Prime Representing Polynomial with 10 Unknowns - Introduction. Part II

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Summary. In our previous work [7] we prove that the set of prime numbers is diophantine using the 26 -variable polynomial proposed in [4. In this paper, we focus on the reduction of the number of variables to 10 and it is the smallest variables number known today [5], 10]. Using the Mizar [3, [2] system, we formalize the first step in this direction by proving Theorem 15 formulated as follows: Let $k \in \mathbb{N}$. Then k is prime if and only if there exists $f, i, j, m, u \in \mathbb{N}^{+}$, $r, s, t \in \mathbb{N}$ unknowns such that

$$
\begin{gather*}
D F I \text { is square } \wedge\left(M^{2}-1\right) S^{2}+1 \text { is square } \wedge \\
\left((M U)^{2}-1\right) T^{2}+1 \text { is square } \wedge \\
\left(4 f^{2}-1\right)(r-m S T U)^{2}+4 u^{2} S^{2} T^{2}<8 f u S T(r-m S T U) \\
F L \mid(H-C) Z+F(f+1) Q+F(k+1)\left(\left(W^{2}-1\right) S u-W^{2} u^{2}+1\right) \tag{0.1}
\end{gather*}
$$

where auxiliary variables $A-I, L, M, S-W, Q \in \mathbb{Z}$ are simply abbreviations defined as follows $W=100 \mathrm{fk}(k+1), U=100 u^{3} W^{3}+1, M=100 \mathrm{mUW}+1$, $S=(M-1) s+k+1, T=(M U-1) t+W-k+1, Q=2 M W-W^{2}-1, L=(k+1) Q$, $A=M(U+1), B=W+1, C=r+W+1, D=\left(A^{2}-1\right) C^{2}+1, E=2 i C^{2} L D$, $F=\left(A^{2}-1\right) E^{2}+1, G=A+F(F-A), H=B+2(j-1) C, I=\left(G^{2}-1\right) H^{2}+1$. It is easily see that (0.1) uses 8 unknowns explicitly along with five implicit one for each diophantine relationship: is square, inequality, and divisibility. Together with k this gives a total of 14 variables. This work has been partially presented in 8 .

MSC: 11D45 68V20
Keywords: polynomial reduction; diophantine equation
MML identifier: HILB10_8, version: 8.1.12 5.72.1435

1. Theta Notation

From now on A denotes a non trivial natural number, B, C, n, m, k denote natural numbers, and e denotes a natural number.

Let θ be a real number. We say that θ is theta if and only if (Def. 1) $-1 \leqslant \theta \leqslant 1$.

Let us observe that 0 is theta and there exists a real number which is theta.
A Theta is a theta real number. Let θ be a Theta. Let us observe that $-\theta$ is theta.

