Normal Extensions

Christoph Schwarzweller (ㅁ)
Institute of Informatics
University of Gdańsk
Poland

Abstract

Summary. In this article we continue the formalization of field theory in Mizar [1], 2], [4, [3]. We introduce normal extensions: an (algebraic) extension E of F is normal if every polynomial of F that has a root in E already splits in E. We proved characterizations (for finite extensions) by minimal polynomials [7, splitting fields, and fixing monomorphisms [6], [5]. This required extending results from [11] and [12], in particular that $F[T]=\left\{p\left(a_{1}, \ldots a_{n}\right) \mid p \in F[X], a_{i} \in T\right\}$ and $F(T)=F[T]$ for finite algebraic $T \subseteq E$. We also provided the counterexample that $\mathcal{Q}(\sqrt[3]{2})$ is not normal over \mathcal{Q} (compare [13]).

MSC: 12F05 68V20
Keywords: normal extension; fixing monomorphisms
MML identifier: FIELD_13, version: 8.1.12 5.75.1447

1. Preliminaries

Let Y be a non empty set and y_{1}, y_{2}, y_{3} be elements of Y. Note that the functor $\left\{y_{1}, y_{2}, y_{3}\right\}$ yields a subset of Y. Let R be an integral domain and p, q be constant polynomials over R. Note that $p * q$ is constant. Let R be a ring. Note that every ring extension of R is R-homomorphic and R-monomorphic.

