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Summary. In this article regular graphs, both directed and undirected,
are formalized in the Mizar system [7], [2], based on the formalization of graphs
as described in [10]. The handshaking lemma is also proven.
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Introduction

Regular graphs, especially cubic graphs, are a cornerstone of graph theory
(cf. [3], [12], [6]). In this article the concept of regular graphs is formalized (com-
pare similar efforts using various proof-assistants [11], [5], [4]), along with some
adjacent concepts, developing further some of the previous Mizar articles [8],
[9]. In the first section, the directed analogue of complete from [1] is intro-
duced. Sections 2 and 3 deal with the undirected and directed-regular graphs
respectively. Section 4 is rather technical in nature; at its end 2m = an is pro-
ven, where m and n denote the size and order of an a-regular graph, where a

can be any cardinal. Finally Section 5 introduces tools needed to formalize the
combinatorial proof of the rather simple Handshaking Lemma.
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1. Directed-complete Graphs

Let G be a graph. We say that G is directed-complete if and only if

(Def. 1) for every vertices v, w of G such that v 6= w there exists an object e such
that e joins v to w in G.

Let c be a non empty cardinal number. The functors: canCompleteGraph(c)
and canDCompleteGraph(c) yielding graphs are defined by terms

(Def. 2) createGraph(c,⊆c \ (idc)),

(Def. 3) createGraph(c, (c× c) \ (idc)),

respectively. Observe that the vertices of canCompleteGraph(c) reduces to c and
the vertices of canDCompleteGraph(c) reduces to c.

Observe that every vertex of canCompleteGraph(c) is ordinal and every ver-
tex of canDCompleteGraph(c) is ordinal and every vertex of canCompleteGraph
(ω) is natural and every vertex of canDCompleteGraph(ω) is natural.

Let n be a non zero natural number. Observe that canCompleteGraph(n) is
finite and canDCompleteGraph(n) is finite and every vertex of canCompleteGra-
ph(n) is natural and every vertex of canDCompleteGraph(n) is natural.

Let c be a non empty cardinal number. One can verify that canCompleteGra-
ph(c) is plain, c-vertex, simple, and complete and canDCompleteGraph(c) is
plain, c-vertex, directed-simple, and directed-complete. Now we state the pro-
positions:

(1) Let us consider a non empty cardinal number c, and a vertex v of
canCompleteGraph(c). Then

(i) v.inNeighbors() = v, and

(ii) v.outNeighbors() = c \ (succ v).

(2) Let us consider a vertex v of canCompleteGraph(ω). Then

(i) v.inDegree() = v, and

(ii) v.outDegree() = ω.

The theorem is a consequence of (1).

(3) Let us consider a non zero natural number n,
and a vertex v of canCompleteGraph(n). Then

(i) v.inDegree() = v, and

(ii) v.outDegree() = n− v − 1.

The theorem is a consequence of (1).

Let c be a non empty cardinal number. Let us observe that there exists
a graph which is simple, c-vertex, and complete and there exists a graph which
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is directed-simple, c-vertex, and directed-complete and every graph which is
directed-complete is also complete and every graph which is trivial is also
directed-complete and every graph which is non trivial and directed-complete
is also non non-multi and non edgeless and there exists a graph which is non
directed-complete. Now we state the propositions:

(4) Let us consider graphs G1, G2. Suppose G1 ≈ G2 and G1 is directed-
complete. Then G2 is directed-complete.

(5) Let us consider a graph G1, and a subgraph G2 of G1 with loops removed.
Then G1 is directed-complete if and only if G2 is directed-complete.

(6) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then G1 is directed-complete if and only if G2 is
directed-complete.

(7) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
G1 is directed-complete if and only if G2 is directed-complete. The theorem
is a consequence of (6) and (5).

(8) Let us consider a graph G1, and a graph G2 given by reversing directions
of the edges of G1. Then G1 is directed-complete if and only if G2 is
directed-complete.

Let G be a directed-complete graph. Let us note that every subgraph of G
with loops removed is directed-complete and every subgraph of G with directed-
parallel edges removed is directed-complete and every directed-simple graph of
G is directed-complete and every graph given by reversing directions of the edges
of G is directed-complete.

Let V be a set. Observe that every subgraph of G induced by V is directed-
complete and every graph by adding a loop to each vertex of G in V is directed-
complete. Let v, e, w be objects. Note that every supergraph of G extended by
e between vertices v and w is directed-complete.

