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Summary. The article concerns about formalizing a certain lemma on
embedding of algebraic structures in the Mizar system, claiming that if a ring A
is embedded in a ring B then there exists a ring C which is isomorphic to B and
includes A as a subring. This construction applies to algebraic structures such as
Abelian groups and rings.
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Introduction

The article concerns about formalizing a certain lemma on embedding of
algebraic structures in the Mizar system [2], [3], along with the lemma appeared
in the book [12] at §13 of Chapter 1. The lemma claims that if a ring A is
embedded in a ring B then there exists a ring C which is isomorphic to B and
includes A as a subring [11]. A basic idea to prove the lemma is that for given
monomorphism ϕ from A to B, one can obtain such ring C by introducing the
addition and multiplication on the set (B \ ϕ(A)) ∪ A, while B does not meet
A. The same argument has already been discussed and formalized in [9] in line
with field extensions [10] (recently reused to formalize algebraic closures, see
e.g. [8]).

We treat here a general case, namely the case of B meets A, it is enough to
create a set X which does not meet A and X ∼= B \ ϕ(A) and construct a new
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ring C from the set (X ∼= B \ ϕ(A))∪A. The formalized lemma can be applied
to another algebraic structures such as Abelian groups as shown in the article
as well with the same formulation of rings [6].

We need the following 3 steps required for precise arguments and formaliza-
tion to construct the target object C:

Step 1. Prepare a set X which does not meet A and isomorphic to B \ϕ(A) as
set-theoretical. The step is coded in Theorem 1 and 2;

Step 2. Make a X \ S a ring as C, corresponds to Theorem 7 and 12 for rings
and for Abelian groups, respectively;

Step 3. Construct an isomorphism G : A ∼−→ C such that ι = G ◦ ϕ is an
identity mapping. Corresponding formal counterparts are Theorem 9 and
14 for rings and for Abelian groups, respectively.

As a consequence of the principle, taking Polynom-Ring(A) as B, we have a
polynomial ring over A with indeterminate X and includes A as a subring, say
A[X] = C. Here Polynom-Ring(A) is existing formalized ring of polynomials
[4], which is constructed by sequences. An indeterminate X is defined by the
image of (0, 1, 0, 0, · · · ) ∈ Polynom-Ring(A) by the map G of Step 3. Some of the
Mizar functors had to be defined additionally as we used the groups not in their
multiplicative version [1], [7], which is more common in the Mizar Mathematical
Library, but in the additive setting [5].

1. Preliminaries from Set Theory

From now on a denotes a non empty set and b, x, o denote objects.
Now we state the propositions:

(1) There exists an object b such that for every set x, 〈〈x, b〉〉 /∈ a.

(2) Let us consider non empty sets a, b. Then there exists a non empty set
c such that

(i) a ∩ c = ∅, and

(ii) there exists a function f such that f is one-to-one and dom f = b

and rng f = c.

Proof: Consider d being an object such that for every set x, 〈〈x, d〉〉 /∈ a.
Set C = b × {d}. Consider f being a function such that f is one-to-one
and dom f = b and rng f = C. a ∩ C = ∅. �
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2. Embedding Principle Applied to Rings

Now we state the proposition:

(3) Let us consider a ring A, a non empty set X, a function f from A into
X, and elements a, b of X. Suppose f is bijective. Then f((the addition
of A)((f−1)(a), (f−1)(b))) is an element of X.

Let A be a ring, X be a non empty set, f be a function from A into X,
and a, b be elements of X. Assume f is bijective. The functor addemb(f, a, b)
yielding an element of X is defined by the term

(Def. 1) f((the addition of A)((f−1)(a), (f−1)(b))).

Now we state the proposition:

(4) Let us consider a ring A, a non empty set X, a function f from A into X,
and elements a, b, c ofX. Suppose f is bijective. Then addemb(f, a, addemb
(f, b, c)) = addemb(f, addemb(f, a, b), c).

