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Summary. In this paper problems 25, 86, 88, 105, 111, 137–142, and
184–185 from [12] are formalized, using the Mizar formalism [3], [1], [4]. This is
a continuation of the work from [5], [6], and [2] as suggested in [8]. The auto-
matization of selected lemmas from [11] proven in this paper as proposed in [9]
could be an interesting future work.
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1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i,
j denote integers, r, s denote real numbers, and p, p1, p2, p3, q denote prime
numbers.

Let us consider n and r. Let us observe that n−r+r is natural and n+r−r
is natural. Now we state the propositions:

(1) Let us consider natural numbersm, n. Ifm < n < m+2, then n = m+1.

(2) N+ = N \ {0}.
Let us note that N+ is infinite. Now we state the propositions:

(3) Let us consider finite sequences f , g. Suppose f a g is X-valued. Then

(i) f is X-valued, and
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(ii) g is X-valued.

(4) Let us consider complex-valued many sorted sets f1, f2, f3 indexed by
X. Suppose for every object x such that x ∈ X holds f1(x) = f2(x) ·f3(x).
Then f1 = f2 · f3.

(5) If b 6= 0 and c 6= 0, then r·b+cb > r.

(6) If m ¬ n, then m! | n!.
Proof: Define P[natural number] ≡ if m ¬ $1, then m! | $1!. If P[k], then
P[k + 1]. P[k]. �

(7) If p1 | p2, then p1 = p2.

(8) If m and n are relatively prime, then a ·n+m and n are relatively prime.

(9) If n | 27, then n = 1 or n = 3 or n = 9 or n = 27.

2. Problem 25

Now we state the proposition:

(10) Let us consider a function f . Then support(EmptyBagX+·f) = support f .

Let X be a set and f be a finite-support function.
Observe that EmptyBagX+·f is finite-support.
Let p be a prime number and n be a non zero natural number. Observe that

p-count(pn) is non zero. Now we state the propositions:

(11) Let us consider a finite-support function b.
Then dom(b · (CFS(support b))) = dom(CFS(support b)).

(12) Let us consider complex-valued functions f , g. Then support(f · g) ⊆
support f .

Let f , g be finite-support, complex-valued functions. One can verify that
f · g is finite-support. Now we state the propositions:

(13) Let us consider complex-valued functions f , g. Suppose support f =
support g. Then support(f · g) = support f . The theorem is a consequence
of (12).

(14) Let us consider finite-support, complex-valued many sorted sets b1, b2
indexed by X. Suppose support b1 = support b2. Then

∏
(b1 · b2) = (

∏
b1) ·

(
∏
b2).

Proof: Set b0 = b1 · b2. support b0 = support b1. support b0 = support b2.
Consider f0 being a finite sequence of elements of C such that

∏
b0 =

∏
f0

and f0 = b0 · (CFS(support b0)). Consider f1 being a finite sequence of ele-
ments of C such that

∏
b1 =

∏
f1 and f1 = b1·(CFS(support b1)). Consider

f2 being a finite sequence of elements of C such that
∏
b2 =

∏
f2 and f2 =
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b2·(CFS(support b2)). dom(b0·(CFS(support b0))) = dom(CFS(support b0)).
dom f0 = dom f1. dom f0 = dom f2. For every object c such that c ∈
dom f0 holds f0(c) = f1(c) · f2(c). �

Let n be a non zero natural number. The functor EulerFactorization(n)
yielding a function is defined by

(Def. 1) dom it = support PPF(n) and for every natural number p such that p ∈
dom it there exists a non zero natural number c such that c = p-count(n)
and it(p) = pc − pc−1.

Observe that dom(EulerFactorization(n)) is finite and EulerFactorization(n)
is P-defined. Now we state the propositions:

(15) Let us consider a non zero natural number n, and an object p. Suppose
p ∈ dom(EulerFactorization(n)). Then p is a prime number.

(16) Let us consider a non zero natural number n, and a natural number p.
Suppose p ∈ dom(EulerFactorization(n)). Then there exists a non zero
natural number c such that

(i) c = p-count(n), and

(ii) (EulerFactorization(n))(p) = pc−1 · (p− 1).

Let n be a non zero natural number. Let us observe that EulerFactorization(n)
is natural-valued and EulerFactorization(n) is finite-support and EulerFactoriza-
tion(1) is empty. Now we state the propositions:

(17) Let us consider a non zero natural number n.
Then EulerFactorization(pn) = p 7−→. (pn − pn−1).