Let G be a non directed-complete graph. One can verify that every subgraph
of G with loops removed is non directed-complete and every subgraph of G with
directed-parallel edges removed is non directed-complete and every directed-
simple graph of G is non directed-complete and every graph given by reversing
directions of the edges of G is non directed-complete and every subgraph of G
which is spanning is also non directed-complete.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(9) If F is directed-continuous and strong subgraph embedding, then if G2
is directed-complete, then G1 is directed-complete.

(10) If F is directed-isomorphism, then G1 is directed-complete iff G2 is
directed-complete. The theorem is a consequence of (9).



78 sebastian koch

Let G be a directed-complete graph. Observe that every graph which is
G-directed-isomorphic is also directed-complete. Now we state the propositions:

(11) Let us consider a directed-complete graph G, and a vertex v of G. Then

(i) (the vertices of G) \ {v} ⊆ v.inNeighbors(), and

(ii) (the vertices of G) \ {v} ⊆ v.outNeighbors(), and

(iii) (the vertices of G) \ {v} ⊆ v.allNeighbors().

(12) Let us consider a loopless, directed-complete graph G, and a vertex v of
G. Then

(i) v.inNeighbors() = (the vertices of G) \ {v}, and

(ii) v.outNeighbors() = (the vertices of G) \ {v}, and

(iii) v.allNeighbors() = (the vertices of G) \ {v}.

The theorem is a consequence of (11).

(13) Let us consider a directed-simple, directed-complete graph G, and a ver-
tex v of G. Then

(i) v.inDegree() + 1 = G.order(), and

(ii) v.outDegree() + 1 = G.order().

The theorem is a consequence of (12).

(14) Let us consider a graph G1, and a directed graph complement G2 of
G1 with loops. Then the edges of G1 = G1.loops() if and only if G2 is
directed-complete.

Let G be an edgeless graph. Let us observe that every directed graph com-
plement of G with loops is directed-complete. Now we state the proposition:

(15) Let us consider a graph G1, and a directed graph complement G2 of
G1 with loops. Then G1 is directed-complete if and only if the edges of
G2 = G2.loops().

One can verify that there exists a graph which is loopfull and directed-
complete.

Let G be a loopfull, directed-complete graph. Let us observe that every direc-
ted graph complement of G with loops is edgeless. Now we state the proposition:

(16) Let us consider a graph G1, and a directed graph complement G2 of G1.
Then the edges of G1 = G1.loops() if and only if G2 is directed-complete.
The theorem is a consequence of (14).

Let G be an edgeless graph. Note that every directed graph complement of
G is directed-complete. Now we state the proposition:
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(17) Let us consider a graph G1, and a directed graph complement G2 of G1.
Then G1 is directed-complete if and only if G2 is edgeless. The theorem
is a consequence of (15).

Let G be a directed-complete graph. One can verify that every directed graph
complement of G is edgeless. Let G be a non directed-complete graph. One can
check that every directed graph complement of G is non edgeless.

Let G1 be a graph and G2 be a directed graph complement of G1 with loops.
One can verify that every graph union of G1 and G2 is directed-complete. Let
G2 be a directed graph complement of G1. Note that every graph union of G1
and G2 is directed-complete. Now we state the propositions:

(18) Let us consider a graph G. Then G is directed-complete if and only if
((the vertices of G)× (the vertices of G))\ (idα) ⊆ VertDomRel(G), where
α is the vertices of G.

(19) Let us consider a non empty set V , and a binary relation E on V . Then
createGraph(V,E) is directed-complete if and only if (V ×V )\ (idV ) ⊆ E.

2. Regular Graphs

From now on c, c1, c2 denote cardinal numbers, G, G1, G2 denote graphs,
and v denotes a vertex of G.

Let us consider c and G. We say that G is c-regular if and only if

(Def. 4) for every v, v.degree() = c.

One can check that every graph which is c-regular is also with max degree
and every graph which is (c+1)-vertex, simple, and complete is also c-regular and
there exists a graph which is simple and c-regular. Now we state the propositions:

(20) Degree of regularity is unique:
If G is c1-regular and c2-regular, then c1 = c2.

(21) G is c-regular if and only if every component of G is c-regular.

Let us consider c. Let us observe that there exists a graph which is non c-
regular. Let G be a c-regular graph. Note that every component of G is c-regular.
Now we state the propositions:

(22) Let us consider a c-regular graph G. Then

(i) δ(G) = c, and

(ii) ∆(G) = c.