Let A be a ring, X be a non empty set, and f be a function from A into X.
The functor addemb(f) yielding a binary operation on X is defined by

(Def. 2) for every elements a, b of X, it(a, b) = addemb(f, a, b).

Now we state the proposition:

(5) Let us consider a ring A, a non empty set X, a function f from A into X,
and elements a, b of X. Suppose f is bijective. Then f((the multiplication
of A)((f−1)(a), (f−1)(b))) is an element of X.

Let A be a ring, X be a non empty set, f be a function from A into X,
and a, b be elements of X. Assume f is bijective. The functor multemb(f, a, b)
yielding an element of X is defined by the term

(Def. 3) f((the multiplication of A)((f−1)(a), (f−1)(b))).

The functor multemb(f) yielding a binary operation on X is defined by

(Def. 4) for every elements a, b of X, it(a, b) = multemb(f, a, b).

The functor embRing(f) yielding a strict, non empty double loop structure
is defined by the term

(Def. 5) 〈X, addemb(f),multemb(f), f(1A), f(0A)〉.
Now we state the propositions:

(6) Let us consider a ring A, a non empty set X, and a function f from A

into X. If f is bijective, then embRing(f) is a ring.
Proof: Reconsider Z1 = 〈X, addemb(f),multemb(f), f(1A), f(0A)〉 as
a non empty double loop structure. For every elements v, w of Z1, v+w =
w+v. For every elements u, v, w of Z1, u+(v+w) = (u+v)+w. For every
element v of Z1, v+0Z1 = v. Every element of Z1 is right complementable.
For every elements a, b, v of Z1, (a+ b) ·v = a ·v+ b ·v. For every elements
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a, b, v of Z1, v · (a + b) = v · a + v · b and (a + b) · v = a · v + b · v. For
every elements a, b, v of Z1, (a · b) · v = a · (b · v). For every element v of
Z1, v · (1Z1) = v and 1Z1 · v = v. �

(7) Let us consider a commutative ring A, a non empty set X, and a function
f from A into X. If f is bijective, then embRing(f) is a commutative ring.
Proof: embRing(f) is commutative. �

(8) Let us consider rings A, B, and a function i from A into B. Suppose i
inherits ring homomorphism and i = idA. Then A is a subring of B.
Proof: For every object o such that o ∈ the carrier of A holds o ∈
the carrier of B. The addition of A = (the addition of B) � (the carrier
of A). The multiplication of A = (the multiplication of B) � (the carrier
of A). �

(9) Let us consider rings A, B, and a function f from A into B. Suppose f is
monomorphic and ΩB \ (rng f) 6= ∅. Then there exists a ring C and there
exists a set X and there exists a function h and there exists a function G
from B into C such that X ∩ ΩA = ∅ and h is one-to-one and domh =
ΩB \ (rng f) and rng h = X and ΩC = X ∪ ΩA and A is a subring of C
and G inherits ring isomorphism and idA = G · f .
Proof: Consider X being a non empty set such that ΩA∩X = ∅ and there
exists a function h such that h is one-to-one and domh = ΩB \ (rng f)
and rng h = X. Consider h being a function such that h is one-to-one and
domh = ΩB \ (rng f) and rng h = X and ΩA ∩X = ∅.

Define P[element ofB, element of ΩA∪X] ≡ $1 ∈ rng f and (f−1)($1) =
$2 or $1 /∈ rng f and $2 = h($1). Set C1 = ΩA ∪ X. Consider g being
a function from the carrier of B into C1 such that for every element x of
B, P[x, g(x)]. g is bijective. Reconsider C = embRing(g) as a non empty
ring. Reconsider G = g as a function from B into C. G is linear. For every
o such that o ∈ ΩA holds (G · f)(o) = o. A is a subring of C. �

3. Embedding Principle Applied to Abelian Groups

Let G be an Abelian group. A subgroup of G is an Abelian group defined by

(Def. 6) the carrier of it ⊆ the carrier of G and the addition of it = (the addition
of G) � (the carrier of it) and 0it = 0G.