Let F be a field, p be a non constant element of the carrier of Polynom-Ring F, and E be a splitting field of p. Let us observe that $\operatorname{Roots}(E, p)$ is non empty. Let R be a ring, S be a ring extension of R, and T be a ring extension of S. One can check that there exists a homomorphism from S to T which is R-fixing and there exists a monomorphism of S and T which is R-fixing. Now we state the propositions:
(1) Let us consider a ring R, a subring S of R, a non empty finite sequence F of elements of the carrier of R, and a non empty finite sequence G of elements of the carrier of S. If $F=G$, then $\Pi F=\prod G$.
Proof: Define \mathcal{P} [natural number] \equiv for every non empty finite sequence F of elements of the carrier of R for every non empty finite sequence G of elements of the carrier of S such that len $F=\$_{1}$ and $F=G$ holds $\Pi F=\Pi G$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $n=\operatorname{len} F$.
(2) Let us consider a field F, and a non empty finite sequence G of elements of the carrier of Polynom-Ring F. Then $\Pi G=0 . F$ if and only if there exists an element i of $\operatorname{dom} G$ such that $G(i)=\mathbf{0} . F$.
Proof: Define \mathcal{P} [natural number] \equiv for every non empty finite sequence G of elements of the carrier of Polynom-Ring F such that len $G=\$_{1}$ and for every element i of $\operatorname{dom} G, G(i) \neq \mathbf{0} . F$ holds $\Pi G \neq \mathbf{0} . F$. $\mathcal{P}[1]$. For every natural number k such that $k \geqslant 1$ holds $\mathcal{P}[k]$.
(3) Let us consider a field F, and a non empty finite sequence G of elements of the carrier of Polynom-Ring F. Suppose for every element i of dom G, $G(i) \neq \mathbf{0} . F$. Let us consider a polynomial q over F. Suppose $q=\Pi G$. Let us consider an element i of $\operatorname{dom} G$, and a polynomial p over F. If $p=G(i)$, then $\operatorname{deg}(p) \leqslant \operatorname{deg}(q)$. The theorem is a consequence of (2).
(4) Let us consider a field F, an extension E of F, a non empty finite sequence G of elements of the carrier of Polynom-Ring F, and a polynomial q over F. Suppose $q=\Pi G$. Let us consider an element a of E. Suppose there exists an element i of $\operatorname{dom} G$ and there exists a polynomial p over F such that $p=G(i)$ and $\operatorname{ExtEval}(p, a)=0_{E}$. Then $\operatorname{ExtEval}(q, a)=0_{E}$.
(5) Let us consider a field F, a non empty finite sequence G of elements of the carrier of Polynom-Ring F, and a non constant polynomial q over F. Suppose $q=\Pi G$. Then q splits in F if and only if for every element i of dom G and for every polynomial p over F such that $p=G(i)$ holds p is constant or p splits in F.
(6) Let us consider a field F, an extension E of F, a non empty finite sequence G of elements of the carrier of Polynom-Ring F, and a non constant polynomial q over F. Suppose $q=\Pi G$. Then q splits in E if and only if for every element i of dom G and for every polynomial p over F such that $p=G(i)$ holds p is constant or p splits in E. The theorem is a consequence of (1) and (5).
(7) Let us consider a field F, an extension E of F, a non constant polynomial p over F, and a non zero polynomial q over F. If $p * q$ splits in E, then p splits in E.
(8) Let us consider a natural number n, a field F, an extension E of F, a polynomial p of n, F, and a polynomial q of n, E. If $p=q$, then Support $q=$ Support p.
(9) Let us consider a natural number n, a field F, an extension E of F, a polynomial p of n, F, a polynomial q of n, E, and a function x from n into E. If $p=q$, then $\operatorname{ExtEval}(p, x)=\operatorname{eval}(q, x)$.
Proof: Consider F_{3} being a finite sequence of elements of the carrier of S such that $\operatorname{ExtEval}(p, x)=\sum F_{3}$ and len $F_{3}=\operatorname{len} \operatorname{SgmX}($ BagOrder n, Support p) and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} F_{3}$ holds $F_{3}(i)=$ $(p \cdot(\operatorname{SgmX}(\operatorname{BagOrder} n, \operatorname{Support} p))) i)(\in S) \cdot(\operatorname{eval}((\operatorname{SgmX}($ BagOrder n, Support $\left.p))_{/ i}, x\right)$). Consider F_{4} being a finite sequence of elements of the carrier of S such that len $F_{4}=\operatorname{len} \operatorname{SgmX}(\operatorname{BagOrder} n$, Support $q)$ and eval $(q, x)=$ $\sum F_{4}$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} F_{4}$ holds $F_{4 / i}=q$. $(\operatorname{SgmX}(\operatorname{BagOrder} n, \operatorname{Support} q))_{/ i} \cdot\left(\operatorname{eval}\left((\operatorname{SgmX}(\operatorname{BagOrder} n, \operatorname{Support} q))_{/ i}\right.\right.$, $x)$). For every natural number i such that $i \in \operatorname{dom} F_{3}$ holds $F_{4}(i)=F_{3}(i)$.
(10) Let us consider a natural number n, a field F, an extension E of F, an element a of F, and an element b of E. If $a=b$, then $a \upharpoonright(n, F)=$ $b \upharpoonright(n, E)$.
(11) Let us consider a field F, an extension E_{1} of F, and a field E_{2}. If $E_{1} \approx E_{2}$, then E_{2} is an extension of F.
(12) Let us consider fields F_{1}, F_{2}, and a product of linear polynomials p of F_{1}. If $F_{1} \approx F_{2}$, then p is a product of linear polynomials of F_{2}.
(13) Let us consider a field F, an extension E of F, a polynomial p over F, a polynomial q over E, an element a of F, and an element b of E. If $p=q$ and $a=b$, then $a \cdot p=b \cdot q$.
(14) Let us consider fields F_{1}, F_{2}, a polynomial p over F_{1}, an element a of F_{1}, a polynomial q over F_{2}, and an element b of F_{2}. If $F_{1} \approx F_{2}$, then if $p=q$ and $a=b$, then $a \cdot p=b \cdot q$. The theorem is a consequence of (13).
(15) Let us consider a field F, extensions E_{1}, E_{2} of F, and a polynomial p over F. If $E_{1} \approx E_{2}$, then if p splits in E_{1}, then p splits in E_{2}. The theorem is a consequence of (12) and (14).
(16) Let us consider a field F, extensions E_{1}, E_{2} of F, and a non constant element p of the carrier of Polynom-Ring F. Suppose $E_{1} \approx E_{2}$. If E_{1} is a splitting field of p, then E_{2} is a splitting field of p. The theorem is a consequence of (11) and (15).
(17) Let us consider a field F, and a linear element p of the carrier of PolynomRing F. Then F is a splitting field of p.
Let F be a field and E be an extension of F. Let us observe that there exists
a subset of E which is non empty, finite, and F-algebraic. Let a be an F-algebraic element of E. Let us observe that $\{a\}$ is F-algebraic as a subset of E.

