
FORMALIZED MATHEMATICS

Volume 31, 2023, Pages 31–52

DOI: 10.2478/forma-2023-0004

e-ISSN: 1898–9934 sciendo.com/journal/forma

Introduction to Graph Enumerations

Sebastian Koch1

Mainz, Germany

Summary. In this article sets of certain subgraphs of a graph are forma-
lized in the Mizar system [7], [1], based on the formalization of graphs in [11]
briefly sketched in [12]. The main result is the spanning subgraph theorem.

MSC: 05C05 05C30 68V20

Keywords: graph enumeration; spanning tree

MML identifier: GLENUM00, version: 8.1.12 5.74.1441

Introduction

Subsets of the set of all subgraphs of a graphs are rather rarely addressed
directly (cf. [13], [4], [3]), but used as a tool in a wide variety of graph theory to-
pics; e.g. they are needed for graph factorisation, graph reconstruction, random
graphs, counting a special type of subgraphs and proving that every connected
graph has a spanning subgraph (cf. [2], [14], [5]). The latter is proven in Section
7 of this article, together with the sharper result that we can even guarantee
a spanning graph containing an arbitrary edge of the connected graph. As a
necessity for that the set of all subtrees of a graph was introduced, as Jessica
Enright and Piotr Rudnicki wished for in [6]. This article lays the groundwork
for further formalization of any of these topics, in some sense extending and reu-
sing [8] and [10]. It is noteworthy that the attribute plain from [9] was utilized
here.

1mailto: fly.high.android@gmail.com
c© 2023 The Author(s) / AMU
(Association of Mizar Users)
under CC BY-SA 3.0 license31

https://sciendo.com/journal/forma
https://orcid.org/0000-0002-9628-177X
http://zbmath.org/classification/?q=cc:05C05
http://zbmath.org/classification/?q=cc:05C30
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/glenum00.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

32 sebastian koch

1. Subgraph Set and Subgraph Relation

From now on G, G1, G2 denote graphs and H denotes a subgraph of G.
Let us consider G. The functor G.allSubgraphs() yielding a graph-membered

set is defined by the term

(Def. 1) {the plain subgraph of G induced by V and E, where V is a non
empty subset of the vertices of G, E is a subset of the edges of G :
E ⊆ G.edgesBetween(V)}.

We introduce the notation G.allSG() as a synonym of G.allSubgraphs(). Let
G be a finite graph. One can check that G.allSG() is finite. Now we state the
propositions:

(1) G2 ∈ G1.allSG() if and only if G2 is a plain subgraph of G1.

(2) H�(the graph selectors) ∈ G.allSG(). The theorem is a consequence of
(1).

(3) G�(the graph selectors) ∈ G.allSG(). The theorem is a consequence of
(2).

Let us consider G. Let V be a non empty subset of the vertices of G. The
functor createGraph(V) yielding a plain subgraph of G is defined by the term

(Def. 2) createGraph(V, ∅, the function from ∅ into V, the function from ∅ into
V).

Let us note that createGraph(V) is edgeless. Now we state the propositions:

(4) Let us consider a non empty subset V of the vertices of G.
Then createGraph(V) ∈ G.allSG().

(5) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V and ∅. Then H ≈ createGraph(V).

(6) Let us consider a subgraph H of G with edges the edges of G removed.
Then H ≈ createGraph(Ωα), where α is the vertices of G. The theorem is
a consequence of (5).

(7) G is edgeless if and only if G ≈ createGraph(Ωα), where α is the vertices
of G. The theorem is a consequence of (6).

(8) Let us consider a non empty subset V of the vertices of G1. Suppose
V ⊆ the vertices of G2. Then createGraph(V) is a subgraph of G2.

(9) G is edgeless if and only if G.allSG() = the set of all createGraph(V)
where V is a non empty subset of the vertices of G. The theorem is a con-

sequence of (1), (7), (4), and (3).

Let us consider G. Let v be a vertex of G. The functor createGraph(v)
yielding a plain subgraph of G is defined by the term

(Def. 3) createGraph({v}).

Introduction to graph enumerations 33

Let us note that createGraph(v) is trivial and edgeless. Now we state the
propositions:

(10) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allSG().

(11) Let us consider a vertex v of G, and a subgraph H of G induced by {v}
and ∅. Then H ≈ createGraph(v).

(12) Let us consider a vertex v of G1. Suppose v ∈ the vertices of G2. Then
createGraph(v) is a subgraph of G2.

Let G be a non edgeless graph and e be an edge of G.
The functor createGraph(e) yielding a plain subgraph of G is defined by

(Def. 4) there exists a non empty subset V of the vertices of G and there exist
functions S, T from {e} into V such that it = createGraph(V, {e}, S, T)
and {(the source of G)(e), (the target of G)(e)} = V and
S = e7−→. (the source of G)(e) and T = e 7−→. (the target of G)(e).

Let us consider a non edgeless graph G and an edge e of G. Now we state
the propositions:

(13) (i) the edges of createGraph(e) = {e}, and

(ii) the vertices of createGraph(e) = {(the source of G)(e), (the target
of G)(e)}.

(14) e joins (the source of G)(e) to (the target of G)(e) in createGraph(e).
The theorem is a consequence of (13).

Let us consider a non edgeless graph G, an edge e of G, and objects e0, v,
w. Now we state the propositions:

(15) Suppose e0 joins v to w in createGraph(e). Then

(i) e0 = e, and

(ii) v = (the source of G)(e), and

(iii) w = (the target of G)(e).

The theorem is a consequence of (13).

(16) If e0 joins v and w in createGraph(e), then e0 = e. The theorem is
a consequence of (15).

Let G be a non edgeless graph and e be an edge of G. One can check that
createGraph(e) is non edgeless, non-multi, connected, and finite. Let us consider
a non edgeless graph G and an edge e of G. Now we state the propositions:

(17) createGraph(e) is loopless if and only if e /∈ G.loops(). The theorem is
a consequence of (14) and (15).

(18) createGraph(e) is acyclic if and only if e /∈ G.loops(). The theorem is
a consequence of (17), (13), and (16).