Let G, H be Abelian groups and f be a homomorphism from G to H. The
functor Im f yielding a strict additive loop structure is defined by

(Def. 7) the carrier of it = rng f and the addition of it = (the addition of H) �
rng f and the zero of it = 0H .

Now we state the proposition:
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(10) Let us consider an Abelian group A, a non empty set X, a function
f from A into X, and elements a, b of X. Suppose f is bijective. Then
f((the addition of A)((f−1)(a), (f−1)(b))) is an element of X.

Let A be an Abelian group,X be a non empty set, f be a function fromA into
X, and a, b be elements of X. Assume f is bijective. The functor addemb(f, a, b)
yielding an element of X is defined by the term

(Def. 8) f((the addition of A)((f−1)(a), (f−1)(b))).

Now we state the proposition:

(11) Let us consider an Abelian group A, a non empty set X, a function f

from A into X, and elements a, b, c of X. Suppose f is bijective. Then
addemb(f, a, addemb(f, b, c)) = addemb(f, addemb(f, a, b), c).

Let A be an Abelian group, X be a non empty set, and f be a function from
A into X. The functor addemb(f) yielding a binary operation on X is defined
by

(Def. 9) for every elements a, b of X, it(a, b) = addemb(f, a, b).

The functor embAbGr(f) yielding a strict, non empty additive loop structure
is defined by the term

(Def. 10) 〈X, addemb(f), f(0A)〉.
Now we state the propositions:

(12) Let us consider an Abelian group A, a non empty set X, and a function
f from A into X. If f is bijective, then embAbGr(f) is an Abelian group.
Proof: Reconsider Z1 = 〈X, addemb(f), f(0A)〉 as a non empty additive
loop structure. For every elements v, w of Z1, v + w = w + v. For every
elements u, v, w of Z1, u+ (v +w) = (u+ v) +w. For every element v of
Z1, v + 0Z1 = v. Every element of Z1 is right complementable. �

(13) Let us consider Abelian groups A, B, and a homomorphism i from A to
B. If i = idA, then A is a subgroup of B.
Proof: For every object o such that o ∈ the carrier of A holds o ∈
the carrier of B. The addition of A = (the addition of B) � (the carrier
of A). �

(14) Let us consider Abelian groups A, B, and a homomorphism f from A

to B. Suppose f is one-to-one and ΩB \ (rng f) 6= ∅. Then there exists
an Abelian group C and there exists a set X and there exists a function h
and there exists a function G from B into C such that X ∩ΩA = ∅ and h
is one-to-one and domh = ΩB \ (rng f) and rng h = X and ΩC = X ∪ΩA
and A is a subgroup of C and G is a homomorphism from B to C and
idA = G · f .
Proof: Consider X being a non empty set such that ΩA∩X = ∅ and there
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exists a function h such that h is one-to-one and domh = ΩB \ (rng f)
and rng h = X. Consider h being a function such that h is one-to-one and
domh = ΩB \ (rng f) and rng h = X and ΩA ∩X = ∅. Define P[element
of B, element of ΩA ∪X] ≡ $1 ∈ rng f and (f−1)($1) = $2 or $1 /∈ rng f
and $2 = h($1). Set C1 = ΩA ∪X.

Consider g being a function from the carrier of B into C1 such that for
every element x ofB, P[x, g(x)]. g is bijective. Reconsider C = embAbGr(g)
as a non empty Abelian group. Reconsider G = g as a function from B

into C. G is additive. For every o such that o ∈ ΩA holds (G · f)(o) = o.
A is a subgroup of C. �

4. Relation with Polynomial Rings

Now we state the proposition:

(15) Let us consider a bag b of 0. Then

(i) dom b = ∅, and

(ii) b = EmptyBag ∅, and

(iii) rng b = 0, and

(iv) EmptyBag ∅ = ∅ 7−→ 0, and

(v) Bags ∅ = {EmptyBag ∅}.

