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Summary. In this article we continue the formalization of field theory in
Mizar [1], [2], [4], [3]. We introduce normal extensions: an (algebraic) extension E
of F is normal if every polynomial of F that has a root in E already splits in E.
We proved characterizations (for finite extensions) by minimal polynomials [7],
splitting fields, and fixing monomorphisms [6], [5]. This required extending results
from [11] and [12], in particular that F [T ] = {p(a1, . . . an) | p ∈ F [X], ai ∈ T}
and F (T ) = F [T ] for finite algebraic T ⊆ E. We also provided the counterexam-
ple that Q( 3

√
2) is not normal over Q (compare [13]).
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1. Preliminaries

Let Y be a non empty set and y1, y2, y3 be elements of Y. Note that the
functor {y1, y2, y3} yields a subset of Y. Let R be an integral domain and p, q
be constant polynomials over R. Note that p ∗ q is constant. Let R be a ring.
Note that every ring extension of R is R-homomorphic and R-monomorphic.

Let F be a field, p be a non constant element of the carrier of Polynom-RingF ,
and E be a splitting field of p. Let us observe that Roots(E, p) is non empty.
Let R be a ring, S be a ring extension of R, and T be a ring extension of S.
One can check that there exists a homomorphism from S to T which is R-fixing
and there exists a monomorphism of S and T which is R-fixing. Now we state
the propositions:
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(1) Let us consider a ring R, a subring S of R, a non empty finite sequence
F of elements of the carrier of R, and a non empty finite sequence G of
elements of the carrier of S. If F = G, then

∏
F =

∏
G.

Proof: Define P[natural number] ≡ for every non empty finite sequence
F of elements of the carrier of R for every non empty finite sequence G
of elements of the carrier of S such that lenF = $1 and F = G holds∏
F =

∏
G. For every natural number k, P[k]. Consider n being a natural

number such that n = lenF . �

(2) Let us consider a field F , and a non empty finite sequence G of elements
of the carrier of Polynom-RingF . Then

∏
G = 0.F if and only if there

exists an element i of domG such that G(i) = 0.F .
Proof: Define P[natural number] ≡ for every non empty finite sequence
G of elements of the carrier of Polynom-RingF such that lenG = $1 and
for every element i of domG, G(i) 6= 0.F holds

∏
G 6= 0.F . P[1]. For

every natural number k such that k ­ 1 holds P[k]. �

(3) Let us consider a field F , and a non empty finite sequence G of elements
of the carrier of Polynom-RingF . Suppose for every element i of domG,
G(i) 6= 0.F . Let us consider a polynomial q over F . Suppose q =

∏
G. Let

us consider an element i of domG, and a polynomial p over F . If p = G(i),
then deg(p) ¬ deg(q). The theorem is a consequence of (2).

(4) Let us consider a field F , an extension E of F , a non empty finite se-
quence G of elements of the carrier of Polynom-RingF , and a polynomial
q over F . Suppose q =

∏
G. Let us consider an element a of E. Suppose

there exists an element i of domG and there exists a polynomial p over F
such that p = G(i) and ExtEval(p, a) = 0E . Then ExtEval(q, a) = 0E .

(5) Let us consider a field F , a non empty finite sequence G of elements of
the carrier of Polynom-RingF , and a non constant polynomial q over F .
Suppose q =

∏
G. Then q splits in F if and only if for every element i of

domG and for every polynomial p over F such that p = G(i) holds p is
constant or p splits in F .

(6) Let us consider a field F , an extension E of F , a non empty finite sequ-
ence G of elements of the carrier of Polynom-RingF , and a non constant
polynomial q over F . Suppose q =

∏
G. Then q splits in E if and only if

for every element i of domG and for every polynomial p over F such that
p = G(i) holds p is constant or p splits in E. The theorem is a consequence
of (1) and (5).

(7) Let us consider a field F , an extension E of F , a non constant polynomial
p over F , and a non zero polynomial q over F . If p ∗ q splits in E, then p
splits in E.
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(8) Let us consider a natural number n, a field F , an extension E of F , a po-
lynomial p of n,F , and a polynomial q of n,E. If p = q, then Support q =
Support p.

