

Elementary Number Theory Problems. Part VI

Adam Grabowski[®] Institute of Computer Science University of Białystok Poland

Summary. This paper reports on the formalization in Mizar system [1], [2] of ten selected problems from W. Sierpinski's book "250 Problems in Elementary Number Theory" [7] (see [6] for details of this concrete dataset). This article is devoted mainly to arithmetic progressions: problems 52, 54, 55, 56, 60, 64, 70, 71, and 73 belong to the chapter "Arithmetic Progressions", and problem 50 is from "Relatively Prime Numbers".

MSC: 11B25 03B35 68V20

Keywords: number theory; arithmetic progression; prime number

MML identifier: NUMBER06, version: 8.1.12 5.71.1431

1. Preliminaries

Now we state the proposition:

(1) Let us consider a prime number p. If $3 \mid p$, then p = 3. Note that there exists a prime number which is even.

Now we state the propositions:

- (2) Let us consider an even prime number p. Then p = 2.
- (3) Let us consider prime numbers p, q. If $p \neq q$, then p and q are relatively prime.

Let f be an integer-valued function. We say that f is with all coprime terms if and only if

(Def. 1) for every natural numbers i, j such that $i, j \in \text{dom } f$ and $i \neq j$ holds f(i) and f(j) are relatively prime.

Now we state the proposition:

(4) Let us consider a sequence f of \mathbb{R} , and a natural number n. Then $f \upharpoonright n$ is a finite 0-sequence.

2. ARITHMETIC PROGRESSIONS

Let f be a real-valued function. We say that f is AP-like if and only if

(Def. 2) for every natural numbers i, k such that $i, i + 1, k, k + 1 \in \text{dom } f$ holds f(i+1) - f(i) = f(k+1) - f(k).

Let f be a real-valued finite sequence. We say that f is finite arithmetic progression-like if and only if

(Def. 3) for every natural number
$$i$$
 such that $i, i + 1, i + 2 \in \text{dom } f$ holds $f(i+2) - f(i+1) = f(i+1) - f(i)$.

One can check that every real-valued finite sequence which is constant is also finite arithmetic progression-like and every sequence of \mathbb{R} which is constant is also AP-like and $id_{\mathbb{N}}$ is AP-like and $id_{\mathbb{R}}$ is AP-like and there exists a sequence of \mathbb{R} which is AP-like and there exists a real-valued function which is AP-like and there exists an integer-valued, real-valued finite 0-sequence which is AP-like.

Let f be an AP-like, real-valued function and n be a natural number. Let us note that $f \upharpoonright n$ is AP-like.

An arithmetic progression is an AP-like sequence of \mathbb{R} . Let a, r be real numbers. The functor $\operatorname{ArProg}(a, r)$ yielding a sequence of \mathbb{R} is defined by

(Def. 4) it(0) = a and for every natural number i, it(i+1) = it(i) + r.

Let us observe that $\operatorname{ArProg}(a, r)$ is AP-like. Now we state the proposition:

(5) Let us consider an arithmetic progression f, and a natural number i. Then f(i+1) - f(i) = f(1) - f(0).

Let f be an arithmetic progression. The functor difference(f) yielding a real number is defined by the term

(Def. 5) f(1) - f(0).

Now we state the propositions:

(6) Let us consider an arithmetic progression f. Then $f = \operatorname{ArProg}(f(0), \operatorname{difference}(f))$.

PROOF: Set a = f(0). Set r = f(1) - f(0). Define $\mathcal{P}[\text{natural number}] \equiv f(\$_1) = (\operatorname{ArProg}(a, r))(\$_1)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $n, \mathcal{P}[n]$. \Box

(7) Let us consider real numbers a, r, and a natural number i. Then $(\operatorname{ArProg}(a, r))(i) = a + i \cdot r$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv (\operatorname{ArProg}(a, r))(\$_1) = a + \$_1 \cdot r$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $n, \mathcal{P}[n]$. \Box

Let a, r be integers. Let us note that $\operatorname{ArProg}(a, r)$ is integer-valued and there exists an arithmetic progression which is integer-valued.

Let a be an integer and r be a non zero integer. Let us observe that $\operatorname{ArProg}(a, r)$ is non constant.