Let u be a Theta. Let us note that $\theta \cdot u$ is theta. Now we state the propositions:
(1) Let us consider a Theta θ. Then $|\theta| \leqslant 1$.
(2) Let us consider a Theta θ, and real numbers $\lambda, \varepsilon_{1}, \varepsilon_{2}$. Suppose $\lambda=\theta \cdot \varepsilon_{1}$ and $\left|\varepsilon_{1}\right| \leqslant\left|\varepsilon_{2}\right|$. Then there exists a Theta θ_{1} such that $\lambda=\theta_{1} \cdot \varepsilon_{2}$.
(3) Let us consider Theta's θ_{1}, θ_{2}, and real numbers $\lambda, \varepsilon_{1}, \varepsilon_{2}$. Suppose $\lambda=\left(1+\theta_{1} \cdot \varepsilon_{1}\right) \cdot\left(1+\theta_{2} \cdot \varepsilon_{2}\right)$ and $0 \leqslant \varepsilon_{1} \leqslant 1$ and $0 \leqslant \varepsilon_{2}$. Then there exists a Theta θ such that $\lambda=1+\theta \cdot\left(\varepsilon_{1}+2 \cdot \varepsilon_{2}\right)$.
(4) Let us consider Theta's θ_{1}, θ_{2}, and real numbers $\varepsilon_{1}, \varepsilon_{2}$. Suppose $\theta_{1} \cdot \varepsilon_{1} \leqslant$ $\varepsilon_{2} \leqslant \theta_{2} \cdot \varepsilon_{1}$. Then there exists a Theta θ such that $\varepsilon_{2}=\theta \cdot \varepsilon_{1}$.
(5) Let us consider a Theta θ, and real numbers $\lambda, \varepsilon_{1}, \varepsilon_{2}$. Suppose $\lambda=\theta \cdot \varepsilon_{1}$ and $\varepsilon_{1} \leqslant \varepsilon_{2}$ and $0 \leqslant \varepsilon_{1}$. Then there exists a Theta θ_{1} such that $\lambda=\theta_{1} \cdot \varepsilon_{2}$. The theorem is a consequence of (2).
(6) Let us consider Theta's θ_{1}, θ_{2}, and real numbers $\varepsilon_{1}, \varepsilon_{2}$. Suppose $0 \leqslant \varepsilon_{1}$ and $0 \leqslant \varepsilon_{2}$. Then there exists a Theta θ such that $\theta_{1} \cdot \varepsilon_{1}+\theta_{2} \cdot \varepsilon_{2}=\theta \cdot\left(\varepsilon_{1}+\varepsilon_{2}\right)$. The theorem is a consequence of (4).
(7) Let us consider a Theta θ_{1}, and a real number ε. Suppose $0 \leqslant \varepsilon \leqslant \frac{1}{2}$. Then there exists a Theta θ_{2} such that $\frac{1}{1+\theta_{1} \cdot \varepsilon}=1+\theta_{2} \cdot 2 \cdot \varepsilon$. The theorem is a consequence of (2).
(8) If $m^{2} \leqslant n$, then there exists a Theta θ such that $\binom{n}{m}=\frac{n^{m}}{m!} \cdot\left(1+\theta \cdot \frac{m^{2}}{n}\right)$. Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1}^{2} \leqslant n$, then there exists a Theta θ such that $\binom{n}{\$_{1}}=\frac{n^{\Phi_{1}}}{\$_{1}!} \cdot\left(1+\theta \cdot \frac{\Phi_{1}^{2}}{n}\right)$. For every m such that $\mathcal{P}[m]$ holds $\mathcal{P}[m+1]$. For every $m, \mathcal{P}[m]$.
(9) Let us consider a Theta θ, and real numbers α, ε. Suppose $\alpha=(1+\theta \cdot \varepsilon)^{n}$ and $0 \leqslant \varepsilon \leqslant \frac{1}{2 \cdot n}$. Then there exists a Theta θ_{1} such that $\alpha=1+\theta_{1} \cdot 2 \cdot n \cdot \varepsilon$. Proof: Define \mathcal{P} [natural number] \equiv for every Theta θ for every real numbers α, ε such that $\alpha=(1+\theta \cdot \varepsilon)^{\$_{1}}$ and $0 \leqslant \varepsilon \leqslant \frac{1}{2 \cdot \Phi_{1}}$ there exists a Theta θ_{1} such that $\alpha=1+\theta_{1} \cdot 2 \cdot \$_{1} \cdot \varepsilon$. $\mathcal{P}[0]$. If $\mathcal{P}[m]$, then $\mathcal{P}[m+1]$. $\mathcal{P}[m]$.

