, 187, 189, 190, 193, 194, 197, and 199 from Section V of [10] are for-
malized, using the Mizar formalism [1]. It contributes to the project announced
in [6].

Some of the problems in the book are formulated in terms of positive inte-
gers. To represent such numbers in the Mizar Mathematical Library [2], we use
notions either positive Integer or positive Nat or non zero Nat, which
are automatically understood as equivalent due to the built-in processing of
adjectives by the Mizar checker.

For proving the infiniteness of the set of pairs of consecutive primes that are
not twin primes (Problem 84), we implemented the operation max〈0, 6 ·n+ 1〉P,
which represents the largest prime ¬ 6n + 1 denoted as pkn in the book. We
noted a small misprint in the proof presented in the book in the equation (6n+
5) + (6n+ 1) = 4 – it should be (6n+ 5)− (6n+ 1) = 4.

Problem 179 asks about all rational solutions of the equation

(x+ 1)3 + (x+ 2)3 + (x+ 3)3 + (x+ 4)3 = (x+ 10)3.
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We generalized the problem to real numbers and presented the only solution
x = 10 in reals, which is also the only solution in rationals. Moreover, we
computed that the substitution x = t + 10 proposed in the book results in the
equation t(t2 + 30t+ 230) = 0.

The infiniteness of sets defined in Problems 189, 190, and 199 is proven using
function recSeqCart [4] with parameters adequate to given problems.

Problem 197 is devoted to the existence of solutions of the equation

x1 + x2 + · · ·+ xn = x1x2 · · ·xn

in positive integers. In the case of n > 2, the proof in the book proposes xn−1 =
1, but we computed that xn−1 must be equal to 2.

Proofs of other problems are straightforward formalizations of solutions given
in the book, by means of available development of number theory in Mizar [9],
using ellipsis [3] extensively, looking forward for more advanced automatization
of arithmetical calculations [7].

1. Preliminaries

From now on a, b, c, k, m, n denote natural numbers, i, j, x, y denote
integers, p, q denote prime numbers, and r, s denote real numbers. Now we
state the propositions:

(1) Let us consider natural numbers i, j. If i < j, then there exists a positive
natural number k such that j = i+ k.

(2) Let us consider a positive yielding, integer-valued finite sequence f . Then∏
f  1.
Proof: Define P[set] ≡ for every positive yielding, integer-valued finite
sequence F such that F = $1 holds

∏
F  1. For every finite sequence p of

elements of Z and for every element x of Z such that P[p] holds P[pa 〈x〉].
For every finite sequence p of elements of Z, P[p]. �

(3) If m  2 and n  2, then m · n is composite.

(4) If p - n, then n and p are relatively prime.

(5) −1 mod p = p− 1.

2. Problem 84

Let r, s be complex numbers. We say that r and s are twin if and only if

(Def. 1) |s− r| = 2.

One can verify that the predicate is irreflexive and symmetric. Now we state the
proposition:

(6) If r ¬ s, then r and s are twin iff s− r = 2.
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Let us consider n. The functor 〈0, 6 ·n+1〉N yielding a subset of N is defined
by the term

(Def. 2) {a, where a is a natural number : a ¬ 6 · n+ 1}.

Now we state the propositions:

(7) a ¬ 6 · n+ 1 if and only if a ∈ 〈0, 6 · n+ 1〉N.

(8) 〈0, 6 · n+ 1〉N ⊆ Z6·n+2.
Let us consider n. Observe that 〈0, 6 · n+ 1〉N is non empty and finite. Now

we state the propositions:

(9) Ifm ¬ n, then 〈0, 6·m+1〉N ⊆ 〈0, 6·n+1〉N. The theorem is a consequence
of (7).

(10) Ifm < n, then 〈0, 6·m+1〉N ⊂ 〈0, 6·n+1〉N. The theorem is a consequence
of (9) and (7).

(11) If 〈0, 6·m+1〉N = 〈0, 6·n+1〉N, thenm = n. The theorem is a consequence
of (10).

Let us consider a non zero natural number n. Now we state the propositions:

(12) 2 ∈ 〈0, 6 · n+ 1〉N ∩ P.

(13) 3 ∈ 〈0, 6 · n+ 1〉N ∩ P.

(14) 5 ∈ 〈0, 6 · n+ 1〉N ∩ P.

(15) 7 ∈ 〈0, 6 · n+ 1〉N ∩ P.

Let n be a non zero natural number. Observe that 〈0, 6 · n+ 1〉N ∩ P is non
empty.

The functor max〈0, 6 ·n+1〉P yielding a prime number is defined by the term

(Def. 3) max(〈0, 6 · n+ 1〉N ∩ P).