(19) createGraph(e) ∈ G.allSG().

34 sebastian koch

(20) Let us consider a non edgeless graph G, an edge e of G, and a subgraph
H of G induced by {(the source of G)(e), (the target of G)(e)} and {e}.
Then H ≈ createGraph(e). The theorem is a consequence of (13).

(21) Let us consider a non edgeless graph G, an edge e of G, and a subset V
of the vertices of G. Then every supergraph of createGraph(e) extended
by the vertices from V is a subgraph of G.

(22) Let us consider an edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, there exists an element
H ′ of S such that v ∈ the vertices of H ′. Then G is a subgraph of G′.

(23) Let us consider a non edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, there exists an element
H ′ of S such that v ∈ the vertices of H ′ and for every edge e of G, there
exists an element H ′ of S such that createGraph(e) is a subgraph of H ′.
Then G is a subgraph of G′. The theorem is a consequence of (13).

(24) Let us consider an edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, createGraph(v) ∈ S. Then
G is a subgraph of G′. The theorem is a consequence of (22).

(25) Let us consider a non edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, createGraph(v) ∈ S and
for every edge e of G, createGraph(e) ∈ S. Then G is a subgraph of G′.
The theorem is a consequence of (23).

(26) Let us consider a non edgeless graph G, a set E, an edge e of G, and
a subgraph H of G with edges E removed. If e /∈ E, then createGraph(e)
is a subgraph of H. The theorem is a consequence of (13).

Let us consider a non edgeless graph G, a subgraph H of G with loops
removed, a graph union set S, and a graph union G′ of S. Now we state the
propositions:

(27) Suppose for every vertex v of G, there exists an element H ′ of S such that
v ∈ the vertices of H ′ and for every edge e of G such that e /∈ G.loops()
there exists an element H ′ of S such that createGraph(e) is a subgraph
of H ′. Then H is a subgraph of G′. The theorem is a consequence of (13)
and (26).

(28) Suppose for every vertex v of G, createGraph(v) ∈ S and for every edge
e of G such that e /∈ G.loops() holds createGraph(e) ∈ S. Then H is
a subgraph of G′. The theorem is a consequence of (27).

Let us consider G. Let us observe that G.allSG() is non empty, ∪-tolerating,
and plain. Let S be a non empty subset of G.allSG(). Let us observe that
an element of S is a subgraph of G. Now we state the propositions:

Introduction to graph enumerations 35

(29) G2.allSG() ⊆ G1.allSG() if and only if G2 is a subgraph of G1. The
theorem is a consequence of (3) and (1).

(30) G1 ≈ G2 if and only if G1.allSG() = G2.allSG(). The theorem is a con-
sequence of (29).

Let us consider G1 and G2. Let F be a partial graph mapping from G1 to G2.
The functor SG2SGFunc(F) yielding a function from G1.allSG() into G2.allSG()
is defined by

(Def. 5) for every plain subgraph H of G1, it(H) = rng(F �H).

One can verify that SG2SGFunc(F) is non empty and graph-yielding and
dom(SG2SGFunc(F)) is graph-membered and dom(SG2SGFunc(F)) is plain.

Now we state the proposition:

(31) Let us consider a partial graph mapping F from G1 to G2. If F is weak
subgraph embedding, then SG2SGFunc(F) is one-to-one. The theorem is
a consequence of (1).

Let G1 be a graph, G2 be a G1-isomorphic graph, and F be an isomorphism
between G1 and G2. Let us observe that SG2SGFunc(F) is one-to-one. Now we
state the propositions:

(32) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is onto. Then rng SG2SGFunc(F) = G2.allSG(). The theorem is a conse-
quence of (1).

(33) If G2 is G1-directed-isomorphic, then G1.allSG() and G2.allSG() are
directed-isomorphic. The theorem is a consequence of (32), (31), and (1).

(34) If G2 is G1-isomorphic, then G1.allSG() and G2.allSG() are isomorphic.
The theorem is a consequence of (32), (31), and (1).

(35) G is a graph union of G.allSG(). The theorem is a consequence of (3)
and (1).

(36) (i) G is loopless iff G.allSG() is loopless, and

(ii) G is non-multi iff G.allSG() is non-multi, and

(iii) G is non-directed-multi iff G.allSG() is non-directed-multi, and

(iv) G is simple iff G.allSG() is simple, and

(v) G is directed-simple iff G.allSG() is directed-simple, and

(vi) G is acyclic iff G.allSG() is acyclic, and

(vii) G is edgeless iff G.allSG() is edgeless.

Let G be a loopless graph. Observe that G.allSG() is loopless. Let G be
a non-multi graph. Let us observe that G.allSG() is non-multi. Let G be a non-
directed-multi graph. One can verify that G.allSG() is non-directed-multi. Let
G be a simple graph. One can check that G.allSG() is simple.

36 sebastian koch

Let G be a directed-simple graph. Let us note that G.allSG() is directed-
simple. Let G be an acyclic graph. Let us observe that G.allSG() is acyclic. Let
G be an edgeless graph. One can verify that G.allSG() is edgeless. Now we state
the propositions:

(37) The vertices of G.allSG() = 2α \ {∅}, where α is the vertices of G. The
theorem is a consequence of (1).

(38) The edges of G.allSG() = 2α, where α is the edges of G. The theorem is
a consequence of (1).

Let us consider G. The functor SubgraphRel(G) yielding a binary relation
on G.allSG() is defined by

(Def. 6) for every elements H1, H2 of G.allSG(), 〈〈H1, H2〉〉 ∈ it iff H1 is a sub-
graph of H2.

Now we state the propositions:

(39) 〈〈H�(the graph selectors), G�(the graph selectors)〉〉 ∈ SubgraphRel(G).
The theorem is a consequence of (2) and (3).

(40) field SubgraphRel(G) = G.allSG().
Proof: G.allSG() ⊆ field SubgraphRel(G). �

(41) SubgraphRel(G) partially orders G.allSG().

Let us consider G. One can verify that SubgraphRel(G) is reflexive, anti-
symmetric, transitive, and partial-order. Now we state the propositions:

(42) G�(the graph selectors) is maximal in SubgraphRel(G). The theorem is
a consequence of (3), (40), (1), and (39).

