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Summary. In this article sets of certain subgraphs of a graph are forma-
lized in the Mizar system [7], [1], based on the formalization of graphs in [11]
briefly sketched in [12]. The main result is the spanning subgraph theorem.
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Introduction

Subsets of the set of all subgraphs of a graphs are rather rarely addressed
directly (cf. [13], [4], [3]), but used as a tool in a wide variety of graph theory to-
pics; e.g. they are needed for graph factorisation, graph reconstruction, random
graphs, counting a special type of subgraphs and proving that every connected
graph has a spanning subgraph (cf. [2], [14], [5]). The latter is proven in Section
7 of this article, together with the sharper result that we can even guarantee
a spanning graph containing an arbitrary edge of the connected graph. As a
necessity for that the set of all subtrees of a graph was introduced, as Jessica
Enright and Piotr Rudnicki wished for in [6]. This article lays the groundwork
for further formalization of any of these topics, in some sense extending and reu-
sing [8] and [10]. It is noteworthy that the attribute plain from [9] was utilized
here.
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1. Subgraph Set and Subgraph Relation

From now on G, G1, G2 denote graphs and H denotes a subgraph of G.
Let us consider G. The functor G.allSubgraphs() yielding a graph-membered

set is defined by the term

(Def. 1) {the plain subgraph of G induced by V and E, where V is a non
empty subset of the vertices of G, E is a subset of the edges of G :
E ⊆ G.edgesBetween(V )}.

We introduce the notation G.allSG() as a synonym of G.allSubgraphs(). Let
G be a finite graph. One can check that G.allSG() is finite. Now we state the
propositions:

(1) G2 ∈ G1.allSG() if and only if G2 is a plain subgraph of G1.

(2) H�(the graph selectors) ∈ G.allSG(). The theorem is a consequence of
(1).

(3) G�(the graph selectors) ∈ G.allSG(). The theorem is a consequence of
(2).

Let us consider G. Let V be a non empty subset of the vertices of G. The
functor createGraph(V ) yielding a plain subgraph of G is defined by the term

(Def. 2) createGraph(V, ∅, the function from ∅ into V, the function from ∅ into
V ).

Let us note that createGraph(V ) is edgeless. Now we state the propositions:

(4) Let us consider a non empty subset V of the vertices of G.
Then createGraph(V ) ∈ G.allSG().

(5) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V and ∅. Then H ≈ createGraph(V ).

(6) Let us consider a subgraph H of G with edges the edges of G removed.
Then H ≈ createGraph(Ωα), where α is the vertices of G. The theorem is
a consequence of (5).

(7) G is edgeless if and only if G ≈ createGraph(Ωα), where α is the vertices
of G. The theorem is a consequence of (6).

(8) Let us consider a non empty subset V of the vertices of G1. Suppose
V ⊆ the vertices of G2. Then createGraph(V ) is a subgraph of G2.

(9) G is edgeless if and only if G.allSG() = the set of all createGraph(V )
where V is a non empty subset of the vertices of G. The theorem is a con-

sequence of (1), (7), (4), and (3).

Let us consider G. Let v be a vertex of G. The functor createGraph(v)
yielding a plain subgraph of G is defined by the term

(Def. 3) createGraph({v}).
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Let us note that createGraph(v) is trivial and edgeless. Now we state the
propositions:

(10) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allSG().

(11) Let us consider a vertex v of G, and a subgraph H of G induced by {v}
and ∅. Then H ≈ createGraph(v).

(12) Let us consider a vertex v of G1. Suppose v ∈ the vertices of G2. Then
createGraph(v) is a subgraph of G2.

Let G be a non edgeless graph and e be an edge of G.
The functor createGraph(e) yielding a plain subgraph of G is defined by

(Def. 4) there exists a non empty subset V of the vertices of G and there exist
functions S, T from {e} into V such that it = createGraph(V, {e}, S, T )
and {(the source of G)(e), (the target of G)(e)} = V and
S = e7−→. (the source of G)(e) and T = e 7−→. (the target of G)(e).

Let us consider a non edgeless graph G and an edge e of G. Now we state
the propositions:

(13) (i) the edges of createGraph(e) = {e}, and

(ii) the vertices of createGraph(e) = {(the source of G)(e), (the target
of G)(e)}.

(14) e joins (the source of G)(e) to (the target of G)(e) in createGraph(e).
The theorem is a consequence of (13).

Let us consider a non edgeless graph G, an edge e of G, and objects e0, v,
w. Now we state the propositions:

(15) Suppose e0 joins v to w in createGraph(e). Then

(i) e0 = e, and

(ii) v = (the source of G)(e), and

(iii) w = (the target of G)(e).

The theorem is a consequence of (13).

(16) If e0 joins v and w in createGraph(e), then e0 = e. The theorem is
a consequence of (15).

Let G be a non edgeless graph and e be an edge of G. One can check that
createGraph(e) is non edgeless, non-multi, connected, and finite. Let us consider
a non edgeless graph G and an edge e of G. Now we state the propositions:

(17) createGraph(e) is loopless if and only if e /∈ G.loops(). The theorem is
a consequence of (14) and (15).

(18) createGraph(e) is acyclic if and only if e /∈ G.loops(). The theorem is
a consequence of (17), (13), and (16).

(19) createGraph(e) ∈ G.allSG().
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(20) Let us consider a non edgeless graph G, an edge e of G, and a subgraph
H of G induced by {(the source of G)(e), (the target of G)(e)} and {e}.
Then H ≈ createGraph(e). The theorem is a consequence of (13).