Now we state the propositions:

(16) Let us consider non zero natural numbers m, n. Suppose m ¬ n. Then
max〈0, 6 ·m + 1〉P ¬ max〈0, 6 · n + 1〉P. The theorem is a consequence of
(9).

(17) max〈0, 6 · 20 + 1〉P = max〈0, 6 · 19 + 1〉P.
Proof: Set a = 20. Set b = 19. Set X = 〈0, 6 · a+ 1〉N. Set B = max〈0, 6 ·
b+ 1〉P. B ¬ 6 · b+ 1. For every extended real x such that x ∈ X ∩P holds
x ¬ B. �

(18) 〈0, 6 · 1 + 1〉N = {0, 1, 2, 3, 4, 5, 6, 7}.
(19) max〈0, 6 · 1 + 1〉P = 7.

(20) If pr(m) = pr(n), then m = n.

Let p be a natural number. Assume p is prime. The functor primeindex(p)
yielding an element of N is defined by

(Def. 4) pr(it) = p.
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Now we state the propositions:

(21) If primeindex(p) = primeindex(q), then p = q.

(22) primeindex(2) = 0.

(23) primeindex(3) = 1.

(24) primeindex(5) = 2.

(25) primeindex(7) = 3.

(26) primeindex(11) = 4.

(27) primeindex(13) = 5.

(28) If n > 0, then p < pr(n+ primeindex(p)).

Let us consider a non zero natural number n. Now we state the propositions:

(29) pr(1 + primeindex(max〈0, 6 ·n+ 1〉P))  6 ·n+ 5. The theorem is a con-
sequence of (28).

(30) pr(1 + primeindex(max〈0, 6 · n + 1〉P)) − max〈0, 6 · n + 1〉P  4. The
theorem is a consequence of (7) and (29).

(31) max〈0, 6 ·n+1〉P and pr(1+primeindex(max〈0, 6 ·n+1〉P)) are not twin.
The theorem is a consequence of (28), (30), and (6).

(32) Let us consider a non zero natural number m. Suppose 6 ·m+1 is prime.
Then 6 ·m+ 1 = max〈0, 6 ·m+ 1〉P. The theorem is a consequence of (7).

Let us consider non zero natural numbers m, n. Now we state the proposi-
tions:

(33) If 6·n+1 is prime andm < n, then max〈0, 6·m+1〉P < max〈0, 6·n+1〉P.
The theorem is a consequence of (16), (32), and (7).

(34) Suppose 6 ·m+ 1 is prime and 6 ·n+ 1 is prime and max〈0, 6 ·m+ 1〉P =
max〈0, 6 · n+ 1〉P. Then m = n. The theorem is a consequence of (33).

The functor {6n+ 1 : n ∈ N}P yielding a subset of N is defined by the term

(Def. 5) {6 · n+ 1, where n is a natural number : 6 · n+ 1 is prime}.

Note that {6n + 1 : n ∈ N}P has non empty elements. Now we state the
proposition:

(35) {6n+ 1 : n ∈ N}P ⊆ P.

One can check that {6n+1 : n ∈ N}P is infinite. Now we state the proposition:

(36) {〈〈p, q〉〉, where p, q are prime numbers : p and q are not twin} is infinite.
Proof: Set A = {〈〈p, q〉〉, where p, q are prime numbers : p and q are not
twin}. Define S(non zero natural number) = max〈0, 6 · $1 + 1〉P. Define
F(non zero natural number) = 〈〈S($1), pr(1 + primeindex(S($1)))〉〉.

Define P[natural number, object] ≡ there exists a non zero natural
number n such that n = $1 and $2 = F(n). Set P = {6n + 1 : n ∈ N}P.
Define C(element of P ) = ($1−1 div 6)(∈ N). Consider C being a function
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from P into N such that for every element p of P , C(p) = C(p). C is one-
to-one. Reconsider D = rngC as an infinite subset of N. For every element
d of D, 6 · d+ 1 is prime. For every element i of D, there exists an object
j such that P[i, j]. Consider f being a many sorted set indexed by D such
that for every element d of D, P[d, f(d)]. rng f ⊆ A. f is one-to-one. �

3. Problem 94

Let c be a complex number. We say that c is a product of three different
primes if and only if

(Def. 6) there exist prime numbers p, q, r such that p, q, r are mutually different
and c = p · q · r.

Now we state the propositions:

(37) If n > 4, then there exists a natural number k such that n = 2 · k and
k > 2 or n = 2 · k + 1 and k > 1.

(38) If n > 4, then there exists a natural number m such that n < m < 2 · n
and m is a product of two different primes. The theorem is a consequence
of (37) and (3).

