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Introduction

In this paper, problems 62 from Section III, 91, 125 from Section IV, 143,
146, 147, 158, 166, 178, 180, and 181 from Section V of [10] are formalized, using
the Mizar formalism [1, 2, 4]. It contributes to the project for the formalization
of problems defined in [7].

In the preliminary section, we provide some very technical lemmas, mainly
about powers of complex numbers, which are helpful for this and future for-
malizations. To formulate the statement of Problem 62 the operation ArProg
introduced in [3] is used. Some useful theorems about primeness of products of
elements of finite sequences are proven.

Problem 91 is devoted to decomposing some Mersenne numbers [9] into
products of primes or arbitrary integers. For justification of the primeness of
Mersenne(17) and Mersenne(19) we formalized the lemma

∀p,q∈P p is odd ∧ q|Mersenne(p)⇒ ∃k∈N q = 2 · k · p+ 1.
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The proof of Problem 143 concerning solutions of the equation x2−Dy2 = z2

in positive integers x, y, z for arbitrary integer D presented in the book has been
split into three cases depending on the sign of the parameter D.

The proof of Problem 158 about infiniteness of the number of solutions of
the equation xy + y

z + z
t + t

z = 1 in integers x, y, z, t relies on the infiniteness of
the range of an injective function with infinite domain, where as the function
we use f : A→ Z× Z× Z× Z, where A is the set of all integers greater than 1
and for every integer n > 1, f(n) = [−n2, n2 · (n2 − 1), (n2 − 1)2,−n · (n2 − 1)].

Problem 166 about representing number 12 as a sum of reciprocals of a finite
number of squares of positive integers is formulated as just one example of such
decomposition, as

1
2

=
1
22

+
1
32

+
1
42

+
1
62

+
1
72

+
1
92

+
1

122
+

1
142

+
1

212
+

1
362

+
1

452
+

1
602

and its proof is evident to the Mizar verifier due to built-in arithmetic processing.
Problem 180 about solutions (in positive integers) of the equation y ·(y+1) =

x · (x+ 1) · (x+ 2) is formulated as equations 2 · (2 + 1) = 1 · (1 + 1) · (1 + 2) and
14 · (14 + 1) = 5 · (5 + 1) · (5 + 2) with shapes which mimic the structure of the
problem. Its proof is also obvious to the Mizar verifier due to built-in arithmetic
processing [8].

The proof of Problem 181 about infiniteness of the number of solutions of
the equation 1 +x2+y2 = z2 in positive integers x, y, z uses the same technique
as we used in the proof of Problem 158 where f : N+ → N+ × N+ × N+ such
that for every positive integer n, f(n) = [2 · n, 2 · n2, 2 · n2 + 1].

1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i, j
denote integers, r, s denote real numbers, p, p1, p2, p3 denote prime numbers,
and z denotes a complex number. Now we state the propositions:

(1) z11 = z · z · z · z · z · z · z · z · z · z · z.
(2) z12 = z · z · z · z · z · z · z · z · z · z · z · z. The theorem is a consequence of

(1).

(3) z13 = z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is a consequence
of (2).

(4) z14 = z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is a consequence
of (3).

(5) z15 = z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z. The theorem is a consequence
of (4).
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(6) z16 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is
a consequence of (5).

(7) z17 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is
a consequence of (6).

(8) z18 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is
a consequence of (7).

(9) z19 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is
a consequence of (8).

(10) z20 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem
is a consequence of (9).

(11) If n ­ 2, then there exists a positive natural number k such that 2n−1 =
4 · k − 1.
Proof: Define P[natural number] ≡ if $1 ­ 2, then there exists a positive
natural number k such that 2$1 − 1 = 4 · k − 1. P[2]. For every natural
number j such that 2 ¬ j holds if P[j], then P[j + 1]. For every natural
number i such that 2 ¬ i holds P[i]. �

2. Problem 62

Let X be a set. We say that X is included in a segment if and only if

(Def. 1) there exists a natural number k such that X ⊆ Seg k.

Note that every set which is empty is also included in a segment.
Let n be a non zero natural number. Let us note that {n} is included in

a segment and there exists a set which is non empty and included in a segment
and every set which is included in a segment is also finite and natural-membered
and every finite, natural-membered set which has non empty elements is also
included in a segment.

Let a, r be natural numbers. Observe that ArProg(a, r) is natural-valued.
Let us consider i. The functor Coprimes(i) yielding a subset of Z is defined

by the term

(Def. 2) {j, where j is an integer : i and j are relatively prime}.

Now we state the proposition:

(12) Let us consider an included in a segment set X. If X ⊆ P and p |∏
SgmX, then p ∈ X.

Let us consider natural numbers a, b and a non zero natural number m. Now
we state the propositions:
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(13) Suppose a and b are relatively prime. Then
∏

Sgm{p, where p is a prime
number : p | m and p | a} and

∏
Sgm{q, where q is a prime number : q |

m and q | b} are relatively prime. The theorem is a consequence of (12).

(14)
∏

Sgm{p, where p is a prime number : p | m and p | a} and
∏

Sgm{r
where r is a prime number : r | m and r - a and r - b} are relatively
prime. The theorem is a consequence of (12).