2. More on Solutions to Pell's Equation

In the sequel a denotes a non trivial natural number. Now we state the propositions:
(10) If $n \leqslant a$, then there exists a Theta θ such that $\mathrm{y}_{a}(n+1)=(2 \cdot a)^{n} \cdot(1+$ $\left.\theta \cdot \frac{n}{a}\right)$. The theorem is a consequence of (9) and (4).
(11) Let us consider a non trivial natural number a, and natural numbers y, n. Suppose $y>0$ and $n>0$ and $\left(a^{2}-1\right) \cdot y^{2}+1$ is a square and $y \equiv n(\bmod a-1)$ and $y \leqslant \mathrm{y}_{a}(a-1)$ and $n \leqslant a-1$. Then $y=\mathrm{y}_{a}(n)$.
(12) Let us consider a non trivial natural number a, and natural numbers s, n. Then $s^{2} \cdot\left(s^{n}\right)^{2}-\left(s^{2}-1\right) \cdot \mathrm{y}_{a}(n+1) \cdot s^{n}-1 \equiv 0\left(\bmod 2 \cdot a \cdot s-s^{2}-1\right)$. Proof: Set $S=s^{2}$. Define \mathcal{P} [natural number] $\equiv S \cdot\left(s^{\$_{1}}\right)^{2}-(S-1)$. $\mathrm{y}_{a}\left(\$_{1}+1\right) \cdot s^{\$_{1}}-1 \equiv 0\left(\bmod 2 \cdot a \cdot s-s^{2}-1\right)$. For every natural number k such that for every n such that $n<k$ holds $\mathcal{P}[n]$ holds $\mathcal{P}[k] . \mathcal{P}[n]$.
(13) Let us consider a non trivial natural number a, and natural numbers s, n, r. Suppose $s>0$ and $r>0$ and $s^{2} \cdot r^{2}-\left(s^{2}-1\right) \cdot \mathrm{y}_{a}(n+1) \cdot r-1 \equiv$ $0\left(\bmod 2 \cdot a \cdot s-s^{2}-1\right)$ and $s \cdot\left(s^{n}\right)^{2} \cdot s^{n}<a$ and $s \cdot r^{2} \cdot r<a$. Then $r=s^{n}$. The theorem is a consequence of (12).
(14) Let us consider natural numbers a, b, c, d. Suppose $a \leqslant b \leqslant c$ and $2 \cdot c \leqslant d$ and $c>0$. Let us consider a finite sequence f of elements of \mathbb{R}. Suppose len $f=b-a+1$ and for every natural number i such that $i+1 \in \operatorname{dom} f$ holds $f(i+1)=\binom{c}{a+i} \cdot d^{c--^{\prime}(a+i)}$. Then $0<\sum f<2 \cdot c^{a} \cdot d^{c-{ }^{\prime} a}$.
Proof: Define \mathcal{P} [natural number] \equiv for every natural numbers a, b, c, d such that $a \leqslant b \leqslant c$ and $2 \cdot c \leqslant d$ and $c>0$ and $b-a=\$_{1}$ for every finite sequence f of elements of \mathbb{R} such that len $f=b-a+1$ and for every natural number i such that $i+1 \in \operatorname{dom} f$ holds $f(i+1)=\binom{c}{a+i} \cdot d^{c-^{\prime}(a+i)}$ holds $0 \leqslant 1-\left(\frac{c}{d}\right)^{b+1-^{\prime} a}$ and $0<\sum f \leqslant \frac{1-\left(\frac{c}{d}\right)^{b+1-^{\prime} a}}{1-\frac{c}{d}} \cdot c^{a} \cdot d^{c--^{\prime} a}$. $\mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1] . \mathcal{P}[n]$.
(15) Let us consider natural numbers f, k, m, r, s, t, u, and integers W, M, U, S, T, Q. Suppose $f>0$ and $k>0$ and $m>0$ and $u>0$ and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $W^{\mathbf{2}} \cdot u^{2}-\left(W^{2}-1\right) \cdot S \cdot u-1 \equiv 0(\bmod Q)$ and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+$ $4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$. Then
(i) $M \cdot(U+1)$ is a non trivial natural number, and
(ii) W is a natural number, and
(iii) for every non trivial natural number m_{1} and for every natural number w such that $m_{1}=M \cdot(U+1)$ and $w=W$ and $r+W+1=\mathrm{y}_{m_{1}}(w+1)$ holds $f=k$!.

Proof: Reconsider $W_{2}=W-k$ as a natural number. Reconsider $M_{3}=$ $M \cdot U$ as a non trivial natural number. Reconsider $M_{1}=M-1$ as a natural number. Set $R=r-m \cdot S \cdot T \cdot U \cdot\left(\frac{u}{\frac{r}{S \cdot T}-m \cdot U}-f\right) \cdot\left(\frac{u}{\frac{r}{S \cdot T}-m \cdot U}-f\right)<\frac{1}{4}$. $r<\mathrm{y}_{M}\left(M_{1}\right)$ and $r<\mathrm{y}_{M}\left(M_{3}-1\right) . S=\mathrm{y}_{M}(k+1) . T=\mathrm{y}_{M_{3}}\left(W_{2}+1\right)$. $R<3 \cdot u \cdot S \cdot T \cdot m \cdot U+3 \cdot u>\frac{r}{S \cdot T}$. Consider θ_{1} being a Theta such that $\mathrm{y}_{m_{1}}(w+1)=\left(2 \cdot m_{1}\right)^{w} \cdot\left(1+\theta_{1} \cdot \frac{w}{m_{1}}\right)$. Reconsider $I=1$ as a Theta. Consider θ_{2} being a Theta such that $\theta_{1} \cdot \frac{w}{m_{1}}-\frac{W+1}{\left(2 \cdot m_{1}\right)^{W}}=\theta_{2} \cdot \frac{1}{M} \cdot u=W^{k}$. Consider θ_{3} being a Theta such that $\mathrm{y}_{M}(k+1)=(2 \cdot M)^{k} \cdot\left(1+\theta_{3} \cdot \frac{k}{M}\right)$. Consider θ_{4} being a Theta such that $\mathrm{y}_{M_{3}}\left(W_{2}+1\right)=\left(2 \cdot M_{3}\right)^{W_{2}} \cdot\left(1+\theta_{4} \cdot \frac{W_{2}}{M_{3}}\right)$. Consider θ_{3}^{\prime} being a Theta such that $\frac{1}{1+\theta_{3} \cdot \frac{k}{M}}=1+\theta_{3}^{\prime} \cdot 2 \cdot \frac{k}{M}$. Consider θ_{4}^{\prime} being a Theta such that $\frac{1}{1+\theta_{4} \cdot \frac{W_{2}}{M_{3}}}=1+\theta_{4}^{\prime} \cdot 2 \cdot \frac{W_{2}}{M_{3}}$. Consider θ_{5} being a Theta such that $\left(1+\theta_{3}^{\prime} \cdot\left(2 \cdot \frac{k}{M}\right)\right) \cdot\left(1+\theta_{2} \cdot \frac{1}{M}\right)=1+\theta_{5} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}\right)$.