(43) SubgraphRel(H) = SubgraphRel(G) |2H.allSG(). The theorem is a con-
sequence of (29) and (40).

(44) Let us consider a non empty subset S of G.allSG(), and a graph union
G′ of S. Suppose SubgraphRel(G) |2 S is a linear order. Let us consider
a walk W of G′. Then there exists an element H of S such that W is
a walk of H.
Proof: Define P[walk of G′] ≡ there exists an element H of S such that
$1 is a walk of H. For every trivial walk W of G′, P[W]. For every walk
W of G′ and for every object e such that e ∈ W.last().edgesInOut() and
P[W] holds P[W.addEdge(e)]. For every walk W of G′, P[W]. �

Introduction to graph enumerations 37

2. Induced Subgraph Set

Let us consider G. The functor G.allInducedSG() yielding a subset
of G.allSG() is defined by the term

(Def. 7) the set of all the plain subgraph of G induced by V where V is a non
empty subset of the vertices of G.

Now we state the proposition:

(45) G2 ∈ G1.allInducedSG() if and only if there exists a non empty subset
V of the vertices of G1 such that G2 is a plain subgraph of G1 induced by
V .

Let G be a vertex-finite graph. Observe that G.allInducedSG() is finite. Now
we state the propositions:

(46) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V . Then H�(the graph selectors) ∈ G.allInducedSG().
The theorem is a consequence of (45).

(47) G�(the graph selectors) ∈ G.allInducedSG(). The theorem is a consequ-
ence of (46).

Let us considerG. Observe thatG.allInducedSG() is non empty, ∪-tolerating,
and plain. Now we state the propositions:

(48) G2.allInducedSG() ⊆ G1.allInducedSG() if and only if there exists a non
empty subset V of the vertices of G1 such that G2 is a subgraph of G1
induced by V . The theorem is a consequence of (47) and (45).

(49) G1 ≈ G2 if and only if G1.allInducedSG() = G2.allInducedSG(). The
theorem is a consequence of (48).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(50) If F is total and onto, then G2.allInducedSG() ⊆ rng(SG2SGFunc(F)
�G1.allInducedSG()). The theorem is a consequence of (49).

(51) If F is total and continuous, then rng(SG2SGFunc(F)�G1.allInducedSG())
⊆ G2.allInducedSG(). The theorem is a consequence of (45).

(52) If F is isomorphism, then rng(SG2SGFunc(F)�G1.allInducedSG()) =
G2.allInducedSG(). The theorem is a consequence of (50) and (51).

(53) If G2 is G1-directed-isomorphic, then G1.allInducedSG() and
G2.allInducedSG() are directed-isomorphic. The theorem is a consequence
of (52), (31), and (45).

(54) If G2 is G1-isomorphic, then G1.allInducedSG() and G2.allInducedSG()
are isomorphic. The theorem is a consequence of (52), (31), and (45).

38 sebastian koch

(55) G is a graph union of G.allInducedSG(). The theorem is a consequence
of (47).

(56) (i) G is loopless iff G.allInducedSG() is loopless, and

(ii) G is non-multi iff G.allInducedSG() is non-multi, and

(iii) G is non-directed-multi iff G.allInducedSG() is non-directed-multi,
and

(iv) G is simple iff G.allInducedSG() is simple, and

(v) G is directed-simple iff G.allInducedSG() is directed-simple, and

(vi) G is acyclic iff G.allInducedSG() is acyclic, and

(vii) G is edgeless iff G.allInducedSG() is edgeless, and

(viii) G is chordal iff G.allInducedSG() is chordal, and

(ix) G is loopfull iff G.allInducedSG() is loopfull.

Let G be a loopless graph. One can verify that G.allInducedSG() is lo-
opless. Let G be a non-multi graph. Note that G.allInducedSG() is non-multi.
Let G be a non-directed-multi graph. Observe that G.allInducedSG() is non-
directed-multi. Let G be a simple graph. One can verify that G.allInducedSG()
is simple. Let G be a directed-simple graph. Note that G.allInducedSG() is
directed-simple. Let G be an acyclic graph. Observe that G.allInducedSG() is
acyclic. Let G be an edgeless graph. One can verify that G.allInducedSG() is
edgeless. Let G be a chordal graph. Note that G.allInducedSG() is chordal. Let
G be a loopfull graph. Let us note that G.allInducedSG() is loopfull. Now we
state the propositions:

(57) G is edgeless if and only ifG.allInducedSG() = the set of all createGraph
(V) where V is a non empty subset of the vertices of G. The theorem is
a consequence of (9), (45), and (47).

(58) G is edgeless if and only if G.allSG() = G.allInducedSG(). The theorem
is a consequence of (9), (57), and (45).

(59) The vertices of G.allInducedSG() = 2α \ {∅}, where α is the vertices of
G. The theorem is a consequence of (37).

3. Spanning Subgraph Set

Let us consider G. The functor G.allSpanningSG() yielding a subset of
G.allSG() is defined by the term

(Def. 8) {H, where H is an element of ΩG.allSG() : H is spanning}.

We introduce the notationG.allFactors() as a synonym ofG.allSpanningSG().
Now we state the propositions:

Introduction to graph enumerations 39

(60) G2 ∈ G1.allSpanningSG() if and only if G2 is a plain, spanning subgraph
of G1. The theorem is a consequence of (1).

(61) Let us consider a spanning subgraph H of G. Then H�(the graph
selectors) ∈ G.allSpanningSG(). The theorem is a consequence of (60).

(62) G�(the graph selectors) ∈ G.allSpanningSG(). The theorem is a conse-
quence of (61).

(63) createGraph(Ωα) ∈ G.allSpanningSG(), where α is the vertices of G.
The theorem is a consequence of (60).

(64) Let us consider a non edgeless graph G, an edge e of G, and a plain
supergraph H of createGraph(e) extended by the vertices from the vertices
of G. Then H ∈ G.allSpanningSG(). The theorem is a consequence of (21)
and (60).

