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Summary. This paper reports on the formalization in Mizar system [1], [2]
of ten selected problems from W. Sierpinski’s book “250 Problems in Elementary
Number Theory” [7] (see [6] for details of this concrete dataset). This article is
devoted mainly to arithmetic progressions: problems 52, 54, 55, 56, 60, 64, 70,
71, and 73 belong to the chapter “Arithmetic Progressions”, and problem 50 is
from “Relatively Prime Numbers”.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider a prime number p. If 3 | p, then p = 3.

Note that there exists a prime number which is even.
Now we state the propositions:

(2) Let us consider an even prime number p. Then p = 2.

(3) Let us consider prime numbers p, q. If p 6= q, then p and q are relatively
prime.

Let f be an integer-valued function. We say that f is with all coprime terms
if and only if
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(Def. 1) for every natural numbers i, j such that i, j ∈ dom f and i 6= j holds
f(i) and f(j) are relatively prime.

Now we state the proposition:

(4) Let us consider a sequence f of R, and a natural number n. Then f�n
is a finite 0-sequence.

2. Arithmetic Progressions

Let f be a real-valued function. We say that f is AP-like if and only if

(Def. 2) for every natural numbers i, k such that i, i+ 1, k, k+ 1 ∈ dom f holds
f(i+ 1)− f(i) = f(k + 1)− f(k).

Let f be a real-valued finite sequence. We say that f is finite arithmetic
progression-like if and only if

(Def. 3) for every natural number i such that i, i + 1, i + 2 ∈ dom f holds
f(i+ 2)− f(i+ 1) = f(i+ 1)− f(i).

One can check that every real-valued finite sequence which is constant is also
finite arithmetic progression-like and every sequence of R which is constant is
also AP-like and idN is AP-like and idR is AP-like and there exists a sequence of
R which is AP-like and there exists a real-valued function which is AP-like and
there exists an integer-valued, real-valued finite 0-sequence which is AP-like.

Let f be an AP-like, real-valued function and n be a natural number. Let
us note that f�n is AP-like.

An arithmetic progression is an AP-like sequence of R. Let a, r be real
numbers. The functor ArProg(a, r) yielding a sequence of R is defined by

(Def. 4) it(0) = a and for every natural number i, it(i+ 1) = it(i) + r.

Let us observe that ArProg(a, r) is AP-like. Now we state the proposition:

(5) Let us consider an arithmetic progression f , and a natural number i.
Then f(i+ 1)− f(i) = f(1)− f(0).

Let f be an arithmetic progression. The functor difference(f) yielding a real
number is defined by the term

(Def. 5) f(1)− f(0).

Now we state the propositions:

(6) Let us consider an arithmetic progression f .
Then f = ArProg(f(0),difference(f)).
Proof: Set a = f(0). Set r = f(1) − f(0). Define P[natural number] ≡
f($1) = (ArProg(a, r))($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number n, P[n]. �
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(7) Let us consider real numbers a, r, and a natural number i.
Then (ArProg(a, r))(i) = a+ i · r.
Proof: Define P[natural number] ≡ (ArProg(a, r))($1) = a + $1 · r. For
every natural number k such that P[k] holds P[k + 1]. For every natural
number n, P[n]. �

Let a, r be integers. Let us note that ArProg(a, r) is integer-valued and there
exists an arithmetic progression which is integer-valued.

Let a be an integer and r be a non zero integer. Let us observe that ArProg(a, r)
is non constant.

Let a be a real number and r be a positive real number. Let us observe that
ArProg(a, r) is increasing.

Let r be a non positive real number. One can verify that ArProg(a, r) is
non-increasing.

Let r be a negative real number. Note that ArProg(a, r) is decreasing.
Let r be a non negative real number. Let us note that ArProg(a, r) is non-

decreasing and ArProg(a, 0) is constant and there exists an arithmetic pro-
gression which is constant and there exists an arithmetic progression which is
increasing and non-decreasing and there exists an arithmetic progression which
is decreasing and non-increasing.

Let f be an increasing arithmetic progression. One can verify that differen -
ce(f) is positive.

Let f be a decreasing arithmetic progression. Note that difference(f) is ne-
gative.

Let f be a non-increasing arithmetic progression. Observe that difference(f)
is non positive.