From now on R denotes a right zeroed, add-associative, right complemen-
table, Abelian, well unital, distributive, associative, non trivial, non trivial
double loop structure. Now we state the propositions:

(16) Let us consider a polynomial f of 0,R. Then

(i) dom f = Bags 0, and

(ii) Bags 0 = {∅}, and

(iii) rng f = {f(EmptyBag 0)}.

The theorem is a consequence of (15).

(17) Every polynomial of 0,R is constant.

(18) Let us consider a polynomial f of 0,R. Then there exists an element a
of R such that f = a�(0, R). The theorem is a consequence of (17).

Let us consider R. The functor 1 1(R) yielding a sequence of R is defined
by the term

(Def. 11) 0.R+· (1, 1R).

Now we state the proposition:
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(19) Let us consider a non degenerated commutative ring R.
Then Support 1 1(R) = {1}.
Proof: For every o such that o ∈ Support 1 1(R) holds o ∈ {1}. For every
o such that o ∈ {1} holds o ∈ Support 1 1(R). �

Let us consider R. One can verify that 1 1(R) is finite-Support. Now we
state the propositions:

(20) Leading-Monomial 1 1(R) = 1 1(R).

(21) Let us consider an element m of R. Then eval(1 1(R),m) = m. The
theorem is a consequence of (20).

In the sequel R denotes a non degenerated commutative ring. Now we state
the propositions:

(22) Let us consider an element p0 of Polynom-Ring(0, R). Then p0 is not
a polynomial over Polynom-Ring(0, R).

(23) Let us consider a non degenerated commutative ring R.
Then Polynom-Ring Polynom-Ring(0, R) and Polynom-Ring(1, R) are iso-
morphic.

Let us consider a non degenerated ring R. Now we state the propositions:

(24) ΩPolynom-RingR \ (rng(R
canHom
↪→ Polynom-Ring R)) 6= ∅.

(25) There exists a non degenerated ring P1 and there exists a set X and there
exists a function h and there exists a function G from Polynom-RingR
into P1 such that R is a subring of P1.

AndG inherits ring isomorphism and idR = G·(R canHom
↪→ Polynom-Ring R)

and X ∩ ΩR = ∅ and h is one-to-one and domh = ΩPolynom-RingR \
(rng(R

canHom
↪→ Polynom-Ring R)) and rng h = X and ΩP1 = X ∪ ΩR. The

theorem is a consequence of (24) and (9).

(26) ΩPolynom-Ring(0,R) ∩ ΩPolynom-Ring Polynom-Ring(0,R) = ∅. The theorem is
a consequence of (22).

(27) Let us consider a non degenerated ring R. Then there exists a non dege-
nerated ring P1 and there exists a set X and there exists a function h and
there exists a function G from Polynom-Ring Polynom-Ring(0, R) into P1
such that Polynom-Ring(0, R) is a subring of P1.

And G inherits ring isomorphism and idPolynom-Ring(0,R) = G·(Polynom-

Ring(0, R)
canHom
↪→ Polynom-Ring Polynom-Ring(0, R)) and

X ∩ ΩPolynom-Ring(0,R) = ∅ and h is one-to-one and domh =

ΩPolynom-Ring Polynom-Ring(0,R) \ (rng(Polynom-Ring(0, R)
canHom
↪→ Polynom-

Ring Polynom-Ring(0, R))) and rngh =X and ΩP1=X∪ΩPolynom-Ring(0,R).

Let us consider R. Let A be an R-monomorphic commutative ring and x be
an element of A. We say that x is indeterminate if and only if
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(Def. 12) there exists a function g from Polynom-RingR into A such that g is
isomorphism and x = g(1 1(R)).

Now we state the proposition:

(28) Let us consider a non degenerated commutative ring R. Then there exists
an element X of Polynom-RingR such that

(i) X is indeterminate, and

(ii) X = 1 1(R).
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