(21) Let us consider a non edgeless graph G, an edge e of G, and a subset V
of the vertices of G. Then every supergraph of createGraph(e) extended
by the vertices from V is a subgraph of G.

(22) Let us consider an edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, there exists an element
H ′ of S such that v ∈ the vertices of H ′. Then G is a subgraph of G′.

(23) Let us consider a non edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, there exists an element
H ′ of S such that v ∈ the vertices of H ′ and for every edge e of G, there
exists an element H ′ of S such that createGraph(e) is a subgraph of H ′.
Then G is a subgraph of G′. The theorem is a consequence of (13).

(24) Let us consider an edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, createGraph(v) ∈ S. Then
G is a subgraph of G′. The theorem is a consequence of (22).

(25) Let us consider a non edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, createGraph(v) ∈ S and
for every edge e of G, createGraph(e) ∈ S. Then G is a subgraph of G′.
The theorem is a consequence of (23).

(26) Let us consider a non edgeless graph G, a set E, an edge e of G, and
a subgraph H of G with edges E removed. If e /∈ E, then createGraph(e)
is a subgraph of H. The theorem is a consequence of (13).

Let us consider a non edgeless graph G, a subgraph H of G with loops
removed, a graph union set S, and a graph union G′ of S. Now we state the
propositions:

(27) Suppose for every vertex v of G, there exists an element H ′ of S such that
v ∈ the vertices of H ′ and for every edge e of G such that e /∈ G.loops()
there exists an element H ′ of S such that createGraph(e) is a subgraph
of H ′. Then H is a subgraph of G′. The theorem is a consequence of (13)
and (26).

(28) Suppose for every vertex v of G, createGraph(v) ∈ S and for every edge
e of G such that e /∈ G.loops() holds createGraph(e) ∈ S. Then H is
a subgraph of G′. The theorem is a consequence of (27).

Let us consider G. Let us observe that G.allSG() is non empty, ∪-tolerating,
and plain. Let S be a non empty subset of G.allSG(). Let us observe that
an element of S is a subgraph of G. Now we state the propositions:
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(29) G2.allSG() ⊆ G1.allSG() if and only if G2 is a subgraph of G1. The
theorem is a consequence of (3) and (1).

(30) G1 ≈ G2 if and only if G1.allSG() = G2.allSG(). The theorem is a con-
sequence of (29).

Let us consider G1 and G2. Let F be a partial graph mapping from G1 to G2.
The functor SG2SGFunc(F ) yielding a function from G1.allSG() into G2.allSG()
is defined by

(Def. 5) for every plain subgraph H of G1, it(H) = rng(F �H).

One can verify that SG2SGFunc(F ) is non empty and graph-yielding and
dom(SG2SGFunc(F )) is graph-membered and dom(SG2SGFunc(F )) is plain.

Now we state the proposition:

(31) Let us consider a partial graph mapping F from G1 to G2. If F is weak
subgraph embedding, then SG2SGFunc(F ) is one-to-one. The theorem is
a consequence of (1).

Let G1 be a graph, G2 be a G1-isomorphic graph, and F be an isomorphism
between G1 and G2. Let us observe that SG2SGFunc(F ) is one-to-one. Now we
state the propositions:

(32) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is onto. Then rng SG2SGFunc(F ) = G2.allSG(). The theorem is a conse-
quence of (1).

(33) If G2 is G1-directed-isomorphic, then G1.allSG() and G2.allSG() are
directed-isomorphic. The theorem is a consequence of (32), (31), and (1).

(34) If G2 is G1-isomorphic, then G1.allSG() and G2.allSG() are isomorphic.
The theorem is a consequence of (32), (31), and (1).

(35) G is a graph union of G.allSG(). The theorem is a consequence of (3)
and (1).

(36) (i) G is loopless iff G.allSG() is loopless, and

(ii) G is non-multi iff G.allSG() is non-multi, and

(iii) G is non-directed-multi iff G.allSG() is non-directed-multi, and

(iv) G is simple iff G.allSG() is simple, and

(v) G is directed-simple iff G.allSG() is directed-simple, and

(vi) G is acyclic iff G.allSG() is acyclic, and

(vii) G is edgeless iff G.allSG() is edgeless.

Let G be a loopless graph. Observe that G.allSG() is loopless. Let G be
a non-multi graph. Let us observe that G.allSG() is non-multi. Let G be a non-
directed-multi graph. One can verify that G.allSG() is non-directed-multi. Let
G be a simple graph. One can check that G.allSG() is simple.
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Let G be a directed-simple graph. Let us note that G.allSG() is directed-
simple. Let G be an acyclic graph. Let us observe that G.allSG() is acyclic. Let
G be an edgeless graph. One can verify that G.allSG() is edgeless. Now we state
the propositions:

(37) The vertices of G.allSG() = 2α \ {∅}, where α is the vertices of G. The
theorem is a consequence of (1).

(38) The edges of G.allSG() = 2α, where α is the edges of G. The theorem is
a consequence of (1).

Let us consider G. The functor SubgraphRel(G) yielding a binary relation
on G.allSG() is defined by

(Def. 6) for every elements H1, H2 of G.allSG(), 〈〈H1, H2〉〉 ∈ it iff H1 is a sub-
graph of H2.

Now we state the propositions:

(39) 〈〈H�(the graph selectors), G�(the graph selectors)〉〉 ∈ SubgraphRel(G).
The theorem is a consequence of (2) and (3).

(40) field SubgraphRel(G) = G.allSG().
Proof: G.allSG() ⊆ field SubgraphRel(G). �

(41) SubgraphRel(G) partially orders G.allSG().