(39) If n > 15, then there exists a natural number m such that n < m < 2 ·n
andm is a product of three different primes. The theorem is a consequence
of (3).

4. Problem 99

Now we state the proposition:

(40) 5 | 24·n+2 + 1.

Let us consider n. Note that 15 · (2
4·n+2 + 1) is natural. Now we state the

proposition:

(41) If n > 1, then 15 · (2
4·n+2+1) is composite. The theorem is a consequence

of (40) and (3).

5. Problem 170

Now we state the proposition:

(42) {〈〈x, y, z〉〉, where x, y, z are integers : x + y + z = 3 and x3 + y3 + z3 =
3} = {〈〈1, 1, 1〉〉, 〈〈−5, 4, 4〉〉, 〈〈4, −5, 4〉〉, 〈〈4, 4, −5〉〉}.
Proof: Set A = {〈〈x, y, z〉〉, where x, y, z are integers : x+ y + z = 3 and
x3 + y3 + z3 = 3}. Set B = {〈〈1, 1, 1〉〉, 〈〈−5, 4, 4〉〉, 〈〈4, −5, 4〉〉, 〈〈4, 4, −5〉〉}.
A ⊆ B by [8, (2)]. �



176 artur korniłowicz

6. Problem 173

Now we state the proposition:

(43) Let us consider positive natural numbers m, n. Then there exist integers
a, b, c such that {〈〈x, y〉〉, where x, y are natural numbers : a · x + b · y =
c} = {〈〈m, n〉〉}.
Proof: Consider a being a prime number such that a > m+ n. Consider
b being a prime number such that b > a. Set A = {〈〈x, y〉〉, where x, y are
natural numbers : a · x+ b · y = c}. Set B = {〈〈m, n〉〉}. A ⊆ B. �

7. Problem 174

Let us consider a positive natural number m. Now we state the propositions:

(44) {〈〈x, y〉〉, where x, y are positive natural numbers : x+ y = m+ 1} = m.
Proof: Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : x+y =
m+ 1}. Segm ≈ A. �

(45) There exist positive natural numbers a, b, c such that

{〈〈x, y〉〉, where x, y are positive natural numbers : a · x+ b · y = c} = m.
The theorem is a consequence of (44).

8. Problem 175

Now we state the proposition:

(46) Let us consider a positive natural number m. Then {〈〈x, y〉〉, where x, y

are positive natural numbers : x2 + y2 + 2 · x · y −m · x−m · y −m− 1
= 0} = m. The theorem is a consequence of (44).

9. Problem 177

Let b, e be real numbers and n be a natural number. The functor powersFS(b,
e, n) yielding a finite sequence of elements of R is defined by

(Def. 7) len it = n and for every natural number i such that 1 ¬ i ¬ n holds
it(i) = (b+ i)e.

Now we state the propositions:

(47) powersFS(−(k + 1), r, 2 · (k + 1)) = (〈(−k)r〉 a powersFS(−k, r, 2 · k)) a

〈(k + 1)r〉.
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(48) Let us consider a positive natural number k. Then powersFS(−(k + 1), r, 2·
(k + 1)− 1) = (〈(−k)r〉 a powersFS(−k, r, 2 · k − 1)) a 〈kr〉.

(49)
∑

powersFS(−k, 3, 2 · k) = k3.
Proof: Define P[natural number] ≡

∑
powersFS(−$1, 3, 2 · $1) = $1

3.
P[0]. For every natural number n such that P[n] holds P[n+ 1]. For every
natural number n, P[n]. �

(50) Let us consider a positive natural number k. Then
∑

powersFS(−k, 3, 2 ·
k − 1) = 0.
Proof: Define P[non zero natural number] ≡

∑
powersFS(−$1, 3, 2 · $1−

1) = 0. P[1]. For every non zero natural number n such that P[n] holds
P[n+ 1]. For every non zero natural number n, P[n]. �

(51) Let us consider a positive natural number n. Then there exists an integer
x and there exists a natural number y such that

∑
powersFS(x, 3, n) = y3.

The theorem is a consequence of (49) and (50).

