FORMALIZED MATHEMATICS DE .
vol. 30, No. 3, Pages 235-244, 2022 —~ % sclen d (@)
ISSN: 1426-2630, e-ISSN: 1898-9934 (J’

DOI: 10.2478 /forma-2022-0019 sciendo.com/journal/forma

Elementary Number Theory Problems.
Part VI

Adam Grabowski
Institute of Computer Science

University of Biatystok
Poland

Summary. This paper reports on the formalization in Mizar system [1], [2]
of ten selected problems from W. Sierpinski’s book “250 Problems in Elementary
Number Theory” [7] (see [6] for details of this concrete dataset). This article is
devoted mainly to arithmetic progressions: problems 52, 54, 55, 56, 60, 64, 70,
71, and 73 belong to the chapter “Arithmetic Progressions”, and problem 50 is
from “Relatively Prime Numbers”.
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1. PRELIMINARIES

Now we state the proposition:
(1) Let us consider a prime number p. If 3 | p, then p = 3.
Note that there exists a prime number which is even.
Now we state the propositions:
(2) Let us consider an even prime number p. Then p = 2.
(3) Let us consider prime numbers p, q. If p # ¢, then p and ¢ are relatively
prime.
Let f be an integer-valued function. We say that f is with all coprime terms
if and only if
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(Def. 1) for every natural numbers ¢, j such that ¢, j € dom f and i # j holds
f(i) and f(j) are relatively prime.

Now we state the proposition:

(4) Let us consider a sequence f of R, and a natural number n. Then f[n
is a finite 0-sequence.

2. ARITHMETIC PROGRESSIONS

Let f be a real-valued function. We say that f is AP-like if and only if

(Def. 2) for every natural numbers i, k such that ¢, i+ 1, k, k+ 1 € dom f holds
fli+1) = f@) = f(k+1) = f(k).

Let f be a real-valued finite sequence. We say that f is finite arithmetic

progression-like if and only if
(Def. 3) for every natural number i such that i, ¢ +1, i + 2 € dom f holds
Fi+2) = fi+1) = f(i+1) = ().

One can check that every real-valued finite sequence which is constant is also
finite arithmetic progression-like and every sequence of R which is constant is
also AP-like and idy is AP-like and idg is AP-like and there exists a sequence of
R which is AP-like and there exists a real-valued function which is AP-like and
there exists an integer-valued, real-valued finite O-sequence which is AP-like.

Let f be an AP-like, real-valued function and n be a natural number. Let
us note that f[n is AP-like.

An arithmetic progression is an AP-like sequence of R. Let a, r be real
numbers. The functor ArProg(a,r) yielding a sequence of R is defined by

(Def. 4) it(0) = a and for every natural number 4, it(i + 1) = it (i) + r.
Let us observe that ArProg(a,r) is AP-like. Now we state the proposition:
(5) Let us consider an arithmetic progression f, and a natural number i.
Then f(i +1) = f(i) = f(1) = f(0).
Let f be an arithmetic progression. The functor difference(f) yielding a real
number is defined by the term

(Def. 5)  f(1) — £(0).
Now we state the propositions:

(6) Let us consider an arithmetic progression f.
Then f = ArProg(f(0), difference(f)).
PROOF: Set a = f(0). Set » = f(1) — f(0). Define P[natural number] =
f($1) = (ArProg(a,r))($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number n, P[n]. O
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(7) Let us consider real numbers a, r, and a natural number i.
Then (ArProg(a,r))(i) =a+1i-r.
PROOF: Define P[natural number] = (ArProg(a,r))($1) = a + $; - 7. For

every natural number k such that P[k] holds P[k + 1]. For every natural
number n, Pln]. O

Let a, r be integers. Let us note that ArProg(a, r) is integer-valued and there
exists an arithmetic progression which is integer-valued.

Let a be an integer and r be a non zero integer. Let us observe that ArProg(a, r)
is non constant.

Let a be a real number and r be a positive real number. Let us observe that
ArProg(a,r) is increasing.

Let r be a non positive real number. One can verify that ArProg(a,r) is
non-increasing.

Let r be a negative real number. Note that ArProg(a, ) is decreasing.

Let r be a non negative real number. Let us note that ArProg(a,r) is non-
decreasing and ArProg(a,0) is constant and there exists an arithmetic pro-
gression which is constant and there exists an arithmetic progression which is
increasing and non-decreasing and there exists an arithmetic progression which
is decreasing and non-increasing.