Let us consider G. One can verify that SubgraphRel(G) is reflexive, anti-
symmetric, transitive, and partial-order. Now we state the propositions:

(42) G�(the graph selectors) is maximal in SubgraphRel(G). The theorem is
a consequence of (3), (40), (1), and (39).

(43) SubgraphRel(H) = SubgraphRel(G) |2H.allSG(). The theorem is a con-
sequence of (29) and (40).

(44) Let us consider a non empty subset S of G.allSG(), and a graph union
G′ of S. Suppose SubgraphRel(G) |2 S is a linear order. Let us consider
a walk W of G′. Then there exists an element H of S such that W is
a walk of H.
Proof: Define P[walk of G′] ≡ there exists an element H of S such that
$1 is a walk of H. For every trivial walk W of G′, P[W ]. For every walk
W of G′ and for every object e such that e ∈ W.last().edgesInOut() and
P[W ] holds P[W.addEdge(e)]. For every walk W of G′, P[W ]. �
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2. Induced Subgraph Set

Let us consider G. The functor G.allInducedSG() yielding a subset
of G.allSG() is defined by the term

(Def. 7) the set of all the plain subgraph of G induced by V where V is a non
empty subset of the vertices of G.

Now we state the proposition:

(45) G2 ∈ G1.allInducedSG() if and only if there exists a non empty subset
V of the vertices of G1 such that G2 is a plain subgraph of G1 induced by
V .

Let G be a vertex-finite graph. Observe that G.allInducedSG() is finite. Now
we state the propositions:

(46) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V . Then H�(the graph selectors) ∈ G.allInducedSG().
The theorem is a consequence of (45).

(47) G�(the graph selectors) ∈ G.allInducedSG(). The theorem is a consequ-
ence of (46).

Let us considerG. Observe thatG.allInducedSG() is non empty, ∪-tolerating,
and plain. Now we state the propositions:

(48) G2.allInducedSG() ⊆ G1.allInducedSG() if and only if there exists a non
empty subset V of the vertices of G1 such that G2 is a subgraph of G1
induced by V . The theorem is a consequence of (47) and (45).

(49) G1 ≈ G2 if and only if G1.allInducedSG() = G2.allInducedSG(). The
theorem is a consequence of (48).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(50) If F is total and onto, then G2.allInducedSG() ⊆ rng(SG2SGFunc(F )
�G1.allInducedSG()). The theorem is a consequence of (49).

(51) If F is total and continuous, then rng(SG2SGFunc(F )�G1.allInducedSG())
⊆ G2.allInducedSG(). The theorem is a consequence of (45).

(52) If F is isomorphism, then rng(SG2SGFunc(F )�G1.allInducedSG()) =
G2.allInducedSG(). The theorem is a consequence of (50) and (51).

(53) If G2 is G1-directed-isomorphic, then G1.allInducedSG() and
G2.allInducedSG() are directed-isomorphic. The theorem is a consequence
of (52), (31), and (45).

(54) If G2 is G1-isomorphic, then G1.allInducedSG() and G2.allInducedSG()
are isomorphic. The theorem is a consequence of (52), (31), and (45).
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(55) G is a graph union of G.allInducedSG(). The theorem is a consequence
of (47).

(56) (i) G is loopless iff G.allInducedSG() is loopless, and

(ii) G is non-multi iff G.allInducedSG() is non-multi, and

(iii) G is non-directed-multi iff G.allInducedSG() is non-directed-multi,
and

(iv) G is simple iff G.allInducedSG() is simple, and

(v) G is directed-simple iff G.allInducedSG() is directed-simple, and

(vi) G is acyclic iff G.allInducedSG() is acyclic, and

(vii) G is edgeless iff G.allInducedSG() is edgeless, and

(viii) G is chordal iff G.allInducedSG() is chordal, and

(ix) G is loopfull iff G.allInducedSG() is loopfull.

Let G be a loopless graph. One can verify that G.allInducedSG() is lo-
opless. Let G be a non-multi graph. Note that G.allInducedSG() is non-multi.
Let G be a non-directed-multi graph. Observe that G.allInducedSG() is non-
directed-multi. Let G be a simple graph. One can verify that G.allInducedSG()
is simple. Let G be a directed-simple graph. Note that G.allInducedSG() is
directed-simple. Let G be an acyclic graph. Observe that G.allInducedSG() is
acyclic. Let G be an edgeless graph. One can verify that G.allInducedSG() is
edgeless. Let G be a chordal graph. Note that G.allInducedSG() is chordal. Let
G be a loopfull graph. Let us note that G.allInducedSG() is loopfull. Now we
state the propositions:

(57) G is edgeless if and only ifG.allInducedSG() = the set of all createGraph
(V ) where V is a non empty subset of the vertices of G. The theorem is
a consequence of (9), (45), and (47).

(58) G is edgeless if and only if G.allSG() = G.allInducedSG(). The theorem
is a consequence of (9), (57), and (45).

(59) The vertices of G.allInducedSG() = 2α \ {∅}, where α is the vertices of
G. The theorem is a consequence of (37).

3. Spanning Subgraph Set

Let us consider G. The functor G.allSpanningSG() yielding a subset of
G.allSG() is defined by the term

(Def. 8) {H, where H is an element of ΩG.allSG() : H is spanning}.

We introduce the notationG.allFactors() as a synonym ofG.allSpanningSG().
Now we state the propositions:
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(60) G2 ∈ G1.allSpanningSG() if and only if G2 is a plain, spanning subgraph
of G1. The theorem is a consequence of (1).