(9) Let us consider a natural number n, a field F , an extension E of F ,
a polynomial p of n,F , a polynomial q of n,E, and a function x from n
into E. If p = q, then ExtEval(p, x) = eval(q, x).
Proof: Consider F3 being a finite sequence of elements of the carrier of S
such that ExtEval(p, x) =

∑
F3 and lenF3 = len SgmX(BagOrdern, Sup-

port p) and for every element i of N such that 1 ¬ i ¬ lenF3 holds F3(i) =
(p·(SgmX(BagOrdern, Support p)))i)(∈ S)·(eval((SgmX(BagOrdern,Sup-
port p))/i, x)). Consider F4 being a finite sequence of elements of the carrier
of S such that lenF4 = len SgmX(BagOrdern, Support q) and eval(q, x) =∑
F4 and for every element i of N such that 1 ¬ i ¬ lenF4 holds F4/i = q ·

(SgmX(BagOrdern,Support q))/i·(eval((SgmX(BagOrdern, Support q))/i,
x)). For every natural number i such that i ∈ domF3 holds F4(i) = F3(i).
�

(10) Let us consider a natural number n, a field F , an extension E of F ,
an element a of F , and an element b of E. If a = b, then a�(n, F ) =
b�(n,E).

(11) Let us consider a field F , an extension E1 of F , and a field E2. If E1 ≈ E2,
then E2 is an extension of F .

(12) Let us consider fields F1, F2, and a product of linear polynomials p of
F1. If F1 ≈ F2, then p is a product of linear polynomials of F2.

(13) Let us consider a field F , an extension E of F , a polynomial p over F ,
a polynomial q over E, an element a of F , and an element b of E. If p = q
and a = b, then a · p = b · q.

(14) Let us consider fields F1, F2, a polynomial p over F1, an element a of F1,
a polynomial q over F2, and an element b of F2. If F1 ≈ F2, then if p = q
and a = b, then a · p = b · q. The theorem is a consequence of (13).

(15) Let us consider a field F , extensions E1, E2 of F , and a polynomial p
over F . If E1 ≈ E2, then if p splits in E1, then p splits in E2. The theorem
is a consequence of (12) and (14).

(16) Let us consider a field F , extensions E1, E2 of F , and a non constant
element p of the carrier of Polynom-RingF . Suppose E1 ≈ E2. If E1 is
a splitting field of p, then E2 is a splitting field of p. The theorem is
a consequence of (11) and (15).

(17) Let us consider a field F , and a linear element p of the carrier of Polynom-
RingF . Then F is a splitting field of p.

Let F be a field and E be an extension of F . Let us observe that there exists



124 christoph schwarzweller

a subset of E which is non empty, finite, and F-algebraic. Let a be an F-algebraic
element of E. Let us observe that {a} is F-algebraic as a subset of E.

Let T1, T2 be F-algebraic subsets of E. One can verify that T1 ∪ T2 is F-
algebraic as a subset of E. Let T1 be an F-algebraic subset of E and T2 be
a subset of E. Let us observe that T1 ∩ T2 is F-algebraic as a subset of E and
T1 \T2 is F-algebraic as a subset of E. Let T be a non empty, F-algebraic subset
of E.

Note that an element of T is an element of E. Let us note that every element
of T is F-algebraic. Let E1, E2 be extensions of F , h be a function from E1 into
E2, and T be a subset of E1. Observe that the functor h◦T yields a subset of
E2. Now we state the propositions:

(18) Let us consider a field F , an extension E of F , a subset T1 of E, a subset
T2 of E, an extension E1 of FAdj(F, T2), and a subset T3 of E1. Suppose
E1 = E and T1 = T3. Then FAdj(F, T1 ∪ T2) = FAdj(FAdj(F, T2), T3).
Proof: T1 ∪ T2 ⊆ the carrier of FAdj(FAdj(F, T2), T3). �

(19) Let us consider a field F , an extension E of F , an E-extending extension
K of F , a finite, F-algebraic subset T1 of E, and a subset T2 of K. If
T1 = T2, then FAdj(F, T1) = FAdj(F, T2).
Proof: Define P[natural number] ≡ for every finite, F-algebraic subset
T1 of E for every subset T2 of K such that T1 = $1 and T1 = T2 holds
FAdj(F, T1) = FAdj(F, T2). P[0] by [14, (3)]. For every natural number k,
P[k]. Consider n being a natural number such that T1 = n. �

(20) Let us consider fields F1, F2, an element p1 of the carrier of Polynom-Ring
F1, an element p2 of the carrier of Polynom-RingF2, an extension E1 of
F1, and an extension E2 of F2. Suppose E1 = E2 and p1 = p2. Then
Roots(E1, p1) = Roots(E2, p2).