Let f be an increasing arithmetic progression. One can verify that differen -
ce(f) is positive.

Let f be a decreasing arithmetic progression. Note that difference(f) is ne-
gative.

Let f be a non-increasing arithmetic progression. Observe that difference( f)
is non positive.

Let f be a non-decreasing arithmetic progression. Let us observe that differen -
ce(f) is non negative.

Let f be a constant arithmetic progression. One can verify that difference( f)
is zero. Now we state the proposition:

(8) Let us consider an arithmetic progression f. Suppose there exists a na-
tural number ¢ such that f(7) is an integer and difference(f) is an integer.
Then f is integer-valued.

PRroOF: Consider i being a natural number such that f(i) is an integer and
difference(f) is an integer. Define P[natural number] = f($1) is integer.
For every natural number k such that k # 0 and P[k] there exists a natural
number n such that n < k and P[n]. P[0]. For every object n such that
n € dom f holds f(n) is integer. O
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3. PROBLEM 50

Let n be a natural number. We say that n is Fibonacci if and only if
(Def. 6) there exists a natural number k such that n = Fib(k).

Let us note that there exists a natural number which is Fibonacci.
Now we state the propositions:
(9) Let us consider a natural number n. If Fib(n) > 1, then n > 2.

(10) Let us consider a natural number k. If k& > 0, then Fib(k) > 0.

(11) Let us consider natural numbers k, m. Suppose Fib(k) < Fib(m+1) and
1 < k. Then Fib(k) < Fib(m).

(12) Let us consider natural numbers k, n. Suppose n # 1 and k # 0 and
k # 1. If Fib(k) = Fib(n), then k = n. The theorem is a consequence of
(10).

Let us consider a natural number n. Now we state the propositions:

(13) If n > 2, then Fib(n) > 2.

(14) 1If n > 3, then Fib(n) > 3.

Let us consider natural numbers m, n. Now we state the propositions:

(15) If m < n and m > 3, then Fib(n) — Fib(m) > 1. The theorem is a con-
sequence of (13).

(16) If m < n and m > 4, then Fib(n) — Fib(m) > 2. The theorem is a con-
sequence of (14).

Let f be a sequence of R. We say that f is Fibonacci-valued if and only if
(Def. 7) for every natural number n, there exists a natural number f; such that
fa = f(n) and f4 is Fibonacci.
Let us observe that every sequence of R which is Fibonacci-valued is also
integer-valued and there exists a sequence of R which is Fibonacci-valued.
Let n be a natural number. One can verify that Fib(n) is Fibonacci.
Now we state the proposition:

(17) There exists a Fibonacci-valued sequence f of R such that f is increasing
and with all coprime terms.

PROOF: Define F(natural number) = Fib(pr($;)). Consider f being a se-
quence of R such that for every natural number n, f(n) = F(n). For every
natural number n, f(n) < f(n+1) by [0, (46)]. For every natural number
n, there exists a natural number f; such that fy = f(n) and f4 is Fibo-
nacci. For every natural numbers ¢, j such that i, j € dom f and i # j
holds f(i) and f(j) are relatively prime by [3l, (21)], (3), [8, (5)]. O

Let us observe that there exists an integer-valued sequence of R which is

Fibonacci-valued, increasing, and with all coprime terms.
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4. TRIANGULAR NUMBERS

Let us consider a natural number n. Now we state the propositions:
(18) (i) 3| n,or
(ii) 3|n+1,or
(iii) 3| n+ 2.
ProorF: 3 |n—1iff 3|n+2.0
(19) (i) 4|n,or
(ii) 4 |n+1, or
(iii) 4| n+2, or
(iv) 4| n+ 3.
(20) Let us consider natural numbers n, k, [. Then 3 | n + [ if and only if
3|n+l14+3- k.
Let f be a function. We say that f is triangular-valued if and only if
(Def. 8) for every object n, f(n) is triangular.

One can check that every number which is triangular is also integer and
every sequence of R which is triangular-valued is also integer-valued and there
exists an integer-valued sequence of R which is triangular-valued and (0) is
triangular-valued as a finite sequence.