Let G be a graph. Let us note that G.allSpanningSG() is non empty, ∪-
tolerating, and plain. Now we state the propositions:

(65) G2.allSpanningSG() ⊆ G1.allSpanningSG() if and only if G2 is a span-
ning subgraph of G1. The theorem is a consequence of (62) and (60).

(66) G1 ≈ G2 if and only if G1.allSpanningSG() = G2.allSpanningSG(). The
theorem is a consequence of (65).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(67) Suppose rngFV = the vertices of G2.
Then rng(SG2SGFunc(F)�G1.allSpanningSG()) ⊆ G2.allSpanningSG().

(68) Suppose F is onto and FV is one-to-one and total.
Then rng(SG2SGFunc(F)�G1.allSpanningSG()) = G2.allSpanningSG().
The theorem is a consequence of (67), (32), (1), and (60).

(69) If F is isomorphism, then rng(SG2SGFunc(F)�G1.allSpanningSG()) =
G2.allSpanningSG(). The theorem is a consequence of (68).

(70) If G2 is G1-directed-isomorphic, then G1.allSpanningSG() and
G2.allSpanningSG() are directed-isomorphic. The theorem is a consequ-
ence of (69), (31), and (60).

(71) IfG2 isG1-isomorphic, thenG1.allSpanningSG() andG2.allSpanningSG()
are isomorphic. The theorem is a consequence of (69), (31), and (60).

(72) G is a graph union of G.allSpanningSG(). The theorem is a consequence
of (62).

(73) (i) G is loopless iff G.allSpanningSG() is loopless, and

(ii) G is non-multi iff G.allSpanningSG() is non-multi, and

(iii) G is non-directed-multi iff G.allSpanningSG() is non-directed-multi,
and

40 sebastian koch

(iv) G is simple iff G.allSpanningSG() is simple, and

(v) G is directed-simple iff G.allSpanningSG() is directed-simple, and

(vi) G is acyclic iff G.allSpanningSG() is acyclic, and

(vii) G is edgeless iff G.allSpanningSG() is edgeless.

Let G be a loopless graph. Note that G.allSpanningSG() is loopless. Let
G be a non-multi graph. Observe that G.allSpanningSG() is non-multi. Let G
be a non-directed-multi graph. One can verify that G.allSpanningSG() is non-
directed-multi. Let G be a simple graph. Note that G.allSpanningSG() is simple.

LetG be a directed-simple graph. Observe thatG.allSpanningSG() is directed-
simple. Let G be an acyclic graph. One can verify that G.allSpanningSG() is
acyclic. Let G be an edgeless graph. Note that G.allSpanningSG() is edgeless.
Now we state the propositions:

(74) G is edgeless if and only ifG.allSpanningSG() = {G�(the graph selectors)}.
The theorem is a consequence of (60) and (62).

(75) The vertices of G.allSpanningSG() = {the vertices of G}. The theorem
is a consequence of (60).

(76) The edges of G.allSpanningSG() = 2α, where α is the edges of G. The
theorem is a consequence of (38) and (60).

(77) G.allInducedSG()∩G.allSpanningSG() = {G�(the graph selectors)}. The
theorem is a consequence of (45), (60), (47), and (62).

4. Forest Subgraph Set

Let us consider G. The functor G.allForests() yielding a subset of G.allSG()
is defined by the term

(Def. 9) {H, where H is an element of ΩG.allSG() : H is acyclic}.

Now we state the propositions:

(78) G2 ∈ G1.allForests() if and only if G2 is a plain, acyclic subgraph of G1.
The theorem is a consequence of (1).

(79) Let us consider an acyclic subgraphH ofG. ThenH�(the graph selectors)
∈ G.allForests(). The theorem is a consequence of (78).

(80) G is acyclic if and only if G�(the graph selectors) ∈ G.allForests(). The
theorem is a consequence of (79) and (78).

(81) Let us consider a non empty subset V of the vertices of G.
Then createGraph(V) ∈ G.allForests().

(82) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allForests().

Introduction to graph enumerations 41

(83) Let us consider a non edgeless graph G, and an edge e of G. Suppose
e /∈ G.loops(). Then createGraph(e) ∈ G.allForests(). The theorem is
a consequence of (18) and (78).

(84) Let us consider a non edgeless graph G, an edge e of G, a subset V of
the vertices of G, and a plain supergraph H of createGraph(e) extended
by the vertices from V . If e /∈ G.loops(), then H ∈ G.allForests(). The
theorem is a consequence of (18), (21), and (78).

Let us consider G. Let us note that G.allForests() is non empty, ∪-tolerating,
plain, acyclic, and simple. Now we state the propositions:

(85) H.allForests() ⊆ G.allForests(). The theorem is a consequence of (78).

(86) Let us consider a loopless graph G2.
Suppose G2.allForests() ⊆ G1.allForests(). Then G2 is a subgraph of G1.
Proof: The edges of G2 ⊆ the edges of G1. �

(87) Let us consider a subgraph H of G with loops removed.
Then G.allForests() = H.allForests(). The theorem is a consequence of
(85) and (78).

(88) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allForests() = G2.allForests(). The theorem is a consequence of (87)
and (86).

(89) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 ofG2 with loops removed. ThenG3 ≈ G4 if and only ifG1.allForests() =
G2.allForests(). The theorem is a consequence of (87) and (88).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(90) If F is weak subgraph embedding,
then rng(SG2SGFunc(F)�G1.allForests()) ⊆ G2.allForests(). The theorem
is a consequence of (78) and (1).

(91) If F is one-to-one and onto, then G2.allForests() ⊆ rng(SG2SGFunc(F)
�G1.allForests()). The theorem is a consequence of (78).

(92) If F is isomorphism, then G2.allForests() = rng(SG2SGFunc(F)
�G1.allForests()). The theorem is a consequence of (90) and (91).

(93) If G2 is G1-directed-isomorphic, then G1.allForests() and G2.allForests()
are directed-isomorphic. The theorem is a consequence of (92), (31), and
(78).

