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Summary. In this article regular graphs, both directed and undirected,
are formalized in the Mizar system [7], [2], based on the formalization of graphs
as described in [10]. The handshaking lemma is also proven.
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INTRODUCTION

Regular graphs, especially cubic graphs, are a cornerstone of graph theory
(cf. [3], [12], [6]). In this article the concept of regular graphs is formalized (com-
pare similar efforts using various proof-assistants [11], [5], [4]), along with some
adjacent concepts, developing further some of the previous Mizar articles [§],
[9]. In the first section, the directed analogue of complete from [I] is intro-
duced. Sections 2 and 3 deal with the undirected and directed-regular graphs
respectively. Section 4 is rather technical in nature; at its end 2m = an is pro-
ven, where m and n denote the size and order of an a-regular graph, where a
can be any cardinal. Finally Section 5 introduces tools needed to formalize the
combinatorial proof of the rather simple Handshaking Lemma.
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1. DIRECTED-COMPLETE GRAPHS

Let G be a graph. We say that G is directed-complete if and only if

(Def. 1) for every vertices v, w of G such that v # w there exists an object e such

that e joins v to w in G.

Let ¢ be a non empty cardinal number. The functors: canCompleteGraph(c)
and canDCompleteGraph(c) yielding graphs are defined by terms

(Def. 2) createGraph(e, <. \ (id.)),

(Def. 3) createGraph(c, (¢ x ¢) \ (id.)),

respectively. Observe that the vertices of canCompleteGraph(c) reduces to ¢ and
the vertices of canDCompleteGraph(c) reduces to c.

Observe that every vertex of canCompleteGraph(c) is ordinal and every ver-
tex of canDCompleteGraph(c) is ordinal and every vertex of canCompleteGraph
(w) is natural and every vertex of canDCompleteGraph(w) is natural.

Let n be a non zero natural number. Observe that canCompleteGraph(n) is
finite and canDCompleteGraph(n) is finite and every vertex of canCompleteGra-
ph(n) is natural and every vertex of canDCompleteGraph(n) is natural.

Let ¢ be a non empty cardinal number. One can verify that canCompleteGra-
ph(c) is plain, c-vertex, simple, and complete and canDCompleteGraph(c) is
plain, c-vertex, directed-simple, and directed-complete. Now we state the pro-
positions:

(1) Let us consider a non empty cardinal number ¢, and a vertex v of
canCompleteGraph(c). Then

(i) v.inNeighbors() = v, and
(ii) v.outNeighbors() = ¢\ (succv).
(2) Let us consider a vertex v of canCompleteGraph(w). Then
(i) v.inDegree() = v, and
(ii) v.outDegree() = w.
The theorem is a consequence of (1).

(3) Let us consider a non zero natural number n,
and a vertex v of canCompleteGraph(n). Then

(i) v.inDegree() = v, and
(ii) v.outDegree() =n —ov — 1.
The theorem is a consequence of (1).

Let ¢ be a non empty cardinal number. Let us observe that there exists
a graph which is simple, c-vertex, and complete and there exists a graph which
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is directed-simple, c-vertex, and directed-complete and every graph which is
directed-complete is also complete and every graph which is trivial is also
directed-complete and every graph which is non trivial and directed-complete
is also non non-multi and non edgeless and there exists a graph which is non
directed-complete. Now we state the propositions:

(4) Let us consider graphs Gp, Ga. Suppose G; ~ G2 and G is directed-
complete. Then G, is directed-complete.

(5) Let us consider a graph G1, and a subgraph Gy of G; with loops removed.
Then G is directed-complete if and only if G is directed-complete.

(6) Let us consider a graph Gi, and a subgraph G2 of G with directed-
parallel edges removed. Then G is directed-complete if and only if G is
directed-complete.

(7) Let us consider a graph G, and a directed-simple graph Ga of G;. Then
(71 is directed-complete if and only if G5 is directed-complete. The theorem
is a consequence of (6) and (5).

(8) Let us consider a graph G, and a graph G2 given by reversing directions
of the edges of Gi. Then G is directed-complete if and only if Gy is
directed-complete.

Let G be a directed-complete graph. Let us note that every subgraph of G
with loops removed is directed-complete and every subgraph of G with directed-
parallel edges removed is directed-complete and every directed-simple graph of
G is directed-complete and every graph given by reversing directions of the edges
of GG is directed-complete.