(21) Let us consider a field F , extensions E, K of F , an extension U1 of E,
an extension U2 of K, a subset T1 of U1, and a subset T2 of U2. Suppose
U1 = U2 and T1 = T2 and E ≈ K. Then FAdj(E, T1) = FAdj(K,T2).
Proof: FAdj(E, T1) is a subfield of FAdj(K,T2). FAdj(K,T2) is a subfield
of FAdj(E, T1) by [9, (37)], [10, (7)], [11, (35),(37)]. �

(22) Let us consider a field F , an extension E of F , an E-extending extension
K of F , a subset T1 of K, and a finite subset T2 of K. Suppose T1 ⊆ T2
and E ≈ FAdj(F, T1). Then FAdj(E, T2) = FAdj(F, T2). The theorem is
a consequence of (21) and (18).

(23) Let us consider a field F1, a non constant element p1 of the carrier
of Polynom-RingF1, an extension F2 of F1, a non constant element p2
of the carrier of Polynom-RingF2, a splitting field E of p2, and an F1-
algebraic subset T of F2. Suppose T ⊆ Roots(E, p2) and F2 ≈ FAdj(F1, T ).
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If p1 = p2, then E is a splitting field of p1. The theorem is a consequence
of (19).

(24) Let us consider a field F , an extension E of F , an F -extending extension
K of E, and a non constant element p of the carrier of Polynom-RingF .
If p splits in E, then Roots(K, p) = Roots(E, p).

(25) Let us consider a field F1, an F1-homomorphic field F2, a homomorphism
h from F1 to F2, and an element a of F1. Then (PolyHom(h))(X− a) =
X−h(a).

(26) Let us consider a field F1, an F1-isomorphic, F1-homomorphic field F2,
an isomorphism h between F1 and F2, an extension E1 of F1, an extension
E2 of F2, an element a of E1, an element b of E2, and an irreducible
element p of the carrier of Polynom-RingF1. Suppose ExtEval(p, a) = 0E1
and ExtEval((PolyHom(h))(p), b) = 0E2 . Then (Ψ(a, b, h, p))(a) = b. The
theorem is a consequence of (25).

2. Preliminaries about Ring Adjunctions

Let R1, R2 be rings. One can check that R1 ≈ R2 if and only if the condition
(Def. 1) is satisfied.

(Def. 1) R1 is a subring of R2 and R2 is a subring of R1.

Now we state the propositions:

(27) Let us consider a ring R. Then R ≈ R.

(28) Let us consider rings R1, R2. If R1 ≈ R2, then R2 ≈ R1.
(29) Let us consider rings R1, R2, R3. If R1 ≈ R2 and R2 ≈ R3, then R1 ≈ R3.
(30) Let us consider a ring R, a ring extension S of R, and subsets T1, T2 of
S. Suppose T1 ⊆ T2. Then RAdj(R, T1) is a subring of RAdj(R, T2).

(31) Let us consider a ring R, a ring extension S of R, subsets T1, T2 of S,
a ring extension S1 of RAdj(R, T2), and a subset T3 of S1. Suppose S1 = S
and T1 = T3. Then RAdj(R, T1 ∪ T2) = RAdj(RAdj(R, T2), T3).
Proof: T1 ∪ T2 ⊆ the carrier of RAdj(RAdj(F, T2), T3). RAdj(F, T2) is
a subring of RAdj(F, T1 ∪ T2). �

(32) Let us consider a ring R, a ring extension S of R, and a subset T of S.
Then RAdj(R, T ) ≈ R if and only if T is a subset of R.

Let n be a natural number, R, S be non degenerated commutative rings,
and x be a function from n into S. The functor HomExtEval(x,R) yielding
a function from Polynom-Ring(n,R) into S is defined by

(Def. 2) for every polynomial p of n,R, it(p) = ExtEval(p, x).
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Let R be a non degenerated commutative ring and S be a commutative ring
extension ofR. Let us observe that HomExtEval(x,R) is additive, multiplicative,
and unity-preserving. Now we state the proposition:

(33) Let us consider a natural number n, and a field F . Then every extension
of F is (Polynom-Ring(n, F ))-homomorphic.

Let n be a natural number and F be a field. One can check that there exists
an extension of F which is (Polynom-Ring(n, F ))-homomorphic. Now we state
the proposition:

(34) Let us consider a natural number n, fields F , E, and a function x from n
into E. Then rng HomExtEval(x, F ) = the set of all ExtEval(p, x) where
p is a polynomial of n,F .