Let f be a non-decreasing arithmetic progression. Let us observe that differen -
ce(f) is non negative.

Let f be a constant arithmetic progression. One can verify that difference(f)
is zero. Now we state the proposition:

(8) Let us consider an arithmetic progression f . Suppose there exists a na-
tural number i such that f(i) is an integer and difference(f) is an integer.
Then f is integer-valued.
Proof: Consider i being a natural number such that f(i) is an integer and
difference(f) is an integer. Define P[natural number] ≡ f($1) is integer.
For every natural number k such that k 6= 0 and P[k] there exists a natural
number n such that n < k and P[n]. P[0]. For every object n such that
n ∈ dom f holds f(n) is integer. �
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3. Problem 50

Let n be a natural number. We say that n is Fibonacci if and only if

(Def. 6) there exists a natural number k such that n = Fib(k).

Let us note that there exists a natural number which is Fibonacci.
Now we state the propositions:

(9) Let us consider a natural number n. If Fib(n) > 1, then n > 2.

(10) Let us consider a natural number k. If k > 0, then Fib(k) > 0.

(11) Let us consider natural numbers k, m. Suppose Fib(k) < Fib(m+1) and
1 < k. Then Fib(k) ¬ Fib(m).

(12) Let us consider natural numbers k, n. Suppose n 6= 1 and k 6= 0 and
k 6= 1. If Fib(k) = Fib(n), then k = n. The theorem is a consequence of
(10).

Let us consider a natural number n. Now we state the propositions:

(13) If n > 2, then Fib(n)  2.

(14) If n > 3, then Fib(n)  3.

Let us consider natural numbers m, n. Now we state the propositions:

(15) If m < n and m > 3, then Fib(n)− Fib(m) > 1. The theorem is a con-
sequence of (13).

(16) If m < n and m > 4, then Fib(n)− Fib(m) > 2. The theorem is a con-
sequence of (14).

Let f be a sequence of R. We say that f is Fibonacci-valued if and only if

(Def. 7) for every natural number n, there exists a natural number f4 such that
f4 = f(n) and f4 is Fibonacci.

Let us observe that every sequence of R which is Fibonacci-valued is also
integer-valued and there exists a sequence of R which is Fibonacci-valued.

Let n be a natural number. One can verify that Fib(n) is Fibonacci.
Now we state the proposition:

(17) There exists a Fibonacci-valued sequence f of R such that f is increasing
and with all coprime terms.
Proof: Define F(natural number) = Fib(pr($1)). Consider f being a se-
quence of R such that for every natural number n, f(n) = F(n). For every
natural number n, f(n) < f(n+ 1) by [5, (46)]. For every natural number
n, there exists a natural number f4 such that f4 = f(n) and f4 is Fibo-
nacci. For every natural numbers i, j such that i, j ∈ dom f and i 6= j
holds f(i) and f(j) are relatively prime by [3, (21)], (3), [8, (5)]. �

Let us observe that there exists an integer-valued sequence of R which is
Fibonacci-valued, increasing, and with all coprime terms.
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4. Triangular Numbers

Let us consider a natural number n. Now we state the propositions:

(18) (i) 3 | n, or

(ii) 3 | n+ 1, or

(iii) 3 | n+ 2.
Proof: 3 | n− 1 iff 3 | n+ 2. �

(19) (i) 4 | n, or

(ii) 4 | n+ 1, or

(iii) 4 | n+ 2, or

(iv) 4 | n+ 3.

(20) Let us consider natural numbers n, k, l. Then 3 | n + l if and only if
3 | n+ l + 3 · k.

Let f be a function. We say that f is triangular-valued if and only if

(Def. 8) for every object n, f(n) is triangular.

One can check that every number which is triangular is also integer and
every sequence of R which is triangular-valued is also integer-valued and there
exists an integer-valued sequence of R which is triangular-valued and 〈0〉 is
triangular-valued as a finite sequence.

5. Problem 52

Now we state the propositions:

(21) Let us consider natural numbers m, k, l. Suppose k 6= l and 1 ¬ k ¬ m
and 1 ¬ l ¬ m. Then m! · k + 1 and m! · l + 1 are relatively prime.