Let V' be a set. Observe that every subgraph of G induced by V is directed-
complete and every graph by adding a loop to each vertex of G in V is directed-
complete. Let v, e, w be objects. Note that every supergraph of G extended by
e between vertices v and w is directed-complete.

Let GG be a non directed-complete graph. One can verify that every subgraph
of G with loops removed is non directed-complete and every subgraph of G with
directed-parallel edges removed is non directed-complete and every directed-
simple graph of G is non directed-complete and every graph given by reversing
directions of the edges of GG is non directed-complete and every subgraph of G
which is spanning is also non directed-complete.

Let us consider graphs GG1, G2 and a partial graph mapping F' from G; to
G2. Now we state the propositions:

(9) If F is directed-continuous and strong subgraph embedding, then if G
is directed-complete, then (g7 is directed-complete.
(10) If F is directed-isomorphism, then G is directed-complete iff G is
directed-complete. The theorem is a consequence of (9).

7
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Let G be a directed-complete graph. Observe that every graph which is
G-directed-isomorphic is also directed-complete. Now we state the propositions:

(11) Let us consider a directed-complete graph G, and a vertex v of G. Then
(i) (the vertices of G) \ {v} C v.inNeighbors(), and
(ii) (the vertices of G) \ {v} C v.outNeighbors(), and
(iii) (the vertices of G) \ {v} C v.allNeighbors().

(12) Let us consider a loopless, directed-complete graph G, and a vertex v of
G. Then

(i) v.inNeighbors() = (the vertices of G) \ {v}, and
(ii) v.outNeighbors() = (the vertices of G) \ {v}, and
(iii) v.allNeighbors() = (the vertices of G) \ {v}.

The theorem is a consequence of (11).

(13) Let us consider a directed-simple, directed-complete graph G, and a ver-
tex v of G. Then

(i) v.inDegree() + 1 = G.order(), and
(ii) v.outDegree() + 1 = G.order().

The theorem is a consequence of (12).

(14) Let us consider a graph Gi, and a directed graph complement Gy of
G1 with loops. Then the edges of G; = Gj.loops() if and only if Gy is
directed-complete.

Let G be an edgeless graph. Let us observe that every directed graph com-
plement of G with loops is directed-complete. Now we state the proposition:

(15) Let us consider a graph Gj, and a directed graph complement Gy of
G with loops. Then G; is directed-complete if and only if the edges of
G2 = G2.1oops().
One can verify that there exists a graph which is loopfull and directed-
complete.
Let G be a loopfull, directed-complete graph. Let us observe that every direc-
ted graph complement of G with loops is edgeless. Now we state the proposition:
(16) Let us consider a graph G, and a directed graph complement Gy of Gj.
Then the edges of G1 = G1.loops() if and only if G5 is directed-complete.
The theorem is a consequence of (14).

Let G be an edgeless graph. Note that every directed graph complement of
G is directed-complete. Now we state the proposition:
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(17) Let us consider a graph G, and a directed graph complement G5 of Gj.
Then G is directed-complete if and only if G2 is edgeless. The theorem
is a consequence of (15).

Let G be a directed-complete graph. One can verify that every directed graph
complement of G is edgeless. Let G be a non directed-complete graph. One can
check that every directed graph complement of GG is non edgeless.

Let G be a graph and G be a directed graph complement of GGy with loops.
One can verify that every graph union of G; and Gs is directed-complete. Let
G be a directed graph complement of GG;. Note that every graph union of Gy
and Gs is directed-complete. Now we state the propositions:

(18) Let us consider a graph G. Then G is directed-complete if and only if
((the vertices of G) x (the vertices of G))\ (idy) C VertDomRel(G), where
« is the vertices of G.

(19) Let us consider a non empty set V', and a binary relation £ on V. Then
createGraph(V, F) is directed-complete if and only if (V' x V) \ (idy) C E.

2. REGULAR GRAPHS

From now on ¢, c1, co denote cardinal numbers, G, G1, G2 denote graphs,
and v denotes a vertex of G.

Let us consider ¢ and G. We say that G is c-regular if and only if

(Def. 4) for every v, v.degree() = c.

One can check that every graph which is c-regular is also with max degree
and every graph which is (c+1)-vertex, simple, and complete is also c-regular and
there exists a graph which is simple and c-regular. Now we state the propositions:

(20) DEGREE OF REGULARITY IS UNIQUE:
If G is ci-regular and co-regular, then ¢ = co.
(21) G is c-regular if and only if every component of G is c-regular.