Let T_{1}, T_{2} be F-algebraic subsets of E. One can verify that $T_{1} \cup T_{2}$ is F algebraic as a subset of E. Let T_{1} be an F-algebraic subset of E and T_{2} be a subset of E. Let us observe that $T_{1} \cap T_{2}$ is F-algebraic as a subset of E and $T_{1} \backslash T_{2}$ is F-algebraic as a subset of E. Let T be a non empty, F-algebraic subset of E.

Note that an element of T is an element of E. Let us note that every element of T is F-algebraic. Let E_{1}, E_{2} be extensions of F, h be a function from E_{1} into E_{2}, and T be a subset of E_{1}. Observe that the functor $h^{\circ} T$ yields a subset of E_{2}. Now we state the propositions:
(18) Let us consider a field F, an extension E of F, a subset T_{1} of E, a subset T_{2} of E, an extension E_{1} of $\operatorname{FAdj}\left(F, T_{2}\right)$, and a subset T_{3} of E_{1}. Suppose $E_{1}=E$ and $T_{1}=T_{3}$. Then $\operatorname{FAdj}\left(F, T_{1} \cup T_{2}\right)=\operatorname{FAdj}\left(\operatorname{FAdj}\left(F, T_{2}\right), T_{3}\right)$. Proof: $T_{1} \cup T_{2} \subseteq$ the carrier of $\operatorname{FAdj}\left(\operatorname{FAdj}\left(F, T_{2}\right), T_{3}\right)$.
(19) Let us consider a field F, an extension E of F, an E-extending extension K of F, a finite, F-algebraic subset T_{1} of E, and a subset T_{2} of K. If $T_{1}=T_{2}$, then $\operatorname{FAdj}\left(F, T_{1}\right)=\operatorname{FAdj}\left(F, T_{2}\right)$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite, F-algebraic subset T_{1} of E for every subset T_{2} of K such that $\overline{\overline{T_{1}}}=\$_{1}$ and $T_{1}=T_{2}$ holds $\operatorname{FAdj}\left(F, T_{1}\right)=\operatorname{FAdj}\left(F, T_{2}\right) . \mathcal{P}[0]$ by [14, (3)]. For every natural number k, $\mathcal{P}[k]$. Consider n being a natural number such that $\overline{\overline{T_{1}}}=n$.
(20) Let us consider fields F_{1}, F_{2}, an element p_{1} of the carrier of Polynom-Ring F_{1}, an element p_{2} of the carrier of Polynom-Ring F_{2}, an extension E_{1} of F_{1}, and an extension E_{2} of F_{2}. Suppose $E_{1}=E_{2}$ and $p_{1}=p_{2}$. Then $\operatorname{Roots}\left(E_{1}, p_{1}\right)=\operatorname{Roots}\left(E_{2}, p_{2}\right)$.
(21) Let us consider a field F, extensions E, K of F, an extension U_{1} of E, an extension U_{2} of K, a subset T_{1} of U_{1}, and a subset T_{2} of U_{2}. Suppose $U_{1}=U_{2}$ and $T_{1}=T_{2}$ and $E \approx K$. Then $\operatorname{FAdj}\left(E, T_{1}\right)=\operatorname{FAdj}\left(K, T_{2}\right)$.
Proof: $\operatorname{FAdj}\left(E, T_{1}\right)$ is a subfield of $\operatorname{FAdj}\left(K, T_{2}\right)$. $\operatorname{FAdj}\left(K, T_{2}\right)$ is a subfield of $\operatorname{FAdj}\left(E, T_{1}\right)$ by [9, (37)], [10, (7)], [11, (35), (37)].
(22) Let us consider a field F, an extension E of F, an E-extending extension K of F, a subset T_{1} of K, and a finite subset T_{2} of K. Suppose $T_{1} \subseteq T_{2}$ and $E \approx \operatorname{FAdj}\left(F, T_{1}\right)$. Then $\operatorname{FAdj}\left(E, T_{2}\right)=\operatorname{FAdj}\left(F, T_{2}\right)$. The theorem is a consequence of (21) and (18).
(23) Let us consider a field F_{1}, a non constant element p_{1} of the carrier of Polynom-Ring F_{1}, an extension F_{2} of F_{1}, a non constant element p_{2} of the carrier of Polynom-Ring F_{2}, a splitting field E of p_{2}, and an $F_{1^{-}}$ algebraic subset T of F_{2}. Suppose $T \subseteq \operatorname{Roots}\left(E, p_{2}\right)$ and $F_{2} \approx \operatorname{FAdj}\left(F_{1}, T\right)$.