(22) Let us consider a natural number n. Then there exists an AP-like,
integer-valued finite 0-sequence f such that

(i) dom f  n, and

(ii) f is with all coprime terms.

Proof: Set f = ArProg(n! + 1, n!). Reconsider f3 = f�n as an integer-
valued finite 0-sequence. For every natural number k, f(k) = n!·(k+1)+1.
For every natural number k such that k+1 ¬ n holds f3(k) = n!·(k+1)+1.
For every natural numbers i, j such that i, j ∈ dom f3 and i 6= j holds
f3(i) and f3(j) are relatively prime. �
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6. Problem 54

Let x, y, z be real numbers. We say that x, y and z form an arithmetic
progression if and only if

(Def. 9) y − x = z − y.
Now we state the propositions:

(23) Let us consider natural numbers x, y, z. Suppose y = 5 · x + 2 and
z = 7 · x+ 3. Then

(i) x · (x+ 1), y · (y + 1) and z · (z + 1) form an arithmetic progression,
and

(ii) x < y < z.

(24) {〈x, y, z〉, where x is a real number, y is a real number, z is a real number
: x · (x + 1), y · (y + 1) and z · (z + 1) form an arithmetic progression} is
infinite.
Proof: Set A1 = {〈x, y, z〉, where x is a real number, y is a real number,
z is a real number : x · (x+1), y · (y+1) and z · (z+1) form an arithmetic
progression}. Reconsider x = 1 as a natural number. Reconsider y = 5·x+2
as a natural number. Define P[element of R, element of A1] ≡ $2 = 〈$1,
5 · $1 + 2, 7 · $1 + 3〉. For every element x of R, there exists an element y
of A1 such that P[x, y]. Consider f being a function from R into A1 such
that for every element x of R, P[x, f(x)]. For every objects x1, x2 such
that x1, x2 ∈ R and f(x1) = f(x2) holds x1 = x2. �

7. Problem 55

Now we state the proposition:

(25) Let us consider natural numbers a, b, c. Suppose a2 + b2 = c2 and a, b
and c form an arithmetic progression. Then there exists an integer i such
that

(i) a = 3 · i, and

(ii) b = 4 · i, and

(iii) c = 5 · i.
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8. Problem 56

Let k be a natural number. Observe that Triangle(4 · k + 1) is odd and
Triangle 4 · k is even.

Let us consider a natural number n. Now we state the propositions:

(26) 3 | Triangle(3 · n+ 2).

(27) 3 | Triangle 3 · n.
(28) 3 | Triangle(3 · n+ 1)− 1.

(29) Let us consider a natural number i. Then 3 - (ArProg(2, 3))(i). The
theorem is a consequence of (7).

(30) {i, where i is a natural number : (ArProg(0, 1))(i) is triangular} is infi-
nite.
Proof: SetX = {i, where i is a natural number : (ArProg(0, 1))(i) is tri-
angular}. For every natural number m, there exists a natural number n
such that n  m and n ∈ X by [4, (19)], (7). �

(31) {i, where i is a natural number : (ArProg(0, 2))(i) is triangular} is infi-
nite.
Proof: SetX = {i, where i is a natural number : (ArProg(0, 2))(i) is tri-
angular}. For every natural number m, there exists a natural number n
such that n  m and n ∈ X. �

(32) {i, where i is a natural number : (ArProg(1, 2))(i) is triangular} is infi-
nite.
Proof: SetX = {i, where i is a natural number : (ArProg(1, 2))(i) is tri-
angular}. For every natural number m, there exists a natural number n
such that n  m and n ∈ X. �

(33) Let us consider a natural number i. Then 3 - (ArProg(2, 3))(i)− 1. The
theorem is a consequence of (7).

(34) Let us consider a natural number i. Then (ArProg(2, 3))(i) is not trian-
gular. The theorem is a consequence of (28), (33), (29), (26), and (27).

9. Problem 60

Let n be a natural number. We say that n is perfect power if and only if

(Def. 10) there exists a natural number x and there exists a natural number k
such that k > 1 and n = xk.

Now we state the proposition:

(35) There exists a natural number n such that

(i) n is perfect power, and
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(ii) n+ 1 is perfect power.

Let us note that there exists a natural number which is even and perfect
power. Now we state the propositions:

(36) Let us consider an even natural number n, and a natural number k. If
k > 1, then 4 | nk.