(61) Let us consider a spanning subgraph H of G. Then H�(the graph
selectors) ∈ G.allSpanningSG(). The theorem is a consequence of (60).

(62) G�(the graph selectors) ∈ G.allSpanningSG(). The theorem is a conse-
quence of (61).

(63) createGraph(Ωα) ∈ G.allSpanningSG(), where α is the vertices of G.
The theorem is a consequence of (60).

(64) Let us consider a non edgeless graph G, an edge e of G, and a plain
supergraph H of createGraph(e) extended by the vertices from the vertices
of G. Then H ∈ G.allSpanningSG(). The theorem is a consequence of (21)
and (60).

Let G be a graph. Let us note that G.allSpanningSG() is non empty, ∪-
tolerating, and plain. Now we state the propositions:

(65) G2.allSpanningSG() ⊆ G1.allSpanningSG() if and only if G2 is a span-
ning subgraph of G1. The theorem is a consequence of (62) and (60).

(66) G1 ≈ G2 if and only if G1.allSpanningSG() = G2.allSpanningSG(). The
theorem is a consequence of (65).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(67) Suppose rngFV = the vertices of G2.
Then rng(SG2SGFunc(F )�G1.allSpanningSG()) ⊆ G2.allSpanningSG().

(68) Suppose F is onto and FV is one-to-one and total.
Then rng(SG2SGFunc(F )�G1.allSpanningSG()) = G2.allSpanningSG().
The theorem is a consequence of (67), (32), (1), and (60).

(69) If F is isomorphism, then rng(SG2SGFunc(F )�G1.allSpanningSG()) =
G2.allSpanningSG(). The theorem is a consequence of (68).

(70) If G2 is G1-directed-isomorphic, then G1.allSpanningSG() and
G2.allSpanningSG() are directed-isomorphic. The theorem is a consequ-
ence of (69), (31), and (60).

(71) IfG2 isG1-isomorphic, thenG1.allSpanningSG() andG2.allSpanningSG()
are isomorphic. The theorem is a consequence of (69), (31), and (60).

(72) G is a graph union of G.allSpanningSG(). The theorem is a consequence
of (62).

(73) (i) G is loopless iff G.allSpanningSG() is loopless, and

(ii) G is non-multi iff G.allSpanningSG() is non-multi, and

(iii) G is non-directed-multi iff G.allSpanningSG() is non-directed-multi,
and
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(iv) G is simple iff G.allSpanningSG() is simple, and

(v) G is directed-simple iff G.allSpanningSG() is directed-simple, and

(vi) G is acyclic iff G.allSpanningSG() is acyclic, and

(vii) G is edgeless iff G.allSpanningSG() is edgeless.

Let G be a loopless graph. Note that G.allSpanningSG() is loopless. Let
G be a non-multi graph. Observe that G.allSpanningSG() is non-multi. Let G
be a non-directed-multi graph. One can verify that G.allSpanningSG() is non-
directed-multi. Let G be a simple graph. Note that G.allSpanningSG() is simple.

LetG be a directed-simple graph. Observe thatG.allSpanningSG() is directed-
simple. Let G be an acyclic graph. One can verify that G.allSpanningSG() is
acyclic. Let G be an edgeless graph. Note that G.allSpanningSG() is edgeless.
Now we state the propositions:

(74) G is edgeless if and only ifG.allSpanningSG() = {G�(the graph selectors)}.
The theorem is a consequence of (60) and (62).

(75) The vertices of G.allSpanningSG() = {the vertices of G}. The theorem
is a consequence of (60).

(76) The edges of G.allSpanningSG() = 2α, where α is the edges of G. The
theorem is a consequence of (38) and (60).

(77) G.allInducedSG()∩G.allSpanningSG() = {G�(the graph selectors)}. The
theorem is a consequence of (45), (60), (47), and (62).

4. Forest Subgraph Set

Let us consider G. The functor G.allForests() yielding a subset of G.allSG()
is defined by the term

(Def. 9) {H, where H is an element of ΩG.allSG() : H is acyclic}.

Now we state the propositions:

(78) G2 ∈ G1.allForests() if and only if G2 is a plain, acyclic subgraph of G1.
The theorem is a consequence of (1).

(79) Let us consider an acyclic subgraphH ofG. ThenH�(the graph selectors)
∈ G.allForests(). The theorem is a consequence of (78).

(80) G is acyclic if and only if G�(the graph selectors) ∈ G.allForests(). The
theorem is a consequence of (79) and (78).

(81) Let us consider a non empty subset V of the vertices of G.
Then createGraph(V ) ∈ G.allForests().

(82) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allForests().
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(83) Let us consider a non edgeless graph G, and an edge e of G. Suppose
e /∈ G.loops(). Then createGraph(e) ∈ G.allForests(). The theorem is
a consequence of (18) and (78).

(84) Let us consider a non edgeless graph G, an edge e of G, a subset V of
the vertices of G, and a plain supergraph H of createGraph(e) extended
by the vertices from V . If e /∈ G.loops(), then H ∈ G.allForests(). The
theorem is a consequence of (18), (21), and (78).

Let us consider G. Let us note that G.allForests() is non empty, ∪-tolerating,
plain, acyclic, and simple. Now we state the propositions:

(85) H.allForests() ⊆ G.allForests(). The theorem is a consequence of (78).

(86) Let us consider a loopless graph G2.
Suppose G2.allForests() ⊆ G1.allForests(). Then G2 is a subgraph of G1.
Proof: The edges of G2 ⊆ the edges of G1. �

(87) Let us consider a subgraph H of G with loops removed.
Then G.allForests() = H.allForests(). The theorem is a consequence of
(85) and (78).