If $p_{1}=p_{2}$, then E is a splitting field of p_{1}. The theorem is a consequence of (19).
(24) Let us consider a field F, an extension E of F, an F-extending extension K of E, and a non constant element p of the carrier of Polynom-Ring F. If p splits in E, then $\operatorname{Roots}(K, p)=\operatorname{Roots}(E, p)$.
(25) Let us consider a field F_{1}, an F_{1}-homomorphic field F_{2}, a homomorphism h from F_{1} to F_{2}, and an element a of F_{1}. Then $(\operatorname{PolyHom}(h))(\mathrm{X}-a)=$ $\mathrm{X}-h(a)$.
(26) Let us consider a field F_{1}, an F_{1}-isomorphic, F_{1}-homomorphic field F_{2}, an isomorphism h between F_{1} and F_{2}, an extension E_{1} of F_{1}, an extension E_{2} of F_{2}, an element a of E_{1}, an element b of E_{2}, and an irreducible element p of the carrier of Polynom-Ring F_{1}. Suppose $\operatorname{ExtEval}(p, a)=0_{E_{1}}$ and $\operatorname{ExtEval}((\operatorname{PolyHom}(h))(p), b)=0_{E_{2}}$. Then $(\Psi(a, b, h, p))(a)=b$. The theorem is a consequence of (25).