(23) If δ(G) = c and ∆̄(G) = c, then G is c-regular.

Let n be a natural number. Observe that every graph which is n-regular is
also locally-finite and there exists a graph which is simple, vertex-finite, and
n-regular. Now we state the proposition:
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(24) G is edgeless if and only if G is 0-regular.

One can verify that every graph which is edgeless is also 0-regular and every
graph which is 0-regular is also edgeless. Let c be a non empty cardinal number.
Let us observe that every graph which is c-regular is also non edgeless. Now we
state the propositions:

(25) Let us consider a simple, c-regular graph G. Then c ⊆ G.order().

(26) Let us consider a natural number n, and a simple, vertex-finite, n-regular
graph G1. Then every graph complement of G1 is (G1.order()−′ (n+ 1))-
regular.

(27) If there exists v such that v is isolated and G is c-regular, then c = 0.

(28) If there exists v such that v is endvertex and G is c-regular, then c = 1.

Let G be a 1-regular graph. Observe that every vertex of G is endvertex.
Now we state the proposition:

(29) Let us consider a 1-regular graph G, and a trail T of G. Suppose T is
not trivial. Then there exists an object e such that

(i) e joins T .first() and T .last() in G, and

(ii) T = G.walkOf(T .first(), e, T .last()).

One can verify that every graph which is 1-regular and connected is also
2-vertex, 1-edge, and complete and every graph which is simple, 2-vertex, and
connected is also 1-regular. Now we state the propositions:

(30) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is isomorphism. Then G1 is c-regular if and only if G2 is c-regular.

(31) If G1 ≈ G2 and G1 is c-regular, then G2 is c-regular.

(32) Let us consider a set E, and a graph G2 given by reversing directions of
the edges E of G1. Then G1 is c-regular if and only if G2 is c-regular. The
theorem is a consequence of (30).

Let G be a graph. We say that G is cubic if and only if

(Def. 5) G is 3-regular.

One can verify that every graph which is cubic is also 3-regular and every
graph which is 3-regular is also cubic. Now we state the propositions:

(33) G is cubic if and only if for every v, v.degree() = 3.

(34) Let us consider a partial graph mapping F from G1 to G2. If F is iso-
morphism, then G1 is cubic iff G2 is cubic.

(35) If G1 ≈ G2 and G1 is cubic, then G2 is cubic.

(36) Let us consider a set E, and a graph G2 given by reversing directions of
the edges E of G1. Then G1 is cubic if and only if G2 is cubic.

Let G be a graph. We say that G is regular if and only if
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(Def. 6) there exists a cardinal number c such that G is c-regular.

Now we state the proposition:

(37) G is regular if and only if δ(G) = ∆̄(G). The theorem is a consequence
of (22) and (23).

Let G be a locally-finite graph. One can check that G is regular if and only
if the condition (Def. 7) is satisfied.

(Def. 7) there exists a natural number n such that G is n-regular.

Let c be a cardinal number. Let us note that every graph which is c-regular
is also regular and every graph which is cubic is also regular and every graph
which is regular is also with max degree and there exists a graph which is simple,
non edgeless, finite, and regular.

Let G be a regular graph. Note that every component of G is regular. Let G
be a simple, finite, regular graph. One can verify that every graph complement
of G is regular. Now we state the propositions:

(38) If there exists v such that v is isolated and G is regular, then G is
edgeless. The theorem is a consequence of (27).

(39) If there exists v such that v is endvertex and G is regular, then G is
1-regular. The theorem is a consequence of (28).

(40) Let us consider a partial graph mapping F from G1 to G2. If F is isomor-
phism, then G1 is regular iff G2 is regular. The theorem is a consequence
of (30).

(41) If G1 ≈ G2 and G1 is regular, then G2 is regular. The theorem is a con-
sequence of (40).

(42) Let us consider a set E, and a graph G2 given by reversing directions of
the edges E of G1. Then G1 is regular if and only if G2 is regular. The
theorem is a consequence of (40).

3. Directed-regular Graphs

Let us consider c and G. We say that G is c-directed-regular if and only if

(Def. 8) for every v, v.inDegree() = c and v.outDegree() = c.