Consider θ_{6} being a Theta such that $\left(1+\theta_{5} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}\right)\right) \cdot\left(1+\theta_{4}^{\prime} \cdot(2 \cdot\right.$ $\left.\left.\frac{W_{2}}{M_{3}}\right)\right)=1+\theta_{6} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}+2 \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)$. Consider θ_{7} being a Theta such that $\theta_{6} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}+2 \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)=\theta_{7} \cdot \frac{5 \cdot k}{M}$. Set $I_{1}=\left\langle\binom{ W}{0} U^{0} 1^{W}, \ldots,\binom{W}{W} U^{W} 1^{0}\right\rangle$. Set $I_{3}=I_{1} \upharpoonright k$. Consider I_{2} being a finite sequence such that $I_{1}=I_{3} \wedge I_{2}$. For every natural number i such that $i+1 \in \operatorname{dom} I_{3}$ holds $I_{3}(i+1)=$ $\binom{W}{0+i} \cdot U^{W-^{\prime}(0+i)} .0<\sum I_{3}<2 \cdot W^{0} \cdot U^{W-^{\prime} 0}$. Set $U_{2}=\frac{1}{U^{W_{2}+1}} \cdot I_{3} . \operatorname{rng} U_{2} \subseteq \mathbb{N}$. Reconsider $Z=\sum U_{2}$ as an element of \mathbb{N}. For every natural number i such that $i+1 \in$ dom I_{2} holds $I_{2}(i+1)=\binom{W}{k+i} \cdot U^{W-^{\prime}(k+i)} \cdot 0<\sum I_{2}<$ $2 \cdot W^{k} \cdot U^{W-^{\prime} k} \cdot\left|\theta_{7}\right| \leqslant 1$ and $\left|\frac{5 \cdot k}{M}\right| \leqslant 1 .\left|\theta_{7} \cdot\left(Z \cdot \frac{5 \cdot k}{M}\right)\right| \leqslant 1 \cdot\left|Z \cdot \frac{5 \cdot k}{M}\right|$. Consider θ_{8} being a Theta such that $\left(1+I \cdot \frac{1}{U}\right)^{W}=1+\theta_{8} \cdot 2 \cdot W \cdot \frac{1}{U}$. Consider θ_{9} being a Theta such that $\theta_{7} \cdot\left(1+\theta_{8} \cdot 2 \cdot W \cdot \frac{1}{U}\right)=\theta_{9} \cdot 2$.