(37) Let us consider an even, perfect power natural number n. Then 4 | n.
The theorem is a consequence of (36).

(38) Let us consider a natural number k. Then 4 · k+ 2 is not perfect power.
The theorem is a consequence of (37).

(39) Let us consider a prime number p. Then p is not perfect power.

One can verify that every natural number which is prime is also non perfect
power and every natural number which is a square is also perfect power.

Now we state the proposition:

(40) There exists no natural number n such that n is perfect power and n+1
is perfect power and n+2 is perfect power and n+3 is perfect power. The
theorem is a consequence of (38).

10. Problem 64

Now we state the propositions:

(41) Let us consider natural numbers k, l, m. Suppose 0 < k < l < m and
it is not true that k = 2 and l = 3 and m = 4 and it is not true that
k = 1 and l = 4 and m = 5 and Fib(m) − Fib(l) = Fib(l) − Fib(k) and
Fib(l)− Fib(k) > 0. Then

(i) l > 2, and

(ii) k = l − 2, and

(iii) m = l + 1.

Proof: Set u2 = Fib(l). Set u3 = Fib(m). Fib(l) > 1. l > 2. u3 < u2+u2.
Fib(m) ¬ Fib(l + 1). �

(42) Fib(1)− Fib(0) 6= Fib(2)− Fib(1).

(43) Fib(1)− Fib(0) = Fib(3)− Fib(1).

(44) Fib(2)− Fib(0) = Fib(3)− Fib(2).

(45) Fib(3)− Fib(2) = Fib(4)− Fib(3).

(46) Fib(5) = 5.

(47) Fib(5)− Fib(4) = Fib(4)− Fib(1).
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(48) There exist no natural numbers k, l, m, n such that 0 < k < l <
m < n and Fib(m) − Fib(l) = Fib(l) − Fib(k) = Fib(n) − Fib(m) and
Fib(l)−Fib(k) > 0. The theorem is a consequence of (41), (15), and (16).

11. Problem 70

Now we state the propositions:

(49) Let us consider an arithmetic progression f , and prime numbers p1, p2,
p3. Suppose difference(f) = 10 and there exists a natural number i such
that p1 = f(i) and p2 = f(i + 1) and p3 = f(i + 2). Then p1 = 3. The
theorem is a consequence of (20), (5), and (18).

(50) There exists no arithmetic progression f such that difference(f) = 10
and there exist prime numbers p1, p2, p3, p4 and there exists a natural
number i such that p1, p2, p3, p4 are mutually different and p1 = f(i)
and p2 = f(i + 1) and p3 = f(i + 2) and p4 = f(i + 3). The theorem is
a consequence of (8), (5), (20), (18), and (1).

12. Problem 71

Now we state the propositions:

(51) There exists no arithmetic progression f such that difference(f) = 100
and there exist prime numbers p1, p2, p3 and there exists a natural number
i such that p1, p2, p3 are mutually different and p1 = f(i) and p2 = f(i+1)
and p3 = f(i+ 2). The theorem is a consequence of (8), (5), (20), (1), and
(18).

(52) There exists no arithmetic progression f such that difference(f) = 1000
and there exist prime numbers p1, p2, p3 and there exists a natural number
i such that p1, p2, p3 are mutually different and p1 = f(i) and p2 = f(i+1)
and p3 = f(i+ 2). The theorem is a consequence of (8), (5), (20), (1), and
(18).

13. Problem 73

Let k be an integer. We say that k is not representable by a sum or a
difference of two primes if and only if

(Def. 11) there exist no prime numbers p1, p2 such that k = p1+p2 or k = p1−p2.
Let f be an integer-valued sequence of R. We say that f is with terms not

representable by a sum or a difference of two primes if and only if
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(Def. 12) for every natural number i, f(i) is not representable by a sum or a
difference of two primes.

Now we state the propositions:

(53) Let us consider an integer k. Then 30 · k + 7 is odd.

(54) Let us consider a natural number k. Suppose k  1. Then 30 · k + 7 is
not representable by a sum or a difference of two primes. The theorem is
a consequence of (53).

Note that ArProg(37, 30) is with terms not representable by a sum or a
difference of two primes.
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