(18) EulerFactorization(p) = p7−→. (p − 1). The theorem is a consequence of
(17).

Let us consider a non zero natural number n. Now we state the propositions:

(19) support EulerFactorization(n) = dom(EulerFactorization(n)). The the-
orem is a consequence of (15).

(20) If n > 1, then support EulerFactorization(n) is not empty.

(21) If n > 1, then EulerFactorization(n) is not empty. The theorem is a con-
sequence of (20).

Let us consider non zero natural numbers s, t. Now we state the propositions:

(22) If s and t are relatively prime, then dom(EulerFactorization(s)) misses
dom(EulerFactorization(t)).

(23) Suppose s and t are relatively prime. Then EmptyBag P+·EulerFactoriza-
tion(s·t) = (EmptyBag P+·EulerFactorization(s))+(EmptyBag P+·Euler-
Factorization(t)).
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Proof: Set n = s·t. SetN = EulerFactorization(n). Set S = EulerFactori-
zation(s). Set T = EulerFactorization(t). For every object x such that
x ∈ P holds (B+·N)(x) = (B+·S)(x) + (B+·T )(x) by [7, (25), (58)], (22).
�

(24) Let us consider a non zero natural number n.
Then Eulern =

∏
(EmptyBag P+·EulerFactorization(n)).

Proof: Set N = EulerFactorization(n). Define P[natural number] ≡ for
every non zero natural number n such that support(B+·EulerFactorizatio-
n(n)) ⊆ Seg $1 holds

∏
(B+·EulerFactorization(n)) = Eulern. P[0]. For

every natural number k such that P[k] holds P[k + 1]. For every natural
number k, P[k]. Set G = B+·N . supportG = supportN . �

Let n be a non zero natural number. The functor EulerFactorization1(n)
yielding a function is defined by

(Def. 2) dom it = support PPF(n) and for every natural number p such that p ∈
dom it there exists a non zero natural number c such that c = p-count(n)
and it(p) = pc−1.

Let us observe that dom(EulerFactorization1(n)) is finite and EulerFactoriza-
tion1(n) is P-defined. Now we state the proposition:

(25) Let us consider a non zero natural number n, and an object p. Suppose
p ∈ dom(EulerFactorization1(n)). Then p is a prime number.

Let n be a non zero natural number. Note that EulerFactorization1(n) is
natural-valued and EulerFactorization1(n) is finite-support. Now we state the
proposition:

(26) Let us consider a non zero natural number n. Then support EulerFactori-
zation1(n) = dom(EulerFactorization1(n)). The theorem is a consequence
of (25).

Let n be a non zero natural number. The functor EulerFactorization2(n)
yielding a function is defined by

(Def. 3) dom it = support PPF(n) and for every natural number p such that
p ∈ dom it holds it(p) = p− 1.

One can verify that dom(EulerFactorization2(n)) is finite and EulerFactoriza-
tion2(n) is P-defined. Now we state the proposition:

(27) Let us consider a non zero natural number n, and an object p. Suppose
p ∈ dom(EulerFactorization2(n)). Then p is a prime number.

Let n be a non zero natural number. Let us note that EulerFactorization2(n)
is natural-valued and EulerFactorization2(n) is finite-support.

Let us consider a non zero natural number n. Now we state the propositions:
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(28) support EulerFactorization2(n) = dom(EulerFactorization2(n)). The the-
orem is a consequence of (27).

(29) EmptyBag P+·EulerFactorization(n) = (EmptyBag P+·EulerFactoriza-
tion1(n)) · (EmptyBag P+·EulerFactorization2(n)).
Proof: Set N = EulerFactorization(n). Set S = EulerFactorization1(n).
Set T = EulerFactorization2(n). For every object x such that x ∈ P holds
(B+·N)(x) = (B+·S)(x) · (B+·T )(x). �

(30) Let us consider integer-valued finite sequences f1, f2. Suppose len f1 =
len f2 and for every n such that 1 ¬ n ¬ len f1 holds f1(n) | f2(n). Then∏
f1 |
∏
f2.

(31) Let us consider a non zero natural number n.
Then

∏
(EmptyBag P+·EulerFactorization1(n)) | n.