10. Problem 179

Now we state the proposition:

(52) Let us consider a real number x. Then (x+ 1)3 + (x+ 2)3 + (x+ 3)3 +
(x+ 4)3 = (x+ 10)3 if and only if x = 10.
Proof: If (x+ 1)3 + (x+ 2)3 + (x+ 3)3 + (x+ 4)3 = (x+ 10)3, then
x = 10. �

11. Problem 186

Now we state the proposition:

(53) {〈〈x, y〉〉, where x, y are positive natural numbers : 2x + 1 = y2} = {〈〈3,
3〉〉}.
Proof: Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : 2x +
1 = y2}. A ⊆ {〈〈3, 3〉〉} by [11, (36)]. �

12. Problem 187

Now we state the proposition:

(54) {〈〈x, y〉〉, where x, y are positive natural numbers : 2x − 1 = y2} = {〈〈1,
1〉〉}.
Proof: Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : 2x −
1 = y2}. A ⊆ {〈〈1, 1〉〉} by [5, (11)]. �
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13. Problem 189

Now we state the propositions:

(55) {〈〈x, y〉〉, where x, y are positive natural numbers : (2·x+1)2−2·y2+1 = 0}
is infinite.
Proof: DefineR(complex number, complex number) = (2·$1+1)2−2·$22+
1. Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : R(x, y) =
0}. Set f = recSeqCart(3, 5, 3, 2, 1, 4, 3, 2). Define N [natural number] ≡
f($1) ∈ A. If N [a], then N [a+ 1]. N [a]. rng f ⊆ A. �

(56) {〈〈x, y〉〉, where x, y are positive natural numbers : x2 + (x + 1)2 = y2}
is infinite. The theorem is a consequence of (55).

14. Problem 190

Now we state the propositions:

(57) {〈〈x, y〉〉, where x, y are positive natural numbers : 3·x2+3·x−y2+1 = 0}
is infinite.
Proof: Define R(complex number, complex number) = 3 ·$21+3 ·$1−$22+
1. Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : R(x, y) =
0}. Set f = recSeqCart(7, 13, 7, 4, 3, 12, 7, 6). Define N [natural number] ≡
f($1) ∈ A. If N [a], then N [a+ 1]. N [a]. rng f ⊆ A. �

(58) {〈〈x, y〉〉, where x, y are positive natural numbers : (x+ 1)3 − x3 = y2}
is infinite. The theorem is a consequence of (57).

15. Problem 193

Now we state the propositions:

(59) If i is even, then i2 mod 8 = 0 or i2 mod 8 = 4.

(60) If i is odd, then i2 mod 8 = 1.

(61) (i) i2 mod 8 = 0, or

(ii) i2 mod 8 = 1, or

(iii) i2 mod 8 = 4.

(62) If p = 4 · k + 3 and p | i2 + j2, then p | i and p | j.
(63) x2 − y3 6= 7. The theorem is a consequence of (59) and (60).
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16. Problem 194

Now we state the proposition:

(64) Let us consider an odd natural number c. Then x2 − y3 6= (2 · c)3 − 1.
The theorem is a consequence of (60) and (59).

17. Problem 197

Let f , g be positive yielding finite sequences. Let us note that fag is positive
yielding. Let x be a positive real number. Let us note that 〈x〉 is positive yielding.
Let x, y be positive real numbers. Let us note that 〈x, y〉 is positive yielding.
Now we state the proposition:

(65) If n > 0, then there exists a positive yielding finite sequence f of elements
of N such that len f = n and

∑
f =
∏
f .

18. Problem 199

Now we state the propositions:

(66) Let us consider positive natural numbers x, y. Suppose y · (3 · y − 1) =
x · (x+ 1). Then Polygon(3, x) = Polygon(5, y).

(67) Let us consider positive natural numbers m, n, and a natural number s.
If Polygon(s,m) = Polygon(s, n) and s  2, then m = n.

(68) {〈〈x, y〉〉, where x, y are positive natural numbers : y·(3·y−1)−x·(x+1) =
0} is infinite.
Proof: Define R(complex number, complex number) = $2 · (3 · $2 − 1)−
$1 · ($1 + 1). Set A = {〈〈x, y〉〉, where x, y are positive natural numbers :
R(x, y) = 0}. Set f = recSeqCart(1, 1, 7, 12, 1, 4, 7, 1). Define N [natural
number] ≡ f($1) ∈ A. If N [a], then N [a+ 1]. N [a]. rng f ⊆ A. �

(69) {n, where n is a 3-gonal natural number : n is 5-gonal} is infinite.
Proof: Set A = {n, where n is a 3-gonal natural number : n is 5-gonal}.
Set B = {〈〈x, y〉〉, where x, y are positive natural numbers : y · (3 · y − 1)−
x · (x+ 1) = 0}. Define P[object, object] ≡ there exists a positive natural
number n such that n = ($1)1 and $2 = Polygon(3, n). For every object
e such that e ∈ B there exists an object u such that P[e, u]. Consider f
being a function such that dom f = B and for every object e such that
e ∈ B holds P[e, f(e)]. f is one-to-one. rng f ⊆ A. �
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