2. Preliminaries about Ring Adjunctions

Let R_{1}, R_{2} be rings. One can check that $R_{1} \approx R_{2}$ if and only if the condition (Def. 1) is satisfied.
(Def. 1) $\quad R_{1}$ is a subring of R_{2} and R_{2} is a subring of R_{1}.
Now we state the propositions:
(27) Let us consider a ring R. Then $R \approx R$.
(28) Let us consider rings R_{1}, R_{2}. If $R_{1} \approx R_{2}$, then $R_{2} \approx R_{1}$.
(29) Let us consider rings R_{1}, R_{2}, R_{3}. If $R_{1} \approx R_{2}$ and $R_{2} \approx R_{3}$, then $R_{1} \approx R_{3}$.
(30) Let us consider a ring R, a ring extension S of R, and subsets T_{1}, T_{2} of S. Suppose $T_{1} \subseteq T_{2}$. Then $\operatorname{RAdj}\left(R, T_{1}\right)$ is a subring of $\operatorname{RAdj}\left(R, T_{2}\right)$.
(31) Let us consider a ring R, a ring extension S of R, subsets T_{1}, T_{2} of S, a ring extension S_{1} of $\operatorname{RAdj}\left(R, T_{2}\right)$, and a subset T_{3} of S_{1}. Suppose $S_{1}=S$ and $T_{1}=T_{3}$. Then $\operatorname{RAdj}\left(R, T_{1} \cup T_{2}\right)=\operatorname{RAdj}\left(\operatorname{RAdj}\left(R, T_{2}\right), T_{3}\right)$.
Proof: $T_{1} \cup T_{2} \subseteq$ the carrier of $\operatorname{RAdj}\left(\operatorname{RAdj}\left(F, T_{2}\right), T_{3}\right) . \operatorname{RAdj}\left(F, T_{2}\right)$ is a subring of $\operatorname{RAdj}\left(F, T_{1} \cup T_{2}\right)$.
(32) Let us consider a ring R, a ring extension S of R, and a subset T of S. Then $\operatorname{RAdj}(R, T) \approx R$ if and only if T is a subset of R.
Let n be a natural number, R, S be non degenerated commutative rings, and x be a function from n into S. The functor $\operatorname{HomExtEval}(x, R)$ yielding a function from Polynom-Ring (n, R) into S is defined by
(Def. 2) for every polynomial p of $n, R, i t(p)=\operatorname{Ext} \operatorname{Eval}(p, x)$.