Let a be a real number and r be a positive real number. Let us observe that $\operatorname{ArProg}(a, r)$ is increasing.

Let r be a non positive real number. One can verify that $\operatorname{ArProg}(a, r)$ is non-increasing.

Let r be a negative real number. Note that $\operatorname{ArProg}(a, r)$ is decreasing.

Let r be a non negative real number. Let us note that $\operatorname{ArProg}(a, r)$ is nondecreasing and $\operatorname{ArProg}(a, 0)$ is constant and there exists an arithmetic progression which is constant and there exists an arithmetic progression which is increasing and non-decreasing and there exists an arithmetic progression which is decreasing and non-increasing.

Let f be an increasing arithmetic progression. One can verify that difference(f) is positive.

Let f be a decreasing arithmetic progression. Note that difference(f) is negative.

Let f be a non-increasing arithmetic progression. Observe that difference(f) is non positive.

Let f be a non-decreasing arithmetic progression. Let us observe that difference(f) is non negative.

Let f be a constant arithmetic progression. One can verify that difference(f) is zero. Now we state the proposition:

(8) Let us consider an arithmetic progression f. Suppose there exists a natural number i such that f(i) is an integer and difference(f) is an integer. Then f is integer-valued.

PROOF: Consider *i* being a natural number such that f(i) is an integer and difference(f) is an integer. Define $\mathcal{P}[\text{natural number}] \equiv f(\$_1)$ is integer. For every natural number k such that $k \neq 0$ and $\mathcal{P}[k]$ there exists a natural number n such that n < k and $\mathcal{P}[n]$. $\mathcal{P}[0]$. For every object n such that $n \in \text{dom } f$ holds f(n) is integer. \Box

3. Problem 50

Let n be a natural number. We say that n is Fibonacci if and only if (Def. 6) there exists a natural number k such that n = Fib(k).

Let us note that there exists a natural number which is Fibonacci. Now we state the propositions:

- (9) Let us consider a natural number n. If Fib(n) > 1, then n > 2.
- (10) Let us consider a natural number k. If k > 0, then Fib(k) > 0.
- (11) Let us consider natural numbers k, m. Suppose Fib(k) < Fib(m+1) and 1 < k. Then $Fib(k) \leq Fib(m)$.
- (12) Let us consider natural numbers k, n. Suppose $n \neq 1$ and $k \neq 0$ and $k \neq 1$. If Fib(k) = Fib(n), then k = n. The theorem is a consequence of (10).

Let us consider a natural number n. Now we state the propositions:

- (13) If n > 2, then $Fib(n) \ge 2$.
- (14) If n > 3, then $Fib(n) \ge 3$.

Let us consider natural numbers m, n. Now we state the propositions:

- (15) If m < n and m > 3, then Fib(n) Fib(m) > 1. The theorem is a consequence of (13).
- (16) If m < n and m > 4, then Fib(n) Fib(m) > 2. The theorem is a consequence of (14).

Let f be a sequence of \mathbb{R} . We say that f is Fibonacci-valued if and only if

(Def. 7) for every natural number n, there exists a natural number f_4 such that $f_4 = f(n)$ and f_4 is Fibonacci.

Let us observe that every sequence of \mathbb{R} which is Fibonacci-valued is also integer-valued and there exists a sequence of \mathbb{R} which is Fibonacci-valued.

Let n be a natural number. One can verify that Fib(n) is Fibonacci.

Now we state the proposition:

(17) There exists a Fibonacci-valued sequence f of \mathbb{R} such that f is increasing and with all coprime terms. **PROOF:** Define $\mathcal{T}(\text{netural number}) = \text{Fib}(\text{nr}(\P))$ Consider f being a set

PROOF: Define $\mathcal{F}(\text{natural number}) = \text{Fib}(\text{pr}(\$_1))$. Consider f being a sequence of \mathbb{R} such that for every natural number $n, f(n) = \mathcal{F}(n)$. For every natural number n, f(n) < f(n+1) by [5, (46)]. For every natural number n, there exists a natural number f_4 such that $f_4 = f(n)$ and f_4 is Fibonacci. For every natural numbers i, j such that $i, j \in \text{dom } f$ and $i \neq j$ holds f(i) and f(j) are relatively prime by [3, (21)], (3), [8, (5)]. \Box

Let us observe that there exists an integer-valued sequence of \mathbb{R} which is Fibonacci-valued, increasing, and with all coprime terms.