Consider i_{3} being a finite sequence of elements of \mathbb{R}, x being an element of \mathbb{R} such that $I_{2}=\langle x\rangle^{\wedge} i_{3}$. For every natural number i such that $i+1 \in$ dom i_{3} holds $i_{3}(i+1)=\binom{W}{k+1+i} \cdot U^{W-^{\prime}(k+1+i)} \cdot 0<\sum i_{3}<2 \cdot W^{k+1}$. $U^{W-^{\prime}(k+1)}$. Consider θ_{10} being a Theta such that $I \cdot\left(\frac{1}{U^{W_{2}}} \cdot\left(\sum i_{3}\right)\right)=$ $\theta_{10} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}\right)$. Reconsider $\theta_{12}=\frac{1}{\binom{W}{k}}$ as a Theta. Consider θ_{11} being a Theta such that $\theta_{10} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}\right)+\theta_{9} \cdot \frac{U^{k} \cdot 10 \cdot k}{M}=\theta_{11} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)$. Consider θ_{13}^{\prime} being a Theta such that $\binom{W}{k}=\frac{W^{k}}{k!} \cdot\left(1+\theta_{13}^{\prime} \cdot \frac{k^{2}}{W}\right)$. Consider θ_{13} being a Theta such that $\frac{1}{1+\theta_{13}^{\prime} \cdot \frac{k^{2}}{W}}=1+\theta_{13} \cdot 2 \cdot \frac{k^{2}}{W}$. Consider θ_{14} being a Theta such that $\frac{1}{1+\theta_{12} \cdot \theta_{11} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)}=1+\theta_{14} \cdot 2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)$.

Consider θ_{15} being a Theta such that $\left(1+\theta_{14} \cdot\left(2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)\right)\right)$. $\left(1+\theta_{13} \cdot\left(2 \cdot \frac{k^{2}}{W}\right)\right)=1+\theta_{15} \cdot\left(2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)+2 \cdot\left(2 \cdot \frac{k^{2}}{W}\right)\right)$.
(16) Let us consider natural numbers f, k. Suppose $f=k$! and $k>0$. Then there exist natural numbers m, r, s, t, u and there exist natural numbers W, U, S, T, Q and there exists a non trivial natural number M such that $m>0$ and $u>0$ and $r+W+1=\mathrm{y}_{M \cdot(U+1)}(W+1)$ and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $W^{2} \cdot u^{2}-\left(W^{2}-1\right) \cdot S \cdot u-1 \equiv 0(\bmod Q)$ and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+$ $4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$.
Proof: Set $W=100 \cdot f \cdot k \cdot(k+1)$. Set $u=W^{k}$. Set $U=100 \cdot u^{3} \cdot W^{3}+1$. Set $I_{1}=\left\langle\binom{ W}{0} U^{0} 1^{W}, \ldots,\binom{W}{W} U^{W} 1^{0}\right\rangle$. Set $I_{3}=I_{1} \upharpoonright k$. Reconsider $W_{2}=$ $W-k$ as a natural number. Consider I_{2} being a finite sequence such that $I_{1}=I_{3} \wedge I_{2}$. For every natural number i such that $i+1 \in \operatorname{dom} I_{3}$ holds $I_{3}(i+1)=\binom{W}{0+i} \cdot U^{W-^{\prime}(0+i)} \cdot 0<\sum I_{3}<2 \cdot W^{0} \cdot U^{W-^{\prime} 0}$. Set $U_{2}=\frac{1}{U^{W_{2}+1}} \cdot I_{3}$. $\operatorname{rng} U_{2} \subseteq \mathbb{N}$. Reconsider $Z=\sum U_{2}$ as an element of \mathbb{N}. Set $m=Z$. Set $M=100 \cdot m \cdot U \cdot W+1$. Set $m_{1}=M \cdot(U+1)$. Reconsider $M_{3}=M \cdot U$ as a non trivial natural number. Set $S=\mathrm{y}_{M}(k+1)$. Set $T=\mathrm{y}_{M_{3}}\left(W_{2}+1\right)$. Reconsider $r=\mathrm{y}_{m_{1}}(W+1)-(W+1)$ as a natural number. Consider s being an integer such that $(M-1) \cdot s=S-(k+1)$.