Proof: Set b0 = PPF(n). Set F1 = EulerFactorization1(n). Set b1 =
B+·F1. Consider f0 being a finite sequence of elements of C such that∏
b0 =

∏
f0 and f0 = b0 · (CFS(support b0)). Consider f1 being a fi-

nite sequence of elements of C such that
∏
b1 =

∏
f1 and f1 = b1 ·

(CFS(support b1)). support b1 = supportF1. supportF1 = domF1. dom f0
= dom(CFS(support b0)). dom f1 = dom(CFS(support b1)). For every na-
tural number x such that 1 ¬ x ¬ len f1 holds f1(x) | f0(x).

∏
f1 |
∏
f0.

�

Let f be a real-valued function and r be a real number. We say that f ¬ r
if and only if

(Def. 4) for every object x such that x ∈ dom f holds f(x) ¬ r.
Now we state the propositions:

(32) Let us consider a real-valued function f , and real numbers r1, r2. If
f ¬ r1 ¬ r2, then f ¬ r2.

(33) Let us consider real-valued functions f , g. If rng g ⊆ rng f and f ¬ n,
then g ¬ n.

Let us consider extended real-valued finite sequences f , g. Now we state the
propositions:

(34) If f a g is increasing, then f is increasing and g is increasing.

(35) If f a g is positive yielding, then f is positive yielding and g is positive
yielding.

(36) Let us consider a natural-valued finite sequence f . If f ¬ n and f is in-
creasing and positive yielding, then

∏
f | n!. The theorem is a consequence

of (3), (34), (35), and (6).

Let f be a natural-valued finite sequence. Note that sorta f is natural-valued
and sortd f is natural-valued. Let f be an integer-valued finite sequence. One
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can check that sorta f is integer-valued and sortd f is integer-valued. Let f be
a rational-valued finite sequence. One can verify that sorta f is rational-valued
and sortd f is rational-valued. Now we state the proposition:

(37) Let us consider binary relations P , R. Suppose rngR ⊆ rngP and P is
positive yielding. Then R is positive yielding.

Let f be a positive yielding, real-valued finite sequence. Let us observe
that sorta f is positive yielding and every function which is P-defined is also
N-defined. Now we state the propositions:

(38) Let us consider a real-valued, finite-support function f . Suppose f ¬ n.
Let us consider a real-valued finite sequence F . Suppose F = (EmptyBag P
+·f) · (CFS(support(EmptyBag P+·f))). Then F ¬ n.

(39) Let us consider a natural-valued, finite-support function f , and a real-
valued finite sequence F .
Suppose F = (EmptyBag P+·f) · (CFS(support(EmptyBag P+·f))). Then
F is positive yielding. The theorem is a consequence of (11).

Let us consider a natural-valued, finite-support, P-defined function f and
a real-valued finite sequence F . Now we state the propositions:

(40) Suppose f is increasing. Then suppose F = (EmptyBag P+·f)·(CFS(sup-
port(EmptyBag P+·f))). Then sorta F is one-to-one. The theorem is a con-
sequence of (10) and (11).

(41) Suppose f is increasing. Then suppose F = (EmptyBag P+·f)·(CFS(sup-
port(EmptyBag P+·f))). Then sorta F is increasing. The theorem is a con-
sequence of (11) and (10).

(42) Let us consider a natural-valued, finite-support, P-defined function f .
Suppose f ¬ n and f is increasing. Then

∏
(EmptyBag P+·f) | n!. The

theorem is a consequence of (38), (39), (41), (33), and (36).

(43) Let us consider a non zero natural number n. Then EulerFactorization2(n)
¬ n− 1. The theorem is a consequence of (27).

Let n be a non zero natural number. Let us note that EulerFactorization2(n)
is increasing and EulerFactorization2(n) is positive yielding.

Let us consider a non zero natural number n. Now we state the propositions:

(44)
∏

(EmptyBag P+·EulerFactorization2(n)) | (n− 1)!.

(45) Eulern | n!. The theorem is a consequence of (24), (31), (43), (42), (10),
(26), (28), (29), and (14).

(46) Let us consider an odd natural number n. Then n | 2n!−1. The theorem
is a consequence of (45).
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3. Problem 86

Now we state the proposition:

(47) Suppose p1, p2, p3 are mutually different. Then

(i) p1 ­ 2 and p2 ­ 3 and p3 ­ 5, or

(ii) p1 ­ 2 and p2 ­ 5 and p3 ­ 3, or

(iii) p1 ­ 3 and p2 ­ 2 and p3 ­ 5, or

(iv) p1 ­ 3 and p2 ­ 5 and p3 ­ 2, or

(v) p1 ­ 5 and p2 ­ 2 and p3 ­ 3, or

(vi) p1 ­ 5 and p2 ­ 3 and p3 ­ 2.