Let us note that every graph which is c-directed-regular is also with max in-
degree and with max outdegree and every graph which is (c+1)-vertex, directed-
simple, and directed-complete is also c-directed-regular and there exists a graph
which is directed-simple and c-directed-regular. Now we state the proposition:

(43) Degree of directed regularity is unique:
If G is c1-directed-regular and c2-directed-regular, then c1 = c2.
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Let us consider c. One can check that there exists a graph which is non c-
directed-regular. Let G be a c-directed-regular graph. Observe that every com-
ponent of G is c-directed-regular. Now we state the propositions:

(44) Let us consider a c-directed-regular graph G. Then

(i) δ−(G) = c, and

(ii) δ+(G) = c, and

(iii) ∆−(G) = c, and

(iv) ∆+(G) = c.

(45) If δ−(G) = c and δ+(G) = c and ∆̄−(G) = c and ∆̄+(G) = c, then G is
c-directed-regular.

(46) Let us consider a natural number n. If G is n-directed-regular, then G

is (2 · n)-regular.

Let n be a natural number. One can check that every graph which is n-
directed-regular is also (2 ·n)-regular and locally-finite and there exists a graph
which is directed-simple, finite, and n-directed-regular.

Let c be an infinite cardinal number. Let us note that every graph which is
c-directed-regular is also c-regular. Now we state the proposition:

(47) G is edgeless if and only if G is 0-directed-regular. The theorem is a con-
sequence of (46).

One can verify that every graph which is edgeless is also 0-directed-regular
and every graph which is 0-directed-regular is also edgeless.

Let c be a non empty cardinal number. Let us observe that every graph
which is c-directed-regular is also non edgeless. Now we state the propositions:

(48) Let us consider a directed-simple, c-directed-regular graph G. Then c ⊆
G.order().

(49) Let us consider a natural number n, and a directed-simple, vertex-finite,
n-directed-regular graph G1. Then every directed graph complement of
G1 is (G1.order()−′ (n+ 1))-directed-regular.

(50) If there exists v such that v is isolated and G is c-directed-regular, then
c = 0.

Let us consider c. Let G be a c-directed-regular graph. Let us note that every
vertex of G is non endvertex and every graph which is 2-edge, 2-vertex, and
directed-simple is also 1-directed-regular and complete and every graph which
is trivial and 1-edge is also 1-directed-regular. Now we state the propositions:

(51) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is directed-isomorphism. Then G1 is c-directed-regular if and only if G2 is
c-directed-regular.
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(52) If G1 ≈ G2 and G1 is c-directed-regular, then G2 is c-directed-regular.

Let G be a graph. We say that G is directed-regular if and only if

(Def. 9) there exists a cardinal number c such that G is c-directed-regular.

Now we state the proposition:

(53) G is directed-regular if and only if δ−(G) = ∆̄−(G) and δ+(G) = ∆̄+(G)
and δ−(G) = δ+(G). The theorem is a consequence of (44) and (45).

Let G be a locally-finite graph. One can verify that G is directed-regular if
and only if the condition (Def. 10) is satisfied.

(Def. 10) there exists a natural number n such that G is n-directed-regular.

Let c be a cardinal number. Note that every graph which is c-directed-regular
is also directed-regular and every graph which is directed-regular is also with
max degree and there exists a graph which is directed-simple, non edgeless,
finite, and directed-regular.

Let G be a directed-regular graph. Observe that every component of G
is directed-regular. Let G be a directed-simple, finite, directed-regular graph.
Note that every directed graph complement of G is directed-regular. Let G be
a directed-regular graph. Note that every vertex of G is non endvertex. Now we
state the propositions:

(54) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is directed-isomorphism. Then G1 is directed-regular if and only if G2 is
directed-regular. The theorem is a consequence of (51).

(55) If G1 ≈ G2 and G1 is directed-regular, then G2 is directed-regular. The
theorem is a consequence of (54).

4. Counting the Edges

Now we state the propositions:

(56) Let us consider a set P , and a cardinal number c. Suppose P is mutually-
disjoint and for every set A such that A ∈ P holds A = c. Then

⋃
P =

c · P .

(57) Let us consider a non empty set X, a partition P of X, and a cardinal

number c. Suppose for every element x of X, EqClass(x, P ) = c. Then
X = c · P . The theorem is a consequence of (56).

Let f be a function and X be a set. One can verify that 〈f, idX〉 is one-to-one.
Let f be a one-to-one function. One can verify that f` is one-to-one and

xf is one-to-one.
Let X be a set and f be a function. Let us observe that 〈idX , f〉 is one-to-one.
Now we state the proposition:
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(58) Let us consider a c-regular graph G. Then 2 · G.size() = c · G.order().
The theorem is a consequence of (56).