Let R be a non degenerated commutative ring and S be a commutative ring extension of R. Let us observe that $\operatorname{HomExt} \operatorname{Eval}(x, R)$ is additive, multiplicative, and unity-preserving. Now we state the proposition:
(33) Let us consider a natural number n, and a field F. Then every extension of F is (Polynom-Ring $(n, F))$-homomorphic.
Let n be a natural number and F be a field. One can check that there exists an extension of F which is ($\operatorname{Polynom-\operatorname {Ring}(n,F)\text {)-homomorphic.Nowwestate}}$ the proposition:
(34) Let us consider a natural number n, fields F, E, and a function x from n into E. Then rng $\operatorname{HomExtEval}(x, F)=$ the set of all $\operatorname{ExtEval}(p, x)$ where p is a polynomial of n, F.
Let n be a natural number, F be a field, E be an extension of F, and x be a function from n into E. The functor $\operatorname{ImageHomExtEval}(x, F)$ yielding a strict double loop structure is defined by
(Def. 3) the carrier of $i t=\operatorname{rng} \operatorname{HomExtEval}(x, F)$ and the addition of $i t=$ (the addition of $E) \upharpoonright \operatorname{rng} \operatorname{HomExtEval}(x, F)$ and the multiplication of $i t=$ (the multiplication of $E) \upharpoonright \operatorname{rng} \operatorname{HomExtEval}(x, F)$ and the one of $i t=1_{E}$ and the zero of $i t=0_{E}$.
One can check that ImageHomExtEval (x, F) is non degenerated and ImageHomExtEval (x, F) is Abelian, add-associative, right zeroed, and right complementable and $\operatorname{ImageHomExtEval}(x, F)$ is commutative, associative, well unital, and distributive. Now we state the proposition:
(35) Let us consider a natural number n, a field F, an extension E of F, and a function x from n into E. Then F is a subring of $\operatorname{ImageHomExtEval}(x, F)$. The theorem is a consequence of (10), (9), and (34).
Let F be a field, T be a finite subset of F, and x be a function from $\overline{\bar{T}}$ into F. We say that x is T-evaluating if and only if
(Def. 4) $\quad x$ is one-to-one and $\operatorname{rng} x=T$.
Let us note that there exists a function from $\overline{\bar{T}}$ into F which is T-evaluating and every function from $\overline{\bar{T}}$ into F which is T-evaluating is also T-valued and one-to-one. Now we state the propositions:
(36) Let us consider a field F, an extension E of F, a non empty, finite subset T of E, a bag b of $\overline{\bar{T}}$, and a T-evaluating function x from $\overline{\bar{T}}$ into E. Then $\operatorname{eval}(b, x) \in$ the carrier of $\operatorname{RAdj}(F, T)$.
Proof: Define \mathcal{P} [natural number] \equiv for every bag b of $\overline{\bar{T}}$ such that $\overline{\overline{\text { support } b}}=\$_{1}$ for every T-evaluating function x from $\overline{\bar{T}}$ into E, eval $(b, x) \in$ the carrier of $\operatorname{RAdj}(F, T)$. Set $n=\overline{\bar{T}} . \mathcal{P}[0]$. For every natural number k, $\mathcal{P}[k]$. Consider n being a natural number such that $\overline{\overline{\text { support } b}}=n$.
(37) Let us consider a field F, an extension E of F, a non empty, finite subset T of E, a polynomial p of $\overline{\bar{T}}, F$, and a T-evaluating function x from $\overline{\bar{T}}$ into E. Then $\operatorname{ExtEval}(p, x) \in$ the carrier of $\operatorname{RAdj}(F, T)$.
Proof: Define \mathcal{P} [natural number] \equiv for every polynomial p of $\overline{\bar{T}}, F$ such that $\overline{\overline{\text { Support } p}}=\$_{1}$ holds $\operatorname{ExtEval}(p, x) \in$ the carrier of $\operatorname{RAdj}(F, T)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. $\mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$.
Let us consider a field F, an extension E of F, a non empty, finite subset T of E, and a T-evaluating function x from $\overline{\bar{T}}$ into E. Now we state the propositions:
(38) $\operatorname{RAdj}(F, T)=\operatorname{ImageHomExtEval}(x, F)$. The theorem is a consequence of (35).
(39) The carrier of $\operatorname{RAdj}(F, T)=$ the set of all $\operatorname{ExtEval}(p, x)$ where p is a polynomial of $\overline{\bar{T}}, F$. The theorem is a consequence of (38) and (34).
(40) Let us consider a field F, an extension E of F, and a finite subset T of E. If T is F-algebraic, then $\operatorname{FAdj}(F, T)=\operatorname{RAdj}(F, T)$.
Proof: Define \mathcal{P} [natural number] \equiv for every field F for every extension E of F for every finite subset T of E such that $\overline{\bar{T}}=\$_{1}$ holds if T is F algebraic, then $\operatorname{FAdj}(F, T)=\operatorname{RAdj}(F, T) . \mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $\overline{\bar{T}}=n$.