(15) Suppose a and b are relatively prime. Then
∏

Sgm{q, where q is a prime
number : q | m and q | b} and

∏
Sgm{r, where r is a prime number : r |

m and r - a and r - b} are relatively prime. The theorem is a consequence
of (14).

(16) Let us consider an included in a segment set X. If a ∈ X, then a |∏
SgmX.

(17) Let us consider non zero natural numbers a, m. Suppose a and b are
relatively prime. Then rng ArProg(b, a) ∩ Coprimes(m) is infinite.
Proof: Set P1 = {p, where p is a prime number : p | m and p | a}. Set
R1 = {r, where r is a prime number : r | m and r - a and r - b}. Set
P =

∏
SgmP1. Set R =

∏
SgmR1. a ·P ·R+b and m are relatively prime.

Set g = ArProg(b, a). Set X = rng g ∩ Coprimes(m). For every natural
number x such that x ∈ X there exists a natural number y such that
y > x and y ∈ X by [3, (7)], [5, (64)]. �

3. Problem 91

Let n be a complex number. We say that n is a product of two primes if and
only if

(Def. 3) there exist prime numbers p1, p2 such that n = p1 · p2.
We introduce the notation n is not a product of two primes as an antonym

for n is a product of two primes.
One can check that every prime number is not a product of two primes. Let

us consider p1 and p2. One can verify that p1 · p2 is a product of two primes.
Now we state the propositions:

(18) If a 6= 1 and a 6= n and a is not prime and a | n, then n is not a product
of two primes.

(19) If n is a product of two primes, then n ­ 4.

(20) If c is a product of two different primes, then c is a product of two primes.

Let us consider p1, p2, and p3. One can check that p1 ·p2 ·p3 is not a product
of two primes. Now we state the propositions:
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(21) If n is a product of two primes, then for every a and b such that a 6= 1
and b 6= 1 and n = a · b holds a is prime and b is prime.

(22) If 2n − 1 is prime and 2n + 1 is prime, then n = 2.

Let n be a zero natural number. Note that Mn is zero. Let n be a non zero
natural number. Let us note that Mn is odd. Now we state the propositions:

(23) Let us consider prime numbers p, q. Suppose p is odd and q |Mp. Then
there exists a natural number k such that q = 2 · k · p+ 1.

(24) M17 is prime. The theorem is a consequence of (23).

(25) M19 is prime. The theorem is a consequence of (23).

(26) {2n−1, where n is a natural number : 2n−1 ¬ 106 and 2n−1 is a product
of two primes} = {24 − 1, 29 − 1, 211 − 1}.
Proof: Set A = {2n − 1 : 2n − 1 ¬ 106 and 2n − 1 is a product of two
primes}. Set B = {24 − 1, 29 − 1, 211 − 1}. A ⊆ B by [6, (7)], (9). B ⊆ A.
�

Let us consider n. We say that n has at least three different divisors if and
only if

(Def. 4) there exist natural numbers q1, q2, q3 such that q1, q2, q3 are mutually
different and q1 > 1 and q2 > 1 and q3 > 1 and q1 | n and q2 | n and q3 | n.

Observe that every natural number which has more than two different prime
divisors has also at least three different divisors and every natural number which
has more than two different prime divisors is also not a product of two primes.

Now we state the propositions:

(27) If n has more than two different prime divisors, then n is not a product
of two different primes.

(28) If n is even and n > 4, then 2n − 1 has at least three different divisors.
The theorem is a consequence of (22).

4. Problem 125

Now we state the propositions:

(29) If Fermatm = Fermatn, then m = n.

(30) If m < n, then Fermatm < Fermatn.

(31) If m ¬ n, then Fermatm ¬ Fermatn. The theorem is a consequence of
(30).

(32) If i ≡ j (mod j), then j | i.
(33) i · n ≡ n (modn).

(34) If a | mk + 1, then a | (a · n+m)k + 1.
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(35) 17 | (34 · k + 2)2
2

+ 1. The theorem is a consequence of (34).

(36) 17 | (34 · k + 4)2
1

+ 1. The theorem is a consequence of (34).

(37) 17 | (34 · k + 6)2
3

+ 1. The theorem is a consequence of (34).

(38) 17 | (34 · k + 8)2
2

+ 1. The theorem is a consequence of (34).

(39) 17 | (34 · k + 10)2
3

+ 1. The theorem is a consequence of (34).

(40) 17 | (34 · k + 12)2
3

+ 1. The theorem is a consequence of (34).

(41) 17 | (34 · k + 14)2
3

+ 1. The theorem is a consequence of (34).

(42) 17 | (34 · k + 20)2
3

+ 1. The theorem is a consequence of (34).

(43) 17 | (34 · k + 22)2
3

+ 1. The theorem is a consequence of (34).

(44) 17 | (34 · k + 24)2
3

+ 1. The theorem is a consequence of (34).

(45) 17 | (34 · k + 26)2
2

+ 1. The theorem is a consequence of (34).

(46) 17 | (34 · k + 28)2
3

+ 1. The theorem is a consequence of (34).