4. TRIANGULAR NUMBERS

Let us consider a natural number n. Now we state the propositions:

(18) (i) $3 \mid n$, or

- (ii) $3 \mid n+1$, or
- (iii) $3 \mid n+2$.

Proof: $3 \mid n-1$ iff $3 \mid n+2$. \Box

- (19) (i) $4 \mid n, \text{ or }$
 - (ii) $4 \mid n+1$, or
 - (iii) $4 \mid n+2$, or
 - (iv) $4 \mid n+3$.
- (20) Let us consider natural numbers n, k, l. Then $3 \mid n+l$ if and only if $3 \mid n+l+3 \cdot k$.

Let f be a function. We say that f is triangular-valued if and only if

(Def. 8) for every object n, f(n) is triangular.

One can check that every number which is triangular is also integer and every sequence of \mathbb{R} which is triangular-valued is also integer-valued and there exists an integer-valued sequence of \mathbb{R} which is triangular-valued and $\langle 0 \rangle$ is triangular-valued as a finite sequence.

5. Problem 52

Now we state the propositions:

- (21) Let us consider natural numbers m, k, l. Suppose $k \neq l$ and $1 \leq k \leq m$ and $1 \leq l \leq m$. Then $m! \cdot k + 1$ and $m! \cdot l + 1$ are relatively prime.
- (22) Let us consider a natural number n. Then there exists an AP-like, integer-valued finite 0-sequence f such that
 - (i) dom $f \ge n$, and
 - (ii) f is with all coprime terms.

PROOF: Set $f = \operatorname{ArProg}(n! + 1, n!)$. Reconsider $f_3 = f \upharpoonright n$ as an integervalued finite 0-sequence. For every natural number $k, f(k) = n! \cdot (k+1) + 1$. For every natural number k such that $k+1 \leq n$ holds $f_3(k) = n! \cdot (k+1) + 1$. For every natural numbers i, j such that $i, j \in \operatorname{dom} f_3$ and $i \neq j$ holds $f_3(i)$ and $f_3(j)$ are relatively prime. \Box

6. Problem 54

Let x, y, z be real numbers. We say that x, y and z form an arithmetic progression if and only if

(Def. 9) y - x = z - y.

Now we state the propositions:

- (23) Let us consider natural numbers x, y, z. Suppose $y = 5 \cdot x + 2$ and $z = 7 \cdot x + 3$. Then
 - (i) $x \cdot (x+1)$, $y \cdot (y+1)$ and $z \cdot (z+1)$ form an arithmetic progression, and
 - (ii) x < y < z.
- (24) {(x, y, z), where x is a real number, y is a real number, z is a real number : $x \cdot (x + 1)$, $y \cdot (y + 1)$ and $z \cdot (z + 1)$ form an arithmetic progression} is infinite.

PROOF: Set $A_1 = \{\langle x, y, z \rangle$, where x is a real number, y is a real number, z is a real number : $x \cdot (x+1)$, $y \cdot (y+1)$ and $z \cdot (z+1)$ form an arithmetic progression}. Reconsider x = 1 as a natural number. Reconsider $y = 5 \cdot x + 2$ as a natural number. Define \mathcal{P} [element of \mathbb{R} , element of A_1] $\equiv \$_2 = \langle \$_1, 5 \cdot \$_1 + 2, 7 \cdot \$_1 + 3 \rangle$. For every element x of \mathbb{R} , there exists an element y of A_1 such that $\mathcal{P}[x, y]$. Consider f being a function from \mathbb{R} into A_1 such that for every element x of \mathbb{R} , $\mathcal{P}[x, f(x)]$. For every objects x_1, x_2 such that $x_1, x_2 \in \mathbb{R}$ and $f(x_1) = f(x_2)$ holds $x_1 = x_2$. \Box

7. Problem 55

Now we state the proposition:

- (25) Let us consider natural numbers a, b, c. Suppose $a^2 + b^2 = c^2$ and a, b and c form an arithmetic progression. Then there exists an integer i such that
 - (i) $a = 3 \cdot i$, and
 - (ii) $b = 4 \cdot i$, and
 - (iii) $c = 5 \cdot i$.