Consider t being an integer such that $\left(M_{3}-1\right) \cdot t=T-\left(W_{2}+1\right)$. For every natural number i such that $i+1 \in$ dom I_{2} holds $I_{2}(i+1)=$ $\left(\begin{array}{c}W+i\end{array}\right) \cdot U^{W-{ }^{\prime}(k+i)} \cdot 0<\sum I_{2}<2 \cdot W^{k} \cdot U^{W-^{\prime} k}$. Consider θ_{1} being a Theta such that $\mathrm{y}_{m_{1}}(W+1)=\left(2 \cdot m_{1}\right)^{W} \cdot\left(1+\theta_{1} \cdot \frac{W}{m_{1}}\right)$. Reconsider $I=1$ as a Theta. Consider θ_{3} being a Theta such that $\mathrm{y}_{M}(k+1)=(2 \cdot M)^{k} \cdot\left(1+\theta_{3} \cdot \frac{k}{M}\right)$. Consider θ_{4} being a Theta such that $\mathrm{y}_{M_{3}}\left(W_{2}+1\right)=\left(2 \cdot M_{3}\right)^{W_{2}} \cdot\left(1+\theta_{4} \cdot \frac{W_{2}}{M_{3}}\right)$. Consider θ_{3}^{\prime} being a Theta such that $\frac{1}{1+\theta_{3} \cdot \frac{k}{M}}=1+\theta_{3}^{\prime} \cdot 2 \cdot \frac{k}{M}$. Consider θ_{4}^{\prime} being a Theta such that $\frac{1}{1+\theta_{4} \cdot \frac{W_{2}}{M_{3}}}=1+\theta_{4}^{\prime} \cdot 2 \cdot \frac{W_{2}}{M_{3}}$. Consider θ_{2} being a Theta such that $\theta_{1} \cdot \frac{W}{m_{1}}-\frac{W+1}{\left(2 \cdot m_{1}\right)^{W}}=\theta_{2} \cdot \frac{1}{M}$. Consider θ_{5} being a Theta such that $\left(1+\theta_{3}^{\prime} \cdot\left(2 \cdot \frac{k}{M}\right)\right) \cdot\left(1+\theta_{2} \cdot \frac{1}{M}\right)=1+\theta_{5} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}\right)$. Consider θ_{6} being a Theta such that $\left(1+\theta_{5} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}\right)\right) \cdot\left(1+\theta_{4}^{\prime} \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)=$ $1+\theta_{6} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}+2 \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)$. Consider θ_{7} being a Theta such that $\theta_{6} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}+2 \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)=\theta_{7} \cdot \frac{5 \cdot k}{M}$.

Consider u_{1} being a finite sequence of elements of \mathbb{N}, y being an element of \mathbb{N} such that $U_{2}=\langle y\rangle{ }^{\wedge} u_{1}$. Consider θ_{8} being a Theta such that $\left(1+I \cdot \frac{1}{U}\right)^{W}=1+\theta_{8} \cdot 2 \cdot W \cdot \frac{1}{U}$. Consider θ_{9} being a Theta such that
$\theta_{7} \cdot\left(1+\theta_{8} \cdot 2 \cdot W \cdot \frac{1}{U}\right)=\theta_{9} \cdot 2$. Consider i_{3} being a finite sequence of elements of \mathbb{R}, x being an element of \mathbb{R} such that $I_{2}=\langle x\rangle{ }^{\wedge} i_{3}$. For every natural number i such that $i+1 \in \operatorname{dom} i_{3}$ holds $i_{3}(i+1)=\binom{W}{k+1+i} \cdot U^{W}-^{\prime}(k+1+i)$. $0<\sum i_{3}<2 \cdot W^{k+1} \cdot U^{W--^{\prime}(k+1)}$. Consider θ_{10} being a Theta such that $I \cdot\left(\frac{1}{U^{W_{2}}} \cdot\left(\sum i_{3}\right)\right)=\theta_{10} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}\right)$. Reconsider $\theta_{12}=\frac{1}{\binom{W}{k}}$ as a Theta.