3. On Fixing Monomorphisms

Let R be a ring and S be a ring extension of R. Note that there exists a homomorphism of S which is R-fixing and there exists a monomorphism of S which is R-fixing and there exists an automorphism of S which is R-fixing. Now we state the propositions:
(41) Let us consider a field F, an extension E of F, an extension K of E, an element p of the carrier of Polynom-Ring F, and an F-fixing homomorphism h from E to K. Then $(\operatorname{PolyHom}(h))(p)=p$.
(42) Let us consider a field F, an extension E of F, an extension K of E, an element p of the carrier of Polynom-Ring F, an element a of E, and an F-fixing homomorphism h from E to K. Then $h(\operatorname{ExtEval}(p, a))=$ $\operatorname{Ext} \operatorname{Eval}(p, h(a))$. The theorem is a consequence of (41).
(43) Let us consider a field F, an extension E of F, an F-fixing monomorphism h of E, and a non zero element p of the carrier of Polynom-Ring F. Then $h^{\circ}(\operatorname{Roots}(E, p))=\operatorname{Roots}(E, p)$.
(44) Let us consider a field F, an F-algebraic extension E of F, and an F fixing monomorphism h of E. Then the carrier of $E \subseteq \operatorname{rng} h$. The theorem
is a consequence of (43).
(45) Let us consider a field F, and an F-algebraic extension E of F. Then every F-fixing monomorphism of E is an automorphism of E. The theorem is a consequence of (44).
Let F be a field and E be an F-algebraic extension of F. Let us observe that every F-fixing monomorphism of E is isomorphism. Now we state the propositions:
(46) Let us consider a field F, an extension E of F, an F-extending extension K of E, an F-fixing monomorphism h of E and K, and an F-algebraic subset T of E. Then $h^{\circ} T$ is F-algebraic. The theorem is a consequence of (42).
(47) Let us consider a field F, an extension E of F, an F-extending extension K of E, an F-fixing monomorphism h of E and K, a non empty, finite subset T of E, a bag b of $\overline{\bar{T}}$, and a T-evaluating function x from $\overline{\bar{T}}$ into E. Then $h(\operatorname{eval}(b, x)) \in$ the carrier of $\operatorname{RAdj}\left(F, h^{\circ} T\right)$.
Proof: Define \mathcal{P} [natural number] \equiv for every bag b of $\overline{\bar{T}}$ such that $\overline{\overline{\text { support } b}}=\$_{1}$ for every T-evaluating function x from $\overline{\bar{T}}$ into $E, h(\operatorname{eval}(b$, $x)) \in$ the carrier of $\operatorname{RAdj}\left(F, h^{\circ} T\right)$. Set $n=\overline{\bar{T}}$. $\mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $\overline{\overline{\text { support } b}}=$ n.
(48) Let us consider a field F, an extension E of F, an F-extending extension K of E, an F-fixing monomorphism h of E and K, a non empty, finite subset T of E, a polynomial p of $\overline{\bar{T}}, F$, and a T-evaluating function x from $\overline{\bar{T}}$ into E. Then $h(\operatorname{ExtEval}(p, x)) \in$ the carrier of $\operatorname{RAdj}\left(F, h^{\circ} T\right)$.
Proof: Define \mathcal{P} [natural number] \equiv for every polynomial p of $\overline{\bar{T}}, F$ such that $\overline{\overline{\text { Support } p}}=\$_{1}$ holds $h(\operatorname{ExtEval}(p, x)) \in$ the carrier of $\operatorname{RAdj}\left(F, h^{\circ} T\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1] . \mathcal{P}[0]$ by [8, (5), (16)]. For every natural number $k, \mathcal{P}[k]$.
(49) Let us consider a field F, an extension E of F, an F-extending extension K of E, an F-fixing monomorphism h of E and K, and a non empty, finite, F-algebraic subset T of E. Then $h^{\circ}($ the carrier of $\operatorname{FAdj}(F, T)) \subseteq$ the carrier of $\operatorname{FAdj}\left(F, h^{\circ} T\right)$. The theorem is a consequence of (46), (40), and (48).
(50) Let us consider a field F, an extension E of F, an E-extending extension K of F, and a finite, F-algebraic subset T of K. Suppose $T \subseteq$ the carrier of E. Then $\operatorname{FAdj}(F, T)$ is a subfield of E. The theorem is a consequence of (19).
(51) Let us consider a field F, an extension E of F, an E-extending extension
K of F, an F-fixing homomorphism h from E to (K qua extension of E), and a finite, F-algebraic subset T of E. Suppose $h^{\circ} T \subseteq$ the carrier of E. Then $\operatorname{FAdj}\left(F, h^{\circ} T\right)$ is a subfield of E. The theorem is a consequence of (42) and (19).
(52) Let us consider a field F, an extension E of F, an F-extending extension K of E, an F-fixing monomorphism h of E and K, and a non empty, finite, F-algebraic subset T of E. Suppose $h^{\circ} T \subseteq$ the carrier of E. Then $h^{\circ}($ the carrier of $\operatorname{FAdj}(F, T)) \subseteq$ the carrier of E. The theorem is a consequence of (51) and (49).
(53) Let us consider a field F, an extension E of F, an F-extending extension K of E, an F-fixing monomorphism h of E and K, and a non constant element p of the carrier of Polynom-Ring F. Suppose p splits in E. Then $h^{\circ}(\operatorname{Roots}(E, p)) \subseteq$ the carrier of E. The theorem is a consequence of (42) and (24).