5. PROBLEM 52

Now we state the propositions:
(21) Let us consider natural numbers m, k, . Suppose k #l and 1 <k <m
and 1 <! <m. Then m!-k+1 and m! -]+ 1 are relatively prime.

(22) Let us consider a natural number n. Then there exists an AP-like,
integer-valued finite 0-sequence f such that

(i) dom f > n, and

(ii) f is with all coprime terms.
PROOF: Set f = ArProg(n! + 1,n!). Reconsider f3 = f[n as an integer-
valued finite 0-sequence. For every natural number &, f(k) = n!-(k+1)+1.
For every natural number & such that k41 < n holds f3(k) = n!-(k+1)+1.

For every natural numbers ¢, j such that ¢, j € dom f3 and ¢ # j holds
f3(i) and f3(j) are relatively prime. OJ
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6. PROBLEM b4

Let x, y, z be real numbers. We say that x, y and z form an arithmetic
progression if and only if

(Def. 9) y—x=2z—y.
Now we state the propositions:

(23) Let us consider natural numbers z, y, z. Suppose y = 5 -z + 2 and
z="7-x+ 3. Then

(i) x-(x+1),y-(y+1) and z- (2 + 1) form an arithmetic progression,
and

(i) z <y <z

(24) {(z,y,z), where x is a real number, y is a real number, z is a real number

cz-(x+1),y-(y+1) and z- (2 + 1) form an arithmetic progression} is
infinite.
PRrROOF: Set Ay = {(x,y, ), where z is a real number, y is a real number,
z is a real number : - (x+1), y-(y+1) and z- (2 +1) form an arithmetic
progression }. Reconsider x = 1 as a natural number. Reconsider y = 5-2+2
as a natural number. Define Plelement of R,element of A;] = $2 = (31,
5-$%1 + 2,781 + 3). For every element z of R, there exists an element y
of Ay such that Pz, y]. Consider f being a function from R into A; such
that for every element = of R, P[z, f(z)]. For every objects x1, x2 such
that 1, xo € R and f(x1) = f(z2) holds z1 = x9. O

7. PROBLEM 55

Now we state the proposition:

(25) Let us consider natural numbers a, b, c¢. Suppose a? + b? = 2 and a, b
and ¢ form an arithmetic progression. Then there exists an integer i such
that

(i) a=3-1, and
(ii) b=4-14, and
(i) c=5-i.
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8. PROBLEM 56

Let k£ be a natural number. Observe that Triangle(4 - £ + 1) is odd and

Triangle4 - k is even.
Let us consider a natural number n. Now we state the propositions:

(26) 3| Triangle(3 - n + 2).
(27) 3| Triangle3 - n.

(28) 3| Triangle(3-n+1) — 1.

(29) Let us consider a natural number i. Then 3 { (ArProg(2,3))(i). The
theorem is a consequence of (7).

(30) {i, where i is a natural number : (ArProg(0,1))(¢) is triangular} is infi-
nite.
PROOF: Set X = {4, where 7 is a natural number : (ArProg(0,1))(¢) is tri-
angular}. For every natural number m, there exists a natural number n
such that n > m and n € X by [4, (19)], (7). O

(31) {i, where ¢ is a natural number : (ArProg(0,2))(¢) is triangular} is infi-
nite.
PROOF: Set X = {4, where 7 is a natural number : (ArProg(0,2))(7) is tri-
angular}. For every natural number m, there exists a natural number n
such that n > m and n € X. U

(32) {i, where i is a natural number : (ArProg(1,2))(¢) is triangular} is infi-
nite.
PROOF: Set X = {4, where 7 is a natural number : (ArProg(1,2))() is tri-
angular}. For every natural number m, there exists a natural number n
such that n > m and n € X. I

(33) Let us consider a natural number i. Then 3t (ArProg(2,3))(i) — 1. The
theorem is a consequence of (7).

(34) Let us consider a natural number i. Then (ArProg(2,3))(7) is not trian-
gular. The theorem is a consequence of (28), (33), (29), (26), and (27).

9. PROBLEM 60

Let n be a natural number. We say that n is perfect power if and only if

(Def. 10) there exists a natural number x and there exists a natural number k

such that & > 1 and n = z*.

Now we state the proposition:

(35) There exists a natural number n such that

(i) n is perfect power, and
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(ii) n+ 1 is perfect power.