(94) If G2 is G1-isomorphic, then G1.allForests() and G2.allForests() are iso-
morphic. The theorem is a consequence of (92), (31), and (78).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:

42 sebastian koch

(95) If G4 is G3-directed-isomorphic, then G1.allForests() and G2.allForests()
are directed-isomorphic. The theorem is a consequence of (87) and (93).

(96) If G4 is G3-isomorphic, then G1.allForests() and G2.allForests() are iso-
morphic. The theorem is a consequence of (87) and (94).

(97) Every subgraph ofG with loops removed is a graph union ofG.allForests().
The theorem is a consequence of (35), (82), (83), (13), (87), and (78).

(98) G is loopless if and only if G is a graph union of G.allForests(). The
theorem is a consequence of (97).

(99) The edges of G = G.loops() if and only if G.allForests() is edgeless. The
theorem is a consequence of (78) and (83).

(100) The edges of G = G.loops() if and only if G.allForests() = the set of all
createGraph(V) where V is a non empty subset of the vertices of G. The
theorem is a consequence of (99), (78), and (81).

(101) The vertices of G.allForests() = 2α \ {∅}, where α is the vertices of G.
The theorem is a consequence of (37) and (81).

5. Spanning Forest Subgraph Set

Let us consider G. The functor G.allSpanningForests() yielding a subset of
G.allSG() is defined by the term

(Def. 10) {H, where H is an element of ΩG.allSG() : H is spanning and acyclic}.

Now we state the propositions:

(102) G2 ∈ G1.allSpanningForests() if and only if G2 is a plain, spanning,
acyclic subgraph of G1. The theorem is a consequence of (1).

(103) G.allSpanningForests() = G.allSpanningSG()∩G.allForests(). The the-
orem is a consequence of (102), (60), and (78).

(104) Let us consider a spanning, acyclic subgraphH ofG. ThenH�(the graph
selectors) ∈ G.allSpanningForests(). The theorem is a consequence of
(102).

(105) G is acyclic if and only ifG�(the graph selectors) ∈ G.allSpanningForests().
The theorem is a consequence of (103), (80), and (62).

(106) createGraph(Ωα) ∈ G.allSpanningForests(), where α is the vertices of G.
The theorem is a consequence of (81), (63), and (103).

(107) Let us consider a non edgeless graph G, an edge e of G, and a plain
supergraph H of createGraph(e) extended by the vertices from the vertices
of G. If e /∈ G.loops(), then H ∈ G.allSpanningForests(). The theorem is
a consequence of (64), (84), and (103).

Introduction to graph enumerations 43

Let us consider G. One can check that G.allSpanningForests() is non empty,
∪-tolerating, plain, acyclic, and simple. Now we state the propositions:

(108) Let us consider a spanning subgraphH ofG. ThenH.allSpanningForests() ⊆
G.allSpanningForests(). The theorem is a consequence of (102).

(109) Let us consider a loopless graph G2. Suppose G2.allSpanningForests() ⊆
G1.allSpanningForests(). Then G2 is a spanning subgraph of G1. The the-
orem is a consequence of (102), (107), and (13).

(110) Let us consider a subgraph H of G with loops removed.
Then G.allSpanningForests() = H.allSpanningForests(). The theorem is
a consequence of (108) and (102).

(111) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allSpanningForests() = G2.allSpanningForests(). The theorem is a con-
sequence of (110) and (109).

(112) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 of G2 with loops removed. Then G3 ≈ G4 if and only if
G1.allSpanningForests() = G2.allSpanningForests(). The theorem is a con-
sequence of (110) and (111).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(113) Suppose F is weak subgraph embedding and rngFV = the vertices of G2.
Then rng(SG2SGFunc(F)�G1.allSpanningForests()) ⊆ G2.allSpanning
Forests(). The theorem is a consequence of (67), (90), and (103).

(114) Suppose F is weak subgraph embedding and onto.
Then G2.allSpanningForests() = rng(SG2SGFunc(F)�G1.allSpanning
Forests()). The theorem is a consequence of (113), (68), (91), (103), and
(31).

Let us consider graphs G1, G2. Now we state the propositions:

(115) If G2 is G1-directed-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are directed-isomorphic. The theorem is a conse-
quence of (114), (31), and (102).

(116) If G2 is G1-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are isomorphic. The theorem is a consequence of
(114), (31), and (102).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:

(117) If G4 is G3-directed-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are directed-isomorphic. The theorem is a conse-
quence of (110) and (115).

44 sebastian koch

(118) If G4 is G3-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are isomorphic. The theorem is a consequence of
(110) and (116).

(119) Every subgraph of G with loops removed is a graph union
of G.allSpanningForests(). The theorem is a consequence of (35), (106),
(107), (13), (110), and (102).

(120) G is loopless if and only if G is a graph union of G.allSpanningForests().
The theorem is a consequence of (119).

(121) The edges of G = G.loops() if and only if G.allSpanningForests() is edge-
less. The theorem is a consequence of (99), (103), and (107).

(122) The edges of G = G.loops() if and only if for every subgraph H of G
with loops removed, G.allSpanningForests() = {H�(the graph selectors)}.
The theorem is a consequence of (102) and (104).

(123) The vertices of G.allSpanningForests() = {the vertices of G}. The the-
orem is a consequence of (103) and (75).

6. Connected Subgraph Set

Let us consider G. The functor G.allConnectedSG() yielding a subset of
G.allSG() is defined by the term

(Def. 11) {H, where H is an element of ΩG.allSG() : H is connected}.

Now we state the propositions:

(124) G2 ∈ G1.allConnectedSG() if and only if G2 is a plain, connected sub-
graph of G1. The theorem is a consequence of (1).

(125) Let us consider a connected subgraph H of G. Then H�(the graph
selectors) ∈ G.allConnectedSG(). The theorem is a consequence of (124).

(126) G is connected if and only if G�(the graph selectors) ∈
G.allConnectedSG(). The theorem is a consequence of (125) and (124).

(127) Let us consider a vertex v of G.
Then createGraph(v) ∈ G.allConnectedSG().

(128) Let us consider a non edgeless graph G, and an edge e of G. Then
createGraph(e) ∈ G.allConnectedSG().