(88) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allForests() = G2.allForests(). The theorem is a consequence of (87)
and (86).

(89) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 ofG2 with loops removed. ThenG3 ≈ G4 if and only ifG1.allForests() =
G2.allForests(). The theorem is a consequence of (87) and (88).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(90) If F is weak subgraph embedding,
then rng(SG2SGFunc(F )�G1.allForests()) ⊆ G2.allForests(). The theorem
is a consequence of (78) and (1).

(91) If F is one-to-one and onto, then G2.allForests() ⊆ rng(SG2SGFunc(F )
�G1.allForests()). The theorem is a consequence of (78).

(92) If F is isomorphism, then G2.allForests() = rng(SG2SGFunc(F )
�G1.allForests()). The theorem is a consequence of (90) and (91).

(93) If G2 is G1-directed-isomorphic, then G1.allForests() and G2.allForests()
are directed-isomorphic. The theorem is a consequence of (92), (31), and
(78).

(94) If G2 is G1-isomorphic, then G1.allForests() and G2.allForests() are iso-
morphic. The theorem is a consequence of (92), (31), and (78).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:
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(95) If G4 is G3-directed-isomorphic, then G1.allForests() and G2.allForests()
are directed-isomorphic. The theorem is a consequence of (87) and (93).

(96) If G4 is G3-isomorphic, then G1.allForests() and G2.allForests() are iso-
morphic. The theorem is a consequence of (87) and (94).

(97) Every subgraph ofG with loops removed is a graph union ofG.allForests().
The theorem is a consequence of (35), (82), (83), (13), (87), and (78).

(98) G is loopless if and only if G is a graph union of G.allForests(). The
theorem is a consequence of (97).

(99) The edges of G = G.loops() if and only if G.allForests() is edgeless. The
theorem is a consequence of (78) and (83).

(100) The edges of G = G.loops() if and only if G.allForests() = the set of all
createGraph(V ) where V is a non empty subset of the vertices of G. The
theorem is a consequence of (99), (78), and (81).

(101) The vertices of G.allForests() = 2α \ {∅}, where α is the vertices of G.
The theorem is a consequence of (37) and (81).

5. Spanning Forest Subgraph Set

Let us consider G. The functor G.allSpanningForests() yielding a subset of
G.allSG() is defined by the term

(Def. 10) {H, where H is an element of ΩG.allSG() : H is spanning and acyclic}.

Now we state the propositions:

(102) G2 ∈ G1.allSpanningForests() if and only if G2 is a plain, spanning,
acyclic subgraph of G1. The theorem is a consequence of (1).

(103) G.allSpanningForests() = G.allSpanningSG()∩G.allForests(). The the-
orem is a consequence of (102), (60), and (78).

(104) Let us consider a spanning, acyclic subgraphH ofG. ThenH�(the graph
selectors) ∈ G.allSpanningForests(). The theorem is a consequence of
(102).

(105) G is acyclic if and only ifG�(the graph selectors) ∈ G.allSpanningForests().
The theorem is a consequence of (103), (80), and (62).

(106) createGraph(Ωα) ∈ G.allSpanningForests(), where α is the vertices of G.
The theorem is a consequence of (81), (63), and (103).

(107) Let us consider a non edgeless graph G, an edge e of G, and a plain
supergraph H of createGraph(e) extended by the vertices from the vertices
of G. If e /∈ G.loops(), then H ∈ G.allSpanningForests(). The theorem is
a consequence of (64), (84), and (103).
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Let us consider G. One can check that G.allSpanningForests() is non empty,
∪-tolerating, plain, acyclic, and simple. Now we state the propositions:

(108) Let us consider a spanning subgraphH ofG. ThenH.allSpanningForests() ⊆
G.allSpanningForests(). The theorem is a consequence of (102).

(109) Let us consider a loopless graph G2. Suppose G2.allSpanningForests() ⊆
G1.allSpanningForests(). Then G2 is a spanning subgraph of G1. The the-
orem is a consequence of (102), (107), and (13).

(110) Let us consider a subgraph H of G with loops removed.
Then G.allSpanningForests() = H.allSpanningForests(). The theorem is
a consequence of (108) and (102).

(111) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allSpanningForests() = G2.allSpanningForests(). The theorem is a con-
sequence of (110) and (109).

(112) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 of G2 with loops removed. Then G3 ≈ G4 if and only if
G1.allSpanningForests() = G2.allSpanningForests(). The theorem is a con-
sequence of (110) and (111).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(113) Suppose F is weak subgraph embedding and rngFV = the vertices of G2.
Then rng(SG2SGFunc(F )�G1.allSpanningForests()) ⊆ G2.allSpanning
Forests(). The theorem is a consequence of (67), (90), and (103).

(114) Suppose F is weak subgraph embedding and onto.
Then G2.allSpanningForests() = rng(SG2SGFunc(F )�G1.allSpanning
Forests()). The theorem is a consequence of (113), (68), (91), (103), and
(31).

Let us consider graphs G1, G2. Now we state the propositions:

(115) If G2 is G1-directed-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are directed-isomorphic. The theorem is a conse-
quence of (114), (31), and (102).

(116) If G2 is G1-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are isomorphic. The theorem is a consequence of
(114), (31), and (102).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:

(117) If G4 is G3-directed-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are directed-isomorphic. The theorem is a conse-
quence of (110) and (115).
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(118) If G4 is G3-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are isomorphic. The theorem is a consequence of
(110) and (116).

(119) Every subgraph of G with loops removed is a graph union
of G.allSpanningForests(). The theorem is a consequence of (35), (106),
(107), (13), (110), and (102).