Let us consider c. Let us observe that there exists a graph which is non c-
regular. Let G be a c-regular graph. Note that every component of G is c-regular.
Now we state the propositions:

(22) Let us consider a c-regular graph G. Then
(i) 0(G) = ¢, and
(ii) A(G) =c.
(23) If 6(G) = c and A(G) = ¢, then G is c-regular.
Let n be a natural number. Observe that every graph which is n-regular is

also locally-finite and there exists a graph which is simple, vertex-finite, and
n-regular. Now we state the proposition:
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(24) G is edgeless if and only if G is O-regular.

One can verify that every graph which is edgeless is also 0-regular and every
graph which is O-regular is also edgeless. Let ¢ be a non empty cardinal number.
Let us observe that every graph which is c-regular is also non edgeless. Now we
state the propositions:

(25) Let us consider a simple, c-regular graph G. Then ¢ C G.order().

(26) Let us consider a natural number n, and a simple, vertex-finite, n-regular
graph G1. Then every graph complement of Gy is (Gy.order() —' (n+1))-
regular.

(27) If there exists v such that v is isolated and G is c-regular, then ¢ = 0.
(28) If there exists v such that v is endvertex and G is c-regular, then ¢ = 1.

Let G be a 1-regular graph. Observe that every vertex of GG is endvertex.
Now we state the proposition:

(29) Let us consider a l-regular graph G, and a trail 7' of G. Suppose T is
not trivial. Then there exists an object e such that
(i) e joins T first() and T'.last() in G, and
(ii) T = G.walkOf(T first(), e, Tlast()).

One can verify that every graph which is 1-regular and connected is also
2-vertex, 1-edge, and complete and every graph which is simple, 2-vertex, and
connected is also 1-regular. Now we state the propositions:

(30) Let us consider a partial graph mapping F' from G; to Ga. Suppose F
is isomorphism. Then G is c-regular if and only if G is c-regular.

(31) If G; = G2 and G is c-regular, then G9 is c-regular.

(32) Let us consider a set E, and a graph G2 given by reversing directions of

the edges E of G1. Then G is c-regular if and only if G3 is c-regular. The
theorem is a consequence of (30).

Let G be a graph. We say that G is cubic if and only if
(Def. 5) G is 3-regular.

One can verify that every graph which is cubic is also 3-regular and every
graph which is 3-regular is also cubic. Now we state the propositions:

(33) @ is cubic if and only if for every v, v.degree() = 3.

(34) Let us consider a partial graph mapping F' from G to Go. If F is iso-
morphism, then G is cubic iff G5 is cubic.

(35) If G; = G5 and G is cubic, then G is cubic.

(36) Let us consider a set E, and a graph G2 given by reversing directions of
the edges F of G1. Then G is cubic if and only if G is cubic.

Let G be a graph. We say that G is regular if and only if
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(Def. 6) there exists a cardinal number ¢ such that G is c-regular.
Now we state the proposition:

(37) G is regular if and only if 6(G) = A(G). The theorem is a consequence
of (22) and (23).

Let G be a locally-finite graph. One can check that G is regular if and only
if the condition (Def. 7) is satisfied.

(Def. 7) there exists a natural number n such that G is n-regular.

Let ¢ be a cardinal number. Let us note that every graph which is c-regular
is also regular and every graph which is cubic is also regular and every graph
which is regular is also with max degree and there exists a graph which is simple,
non edgeless, finite, and regular.

Let G be a regular graph. Note that every component of G is regular. Let G
be a simple, finite, regular graph. One can verify that every graph complement
of G is regular. Now we state the propositions:

(38) If there exists v such that v is isolated and G is regular, then G is
edgeless. The theorem is a consequence of (27).

(39) If there exists v such that v is endvertex and G is regular, then G is
1-regular. The theorem is a consequence of (28).

(40) Let us consider a partial graph mapping F from G to Gs. If F' is isomor-
phism, then G is regular iff G5 is regular. The theorem is a consequence
of (30).

(41) If G; = Gy and G is regular, then G is regular. The theorem is a con-
sequence of (40).

(42) Let us consider a set E, and a graph G2 given by reversing directions of
the edges E of G;. Then G is regular if and only if G is regular. The
theorem is a consequence of (40).

3. DIRECTED-REGULAR GRAPHS

Let us consider ¢ and G. We say that G is c-directed-regular if and only if
(Def. 8) for every v, v.inDegree() = ¢ and v.outDegree() = c.

