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Summary. A classical algebraic geometry is study of zero points of system
of multivariate polynomials [3], [7] and those zero points would be corresponding
to points, lines, curves, surfaces in an affine space. In this article we give some
basic definition of the area of affine algebraic geometry such as algebraic set,
ideal of set of points, and those properties according to [4] in the Mizar system
[5], [2].

We treat an affine space as the n-fold Cartesian product kn as the same
manner appeared in [4]. Points in this space are identified as n-tuples of elements
from the set k. The formalization of points, which are n-tuples of numbers, is
described in terms of a mapping from n to k, where the domain n corresponds
to the set n = {0, 1, . . . , n − 1}, and the target domain k is the same as the
scalar ring or field of polynomials. The same approach has been applied when
evaluating multivariate polynomials using n-tuples of numbers [10].

This formalization aims at providing basic notions of the field which enable to
formalize geometric objects such as algebraic curves which is used e.g. in coding
theory [11] as well as further formalization of the fields [8] in the Mizar system,
including the theory of polynomials [6].
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1. Evaluation Functions Revisited

From now on A denotes a non degenerated commutative ring, R denotes
a non degenerated integral domain, n denotes a non empty ordinal number, o,
o1, o2 denote objects, X, Y denote subsets of (ΩR)n, S, T denote subsets of
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Polynom-Ring(n,R), F , G denote finite sequences of elements of the carrier of
Polynom-Ring(n,R), and x denotes a function from n into R.

Let n be an ordinal number, L be a right zeroed, add-associative, right
complementable, well unital, distributive, non trivial double loop structu-
re, and p be a polynomial of n,L. Note that the functor {p} yields a subset
of Polynom-Ring(n,L). Let f be an element of Polynom-Ring(n,L) and x be
a function from n into L. The functor Eval(f, x) yielding an element of L is
defined by

(Def. 1) there exists a polynomial p of n,L such that p = f and it = eval(p, x).

Let F be a finite sequence of elements of the carrier of Polynom-Ring(n,L).
The functor Eval(F, x) yielding a finite sequence of elements of the carrier of L
is defined by

(Def. 2) dom it = domF and for every natural number i such that i ∈ domF
holds it(i) = Eval(F/i, x).

Now we state the propositions:

(1) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and an or-
dinal number n. Then Support 0nL = ∅.

(2) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial do-
uble loop structure L, elements f , g of Polynom-Ring(n,L), and a function
x from n into L. Then Eval(f + g, x) = Eval(f, x) + Eval(g, x).

(3) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial,
commutative, associative, non empty double loop structure L, elements
f , g of Polynom-Ring(n,L), and a function x from n into L. Then Eval(f ·
g, x) = (Eval(f, x)) · (Eval(g, x)).

(4) Let us consider a natural number N0, an ordinal number n, a right
zeroed, add-associative, right complementable, Abelian, well unital,
distributive, non trivial, commutative, associative, non empty do-
uble loop structure L, a finite sequence F of elements of the carrier of
Polynom-Ring(n,L), and a function x from n into L. Suppose lenF =
N0 + 1. Then Eval(F, x) = Eval(F �N0, x) a 〈Eval(F/ lenF , x)〉.
Proof: For every natural number k such that 1 ¬ k ¬ len Eval(F, x)
holds (Eval(F, x))(k) = (Eval(F �N0, x) a 〈Eval(F/ lenF , x)〉)(k). �

(5) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial,
commutative, associative, non empty double loop structure L, a finite
sequence F of elements of the carrier of Polynom-Ring(n,L), and a func-
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tion x from n into L. Then Eval(
∑
F, x) =

∑
Eval(F, x). The theorem is

a consequence of (2) and (4).

2. Monic Multivariate Polynomials with Degree 1

Let us consider n and R. Let a be a function from n into R and i be an ele-
ment of n. The functor deg1Poly(a, i) yielding a polynomial of n,R is defined
by the term

(Def. 3) 1 1(i, R)− (a(i)�(n,R)).

Let us consider an element a of R and an element i of n. Now we state the
propositions:

(6) (i) (1 1(i, R))(UnitBag i) = 1R, and

(ii) (a�(n,R))(EmptyBag n) = a, and

(iii) (1 1(i, R))(EmptyBag n) = 0R, and

(iv) (a�(n,R))(UnitBag i) = 0R.
Proof: Set U = UnitBag i. U 6= EmptyBag n. �

(7) (i) 1 1(i, R) is a polynomial of n,R, and

(ii) a�(n,R) is a polynomial of n,R.