(47) 17 | (34 · k + 30)2
1

+ 1. The theorem is a consequence of (34).

(48) 17 | (34 · k + 32)2
2

+ 1. The theorem is a consequence of (34).

(49) If 1 < a ¬ 100, then there exists a positive natural number n such that
n ¬ 6 and a2

n
+ 1 is composite. The theorem is a consequence of (37),

(38), (39), (40), (41), (42), (43), (44), (45), (46), (47), (48), (35), and (36).

5. Problem 143

Now we state the proposition:

(50) Let us consider an integer D. Then {〈〈x, y, z〉〉, where x, y, z are positive
natural numbers : x2 −D · y2 = z2} is infinite.

6. Problem 146

Now we state the propositions:

(51) (i) n2 mod 8 = 0, or

(ii) n2 mod 8 = 1, or

(iii) n2 mod 8 = 4.

(52) Let us consider natural numbers x, y, z. Then x2− 2 · y2+ 8 · z 6= 3. The
theorem is a consequence of (51).
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7. Problem 147

Now we state the proposition:

(53) {〈〈x, y〉〉, where x, y are natural numbers : y2−x·(x+1)·(x+2)·(x+3) =
1} = {〈〈x, y〉〉, where x, y are natural numbers : y = x2 + 3 · x+ 1}.
Proof: Set A = {〈〈x, y〉〉, where x, y are natural numbers : y2−x · (x+1) ·
(x + 2) · (x + 3) = 1}. Set B = {〈〈x, y〉〉, where x, y are natural numbers :
y = x2+ 3 ·x+ 1}. A ⊆ B. Consider x, y being natural numbers such that
a = 〈〈x, y〉〉 and y = x2 + 3 · x+ 1. �

8. Problem 158

Now we state the propositions:

(54) Let us consider positive real numbers a, b, c, d. If ab < 1 and cd < 1, then
a
b ·
c
d < 1.

(55) Let us consider positive natural numbers x, y, z, t. Then xy+ yz+
z
t+
t
x 6= 1.

The theorem is a consequence of (54).

Let n be a natural number. The functor 〈n,∞)N yielding a subset of N is
defined by the term

(Def. 5) N \ (Zn).
Let us consider n. One can check that 〈n,∞)N is infinite. Now we state the

propositions:

(56) k ∈ 〈n,∞)N if and only if n ¬ k.
Proof: If k ∈ 〈n,∞)N, then n ¬ k. �

(57) n+ k ∈ 〈n,∞)N.

(58) n ∈ 〈n,∞)N.

(59) If k > 0, then n /∈ 〈n+ k,∞)N. The theorem is a consequence of (56).

Let us consider n. Let us note that every element of 〈n,∞)N is n or greater
and there exists a natural number which is n or greater. Now we state the
proposition:

(60) Let us consider an n or greater natural number k. Then k ∈ 〈n,∞)N.

Let us consider n. Let k be a non zero natural number. Observe that k · n
is n or greater. Let k be an n or greater natural number. One can verify that
k − n is natural. Now we state the proposition:

(61) {〈〈x, y, z, t〉〉, where x, y, z, t are integers : xy + yz + zt + t
x = 1} is infinite.

Proof: SetG2 = 〈2,∞)N. SetA = {〈〈x, y, z, t〉〉, where x, y, z, t are integers :
x
y + y

z + z
t + t

x = 1}. Define V(natural number) = −$21 . Define Y(natural
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number) = $21 · ($21 − 1). Define Z(natural number) = ($21 − 1)2. De-
fine T (natural number) = −$1 · ($21 − 1). Define F(element of G2) =
〈〈V($1),Y($1),Z($1), T ($1)〉〉. Consider f being a many sorted set inde-
xed by G2 such that for every element d of G2, f(d) = F(d). rng f ⊆ A.
f is one-to-one. �

9. Problem 166

Now we state the proposition:

(62) 1
2 = 1

22 + 1
32 + 1

42 + 1
62 + 1

72 + 1
92 + 1

122 + 1
142 + 1

212 + 1
362 + 1

452 + 1
602 .

10. Problem 178

Now we state the proposition:

(63) (n+ 1)3 + (n+ 2)3 + (n+ 3)3 + (n+ 4)3 6= (n+ 5)3.

11. Problem 180

Now we state the proposition:

(64) (i) 2 · (2 + 1) = 1 · (1 + 1) · (1 + 2), and

(ii) 14 · (14 + 1) = 5 · (5 + 1) · (5 + 2).

12. Problem 181

Now we state the proposition:

(65) {〈〈x, y, z〉〉, where x, y, z are positive natural numbers : 1+x2+y2 = z2}
is infinite.
Proof: Set A = {〈〈x, y, z〉〉, where x, y, z are positive natural numbers :
1 + x2 + y2 = z2}. Define V(natural number) = 2 · $1. Define Y(natural
number) = 2 ·$21 . Define Z(natural number) = 2 ·$21+1. Define F(natural
number) = 〈〈V($1), Y($1), Z($1)〉〉. Consider f being a many sorted set
indexed by N+ such that for every element d of N+, f(d) = F(d). rng f ⊆
A. f is one-to-one. �
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