Let n be a natural number, F be a field, E be an extension of F , and x be
a function from n into E. The functor ImageHomExtEval(x, F ) yielding a strict
double loop structure is defined by

(Def. 3) the carrier of it = rng HomExtEval(x, F ) and the addition of it = (the
addition of E) � rng HomExtEval(x, F ) and the multiplication of it =
(the multiplication of E) � rng HomExtEval(x, F ) and the one of it = 1E
and the zero of it = 0E .

One can check that ImageHomExtEval(x, F ) is non degenerated and Image-
HomExtEval(x, F ) is Abelian, add-associative, right zeroed, and right comple-
mentable and ImageHomExtEval(x, F ) is commutative, associative, well unital,
and distributive. Now we state the proposition:

(35) Let us consider a natural number n, a field F , an extension E of F , and
a function x from n into E. Then F is a subring of ImageHomExtEval(x, F ).
The theorem is a consequence of (10), (9), and (34).

Let F be a field, T be a finite subset of F , and x be a function from T into
F . We say that x is T -evaluating if and only if

(Def. 4) x is one-to-one and rng x = T .

Let us note that there exists a function from T into F which is T -evaluating
and every function from T into F which is T -evaluating is also T -valued and
one-to-one. Now we state the propositions:

(36) Let us consider a field F , an extension E of F , a non empty, finite subset
T of E, a bag b of T , and a T -evaluating function x from T into E. Then
eval(b, x) ∈ the carrier of RAdj(F, T ).
Proof: Define P[natural number] ≡ for every bag b of T such that
support b = $1 for every T -evaluating function x from T into E, eval(b, x) ∈
the carrier of RAdj(F, T ). Set n = T . P[0]. For every natural number k,
P[k]. Consider n being a natural number such that support b = n. �
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(37) Let us consider a field F , an extension E of F , a non empty, finite subset
T of E, a polynomial p of T ,F , and a T -evaluating function x from T
into E. Then ExtEval(p, x) ∈ the carrier of RAdj(F, T ).
Proof: Define P[natural number] ≡ for every polynomial p of T ,F such
that Support p = $1 holds ExtEval(p, x) ∈ the carrier of RAdj(F, T ). For
every natural number k such that P[k] holds P[k + 1]. P[0]. For every
natural number k, P[k]. �

Let us consider a field F , an extension E of F , a non empty, finite subset T of
E, and a T -evaluating function x from T into E. Now we state the propositions:

(38) RAdj(F, T ) = ImageHomExtEval(x, F ). The theorem is a consequence
of (35).

(39) The carrier of RAdj(F, T ) = the set of all ExtEval(p, x) where p is a po -
lynomial of T ,F . The theorem is a consequence of (38) and (34).

(40) Let us consider a field F , an extension E of F , and a finite subset T of
E. If T is F-algebraic, then FAdj(F, T ) = RAdj(F, T ).
Proof: Define P[natural number] ≡ for every field F for every extension
E of F for every finite subset T of E such that T = $1 holds if T is F-
algebraic, then FAdj(F, T ) = RAdj(F, T ). P[0]. For every natural number
k, P[k]. Consider n being a natural number such that T = n. �

3. On Fixing Monomorphisms

Let R be a ring and S be a ring extension of R. Note that there exists
a homomorphism of S which is R-fixing and there exists a monomorphism of S
which is R-fixing and there exists an automorphism of S which is R-fixing. Now
we state the propositions:

(41) Let us consider a field F , an extension E of F , an extension K of E,
an element p of the carrier of Polynom-RingF , and an F -fixing homomor-
phism h from E to K. Then (PolyHom(h))(p) = p.

(42) Let us consider a field F , an extension E of F , an extension K of E,
an element p of the carrier of Polynom-RingF , an element a of E, and
an F -fixing homomorphism h from E to K. Then h(ExtEval(p, a)) =
ExtEval(p, h(a)). The theorem is a consequence of (41).

(43) Let us consider a field F , an extension E of F , an F -fixing monomor-
phism h of E, and a non zero element p of the carrier of Polynom-RingF .
Then h◦(Roots(E, p)) = Roots(E, p).

(44) Let us consider a field F , an F-algebraic extension E of F , and an F -
fixing monomorphism h of E. Then the carrier of E ⊆ rng h. The theorem
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is a consequence of (43).