Let n be a natural number. We say that n satisfies Sierpiński Problem 86 if
and only if

(Def. 5) there exist prime numbers p1, p2, p3 such that p1, p2, p3 are mutually
different and n2 − 1 = p1 · p2 · p3.

Now we state the propositions:

(48) If n satisfies Sierpiński Problem 86, then n ­ 6. The theorem is a con-
sequence of (47).

(49) Let us consider prime numbers a, b, c. If n2 − 1 = a · b · c, then n− 1 is
prime or n+ 1 is prime.

(50) Suppose n satisfies Sierpiński Problem 86. Then

(i) n − 1 is prime and there exist prime numbers x, y such that x 6= y
and n+ 1 = x · y, or

(ii) n + 1 is prime and there exist prime numbers x, y such that x 6= y
and n− 1 = x · y.

The theorem is a consequence of (49).

(51) If n satisfies Sierpiński Problem 86, then n is even. The theorem is a con-
sequence of (50) and (48).

(52) 142 − 1 = 3 · 5 · 13.

(53) 162 − 1 = 3 · 5 · 17.

(54) 202 − 1 = 3 · 7 · 19.

(55) 222 − 1 = 3 · 7 · 23.

(56) 322 − 1 = 3 · 11 · 31.

(57) 14 satisfies Sierpiński Problem 86. The theorem is a consequence of (52).

(58) 16 satisfies Sierpiński Problem 86. The theorem is a consequence of (53).

(59) 20 satisfies Sierpiński Problem 86. The theorem is a consequence of (54).
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(60) 22 satisfies Sierpiński Problem 86. The theorem is a consequence of (55).

(61) 32 satisfies Sierpiński Problem 86. The theorem is a consequence of (56).

(62) If n satisfies Sierpiński Problem 86 and n ¬ 32,
then n ∈ {14, 16, 20, 22, 32}. The theorem is a consequence of (48).

4. Problem 184

Now we state the propositions:

(63) 32·k ≡ 1 (mod 8).

(64) 8 - 3n + 1. The theorem is a consequence of (63).

(65) If n 6= 0 and 2m − 3n = 1, then m = 2 and n = 1. The theorem is
a consequence of (64).

5. Problem 185

Now we state the propositions:

(66) 32·k ≡ 1 (mod 4).

(67) If 2n mod 4 = 2, then n = 1.

(68) If 2m − 2n = 2, then m = 2 and n = 1.

(69) If n is odd and 3n − 2m = 1, then n = m = 1. The theorem is a conse-
quence of (66) and (67).

(70) If n is even and 3n − 2m = 1, then n = 2 and m = 3. The theorem is
a consequence of (68).

(71) If 3n − 2m = 1, then n = m = 1 or n = 2 and m = 3. The theorem is
a consequence of (69) and (70).

6. Problem 88

Let us consider n. We say that n has unique prime divisor if and only if

(Def. 6) there exists a prime number p such that p | n and for every prime number
r such that r 6= p holds r - n.

Assume n has unique prime divisor. The only divisor of n yielding a prime
number is defined by

(Def. 7) it | n and for every prime number r such that r 6= it holds r - n.
Now we state the proposition:

(72) If n has unique prime divisor and p | n, then the only divisor of n = p.
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Let us observe that every natural number which is prime has unique prime
divisor. Now we state the proposition:

(73) The only divisor of p = p.

One can check that every natural number which is zero does not have unique
prime divisor. Now we state the proposition:

(74) 1 does not have unique prime divisor.

Let p be a prime number. Let us observe that p0 does not have unique prime
divisor. Let k be a non zero natural number. One can verify that pk has unique
prime divisor. Now we state the propositions:

(75) If p1 6= p2, then p1 · p2 does not have unique prime divisor.

(76) If n has unique prime divisor, then there exists a non zero natural number
k such that n = (the only divisor of n)k.