Let us note that every graph which is c-directed-regular is also with max in-
degree and with max outdegree and every graph which is (c+1)-vertex, directed-
simple, and directed-complete is also c-directed-regular and there exists a graph
which is directed-simple and c-directed-regular. Now we state the proposition:

(43) DEGREE OF DIRECTED REGULARITY IS UNIQUE:
If G is cj-directed-regular and co-directed-regular, then ¢; = cs.
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Let us consider ¢. One can check that there exists a graph which is non c-
directed-regular. Let G be a c-directed-regular graph. Observe that every com-
ponent of G is c-directed-regular. Now we state the propositions:

(44) Let us consider a c-directed-regular graph G. Then
(i) 07(G) =¢, and
(i) 67(G) = ¢, and
(iii) A7 (G) = ¢, and
(iv) AT(G) =c.
(45) If 5~ (G) = cand 67 (G) = c and A=(G) = ¢ and AT(G) = ¢, then G is
c-directed-regular.
(46) Let us consider a natural number n. If G is n-directed-regular, then G
is (2 - n)-regular.

Let n be a natural number. One can check that every graph which is n-
directed-regular is also (2 - n)-regular and locally-finite and there exists a graph
which is directed-simple, finite, and n-directed-regular.

Let ¢ be an infinite cardinal number. Let us note that every graph which is
c-directed-regular is also c-regular. Now we state the proposition:

(47) G is edgeless if and only if G is 0-directed-regular. The theorem is a con-
sequence of (46).

One can verify that every graph which is edgeless is also 0-directed-regular
and every graph which is 0-directed-regular is also edgeless.

Let ¢ be a non empty cardinal number. Let us observe that every graph
which is c-directed-regular is also non edgeless. Now we state the propositions:

(48) Let us consider a directed-simple, c-directed-regular graph G. Then ¢ C
G.order().

(49) Let us consider a natural number n, and a directed-simple, vertex-finite,
n-directed-regular graph G7. Then every directed graph complement of
G1 is (Gy.order() —' (n + 1))-directed-regular.

(50) If there exists v such that v is isolated and G is c-directed-regular, then
c=0.

Let us consider c. Let G be a c-directed-regular graph. Let us note that every
vertex of GG is non endvertex and every graph which is 2-edge, 2-vertex, and
directed-simple is also 1-directed-regular and complete and every graph which
is trivial and 1-edge is also 1-directed-regular. Now we state the propositions:

(51) Let us consider a partial graph mapping F' from G; to G3. Suppose F
is directed-isomorphism. Then G is c-directed-regular if and only if G5 is
c-directed-regular.
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(52) If G; = G5 and G is c-directed-regular, then Gy is c-directed-regular.
Let G be a graph. We say that G is directed-regular if and only if
(Def. 9) there exists a cardinal number ¢ such that G is c-directed-regular.
Now we state the proposition:
(53) G is directed-regular if and only if §~(G) = A~ (G) and 6+ (G) = AT(G)
and 6 (G) = §1(G). The theorem is a consequence of (44) and (45).

Let G be a locally-finite graph. One can verify that G is directed-regular if
and only if the condition (Def. 10) is satisfied.

(Def. 10) there exists a natural number n such that G is n-directed-regular.

Let ¢ be a cardinal number. Note that every graph which is c-directed-regular
is also directed-regular and every graph which is directed-regular is also with
max degree and there exists a graph which is directed-simple, non edgeless,
finite, and directed-regular.

Let G be a directed-regular graph. Observe that every component of G
is directed-regular. Let G be a directed-simple, finite, directed-regular graph.
Note that every directed graph complement of G is directed-regular. Let G be
a directed-regular graph. Note that every vertex of G is non endvertex. Now we
state the propositions:

(54) Let us consider a partial graph mapping F' from G; to Ga. Suppose F
is directed-isomorphism. Then G; is directed-regular if and only if Gy is
directed-regular. The theorem is a consequence of (51).

(55) If G; =~ Gy and G is directed-regular, then G is directed-regular. The
theorem is a consequence of (54).

4. COUNTING THE EDGES

Now we state the propositions:

(56) Let us consider a set P, and a cardinal number c¢. Suppose P is mutually-
disjoint and for every set A such that A € P holds A = c. Then U:P =
c-P.

(57) Let us consider a non empty set X, a partition P of X, and a cardinal
number c. Suppose for every element z of X, EqClass(z, P) = c¢. Then
X =c- P. The theorem is a consequence of (56).

Let f be a function and X be a set. One can verify that (f,idx) is one-to-one.

Let f be a one-to-one function. One can verify that f~ is one-to-one and
A\ f is one-to-one.