8. Problem 56

Let k be a natural number. Observe that $\text{Triangle}(4 \cdot k + 1)$ is odd and $\text{Triangle} 4 \cdot k$ is even.

Let us consider a natural number n. Now we state the propositions:

- (26) $3 | \text{Triangle}(3 \cdot n + 2).$
- (27) $3 \mid \text{Triangle } 3 \cdot n.$
- (28) 3 | Triangle $(3 \cdot n + 1) 1$.
- (29) Let us consider a natural number *i*. Then $3 \nmid (\operatorname{ArProg}(2,3))(i)$. The theorem is a consequence of (7).
- (30) {*i*, where *i* is a natural number : $(\operatorname{ArProg}(0, 1))(i)$ is triangular} is infinite.

PROOF: Set $X = \{i, \text{ where } i \text{ is a natural number }: (\operatorname{ArProg}(0, 1))(i) \text{ is triangular}\}$. For every natural number m, there exists a natural number n such that $n \ge m$ and $n \in X$ by [4, (19)], (7). \Box

- (31) {*i*, where *i* is a natural number : $(\operatorname{ArProg}(0, 2))(i)$ is triangular} is infinite. PROOF: Set $X = \{i, \text{ where } i \text{ is a natural number : } (\operatorname{ArProg}(0, 2))(i) \text{ is triangular}\}$. For every natural number *m*, there exists a natural number *n* such that $n \ge m$ and $n \in X$. \Box
- (32) {*i*, where *i* is a natural number : $(\operatorname{ArProg}(1, 2))(i)$ is triangular} is infinite. PROOF: Set $X = \{i, \text{ where } i \text{ is a natural number : } (\operatorname{ArProg}(1, 2))(i) \text{ is triangular}$.

angular}. For every natural number m, there exists a natural number n such that $n \ge m$ and $n \in X$. \Box

- (33) Let us consider a natural number *i*. Then $3 \nmid (\operatorname{ArProg}(2,3))(i) 1$. The theorem is a consequence of (7).
- (34) Let us consider a natural number *i*. Then $(\operatorname{ArProg}(2,3))(i)$ is not triangular. The theorem is a consequence of (28), (33), (29), (26), and (27).

9. Problem 60

Let n be a natural number. We say that n is perfect power if and only if

(Def. 10) there exists a natural number x and there exists a natural number k such that k > 1 and $n = x^k$.

Now we state the proposition:

- (35) There exists a natural number n such that
 - (i) n is perfect power, and

(ii) n+1 is perfect power.

Let us note that there exists a natural number which is even and perfect power. Now we state the propositions:

- (36) Let us consider an even natural number n, and a natural number k. If k > 1, then $4 \mid n^k$.
- (37) Let us consider an even, perfect power natural number n. Then $4 \mid n$. The theorem is a consequence of (36).
- (38) Let us consider a natural number k. Then $4 \cdot k + 2$ is not perfect power. The theorem is a consequence of (37).
- (39) Let us consider a prime number p. Then p is not perfect power.

One can verify that every natural number which is prime is also non perfect power and every natural number which is a square is also perfect power.

Now we state the proposition:

(40) There exists no natural number n such that n is perfect power and n+1 is perfect power and n+2 is perfect power and n+3 is perfect power. The theorem is a consequence of (38).

10. Problem 64

Now we state the propositions:

- (41) Let us consider natural numbers k, l, m. Suppose 0 < k < l < m and it is not true that k = 2 and l = 3 and m = 4 and it is not true that k = 1 and l = 4 and m = 5 and $\operatorname{Fib}(m) - \operatorname{Fib}(l) = \operatorname{Fib}(l) - \operatorname{Fib}(k)$ and $\operatorname{Fib}(l) - \operatorname{Fib}(k) > 0$. Then
 - (i) l > 2, and
 - (ii) k = l 2, and
 - (iii) m = l + 1.