(120) G is loopless if and only if G is a graph union of G.allSpanningForests().
The theorem is a consequence of (119).

(121) The edges of G = G.loops() if and only if G.allSpanningForests() is edge-
less. The theorem is a consequence of (99), (103), and (107).

(122) The edges of G = G.loops() if and only if for every subgraph H of G
with loops removed, G.allSpanningForests() = {H�(the graph selectors)}.
The theorem is a consequence of (102) and (104).

(123) The vertices of G.allSpanningForests() = {the vertices of G}. The the-
orem is a consequence of (103) and (75).

6. Connected Subgraph Set

Let us consider G. The functor G.allConnectedSG() yielding a subset of
G.allSG() is defined by the term

(Def. 11) {H, where H is an element of ΩG.allSG() : H is connected}.

Now we state the propositions:

(124) G2 ∈ G1.allConnectedSG() if and only if G2 is a plain, connected sub-
graph of G1. The theorem is a consequence of (1).

(125) Let us consider a connected subgraph H of G. Then H�(the graph
selectors) ∈ G.allConnectedSG(). The theorem is a consequence of (124).

(126) G is connected if and only if G�(the graph selectors) ∈
G.allConnectedSG(). The theorem is a consequence of (125) and (124).

(127) Let us consider a vertex v of G.
Then createGraph(v) ∈ G.allConnectedSG().

(128) Let us consider a non edgeless graph G, and an edge e of G. Then
createGraph(e) ∈ G.allConnectedSG().

Let us consider G. One can check that G.allConnectedSG() is non empty,
∪-tolerating, plain, and connected. Now we state the propositions:

(129) H.allConnectedSG() ⊆ G.allConnectedSG(). The theorem is a consequ-
ence of (124).
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(130) If G2.allConnectedSG() ⊆ G1.allConnectedSG(), then G2 is a subgraph
of G1.
Proof: The edges of G2 ⊆ the edges of G1. �

(131) G1 ≈ G2 if and only if G1.allConnectedSG() = G2.allConnectedSG().
The theorem is a consequence of (129) and (130).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(132) If F is total, then rng(SG2SGFunc(F )�G1.allConnectedSG()) ⊆
G2.allConnectedSG(). The theorem is a consequence of (124) and (1).

(133) If F is one-to-one and onto, then G2.allConnectedSG() ⊆
rng(SG2SGFunc(F )�G1.allConnectedSG()). The theorem is a consequence
of (124).

(134) If F is isomorphism, then G2.allConnectedSG() = rng(SG2SGFunc(F )
�G1.allConnectedSG()). The theorem is a consequence of (132) and (133).

(135) If G2 is G1-directed-isomorphic, then G1.allConnectedSG() and
G2.allConnectedSG() are directed-isomorphic. The theorem is a consequ-
ence of (134), (31), and (124).

(136) If G2 is G1-isomorphic, then G1.allConnectedSG() and
G2.allConnectedSG() are isomorphic. The theorem is a consequence of
(134), (31), and (124).

(137) G is a graph union of G.allConnectedSG(). The theorem is a consequence
of (35), (127), (24), (128), and (25).

7. Tree Subgraph Set and Subtree Relation

Let us consider G. The functor G.allTrees() yielding a subset of G.allSG()
is defined by the term

(Def. 12) {H, where H is an element of ΩG.allSG() : H is tree-like}.

Now we state the propositions:

(138) G2 ∈ G1.allTrees() if and only if G2 is a plain, tree-like subgraph of G1.
The theorem is a consequence of (1).

(139) G.allTrees() = G.allForests()∩G.allConnectedSG(). The theorem is a con-
sequence of (138), (78), and (124).

(140) Let us consider a tree-like subgraphH ofG. ThenH�(the graph selectors)
∈ G.allTrees(). The theorem is a consequence of (138).

(141) G is tree-like if and only if G�(the graph selectors) ∈ G.allTrees(). The
theorem is a consequence of (140) and (138).
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(142) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allTrees().

(143) Let us consider a non edgeless graph G, and an edge e of G. Suppo-
se e /∈ G.loops(). Then createGraph(e) ∈ G.allTrees(). The theorem is
a consequence of (18) and (138).

Let us consider G. Observe that G.allTrees() is non empty, ∪-tolerating,
plain, tree-like, and simple. Now we state the propositions:

(144) H.allTrees() ⊆ G.allTrees(). The theorem is a consequence of (138).

(145) Let us consider a loopless graph G2.
Suppose G2.allTrees() ⊆ G1.allTrees(). Then G2 is a subgraph of G1. The
theorem is a consequence of (142), (138), (143), and (13).

(146) Let us consider a subgraphH ofG with loops removed. ThenG.allTrees()
= H.allTrees(). The theorem is a consequence of (144) and (138).

(147) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allTrees() = G2.allTrees(). The theorem is a consequence of (146) and
(145).

(148) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 of G2 with loops removed. Then G3 ≈ G4 if and only if G1.allTrees() =
G2.allTrees(). The theorem is a consequence of (146) and (147).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(149) If F is weak subgraph embedding,
then rng(SG2SGFunc(F )�G1.allTrees()) ⊆ G2.allTrees(). The theorem is
a consequence of (139), (90), and (132).

(150) If F is weak subgraph embedding and onto, then G2.allTrees() =
rng(SG2SGFunc(F )�G1.allTrees()). The theorem is a consequence of (91),
(133), (139), (149), and (31).