4. Normal Extensions

Let F be a field and E be an extension of F. We say that E is F-normal if and only if
(Def. 5) E is F-algebraic and for every irreducible element p of the carrier of Polynom-Ring F such that p has a root in E holds p splits in E.
Let us observe that every extension of F which is F-normal is also F-algebraic and every extension of F which is F-quadratic is also F-normal and every algebraic closure of F is F-normal and there exists an extension of F which is F-algebraic and F-normal and $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)$ is non $\left(\mathbb{F}_{\mathbb{Q}}\right)$-normal. Now we state the proposition:
(54) Let us consider a field F, and an F-algebraic extension E of F. Then E is F-normal if and only if for every element a of $E, \operatorname{MinPoly}(a, F)$ splits in E.
Let us consider a field F and an F-finite extension E of F. Now we state the propositions:
(55) E is F-normal if and only if there exists a non constant element p of the carrier of Polynom-Ring F such that E is a splitting field of p.
(56) E is F-normal if and only if for every extension K of E, every F-fixing monomorphism of E and K is an automorphism of E.
Let F be a field and p be a non constant element of the carrier of Polynom-Ring F. One can verify that every splitting field of p is F-normal. Now we state the propositions:
(57) Let us consider a field F, an extension E of F, and an F-algebraic element a of E. Then $\operatorname{FAdj}(F,\{a\})$ is F-normal if and only if $\operatorname{MinPoly}(a, F)$ splits in $\operatorname{FAdj}(F,\{a\})$.
(58) Let us consider a field F, an extension E of F, and a non empty, finite, F-algebraic subset T of E. Then $\operatorname{FAdj}(F, T)$ is F-normal if and only if for every element a of T, $\operatorname{MinPoly}(a, F)$ splits in $\operatorname{FAdj}(F, T)$. The theorem is a consequence of (3), (6), and (4).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pakk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak.. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[4] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363-371, 2016. doi 10.15439/2016F520.
[5] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
[6] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
[7] Piotr Rudnicki, Christoph Schwarzweller, and Andrzej Trybulec. Commutative algebra in the Mizar system Journal of Symbolic Computation, 32(1/2):143-169, 2001. do1 $10.1006 / \mathrm{Jsco} 2001.0456$
[8] Christoph Schwarzweller. Artin's theorem towards the existence of algebraic closures. Formalized Mathematics, 30(3):199-207, 2022. doi 10.2478/forma-2022-0014.
[9] Christoph Schwarzweller. Existence and uniqueness of algebraic closures. Formalized Mathematics, 30(4):281-294, 2022. doi 10.2478/forma-2022-0022
[10] Christoph Schwarzweller. Field extensions and Kronecker's construction. Formalized Mathematics, 27(3):229-235, 2019. doi 10.2478/forma-2019-0022
[11] Christoph Schwarzweller. Ring and field adjunctions, algebraic elements and minimal polynomials. Formalized Mathematics, 28(3):251-261, 2020. doi:10.2478/forma-2020-0022.
[12] Christoph Schwarzweller. Splitting fields. Formalized Mathematics, 29(3):129-139, 2021. doi 10.2478/forma-2021-0013.
[13] Christoph Schwarzweller and Sara Burgoa. Splitting fields for the rational polynomials $x^{2}-2, x^{2}+x+1, x^{3}-1$, and $x^{3}-2$. Formalized Mathematics, 30(1):23-30, 2022. doi $10.2478 /$ forma-2022-0003
[14] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Algebraic extensions. Formalized Mathematics, 29(1):39-48, 2021. doi 10.2478/forma-2021-0004.