(77) If n > 7, then there exists a natural number m and there exist prime
numbers p, q such that p 6= q and (m = n or m = n + 1 or m = n + 2)
and p | m and q | m.
Proof: Consider k such that n = 6 · k or n = 6 · k + 1 or n = 6 · k + 2 or
n = 6 · k + 3 or n = 6 · k + 4 or n = 6 · k + 5. n has unique prime divisor.
n+ 1 has unique prime divisor. n+ 2 has unique prime divisor. �

7. Problem 105

Let us consider n. We say that n has more than two different prime divisors
if and only if

(Def. 8) there exist prime numbers q1, q2, q3 such that q1, q2, q3 are mutually
different and q1 | n and q2 | n and q3 | n.

Let n be a non zero natural number. We say that n satisfies Sierpiński
Problem 105 if and only if

(Def. 9) n − 1 has more than two different prime divisors and n + 1 has more
than two different prime divisors.

Now we state the proposition:

(78) If n has unique prime divisor, then n has no more than two different
prime divisors.

Note that every natural number which is zero has more than two different
prime divisors. Now we state the proposition:

(79) If n > 0 and n has more than two different prime divisors, then n ­ 30.
The theorem is a consequence of (47).
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Let us note that every natural number which is prime does not have more
than two different prime divisors. Let us consider p1 and p2. Observe that p1 ·p2
does not have more than two different prime divisors.

Let us consider p and n. Let us note that pn does not have more than two
different prime divisors. Let us consider p, q, m and n. Note that pm · qn does
not have more than two different prime divisors. Now we state the propositions:

(80) 131 satisfies Sierpiński Problem 105.

(81) There exists no prime number p such that p ¬ 130 and p satisfies Sier-
piński Problem 105. The theorem is a consequence of (79).

8. Problem 111

Now we state the propositions:

(82) 1 + 3 + 32 + 33 + 34 = 112.

(83) m | p4 if and only if m ∈ {1, p, p2, p3, p4}.
(84) 1 + p+ p2 + p3 + p4 is a square if and only if p = 3.

(85) The set of positive divisors of p4 = {1, p, p2, p3, p4}. The theorem is a con-
sequence of (83).

(86) {p, where p is a prime number : 1 + p+ p2 + p3 + p4 is a square} = {3}.
The theorem is a consequence of (84).

9. Problem 137

Let D be a non empty set. Let us observe that every sequence of D is total.
Let f be a (C × D)-valued many sorted set indexed by N and n be a natural
number. Note that (f(n))1 is complex. Let f be a (D ×C)-valued many sorted
set indexed by N. Note that (f(n))2 is complex.

Let f be an (R×D)-valued many sorted set indexed by N. Note that (f(n))1
is real. Let f be a (D × R)-valued many sorted set indexed by N. Note that
(f(n))2 is real. Let f be a (Q×D)-valued many sorted set indexed by N. Note
that (f(n))1 is rational. Let f be a (D×Q)-valued many sorted set indexed by
N. Note that (f(n))2 is rational.

Let f be a (Z×D)-valued many sorted set indexed by N. Note that (f(n))1
is integer. Let f be a (D × Z)-valued many sorted set indexed by N. Note that
(f(n))2 is integer. Let f be an (N ×D)-valued many sorted set indexed by N.
Note that (f(n))1 is natural. Let f be a (D×N)-valued many sorted set indexed
by N. Note that (f(n))2 is natural.
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Let a, b, x1, x2, x3, y1, y2, y3 be complex numbers. The functor recSeqCart(a,
b, x1, x2, x3, y1, y2, y3) yielding a (C × C)-valued many sorted set indexed by N
is defined by

(Def. 10) it(0) = 〈〈a, b〉〉 and for every natural number n, it(n+1) = 〈〈x1·((it(n))1)+
x2 · ((it(n))2) + x3, y1 · ((it(n))1) + y2 · ((it(n))2) + y3〉〉.

Let a, b, x1, x2, x3, y1, y2, y3 be real numbers. Let us observe that recSeqCart
(a, b, x1, x2, x3, y1, y2, y3) is (R×R)-valued. Let a, b, x1, x2, x3, y1, y2, y3 be ra-
tional numbers. Let us observe that recSeqCart(a, b, x1, x2, x3, y1, y2, y3) is (Q×
Q)-valued.