(45) Let us consider a field F , and an F-algebraic extension E of F . Then
every F -fixing monomorphism of E is an automorphism of E. The theorem
is a consequence of (44).

Let F be a field and E be an F-algebraic extension of F . Let us observe
that every F -fixing monomorphism of E is isomorphism. Now we state the
propositions:

(46) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, and an F-algebraic
subset T of E. Then h◦T is F-algebraic. The theorem is a consequence of
(42).

(47) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, a non empty, finite
subset T of E, a bag b of T , and a T -evaluating function x from T into
E. Then h(eval(b, x)) ∈ the carrier of RAdj(F, h◦T ).

Proof: Define P[natural number] ≡ for every bag b of T such that
support b = $1 for every T -evaluating function x from T into E, h(eval(b,

x)) ∈ the carrier of RAdj(F, h◦T ). Set n = T . P[0]. For every natural
number k, P[k]. Consider n being a natural number such that support b =
n. �

(48) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, a non empty, finite
subset T of E, a polynomial p of T ,F , and a T -evaluating function x from
T into E. Then h(ExtEval(p, x)) ∈ the carrier of RAdj(F, h◦T ).

Proof: Define P[natural number] ≡ for every polynomial p of T ,F such
that Support p = $1 holds h(ExtEval(p, x)) ∈ the carrier of RAdj(F, h◦T ).
For every natural number k such that P[k] holds P[k+ 1]. P[0] by [8, (5),
(16)]. For every natural number k, P[k]. �

(49) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, and a non empty,
finite, F-algebraic subset T of E. Then h◦(the carrier of FAdj(F, T )) ⊆
the carrier of FAdj(F, h◦T ). The theorem is a consequence of (46), (40),
and (48).

(50) Let us consider a field F , an extension E of F , an E-extending extension
K of F , and a finite, F-algebraic subset T of K. Suppose T ⊆ the carrier
of E. Then FAdj(F, T ) is a subfield of E. The theorem is a consequence
of (19).

(51) Let us consider a field F , an extension E of F , an E-extending extension
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K of F , an F -fixing homomorphism h from E to (K qua extension of E),
and a finite, F-algebraic subset T of E. Suppose h◦T ⊆ the carrier of E.
Then FAdj(F, h◦T ) is a subfield of E. The theorem is a consequence of
(42) and (19).

(52) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, an F -fixing monomorphism h of E and K, and a non empty,
finite, F-algebraic subset T of E. Suppose h◦T ⊆ the carrier of E. Then
h◦(the carrier of FAdj(F, T )) ⊆ the carrier of E. The theorem is a conse-
quence of (51) and (49).

(53) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, and a non constant
element p of the carrier of Polynom-RingF . Suppose p splits in E. Then
h◦(Roots(E, p)) ⊆ the carrier of E. The theorem is a consequence of (42)
and (24).

4. Normal Extensions

Let F be a field and E be an extension of F . We say that E is F -normal if
and only if

(Def. 5) E is F-algebraic and for every irreducible element p of the carrier of
Polynom-RingF such that p has a root in E holds p splits in E.

Let us observe that every extension of F which is F -normal is also F-algebraic
and every extension of F which is F -quadratic is also F -normal and every al-
gebraic closure of F is F -normal and there exists an extension of F which is
F-algebraic and F -normal and FAdj(FQ, { 3

√
2}) is non (FQ)-normal. Now we

state the proposition:

(54) Let us consider a field F , and an F-algebraic extension E of F . Then E
is F -normal if and only if for every element a of E, MinPoly(a, F ) splits
in E.

Let us consider a field F and an F -finite extension E of F . Now we state
the propositions:

(55) E is F -normal if and only if there exists a non constant element p of
the carrier of Polynom-RingF such that E is a splitting field of p.

(56) E is F -normal if and only if for every extension K of E, every F -fixing
monomorphism of E and K is an automorphism of E.

Let F be a field and p be a non constant element of the carrier of Polynom-Ring
F . One can verify that every splitting field of p is F -normal. Now we state the
propositions:
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(57) Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Then FAdj(F, {a}) is F -normal if and only if MinPoly(a, F ) splits
in FAdj(F, {a}).

(58) Let us consider a field F , an extension E of F , and a non empty, finite,
F-algebraic subset T of E. Then FAdj(F, T ) is F -normal if and only if for
every element a of T , MinPoly(a, F ) splits in FAdj(F, T ). The theorem is
a consequence of (3), (6), and (4).
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