Let us consider G. One can check that G.allConnectedSG() is non empty,
∪-tolerating, plain, and connected. Now we state the propositions:

(129) H.allConnectedSG() ⊆ G.allConnectedSG(). The theorem is a consequ-
ence of (124).

Introduction to graph enumerations 45

(130) If G2.allConnectedSG() ⊆ G1.allConnectedSG(), then G2 is a subgraph
of G1.
Proof: The edges of G2 ⊆ the edges of G1. �

(131) G1 ≈ G2 if and only if G1.allConnectedSG() = G2.allConnectedSG().
The theorem is a consequence of (129) and (130).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(132) If F is total, then rng(SG2SGFunc(F)�G1.allConnectedSG()) ⊆
G2.allConnectedSG(). The theorem is a consequence of (124) and (1).

(133) If F is one-to-one and onto, then G2.allConnectedSG() ⊆
rng(SG2SGFunc(F)�G1.allConnectedSG()). The theorem is a consequence
of (124).

(134) If F is isomorphism, then G2.allConnectedSG() = rng(SG2SGFunc(F)
�G1.allConnectedSG()). The theorem is a consequence of (132) and (133).

(135) If G2 is G1-directed-isomorphic, then G1.allConnectedSG() and
G2.allConnectedSG() are directed-isomorphic. The theorem is a consequ-
ence of (134), (31), and (124).

(136) If G2 is G1-isomorphic, then G1.allConnectedSG() and
G2.allConnectedSG() are isomorphic. The theorem is a consequence of
(134), (31), and (124).

(137) G is a graph union of G.allConnectedSG(). The theorem is a consequence
of (35), (127), (24), (128), and (25).

7. Tree Subgraph Set and Subtree Relation

Let us consider G. The functor G.allTrees() yielding a subset of G.allSG()
is defined by the term

(Def. 12) {H, where H is an element of ΩG.allSG() : H is tree-like}.

Now we state the propositions:

(138) G2 ∈ G1.allTrees() if and only if G2 is a plain, tree-like subgraph of G1.
The theorem is a consequence of (1).

(139) G.allTrees() = G.allForests()∩G.allConnectedSG(). The theorem is a con-
sequence of (138), (78), and (124).

(140) Let us consider a tree-like subgraphH ofG. ThenH�(the graph selectors)
∈ G.allTrees(). The theorem is a consequence of (138).

(141) G is tree-like if and only if G�(the graph selectors) ∈ G.allTrees(). The
theorem is a consequence of (140) and (138).

46 sebastian koch

(142) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allTrees().

(143) Let us consider a non edgeless graph G, and an edge e of G. Suppo-
se e /∈ G.loops(). Then createGraph(e) ∈ G.allTrees(). The theorem is
a consequence of (18) and (138).

Let us consider G. Observe that G.allTrees() is non empty, ∪-tolerating,
plain, tree-like, and simple. Now we state the propositions:

(144) H.allTrees() ⊆ G.allTrees(). The theorem is a consequence of (138).

(145) Let us consider a loopless graph G2.
Suppose G2.allTrees() ⊆ G1.allTrees(). Then G2 is a subgraph of G1. The
theorem is a consequence of (142), (138), (143), and (13).

(146) Let us consider a subgraphH ofG with loops removed. ThenG.allTrees()
= H.allTrees(). The theorem is a consequence of (144) and (138).

(147) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allTrees() = G2.allTrees(). The theorem is a consequence of (146) and
(145).

(148) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 of G2 with loops removed. Then G3 ≈ G4 if and only if G1.allTrees() =
G2.allTrees(). The theorem is a consequence of (146) and (147).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(149) If F is weak subgraph embedding,
then rng(SG2SGFunc(F)�G1.allTrees()) ⊆ G2.allTrees(). The theorem is
a consequence of (139), (90), and (132).

(150) If F is weak subgraph embedding and onto, then G2.allTrees() =
rng(SG2SGFunc(F)�G1.allTrees()). The theorem is a consequence of (91),
(133), (139), (149), and (31).

Let us consider graphs G1, G2. Now we state the propositions:

(151) If G2 is G1-directed-isomorphic, then G1.allTrees() and G2.allTrees()
are directed-isomorphic. The theorem is a consequence of (150), (31), and
(138).

(152) If G2 is G1-isomorphic, then G1.allTrees() and G2.allTrees() are isomor-
phic. The theorem is a consequence of (150), (31), and (138).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:

(153) If G4 is G3-directed-isomorphic, then G1.allTrees() and G2.allTrees() are
directed-isomorphic. The theorem is a consequence of (146) and (151).

(154) If G4 is G3-isomorphic, then G1.allTrees() and G2.allTrees() are isomor-
phic. The theorem is a consequence of (146) and (152).

Introduction to graph enumerations 47

(155) Every subgraph of G with loops removed is a graph union of G.allTrees().
The theorem is a consequence of (35), (142), (143), (13), (146), and (138).

(156) G is loopless if and only if G is a graph union of G.allTrees(). The
theorem is a consequence of (155).

(157) The edges of G = G.loops() if and only if G.allTrees() is edgeless. The
theorem is a consequence of (138) and (143).

(158) The edges of G = G.loops() if and only if G.allTrees() = the set of all
createGraph(v) where v is a vertex of G. The theorem is a consequence of
(157), (138), and (142).

Let us consider G. The functor SubtreeRel(G) yielding a binary relation on
G.allTrees() is defined by the term

(Def. 13) SubgraphRel(G) |2 G.allTrees().

Now we state the propositions:

(159) Let us consider plain, tree-like subgraphs H1, H2 of G. Then 〈〈H1, H2〉〉 ∈
SubtreeRel(G) if and only if H1 is a subgraph of H2. The theorem is
a consequence of (1) and (138).

(160) field SubtreeRel(G) = G.allTrees(). The theorem is a consequence of
(40).

(161) SubtreeRel(G) partially orders G.allTrees(). The theorem is a consequ-
ence of (41) and (160).

Let us consider G. Let us observe that SubtreeRel(G) is reflexive, antisym-
metric, transitive, and partial-order. Now we state the propositions:

(162) SubtreeRel(H) = SubtreeRel(G) |2 H.allTrees(). The theorem is a con-
sequence of (43) and (144).