Let X be a set and f be a function. Let us observe that (idx, f) is one-to-one.

Now we state the proposition:

83
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(58) Let us consider a c-regular graph G. Then 2 - G.size() = ¢ - G.order().
The theorem is a consequence of (56).

5. THE DEGREE MAP AND DEGREE SEQUENCE

Let G be a graph. The functors: G.degreeMap(), G.inDegreeMap(), and
G.outDegreeMap() yielding many sorted sets indexed by the vertices of G are
defined by conditions

(Def. 11) for every vertex v of G, G.degreeMap()(v) = v.degree(),
(Def. 12) for every vertex v of G, G.inDegreeMap()(v) = v.inDegree(),
(Def. 13) for every vertex v of G, G.outDegreeMap()(v) = v.outDegree(),

respectively. Let us observe that G.degreeMap() is cardinal yielding and G.inDe-
greeMap() is cardinal yielding and G.outDegreeMap() is cardinal yielding. Now
we state the propositions:

(59) Let us consider a graph G. Then
(i) G.degreeMap() = G.order(), and
(ii) G.inDegreeMap() = G.order(), and

(iii) G.outDegreeMap() = G.order().

(60) Let us consider a graph G, and a vertex v of G. Then (G.degreeMap())(v)
= (G.inDegreeMap())(v) + (G.outDegreeMap())(v).
Let G be a locally-finite graph. Note that G.degreeMap() is natural-valued
and G.inDegreeMap() is natural-valued and G.outDegreeMap() is natural-valued.
The functors: G.degreeMap(), G.inDegreeMap(), and G.outDegreeMap() yield
functions from the vertices of GG into N. Let G be a vertex-finite graph. Note that
G.degreeMap() is finite and G.inDegreeMap() is finite and G.outDegreeMap()
is finite. Now we state the proposition:

(61) Let us consider a cardinal number ¢, a trivial, c-edge graph G, and
a vertex v of GG. Then

(i) G.inDegreeMap() = v——c, and
(ii) G.outDegreeMap() = v——c, and
(iii) G.degreeMap() = v——2 - c.

Let G be a trivial graph. Let us note that G.degreeMap() is trivial and
G.inDegreeMap() is trivial and G.outDegreeMap() is trivial. Now we state the
propositions:

(62) Let us consider a graph G, a set V, and a supergraph G; of G extended
by the vertices from V. Then



ABOUT REGULAR GRAPHS 85

(i) Gy.degreeMap() = Go.degreeMap() +-(V \ (the vertices of G2)
—0), and
(ii) Gi.inDegreeMap() = Ga.inDegreeMap() +-(V \ (the vertices of G2)
— 0), and
(iii) Gp.outDegreeMap() = Ga.outDegreeMap()+-(V \ (the vertices of
Go) — 0).
(63) Let us consider a graph G, and a component C' of G. Then
(i) C.degreeMap() = G.degreeMap() [(the vertices of C'), and
(ii) C.inDegreeMap() = G.inDegreeMap() [(the vertices of C'), and
(iii) C.outDegreeMap() = G.outDegreeMap() [(the vertices of C').

Let G be a graph and v be a denumeration of the vertices of G. Let us observe
that (G.degreeMap()) - v is transfinite sequence-like and (G.order())-elements
and (G.inDegreeMap()) - v is transfinite sequence-like and (G.order())-elements
and (G.outDegreeMap())-v is transfinite sequence-like and (G.order())-elements.

Let us consider a finite graph G and a denumeration v of the vertices of G.
Now we state the propositions:

(64) (G.degreeMap()) - v = (G.inDegreeMap()) - v + (G.outDegreeMap()) - v.
The theorem is a consequence of (60).

(65) (i) G.size() = >_(G.inDegreeMap()) - v, and
(ii) G.size() = Y (G.outDegreeMap()) - v.

(66) 2-(G.size()) = >_(G.degreeMap()) - v. The theorem is a consequence of
(65) and (64).

(67) HANDSHAKING LEMMA:
Let us consider a finite graph G, and a natural number k. Suppose k =

{w, where w is a vertex of G : w.degree() is not even }. Then k is even.
PROOF: Set v = the denumeration of the vertices of G. Define M (natural
number) = ((G.degreeMap()) - v)($1) mod 2. Consider m being a finite 0-
sequence of N such that lenm = len(G.degreeMap()) - v and for every
natural number k such that k£ € len(G.degreeMap()) - v holds m(k) =
M(k). O
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