Let a, b, x1, x2, x3, y1, y2, y3 be integers. Let us observe that recSeqCart(a, b,
x1, x2, x3, y1, y2, y3) is (Z× Z)-valued. Let a, b, x1, x2, x3, y1, y2, y3 be natural
numbers. Let us observe that recSeqCart(a, b, x1, x2, x3, y1, y2, y3) is (N × N)-
valued. Let us consider real numbers a, b, a1, a2, a3, b1, b2, b3 and a natural
number n. Now we state the propositions:

(87) Suppose a > 0 and b > 0 and a3 ­ 0 and b3 ­ 0 and (a1 > 0 and a2 ­ 0
or a1 ­ 0 and a2 > 0) and (b1 > 0 and b2 ­ 0 or b1 ­ 0 and b2 > 0). Then

(i) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(n))1 > 0, and

(ii) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(n))2 > 0.

Proof: Set f = recSeqCart(a, b, a1, a2, a3, b1, b2, b3). Define P[natural
number] ≡ (f($1))1 > 0 and (f($1))2 > 0. P[0]. If P[k], then P[k + 1].
P[k]. �

(88) Suppose a ­ 0 and b ­ 0 and a1 ­ 0 and a2 ­ 0 and a3 ­ 0 and b1 ­ 0
and b2 ­ 0 and b3 ­ 0. Then

(i) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(n))1 ­ 0, and

(ii) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(n))2 ­ 0.

Proof: Set f = recSeqCart(a, b, a1, a2, a3, b1, b2, b3). Define P[natural
number] ≡ (f($1))1 ­ 0 and (f($1))2 ­ 0. P[0]. If P[k], then P[k + 1].
P[k]. �

(89) Let us consider real numbers a, b, a1, a2, a3, b1, b2, b3. Suppose a > 0
and b > 0 and a1 ­ 1 and a2 > 0 and a3 ­ 0 and b1 > 0 and b2 ­ 1 and
b3 ­ 0. Let us consider natural numbers m, n. Suppose m > n. Then

(i) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(m))1 > ((recSeqCart(a, b, a1,

a2, a3, b1, b2, b3))(n))1, and

(ii) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(m))2 > ((recSeqCart(a, b, a1,

a2, a3, b1, b2, b3))(n))2.



98 artur korniłowicz

Proof: Set f = recSeqCart(a, b, a1, a2, a3, b1, b2, b3). Define P[natural
number] ≡ if $1 > n, then (f($1))1 > (f(n))1 and (f($1))2 > (f(n))2. If
P[k], then P[k + 1]. P[k]. �

(90) Let us consider real numbers a, b, a1, a2, a3, b1, b2, b3. Suppose a > 0
and b > 0 and a1 ­ 1 and a2 > 0 and a3 ­ 0 and b1 > 0 and b2 ­ 1
and b3 ­ 0. Then recSeqCart(a, b, a1, a2, a3, b1, b2, b3) is one-to-one. The
theorem is a consequence of (89).

(91) {〈〈x, y〉〉, where x, y are positive natural numbers : 3 ·x2− 7 · y2+ 1 = 0}
is infinite.
Proof: Define R(complex number, complex number) = 3 · $21 − 7 · $22 + 1.
Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : R(x, y) = 0}.
Define G(real number, real number) = 55 · $1 + 84 · $2 + 0. Define H(real
number, real number) = 36 · $1 + 55 · $2 + 0. Define P[object, element
of N × N, element of N × N] ≡ $3 = 〈〈G(($2)1, ($2)2), H(($2)1, ($2)2)〉〉.
Set f = recSeqCart(3, 2, 55, 84, 0, 36, 55, 0). Define N [natural number] ≡
f($1) ∈ A. If N [a], then N [a+ 1]. N [a]. rng f ⊆ A. f is one-to-one. �

10. Problem 138

One can check that there exists a set which is infinite and natural-membered.
Now we state the propositions:

(92) If i | p, then i = 1 or i = −1 or i = p or i = −p.
(93) {〈〈x, y〉〉, where x, y are integers : 2 · x3 + x · y − 7 = 0} = {〈〈1, 5〉〉, 〈〈7,
−97〉〉, 〈〈−1, −9〉〉, 〈〈−7, −99〉〉}.
Proof: Set A = {〈〈x, y〉〉, where x, y are integers : 2 · x3 + x · y − 7 = 0}.
Set B = {〈〈1, 5〉〉, 〈〈7, −97〉〉, 〈〈−1, −9〉〉, 〈〈−7, −99〉〉}. A ⊆ B by [10, (2)], (92).
�

(94) Let us consider a complex number r. If r 6= 0, then 2·(7r )
3+7r ·(r−

98
r2

)−7 =
0.