(8) Let us consider a non zero element a of R, an element b of R, and
an element i of n. Then (a�(n,R)) ∗ 1 1(i, R) + (b�(n,R)) is a polynomial
of n,R.

(9) Let us consider an element a of R, and an element i of n.
Then Support(1 1(i, R) + (a�(n,R))) ⊆ {UnitBag i} ∪ {EmptyBag n}.

(10) degree(EmptyBag n) = 0.

(11) Let us consider an element x of n. Then degree(UnitBag x) = 1.

(12) Let us consider an element a of R, and an element i of n.
Then degree(1 1(i, R) + (a�(n,R))) = 1. The theorem is a consequence of
(9), (6), (1), (10), and (11).

3. Affine Space and Algebraic Sets from Ideal

Let us consider R and n. Let f be a polynomial of n,R. The functor Roots(f)
yielding a subset of (ΩR)n is defined by the term

(Def. 4) {x, where x is a function from n into R : eval(f, x) = 0R}.

Now we state the propositions:
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(13) Roots(0nR) = (ΩR)n.
Proof: If o ∈ (ΩR)n, then o ∈ Roots(0nR). �

(14) Roots(1 (n,R)) = ∅(ΩR)n .

Let us consider R, n, and S. The functor Roots(S) yielding a subset of (ΩR)n

is defined by the term

(Def. 5)


{x, where x is a function from n into R : for every polynomial p of
n,R such that p ∈ S holds eval(p, x) = 0R}, if S 6= ∅,
∅,otherwise.

Now we state the proposition:

(15) Let us consider a polynomial p of n,R. Then Roots({p}) = Roots(p).

Let us consider R and n. Let I be a subset of (ΩR)n. We say that I is
algebraic set from ideal if and only if

(Def. 6) there exists an ideal J of Polynom-Ring(n,R) such that I = Roots(J).

Let us note that there exists a non empty subset of (ΩR)n which is algebraic
set from ideal.

4. Algebraic Sets

Let us consider n and R. An algebraic set of n and R is an algebraic set
from ideal subset of (ΩR)n. Now we state the propositions:

(16) Let us consider non empty subsets S, T of Polynom-Ring(n,R). If S ⊆ T ,
then Roots(T ) ⊆ Roots(S).

(17) Let us consider a non empty subset S of Polynom-Ring(n,R). Then
Roots(S) = Roots(S–ideal).
Proof: Roots(S) ⊆ Roots(S–ideal). �

(18) Let us consider ideals I, J of Polynom-Ring(n,R). Then Roots(I ∪J) =
Roots(I) ∩ Roots(J). The theorem is a consequence of (16).

(19) Let us consider algebraic sets S, T of n and R. Then S∩T is an algebraic
set of n and R. The theorem is a consequence of (18) and (17).

Let us consider A. Let F be a non empty subset of IdealsA. One can ve-
rify that the functor

⋃
F yields a non empty subset of A. Now we state the

propositions:

(20) Let us consider a non empty subset F of Ideals Polynom-Ring(n,R).
Then Roots(

⋃
F ) =

⋂
{Roots(I), where I is an ideal of Polynom-Ring(n,

R) : I ∈ F}.
Proof: Set P1 = Polynom-Ring(n,R). Set M = {Roots(I), where I is
an ideal of P1 : I ∈ F}. Consider I being an object such that I ∈ F .
Consider I1 being an ideal of P1 such that I = I1. For every o such that
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o ∈ Roots(
⋃
F ) holds o ∈

⋂
M . For every o such that o ∈

⋂
M holds

o ∈ Roots(
⋃
F ). �

(21) Let us consider polynomials f , g of n,R.
Then Roots({f ∗ g}) = Roots({f}) ∪ Roots({g}).
Proof: If o ∈ Roots({f ∗ g}), then o ∈ Roots({f}) ∪ Roots({g}). If o ∈
Roots({f}) ∪ Roots({g}), then o ∈ Roots({f ∗ g}). �

Let us consider ideals I, J of Polynom-Ring(n,R). Now we state the propo-
sitions:

(22) Roots(I ∩ J) = Roots(I) ∪ Roots(J).
Proof: Roots(I) ⊆ Roots(I ∩J) and Roots(J) ⊆ Roots(I ∩J). For every
o such that o ∈ Roots(I ∩ J) holds o ∈ Roots(I) ∪ Roots(J). �

(23) Roots(I ∗ J) = Roots(I) ∪ Roots(J).
Proof: Roots(I∩J) ⊆ Roots(I∗J). For every o such that o ∈ Roots(I∗J)
holds o ∈ Roots(I) ∪ Roots(J). �

5. The Collection of Algebraic Sets

Let us consider n and R. The functor AlgSets(n,R) yielding a set is defined
by the term

(Def. 7) {S, where S is a subset of (ΩR)n : S is an algebraic set of n and R}.