(163) Let us consider a loopless graph G. Then G is edgeless if and only if
SubtreeRel(G) = idG.allTrees(). The theorem is a consequence of (160),
(138), (159), (143), and (13).

(164) Let us consider a subgraph H of G with loops removed.
Then SubtreeRel(G) = SubtreeRel(H). The theorem is a consequence of
(146) and (162).

(165) The edges of G = G.loops() if and only if SubtreeRel(G) = idG.allTrees().
The theorem is a consequence of (164), (163), and (146).

(166) G.allTrees() has the upper Zorn property w.r.t. SubtreeRel(G). The the-
orem is a consequence of (160), (159), (44), (35), and (138).

Let G be a connected graph.
Every connected graph has a spanning tree: there exists a subgraph

of G which is plain, spanning, and tree-like.
Now we state the proposition:

48 sebastian koch

(167) Let us consider a connected graph G, and an object e. Suppose e ∈
(the edges of G) \ (G.loops()). Then there exists a plain, spanning, tree-
like subgraph T of G such that e ∈ the edges of T .

8. Spanning Tree Subgraph Set

Let us consider G. The functor G.allSpanningTrees() yielding a subset of
G.allSG() is defined by the term

(Def. 14) {H, where H is an element of ΩG.allSG() : H is spanning and tree-like}.

Now we state the propositions:

(168) G2 ∈ G1.allSpanningTrees() if and only if G2 is plain, spanning, acyclic
subgraph of G1 and connected. The theorem is a consequence of (1).

(169) G.allSpanningTrees() = G.allSpanningSG()∩G.allTrees(). The theorem
is a consequence of (168), (60), and (138).

(170) G.allSpanningTrees() = G.allConnectedSG()∩G.allSpanningForests().
The theorem is a consequence of (168), (102), and (124).

(171) Let us consider a spanning, acyclic subgraph H of G. Suppose H is con-
nected. Then H�(the graph selectors) ∈ G.allSpanningTrees(). The the-
orem is a consequence of (168).

(172) G is tree-like if and only ifG�(the graph selectors) ∈ G.allSpanningTrees().
The theorem is a consequence of (169), (141), and (62).

(173) G is connected if and only if G.allSpanningTrees() 6= ∅. The theorem is
a consequence of (168).

Let G be a non connected graph. Let us note that G.allSpanningTrees() is
empty. Let G be a connected graph. Observe that G.allSpanningTrees() is non
empty, tree-like, and simple. Now we state the propositions:

(174) Let us consider a connected graph G, and a connected, spanning sub-
graph H of G. Then H.allSpanningTrees() ⊆ G.allSpanningTrees(). The
theorem is a consequence of (168).

(175) Let us consider a loopless, connected graph G2. Suppose G2.allSpanning
Trees() ⊆ G1.allSpanningTrees(). Then G2 is a spanning subgraph of G1.
The theorem is a consequence of (168) and (167).

(176) Let us consider a subgraph H of G with loops removed.
ThenG.allSpanningTrees() = H.allSpanningTrees(). The theorem is a con-
sequence of (174) and (168).

(177) Let us consider loopless, connected graphs G1, G2. Then G1 ≈ G2 if
and only if G1.allSpanningTrees() = G2.allSpanningTrees(). The theorem
is a consequence of (176) and (175).

Introduction to graph enumerations 49

(178) Let us consider connected graphs G1, G2, a subgraph G3 of G1 with loops
removed, and a subgraph G4 of G2 with loops removed. Then G3 ≈ G4 if
and only if G1.allSpanningTrees() = G2.allSpanningTrees(). The theorem
is a consequence of (176) and (177).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(179) Suppose F is weak subgraph embedding and rngFV = the vertices of
G2. Then rng(SG2SGFunc(F)�G1.allSpanningTrees()) ⊆ G2.allSpanning
Trees(). The theorem is a consequence of (132), (113), and (170).

(180) Suppose F is weak subgraph embedding and onto. Then G2.allSpanning
Trees() = rng(SG2SGFunc(F)�G1.allSpanningTrees()). The theorem is
a consequence of (179), (133), (114), (170), and (31).

(181) If G2 is G1-directed-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are directed-isomorphic. The theorem is a consequ-
ence of (180), (31), and (168).

(182) If G2 is G1-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are isomorphic. The theorem is a consequence of
(180), (31), and (168).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:

(183) If G4 is G3-directed-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are directed-isomorphic. The theorem is a consequ-
ence of (176) and (181).

(184) If G4 is G3-isomorphic, then G1.allSpanningTrees() and G2.allSpanning
Trees() are isomorphic. The theorem is a consequence of (176) and (182).

(185) Let us consider a connected graph G. Then every subgraph of G with
loops removed is a graph union of G.allSpanningTrees(). The theorem is
a consequence of (35), (168), (167), and (176).

(186) Every loopless, connected graph is a graph union ofG.allSpanningTrees().
The theorem is a consequence of (185).

(187) G is tree-like if and only if G.allSpanningTrees() = {G�(the graph
selectors)}. The theorem is a consequence of (168) and (172).

(188) G is connected if and only if the vertices of G.allSpanningTrees() =
{the vertices of G}. The theorem is a consequence of (123) and (170).

50 sebastian koch

9. Component Subgraph Set

Let us consider G. The functor G.allComponents() yielding a subset of
G.allSG() is defined by the term

(Def. 15) {H, where H is an element of ΩG.allSG() : H is component-like}.

Now we state the propositions:

(189) G2 ∈ G1.allComponents() if and only if G2 is a plain component of G1.
The theorem is a consequence of (1).

(190) G.allComponents() ⊆ G.allInducedSG()∩G.allConnectedSG(). The the-
orem is a consequence of (189) and (124).

(191) Let us consider a component H of G. Then H�(the graph selectors) ∈
G.allComponents(). The theorem is a consequence of (189).

(192) G is connected if and only ifG�(the graph selectors) ∈ G.allComponents().
The theorem is a consequence of (191) and (189).