Let us consider graphs G1, G2. Now we state the propositions:

(151) If G2 is G1-directed-isomorphic, then G1.allTrees() and G2.allTrees()
are directed-isomorphic. The theorem is a consequence of (150), (31), and
(138).

(152) If G2 is G1-isomorphic, then G1.allTrees() and G2.allTrees() are isomor-
phic. The theorem is a consequence of (150), (31), and (138).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:

(153) If G4 is G3-directed-isomorphic, then G1.allTrees() and G2.allTrees() are
directed-isomorphic. The theorem is a consequence of (146) and (151).

(154) If G4 is G3-isomorphic, then G1.allTrees() and G2.allTrees() are isomor-
phic. The theorem is a consequence of (146) and (152).
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(155) Every subgraph of G with loops removed is a graph union of G.allTrees().
The theorem is a consequence of (35), (142), (143), (13), (146), and (138).

(156) G is loopless if and only if G is a graph union of G.allTrees(). The
theorem is a consequence of (155).

(157) The edges of G = G.loops() if and only if G.allTrees() is edgeless. The
theorem is a consequence of (138) and (143).

(158) The edges of G = G.loops() if and only if G.allTrees() = the set of all
createGraph(v) where v is a vertex of G. The theorem is a consequence of
(157), (138), and (142).

Let us consider G. The functor SubtreeRel(G) yielding a binary relation on
G.allTrees() is defined by the term

(Def. 13) SubgraphRel(G) |2 G.allTrees().

Now we state the propositions:

(159) Let us consider plain, tree-like subgraphs H1, H2 of G. Then 〈〈H1, H2〉〉 ∈
SubtreeRel(G) if and only if H1 is a subgraph of H2. The theorem is
a consequence of (1) and (138).

(160) field SubtreeRel(G) = G.allTrees(). The theorem is a consequence of
(40).

(161) SubtreeRel(G) partially orders G.allTrees(). The theorem is a consequ-
ence of (41) and (160).

Let us consider G. Let us observe that SubtreeRel(G) is reflexive, antisym-
metric, transitive, and partial-order. Now we state the propositions:

(162) SubtreeRel(H) = SubtreeRel(G) |2 H.allTrees(). The theorem is a con-
sequence of (43) and (144).

(163) Let us consider a loopless graph G. Then G is edgeless if and only if
SubtreeRel(G) = idG.allTrees(). The theorem is a consequence of (160),
(138), (159), (143), and (13).

(164) Let us consider a subgraph H of G with loops removed.
Then SubtreeRel(G) = SubtreeRel(H). The theorem is a consequence of
(146) and (162).

(165) The edges of G = G.loops() if and only if SubtreeRel(G) = idG.allTrees().
The theorem is a consequence of (164), (163), and (146).

(166) G.allTrees() has the upper Zorn property w.r.t. SubtreeRel(G). The the-
orem is a consequence of (160), (159), (44), (35), and (138).

Let G be a connected graph.
Every connected graph has a spanning tree: there exists a subgraph

of G which is plain, spanning, and tree-like.
Now we state the proposition:
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(167) Let us consider a connected graph G, and an object e. Suppose e ∈
(the edges of G) \ (G.loops()). Then there exists a plain, spanning, tree-
like subgraph T of G such that e ∈ the edges of T .

8. Spanning Tree Subgraph Set

Let us consider G. The functor G.allSpanningTrees() yielding a subset of
G.allSG() is defined by the term

(Def. 14) {H, where H is an element of ΩG.allSG() : H is spanning and tree-like}.

Now we state the propositions:

(168) G2 ∈ G1.allSpanningTrees() if and only if G2 is plain, spanning, acyclic
subgraph of G1 and connected. The theorem is a consequence of (1).

(169) G.allSpanningTrees() = G.allSpanningSG()∩G.allTrees(). The theorem
is a consequence of (168), (60), and (138).

(170) G.allSpanningTrees() = G.allConnectedSG()∩G.allSpanningForests().
The theorem is a consequence of (168), (102), and (124).

(171) Let us consider a spanning, acyclic subgraph H of G. Suppose H is con-
nected. Then H�(the graph selectors) ∈ G.allSpanningTrees(). The the-
orem is a consequence of (168).

(172) G is tree-like if and only ifG�(the graph selectors) ∈ G.allSpanningTrees().
The theorem is a consequence of (169), (141), and (62).

(173) G is connected if and only if G.allSpanningTrees() 6= ∅. The theorem is
a consequence of (168).

Let G be a non connected graph. Let us note that G.allSpanningTrees() is
empty. Let G be a connected graph. Observe that G.allSpanningTrees() is non
empty, tree-like, and simple. Now we state the propositions:

(174) Let us consider a connected graph G, and a connected, spanning sub-
graph H of G. Then H.allSpanningTrees() ⊆ G.allSpanningTrees(). The
theorem is a consequence of (168).

(175) Let us consider a loopless, connected graph G2. Suppose G2.allSpanning
Trees() ⊆ G1.allSpanningTrees(). Then G2 is a spanning subgraph of G1.
The theorem is a consequence of (168) and (167).

(176) Let us consider a subgraph H of G with loops removed.
ThenG.allSpanningTrees() = H.allSpanningTrees(). The theorem is a con-
sequence of (174) and (168).

(177) Let us consider loopless, connected graphs G1, G2. Then G1 ≈ G2 if
and only if G1.allSpanningTrees() = G2.allSpanningTrees(). The theorem
is a consequence of (176) and (175).
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(178) Let us consider connected graphs G1, G2, a subgraph G3 of G1 with loops
removed, and a subgraph G4 of G2 with loops removed. Then G3 ≈ G4 if
and only if G1.allSpanningTrees() = G2.allSpanningTrees(). The theorem
is a consequence of (176) and (177).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(179) Suppose F is weak subgraph embedding and rngFV = the vertices of
G2. Then rng(SG2SGFunc(F )�G1.allSpanningTrees()) ⊆ G2.allSpanning
Trees(). The theorem is a consequence of (132), (113), and (170).