Now we state the proposition:

(24) Let us consider a non zero natural numberm, and a subset F of AlgSets(n,
R). Suppose F = m. Then

⋃
F is an algebraic set of n and R.

Proof: Define P[natural number] ≡ for every subset G of AlgSets(n,R)
such that G = $1 holds

⋃
G is an algebraic set of n and R. For every non

zero natural number m such that P[m] holds P[m + 1] by [9, (1)]. P[1].
For every non zero natural number n, P[n]. �

Let us consider n and R. Let a be a function from n into R. The functor
polyset(a) yielding a non empty subset of Polynom-Ring(n,R) is defined by the
term

(Def. 8) {f , where f is a polynomial of n,R : there exists an element i of n such
that f = deg1Poly(a, i)}.

Now we state the propositions:

(25) Let us consider a function a from n into R. Then Roots(polyset(a)) =
{a}.
Proof: If o ∈ Roots(polyset(a)), then o ∈ {a} by [10, (24)], [1, (1)]. If
o ∈ {a}, then o ∈ Roots(polyset(a)) by [10, (24)], [1, (1)]. �
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(26) Let us consider an element x of (ΩR)n. Then {x} is an algebraic set of
n and R. The theorem is a consequence of (25) and (17).

(27) Let us consider a non zero natural numberm, and a subset P of S((ΩR)n).

Suppose P = m. Then
⋃
P is an algebraic set of n and R.

Proof: S((ΩR)n) ⊆ AlgSets(n,R). �

6. The Ideal of a Set of Points

Let us consider R, n, and X. The functor Ideal(X) yielding a non empty
subset of Polynom-Ring(n,R) is defined by the term

(Def. 9) {f , where f is a polynomial of n,R : X ⊆ Roots(f)}.

Now we state the proposition:

(28) Ideal(X) is an ideal of Polynom-Ring(n,R).

Let us consider R, n, and X. One can check that Ideal(X) is closed un-
der addition as a subset of Polynom-Ring(n,R) and Ideal(X) is right ideal as
a subset of Polynom-Ring(n,R). Now we state the propositions:

(29) If X ⊆ Y, then Ideal(Y ) ⊆ Ideal(X).

(30) X = ∅ if and only if Ideal(X) = ΩPolynom-Ring(n,R).
Proof: If X = ∅, then Ideal(X) = ΩPolynom-Ring(n,R). If Ideal(X) =
ΩPolynom-Ring(n,R), then X = ∅(ΩR)n . �

(31) {0Polynom-Ring(n,R)} ⊆ Ideal(Ω(ΩR)n). The theorem is a consequence of
(13).

(32) S ⊆ Ideal(Roots(S)).

(33) X ⊆ Roots(Ideal(X)).
Proof: For every o such that o ∈ X holds o ∈ Roots(Ideal(X)). �

(34) Roots(Ideal(Roots(S))) = Roots(S). The theorem is a consequence of
(33), (16), (32), and (30).

(35) Ideal(Roots(Ideal(X))) = Ideal(X).

(36) Let us consider an algebraic setX of n andR. ThenX = Roots(Ideal(X)).
The theorem is a consequence of (34).

(37) Let us consider algebraic sets V , W of n and R. Then V = W if and
only if Ideal(V ) = Ideal(W ). The theorem is a consequence of (36).

(38) Let us consider algebraic setsX, Y of n and R. IfX ⊂ Y, then Ideal(Y ) ⊂
Ideal(X). The theorem is a consequence of (36) and (29).

(39)
√

Ideal(X) = Ideal(X). The theorem is a consequence of (30) and (15).



Introduction to Algebraic Geometry 73

7. Reducible Algebraic Sets

Let us consider R and n. Let I be an algebraic set of n and R. We say that
I is reducible if and only if

(Def. 10) there exist algebraic sets V1, V2 of n and R such that I = V1 ∪ V2 and
V1 ⊂ I and V2 ⊂ I.

Let V be an algebraic set of n and R. We introduce the notation V is
irreducible as an antonym for V is reducible. Now we state the proposition:

(40) Let us consider a non empty algebraic set V of n and R. Then V is
irreducible if and only if Ideal(V ) is a prime ideal of Polynom-Ring(n,R).
Proof: If Ideal(V ) is a prime ideal of Polynom-Ring(n,R), then V is irre-
ducible. If V is irreducible, then Ideal(V ) is a prime ideal of Polynom-Ring
(n,R). �
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