Let us consider G. Let us observe that G.allComponents() is non empty,
vertex-disjoint, edge-disjoint, ∪-tolerating, plain, and connected. Now we state
the propositions:

(193) If G2.allComponents() ⊆ G1.allComponents(), then G2 is a subgraph of
G1. The theorem is a consequence of (189).

(194) G1 ≈ G2 if and only if G1.allComponents() = G2.allComponents(). The
theorem is a consequence of (189) and (193).

(195) Let us consider a non empty, one-to-one partial graph mapping F from
G1 to G2. Suppose F is isomorphism. Then G2.allComponents() =
rng(SG2SGFunc(F)�G1.allComponents()). The theorem is a consequence
of (189).

(196) If G2 is G1-directed-isomorphic, then G1.allComponents() and
G2.allComponents() are directed-isomorphic. The theorem is a consequ-
ence of (195), (31), and (189).

(197) IfG2 isG1-isomorphic, thenG1.allComponents() andG2.allComponents()
are isomorphic. The theorem is a consequence of (195), (31), and (189).

(198) G is a graph union of G.allComponents(). The theorem is a consequence
of (35), (189), (22), (14), (13), and (23).

(199) (i) G is loopless iff G.allComponents() is loopless, and

(ii) G is non-multi iff G.allComponents() is non-multi, and

(iii) G is non-directed-multi iff G.allComponents() is non-directed-multi,
and

(iv) G is simple iff G.allComponents() is simple, and

Introduction to graph enumerations 51

(v) G is directed-simple iff G.allComponents() is directed-simple, and

(vi) G is acyclic iff G.allComponents() is acyclic, and

(vii) G is edgeless iff G.allComponents() is edgeless, and

(viii) G is chordal iff G.allComponents() is chordal, and

(ix) G is loopfull iff G.allComponents() is loopfull.
The theorem is a consequence of (198).

Let G be a loopless graph. Observe thatG.allComponents() is loopless. LetG
be a non-multi graph. One can verify that G.allComponents() is non-multi. Let
G be a non-directed-multi graph. Note that G.allComponents() is non-directed-
multi. Let G be a simple graph. Observe that G.allComponents() is simple.
Let G be a directed-simple graph. One can verify that G.allComponents() is
directed-simple.

Let G be an acyclic graph. Note that G.allComponents() is acyclic. Let G
be an edgeless graph. Observe that G.allComponents() is edgeless. Let G be
a chordal graph. One can verify that G.allComponents() is chordal. Let G be
a loopfull graph. One can check that G.allComponents() is loopfull. Now we
state the propositions:

(200) G is connected if and only if G.allComponents() = {G�(the graph
selectors)}. The theorem is a consequence of (192) and (189).

(201) The vertices of G.allComponents() = G.componentSet().

(202) G.numComponents() = G.allComponents().
Proof: Define P[object, object] ≡ there exists a plain component H of
G such that $1 = H and $2 = the vertices of H. For every object x such
that x ∈ G.allComponents() there exists an object y such that P[x, y].
Consider f being a function such that dom f = G.allComponents() and
for every object x such that x ∈ G.allComponents() holds P[x, f(x)]. �

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[2] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics,
244. Springer, New York, 2008. ISBN 978-1-84628-969-9.

[3] Ricky W. Butler and Jon A. Sjogren. A PVS graph theory library. Technical report,
NASA Langley, 1998.

[4] Ching-Tsun Chou. A formal theory of undirected graphs in higher-order logic. In Tho-
mas F. Melham and Juanito Camilleri, editors, Higher Order Logic Theorem Proving and
Its Applications, 7th International Workshop, Valletta, Malta, September 19–22, 1994,
Proceedings, volume 859 of Lecture Notes in Computer Science, pages 144–157. Springer,
1994. doi:10.1007/3-540-58450-1 40.

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/3-540-58450-1_40

52 sebastian koch

[5] Reinhard Diestel. Graph Theory, volume Graduate Texts in Mathematics; 173. Springer,
Berlin, fifth edition, 2017. ISBN 978-3-662-53621-6.

[6] Jessica Enright and Piotr Rudnicki. Helly property for subtrees. Formalized Mathematics,
16(2):91–96, 2008. doi:10.2478/v10037-008-0013-3.

[7] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar.
Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.

[8] Sebastian Koch. Miscellaneous graph preliminaries. Part I. Formalized Mathematics, 29
(1):21–38, 2021. doi:10.2478/forma-2021-0003.

[9] Sebastian Koch. Underlying simple graphs. Formalized Mathematics, 27(3):237–259, 2019.
doi:10.2478/forma-2019-0023.

[10] Sebastian Koch. About graph sums. Formalized Mathematics, 29(4):249–278, 2021.
doi:10.2478/forma-2021-0023.

[11] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,
13(2):235–252, 2005.

[12] Gilbert Lee and Piotr Rudnicki. Alternative aggregates in Mizar. In Manuel Kauers,
Manfred Kerber, Robert Miner, and Wolfgang Windsteiger, editors, Towards Mechani-
zed Mathematical Assistants, pages 327–341, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg. ISBN 978-3-540-73086-6. doi:10.1007/978-3-540-73086-6 26.

[13] Lars Noschinski. A graph library for Isabelle. Mathematics in Computer Science, 9(1):
23–39, 2015. doi:10.1007/s11786-014-0183-z.

[14] Robin James Wilson. Introduction to Graph Theory. Oliver & Boyd, Edinburgh, 1972.
ISBN 0-05-002534-1.

Accepted March 31, 2023

http://dx.doi.org/10.2478/v10037-008-0013-3
http://dx.doi.org/10.1007/s10817-015-9345-1
http://dx.doi.org/10.2478/forma-2021-0003
http://dx.doi.org/10.2478/forma-2019-0023
http://dx.doi.org/10.2478/forma-2021-0023
http://fm.mizar.org/2005-13/pdf13-2/glib_000.pdf
http://dx.doi.org/10.1007/978-3-540-73086-6_26
http://dx.doi.org/10.1007/s11786-014-0183-z

	=0pt Introduction to Graph Enumerations By Sebastian Koch