(95) If n3 ¬ 98, then n ¬ 4.

(96) {〈〈x, y〉〉, where x, y are positive rational numbers : 2 · x3 + x · y− 7 = 0}
is infinite.
Proof: Define R(rational number, rational number) = 2 · $13+ $1 · $2− 7.
Set A = {〈〈x, y〉〉, where x, y are positive rational numbers : R(x, y) = 0}.
Define G(natural number) = 7

$1
. Define H(natural number) = $1 − 98$21 .

Define F(natural number) = 〈〈G($1), H($1)〉〉. Set D = N \ {0, 1, 2, 3, 4}.
Consider f being a many sorted set indexed by D such that for every
element d of D, f(d) = F(d). rng f ⊆ A. f is one-to-one. �
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11. Problem 139

Now we state the proposition:

(97) {〈〈x, y〉〉, where x, y are positive natural numbers : (x− 1)2 + (x+ 1)2 =
y2 + 1} is infinite.
Proof: Define R(natural number,natural number) = ($1 − 1)2 + ($1 +
1)2 − ($22 + 1). Set A = {〈〈x, y〉〉, where x, y are positive natural numbers :
R(x, y) = 0}. Define G(natural number, natural number) = 3·$1+2·$2+0.
Define H(natural number,natural number) = 4 · $1 + 3 · $2 + 0. Define
P[object, element of N × N, element of N × N] ≡ $3 = 〈〈G(($2)1, ($2)2),
H(($2)1, ($2)2)〉〉. Set f = recSeqCart(2, 3, 3, 2, 0, 4, 3, 0). Define N [natural
number] ≡ f($1) ∈ A. If N [a], then N [a+1]. N [a]. rng f ⊆ A. f is one-to-
one. Define R[natural number,natural number] ≡ ($1 − 1)2 + ($1 + 1)2 =
$22+1. Set B = {〈〈x, y〉〉, where x, y are positive natural numbers : R[x, y]}.
A = B. �

12. Problem 140

Let a be a rational number and n be a natural number. Let us observe that
an is rational. Let i be an integer. One can verify that ai is rational. Now we
state the propositions:

(98) If n > 1, then 3n − 31−n − 2 > 0.

(99) If n > 1, then 3n + 31−n − 4 > 0.

(100) Let us consider complex numbers x, y. Suppose x = 3n−31−n−2
4 and

y = 3n+31−n−4
8 . Then x · (x+ 1) = 4 · y · (y + 1).

(101) If m < n, then 3m − 31−m < 3n − 31−n.

(102) There exist no positive natural numbers x, y such that x · (x + 1) =
4 · y · (y + 1).

(103) {〈〈x, y〉〉, where x, y are positive rational numbers : x·(x+1) = 4·y·(y+1)}
is infinite.
Proof: Define R(complex number, complex number) = $1 · ($1 + 1)− 4 ·
$2 · ($2 + 1). Set A = {〈〈x, y〉〉, where x, y are positive rational numbers :
R(x, y) = 0}. Define G(natural number) = 3$1−31−$1−2

4 . Define H(natural

number) = 3$1+31−$1−4
8 . Define F(natural number) = 〈〈G($1), H($1)〉〉. Set

D = N\{0, 1}. Consider f being a many sorted set indexed by D such that
for every element d of D, f(d) = F(d). rng f ⊆ A. f is one-to-one. Define
R[complex number, complex number] ≡ $1 · ($1 + 1) = 4 · $2 · ($2 + 1). Set
B = {〈〈x, y〉〉, where x, y are positive rational numbers : R[x, y]}. A = B.
�
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13. Problem 141

Now we state the propositions:

(104) If m 6= 0 and pm | a · b, then p | a or p | b.
(105) If a and b are relatively prime and pn | a · b, then pn | a or pn | b.
(106) If n 6= 0, then there exist no positive natural numbers x, y such that

x · (x+ 1) = p2·n · y · (y + 1). The theorem is a consequence of (105).

14. Problem 142

Now we state the proposition:

(107) Let us consider natural numbers k, x, y. Suppose x2 − 2 · y2 = k. Let
us consider natural numbers t, u. If t = x − 2 · y and u = x − y, then
t2 − 2 · u2 = −k.
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