Consider θ_{11} being a Theta such that $\theta_{10} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}\right)+\theta_{9} \cdot \frac{U^{k} \cdot 10 \cdot k}{M}=$ $\theta_{11} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)$. Consider θ_{13}^{\prime} being a Theta such that $\binom{W}{k}=$ $\frac{W^{k}}{k!} \cdot\left(1+\theta_{13}^{\prime} \cdot \frac{k^{2}}{W}\right)$. Consider θ_{13} being a Theta such that $\frac{1}{1+\theta_{13}^{\prime} \cdot \frac{k^{2}}{W}}=1+\theta_{13}$. $2 \cdot \frac{k^{2}}{W}$. Consider θ_{14} being a Theta such that $\frac{1}{1+\theta_{12} \cdot \theta_{11} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)}=$ $1+\theta_{14} \cdot 2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)$. Consider θ_{15} being a Theta such that $\left(1+\theta_{14} \cdot\left(2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)\right)\right) \cdot\left(1+\theta_{13} \cdot\left(2 \cdot \frac{k^{2}}{W}\right)\right)=1+\theta_{15} \cdot(2 \cdot$ $\left.\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)+2 \cdot\left(2 \cdot \frac{k^{2}}{W}\right)\right)$. Set $R=r-m \cdot S \cdot T \cdot U . R \neq 0$.
(17) Let us consider a non trivial natural number A, natural numbers C, B, and e. Suppose $0<B$. Suppose $C=\mathrm{y}_{A}(B)$. Then there exist natural numbers i, j and there exist natural numbers D, E, F, G, H, I such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $B \leqslant C$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot(i+1) \cdot D \cdot(e+1) \cdot C^{2}$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot j \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$. Proof: Set $x=\mathrm{x}_{A}(B)$. Set $D=x^{2}$. There exist natural numbers q, i such that $2 \cdot D \cdot(e+1) \cdot C^{2} \cdot(i+1)=\mathrm{y}_{A}(q)$ by [1, (14)], [6, (4)]. Consider q, i being natural numbers such that $2 \cdot D \cdot(e+1) \cdot C^{2} \cdot(i+1)=\mathrm{y}_{A}(q)$. Set $F=\left(\mathrm{x}_{A}(q)\right)^{2}$. Reconsider $G=A+F \cdot(F-A)$ as a non trivial natural number. Set $H=\mathrm{y}_{G}(B) . H \equiv B(\bmod 2 \cdot C)$. Consider j being an integer such that $H-B=2 \cdot C \cdot j$.
(18) Let us consider a non trivial natural number A, natural numbers C, B, and a natural number e. Suppose $0<B$. Let us consider natural numbers i, j, and integers D, E, F, G, H, I. Suppose $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $B \leqslant C$ and $D=\left(A^{\mathbf{2}}-1\right) \cdot C^{\mathbf{2}}+1$ and $E=2 \cdot(i+1) \cdot D \cdot(e+1) \cdot C^{\mathbf{2}}$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot j \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$. Then $C=\mathrm{y}_{A}(B)$.
Proof: Consider d being a natural number such that $d^{2}=D$. Consider f being a natural number such that $f^{2}=F$. Consider i_{2} being a natural number such that $i_{2}{ }^{2}=I$. Consider i_{1} being a natural number such that $d=\mathrm{x}_{A}\left(i_{1}\right)$ and $C=\mathrm{y}_{A}\left(i_{1}\right)$. Consider n_{1} being a natural number such that $f=\mathrm{x}_{A}\left(n_{1}\right)$ and $E=\mathrm{y}_{A}\left(n_{1}\right)$. Consider j_{1} being a natural number such that $i_{2}=\mathrm{x}_{G}\left(j_{1}\right)$ and $H=\mathrm{y}_{G}\left(j_{1}\right) . \mathrm{y}_{G}\left(j_{1}\right) \equiv j_{1}(\bmod 2 \cdot C)$.
(19) Diophantine Representation of Solutions to Pell's Equation: Let us consider a non trivial natural number A, natural numbers C, B, and e. Suppose $0<B$. Then $C=\mathrm{y}_{A}(B)$ if and only if there exist natural numbers i, j and there exist integers D, E, F, G, H, I such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $B \leqslant C$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot(i+1) \cdot D \cdot(e+1) \cdot C^{2}$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot j \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$. The theorem is a consequence of (17) and (18).
(20) Let us consider a non trivial natural number A, a natural number C, and positive natural numbers B, L. Then $C=\mathrm{y}_{A}(B)$ if and only if there exist positive natural numbers i, j and there exist integers D, E, F, G, H, I such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $B \leqslant C$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$. The theorem is a consequence of (17) and (18).