(180) Suppose F is weak subgraph embedding and onto. Then G2.allSpanning
Trees() = rng(SG2SGFunc(F )�G1.allSpanningTrees()). The theorem is
a consequence of (179), (133), (114), (170), and (31).

(181) If G2 is G1-directed-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are directed-isomorphic. The theorem is a consequ-
ence of (180), (31), and (168).

(182) If G2 is G1-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are isomorphic. The theorem is a consequence of
(180), (31), and (168).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:

(183) If G4 is G3-directed-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are directed-isomorphic. The theorem is a consequ-
ence of (176) and (181).

(184) If G4 is G3-isomorphic, then G1.allSpanningTrees() and G2.allSpanning
Trees() are isomorphic. The theorem is a consequence of (176) and (182).

(185) Let us consider a connected graph G. Then every subgraph of G with
loops removed is a graph union of G.allSpanningTrees(). The theorem is
a consequence of (35), (168), (167), and (176).

(186) Every loopless, connected graph is a graph union ofG.allSpanningTrees().
The theorem is a consequence of (185).

(187) G is tree-like if and only if G.allSpanningTrees() = {G�(the graph
selectors)}. The theorem is a consequence of (168) and (172).

(188) G is connected if and only if the vertices of G.allSpanningTrees() =
{the vertices of G}. The theorem is a consequence of (123) and (170).
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9. Component Subgraph Set

Let us consider G. The functor G.allComponents() yielding a subset of
G.allSG() is defined by the term

(Def. 15) {H, where H is an element of ΩG.allSG() : H is component-like}.

Now we state the propositions:

(189) G2 ∈ G1.allComponents() if and only if G2 is a plain component of G1.
The theorem is a consequence of (1).

(190) G.allComponents() ⊆ G.allInducedSG()∩G.allConnectedSG(). The the-
orem is a consequence of (189) and (124).

(191) Let us consider a component H of G. Then H�(the graph selectors) ∈
G.allComponents(). The theorem is a consequence of (189).

(192) G is connected if and only ifG�(the graph selectors) ∈ G.allComponents().
The theorem is a consequence of (191) and (189).

Let us consider G. Let us observe that G.allComponents() is non empty,
vertex-disjoint, edge-disjoint, ∪-tolerating, plain, and connected. Now we state
the propositions:

(193) If G2.allComponents() ⊆ G1.allComponents(), then G2 is a subgraph of
G1. The theorem is a consequence of (189).

(194) G1 ≈ G2 if and only if G1.allComponents() = G2.allComponents(). The
theorem is a consequence of (189) and (193).

(195) Let us consider a non empty, one-to-one partial graph mapping F from
G1 to G2. Suppose F is isomorphism. Then G2.allComponents() =
rng(SG2SGFunc(F )�G1.allComponents()). The theorem is a consequence
of (189).

(196) If G2 is G1-directed-isomorphic, then G1.allComponents() and
G2.allComponents() are directed-isomorphic. The theorem is a consequ-
ence of (195), (31), and (189).

(197) IfG2 isG1-isomorphic, thenG1.allComponents() andG2.allComponents()
are isomorphic. The theorem is a consequence of (195), (31), and (189).

(198) G is a graph union of G.allComponents(). The theorem is a consequence
of (35), (189), (22), (14), (13), and (23).

(199) (i) G is loopless iff G.allComponents() is loopless, and

(ii) G is non-multi iff G.allComponents() is non-multi, and

(iii) G is non-directed-multi iff G.allComponents() is non-directed-multi,
and

(iv) G is simple iff G.allComponents() is simple, and
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(v) G is directed-simple iff G.allComponents() is directed-simple, and

(vi) G is acyclic iff G.allComponents() is acyclic, and

(vii) G is edgeless iff G.allComponents() is edgeless, and

(viii) G is chordal iff G.allComponents() is chordal, and

(ix) G is loopfull iff G.allComponents() is loopfull.
The theorem is a consequence of (198).

Let G be a loopless graph. Observe thatG.allComponents() is loopless. LetG
be a non-multi graph. One can verify that G.allComponents() is non-multi. Let
G be a non-directed-multi graph. Note that G.allComponents() is non-directed-
multi. Let G be a simple graph. Observe that G.allComponents() is simple.
Let G be a directed-simple graph. One can verify that G.allComponents() is
directed-simple.

Let G be an acyclic graph. Note that G.allComponents() is acyclic. Let G
be an edgeless graph. Observe that G.allComponents() is edgeless. Let G be
a chordal graph. One can verify that G.allComponents() is chordal. Let G be
a loopfull graph. One can check that G.allComponents() is loopfull. Now we
state the propositions:

(200) G is connected if and only if G.allComponents() = {G�(the graph
selectors)}. The theorem is a consequence of (192) and (189).

(201) The vertices of G.allComponents() = G.componentSet().

(202) G.numComponents() = G.allComponents().
Proof: Define P[object, object] ≡ there exists a plain component H of
G such that $1 = H and $2 = the vertices of H. For every object x such
that x ∈ G.allComponents() there exists an object y such that P[x, y].
Consider f being a function such that dom f = G.allComponents() and
for every object x such that x ∈ G.allComponents() holds P[x, f(x)]. �
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