5. The Degree Map and Degree Sequence

Let G be a graph. The functors: G.degreeMap(), G.inDegreeMap(), and
G.outDegreeMap() yielding many sorted sets indexed by the vertices of G are
defined by conditions

(Def. 11) for every vertex v of G, G.degreeMap()(v) = v.degree(),

(Def. 12) for every vertex v of G, G.inDegreeMap()(v) = v.inDegree(),

(Def. 13) for every vertex v of G, G.outDegreeMap()(v) = v.outDegree(),

respectively. Let us observe that G.degreeMap() is cardinal yielding and G.inDe-
greeMap() is cardinal yielding and G.outDegreeMap() is cardinal yielding. Now
we state the propositions:

(59) Let us consider a graph G. Then

(i) G.degreeMap() = G.order(), and

(ii) G.inDegreeMap() = G.order(), and

(iii) G.outDegreeMap() = G.order().

(60) Let us consider a graph G, and a vertex v of G. Then (G.degreeMap())(v)
= (G.inDegreeMap())(v) + (G.outDegreeMap())(v).

Let G be a locally-finite graph. Note that G.degreeMap() is natural-valued
andG.inDegreeMap() is natural-valued andG.outDegreeMap() is natural-valued.

The functors:G.degreeMap(),G.inDegreeMap(), andG.outDegreeMap() yield
functions from the vertices of G into N. Let G be a vertex-finite graph. Note that
G.degreeMap() is finite and G.inDegreeMap() is finite and G.outDegreeMap()
is finite. Now we state the proposition:

(61) Let us consider a cardinal number c, a trivial, c-edge graph G, and
a vertex v of G. Then

(i) G.inDegreeMap() = v 7−→. c, and

(ii) G.outDegreeMap() = v 7−→. c, and

(iii) G.degreeMap() = v 7−→. 2 · c.
Let G be a trivial graph. Let us note that G.degreeMap() is trivial and

G.inDegreeMap() is trivial and G.outDegreeMap() is trivial. Now we state the
propositions:

(62) Let us consider a graph G2, a set V , and a supergraph G1 of G2 extended
by the vertices from V . Then
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(i) G1.degreeMap() = G2.degreeMap() +·(V \ (the vertices of G2)

7−→ 0), and

(ii) G1.inDegreeMap() = G2.inDegreeMap() +·(V \ (the vertices of G2)

7−→ 0), and

(iii) G1.outDegreeMap() = G2.outDegreeMap() +·(V \ (the vertices of
G2) 7−→ 0).

(63) Let us consider a graph G, and a component C of G. Then

(i) C.degreeMap() = G.degreeMap() �(the vertices of C), and

(ii) C.inDegreeMap() = G.inDegreeMap() �(the vertices of C), and

(iii) C.outDegreeMap() = G.outDegreeMap() �(the vertices of C).

Let G be a graph and v be a denumeration of the vertices of G. Let us observe
that (G.degreeMap()) · v is transfinite sequence-like and (G.order())-elements
and (G.inDegreeMap()) · v is transfinite sequence-like and (G.order())-elements
and (G.outDegreeMap())·v is transfinite sequence-like and (G.order())-elements.

Let us consider a finite graph G and a denumeration v of the vertices of G.
Now we state the propositions:

(64) (G.degreeMap()) · v = (G.inDegreeMap()) · v + (G.outDegreeMap()) · v.
The theorem is a consequence of (60).

(65) (i) G.size() =
∑

(G.inDegreeMap()) · v, and

(ii) G.size() =
∑

(G.outDegreeMap()) · v.

(66) 2 · (G.size()) =
∑

(G.degreeMap()) · v. The theorem is a consequence of
(65) and (64).

(67) Handshaking Lemma:
Let us consider a finite graph G, and a natural number k. Suppose k =
{w, where w is a vertex of G : w.degree() is not even } . Then k is even.
Proof: Set v = the denumeration of the vertices of G. DefineM(natural
number) = ((G.degreeMap()) · v)($1) mod 2. Consider m being a finite 0-
sequence of N such that lenm = len(G.degreeMap()) · v and for every
natural number k such that k ∈ len(G.degreeMap()) · v holds m(k) =
M(k). �
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