3. Prime Diophantine Representation

Now we state the propositions:
(21) Let us consider a natural number k, and a positive natural number L. Suppose $k>0$. Then $k+1$ is prime if and only if there exist positive natural numbers f, i, j, m, u and there exist natural numbers r, s, t and there exist integers $A, B, C, D, E, F, G, H, I, W, U, M, S, T, Q$ such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $W^{2} \cdot u^{2}-\left(W^{2}-1\right) \cdot S \cdot u-1 \equiv 0(\bmod Q)$ and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $k+1 \mid f+1$ and $A=M \cdot(U+1)$ and $B=W+1$ and $C=r+W+1$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$.
Proof: If $k+1$ is prime, then there exist positive natural numbers f, i, j, m, u and there exist natural numbers r, s, t and there exist integers A, $B, C, D, E, F, G, H, I, W, U, M, S, T, Q$ such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $W^{2} \cdot u^{2}-\left(W^{2}-1\right) \cdot S \cdot u-1 \equiv 0(\bmod Q)$ and $\left(4 \cdot f^{2}-1\right)$. $(r-m \cdot S \cdot T \cdot U)^{2}+4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $k+1 \mid f+1$ and $A=M \cdot(U+1)$ and $B=W+1$ and $C=r+W+1$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and
$G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1 . C=\mathrm{y}_{A}(B) . f=k!$.
(22) Let us consider integers a, b, A, B. Suppose a and b are relatively prime. Then $a \mid A$ and $b \mid B$ if and only if $a \cdot b \mid a \cdot B+b \cdot A$.
(23) Diophantine Representation of Prime Numbers with 8 Explicite Unknowns:
Let us consider a natural number k. Suppose $k>0$. Then $k+1$ is prime if and only if there exist positive natural numbers f, i, j, m, u and there exist natural numbers r, s, t and there exist integers A, B, C, D, $E, F, G, H, I, L, W, U, M, S, T, Q$ such that $D \cdot F \cdot I$ is a square and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $F \cdot L \mid(H-C) \cdot L+F \cdot(f+1) \cdot Q+F \cdot(k+1) \cdot\left(\left(W^{2}-1\right) \cdot S \cdot u-W^{2} \cdot u^{2}+1\right)$ and $A=M \cdot(U+1)$ and $B=W+1$ and $C=r+W+1$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$ and $L=(k+1) \cdot Q$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$.
Proof: If $k+1$ is prime, then there exist positive natural numbers f, i, j, m, u and there exist natural numbers r, s, t and there exist integers A, B, $C, D, E, F, G, H, I, L, W, U, M, S, T, Q$ such that $D \cdot F \cdot I$ is a square and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $F \cdot L \mid(H-C) \cdot L+F \cdot(f+1) \cdot Q+F \cdot(k+1) \cdot\left(\left(W^{2}-1\right) \cdot S \cdot u-W^{2} \cdot u^{2}+1\right)$ and $A=M \cdot(U+1)$ and $B=W+1$ and $C=r+W+1$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$ and $L=(k+1) \cdot Q$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$ by [9, (22)], (16).
$F \mid H-C$ and $Q \cdot(k+1) \mid(f+1) \cdot Q+(k+1) \cdot\left(\left(W^{2}-1\right) \cdot S \cdot u-W^{2} \cdot u^{2}+1\right)$.
$Q \mid\left(W^{2}-1\right) \cdot S \cdot u-W^{2} \cdot u^{2}+1$ and $k+1 \mid f+1 . C=\mathrm{y}_{A}(B) . f=k!$.

References

[1] Marcin Acewicz and Karol Pak. Pell's equation. Formalized Mathematics, 25(3):197-204, 2017. doi 10.1515/forma-2017-0019.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. dol/10.10U7/s10817-017-9440-6
[4] James P. Jones, Sato Daihachiro, Hideo Wada, and Douglas Wiens. Diophantine representation of the set of prime numbers. The American Mathematical Monthly, 83(6):449-464, 1976.
[5] Yuri Matiyasevich. Primes are nonnegative values of a polynomial in 10 variables. Journal of Soviet Mathematics, 15:33-44, 1981. doi 10.1007/BF01404106
[6] Karol Pąk. The Matiyasevich theorem. Preliminaries. Formalized Mathematics, 25(4): 315-322, 2017. doi 10.1515/forma-2017-0029
[7] Karol Pak. Prime representing polynomial. Formalized Mathematics, 29(4):221-228, 2021. doi:10.2478/forma-2021-0020.
[8] Karol Pakk and Cezary Kaliszyk. Formalizing a diophantine representation of the set of prime numbers. In June Andronick and Leonardo de Moura, editors, 13th Internatıonal Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 26:1-26:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi 10.4230/LIPIcs.ITP.2022.26
[9] Marco Riccardi. The perfect number theorem and Wilson's theorem. Formalized Mathematics, $17(\mathbf{2}): 123-128$, 2009. doi $10.2478 / \mathrm{v} 10037-009-0013-\mathrm{y}$
[10] Zhi-Wei Sun. Further results on Hilbert's Tenth Problem. Science China Mathematics, 64:281-306, 2021. doi $10.1007 / \mathrm{s} 11425-020-1813-5$

Accepted December 27, 2022