PROOF: Set $u_2 = Fib(l)$. Set $u_3 = Fib(m)$. Fib(l) > 1. l > 2. $u_3 < u_2 + u_2$. $Fib(m) \leq Fib(l+1)$. \Box

- (42) $Fib(1) Fib(0) \neq Fib(2) Fib(1).$
- (43) $\operatorname{Fib}(1) \operatorname{Fib}(0) = \operatorname{Fib}(3) \operatorname{Fib}(1).$
- (44) $\operatorname{Fib}(2) \operatorname{Fib}(0) = \operatorname{Fib}(3) \operatorname{Fib}(2).$
- (45) $\operatorname{Fib}(3) \operatorname{Fib}(2) = \operatorname{Fib}(4) \operatorname{Fib}(3).$
- (46) Fib(5) = 5.
- (47) $\operatorname{Fib}(5) \operatorname{Fib}(4) = \operatorname{Fib}(4) \operatorname{Fib}(1).$

(48) There exist no natural numbers k, l, m, n such that 0 < k < l < m < n and $\operatorname{Fib}(m) - \operatorname{Fib}(l) = \operatorname{Fib}(l) - \operatorname{Fib}(k) = \operatorname{Fib}(n) - \operatorname{Fib}(m)$ and $\operatorname{Fib}(l) - \operatorname{Fib}(k) > 0$. The theorem is a consequence of (41), (15), and (16).

11. Problem 70

Now we state the propositions:

- (49) Let us consider an arithmetic progression f, and prime numbers p_1 , p_2 , p_3 . Suppose difference(f) = 10 and there exists a natural number i such that $p_1 = f(i)$ and $p_2 = f(i+1)$ and $p_3 = f(i+2)$. Then $p_1 = 3$. The theorem is a consequence of (20), (5), and (18).
- (50) There exists no arithmetic progression f such that difference(f) = 10and there exist prime numbers p_1 , p_2 , p_3 , p_4 and there exists a natural number i such that p_1 , p_2 , p_3 , p_4 are mutually different and $p_1 = f(i)$ and $p_2 = f(i+1)$ and $p_3 = f(i+2)$ and $p_4 = f(i+3)$. The theorem is a consequence of (8), (5), (20), (18), and (1).

12. Problem 71

Now we state the propositions:

- (51) There exists no arithmetic progression f such that difference(f) = 100and there exist prime numbers p_1 , p_2 , p_3 and there exists a natural number i such that p_1 , p_2 , p_3 are mutually different and $p_1 = f(i)$ and $p_2 = f(i+1)$ and $p_3 = f(i+2)$. The theorem is a consequence of (8), (5), (20), (1), and (18).
- (52) There exists no arithmetic progression f such that difference(f) = 1000and there exist prime numbers p_1 , p_2 , p_3 and there exists a natural number i such that p_1 , p_2 , p_3 are mutually different and $p_1 = f(i)$ and $p_2 = f(i+1)$ and $p_3 = f(i+2)$. The theorem is a consequence of (8), (5), (20), (1), and (18).

13. Problem 73

Let k be an integer. We say that k is not representable by a sum or a difference of two primes if and only if

(Def. 11) there exist no prime numbers p_1 , p_2 such that $k = p_1 + p_2$ or $k = p_1 - p_2$. Let f be an integer-valued sequence of \mathbb{R} . We say that f is with terms not representable by a sum or a difference of two primes if and only if (Def. 12) for every natural number i, f(i) is not representable by a sum or a difference of two primes.

Now we state the propositions:

- (53) Let us consider an integer k. Then $30 \cdot k + 7$ is odd.
- (54) Let us consider a natural number k. Suppose $k \ge 1$. Then $30 \cdot k + 7$ is not representable by a sum or a difference of two primes. The theorem is a consequence of (53).

Note that $\operatorname{ArProg}(37, 30)$ is with terms not representable by a sum or a difference of two primes.

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Adam Grabowski. On square-free numbers. Formalized Mathematics, 21(2):153–162, 2013. doi:10.2478/forma-2013-0017.
- [4] Adam Grabowski. Polygonal numbers. Formalized Mathematics, 21(2):103–113, 2013. doi:10.2478/forma-2013-0012.
- [5] Magdalena Jastrzębska and Adam Grabowski. Some properties of Fibonacci numbers. Formalized Mathematics, 12(3):307–313, 2004.
- [6] Adam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308. Springer, 2020. doi:10.1007/978-3-030-53518-6_22.
- [7] Wacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.
- [8] Robert M. Solovay. Fibonacci numbers. Formalized Mathematics, 10(2):81-83, 2002.

Accepted September 30, 2022