Let us note that there exists a natural number which is even and perfect
power. Now we state the propositions:

(36) Let us consider an even natural number n, and a natural number k. If
k > 1, then 4 | nk.
(37) Let us consider an even, perfect power natural number n. Then 4 | n.
The theorem is a consequence of (36).
(38) Let us consider a natural number k. Then 4 - k + 2 is not perfect power.
The theorem is a consequence of (37).
(39) Let us consider a prime number p. Then p is not perfect power.
One can verify that every natural number which is prime is also non perfect
power and every natural number which is a square is also perfect power.
Now we state the proposition:
(40) There exists no natural number n such that n is perfect power and n+1

is perfect power and n+ 2 is perfect power and n + 3 is perfect power. The
theorem is a consequence of (38).

10. PROBLEM 64

Now we state the propositions:

(41) Let us consider natural numbers k, [, m. Suppose 0 < k < [ < m and
it is not true that k = 2 and [ = 3 and m = 4 and it is not true that
k=1and | =4 and m = 5 and Fib(m) — Fib(l) = Fib(l) — Fib(k) and
Fib(l) — Fib(k) > 0. Then

(i) 1 > 2, and
(ii) k=1-2, and
(ifi) m =1+ 1.

PROOF: Set ug = Fib(l). Set ug = Fib(m). Fib(l) > 1. I > 2. u3 < ug + us.
Fib(m) < Fib(l 4+ 1). O

(42) Fib(1) — Fib(0) # Fib(2) — Fib(1).
(43) Fib(1) — Fib(0) = Fib(3) — Fib(1).
(44) Fib(2) — Fib(0) = Fib(3) — Fib(2).
(45) Fib(3) — Fib(2) = Fib(4) — Fib(3).
(46) Fib(5) = 5.

(47) Fib(5) — Fib(4) = Fib(4) — Fib(1)
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(48) There exist no natural numbers k, I, m, n such that 0 < k < | <
m < n and Fib(m) — Fib(l) = Fib(l) — Fib(k) = Fib(n) — Fib(m) and
Fib(l) — Fib(k) > 0. The theorem is a consequence of (41), (15), and (16).

11. PROBLEM 70

Now we state the propositions:

(49) Let us consider an arithmetic progression f, and prime numbers pi, po,
ps. Suppose difference(f) = 10 and there exists a natural number ¢ such
that p1 = f(i) and po = f(i + 1) and p3 = f(i + 2). Then p; = 3. The
theorem is a consequence of (20), (5), and (18).

(50) There exists no arithmetic progression f such that difference(f) = 10
and there exist prime numbers pi, p2, p3, ps and there exists a natural
number i such that p1, pa, ps, ps are mutually different and p; = f(4)
and po = f(i+ 1) and ps = f(i +2) and ps = f(i + 3). The theorem is
a consequence of (8), (5), (20), (18), and (1).

12. PROBLEM 71

Now we state the propositions:

(51) There exists no arithmetic progression f such that difference(f) = 100
and there exist prime numbers pi, p2, p3 and there exists a natural number
i such that p1, pa, p3 are mutually different and p; = f(7) and p2 = f(i+1)
and ps = f(i+2). The theorem is a consequence of (8), (5), (20), (1), and
(18).

(52) There exists no arithmetic progression f such that difference(f) = 1000
and there exist prime numbers pi, p2, p3 and there exists a natural number
i such that p1, pa, p3 are mutually different and p; = f(i) and p2 = f(i+1)
and p3 = f(i+2). The theorem is a consequence of (8), (5), (20), (1), and
(18).

13. PROBLEM 73

Let k& be an integer. We say that k is not representable by a sum or a
difference of two primes if and only if

(Def. 11) there exist no prime numbers p1, ps such that k = p; +p2 or k = p; — po.

Let f be an integer-valued sequence of R. We say that f is with terms not
representable by a sum or a difference of two primes if and only if
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(Def. 12) for every natural number ¢, f(i) is not representable by a sum or a

difference of two primes.

Now we state the propositions:

(53) Let us consider an integer k. Then 30 - k + 7 is odd.
(54) Let us consider a natural number k. Suppose k£ > 1. Then 30 - k + 7 is

not representable by a sum or a difference of two primes. The theorem is
a consequence of (53).

Note that ArProg(37,30) is with terms not representable by a sum or a

difference of two primes.

(1]

(7]
(8]
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