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Summary. This paper reports on the formalization of ten selected pro-
blems from W. Sierpinski’s book “250 Problems in Elementary Number Theory”
[5] using the Mizar system [4], [1], [2]. Problems 12, 13, 31, 32, 33, 35 and 40
belong to the chapter devoted to the divisibility of numbers, problem 47 con-
cerns relatively prime numbers, whereas problems 76 and 79 are taken from the
chapter on prime and composite numbers.
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1. Problem 12

Now we state the proposition:

(1) Let us consider natural numbers n, k. If n ↑↑ k = 0, then n = 0.

Let x be an odd natural number and i be a natural number. Let us note
that x ↑↑ i is odd.

Let x be a non zero, even natural number and i be a non zero natural
number. One can verify that x ↑↑ i is even. Now we state the proposition:

(2) Let us consider a non zero natural number n. Then there exists a non zero
natural number x such that for every natural number i, n | x ↑↑(i+ 1) + 1.

1The Mizar processing has been performed using the infrastructure of the University of
Bialystok High Performance Computing Center.
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2. Problem 13

Now we state the proposition:

(3) Let us consider natural numbers n, k. Suppose n = 4 · k+ 3. Then there
exist natural numbers p, q such that

(i) p = 4 · q + 3, and

(ii) p is prime, and

(iii) p | n.
Proof: Define P[natural number] ≡ if there exists a natural number k
such that $1 = 4 · k + 3, then there exist natural numbers p, q such that
p = 4 · q + 3 and p is prime and p | $1. For every natural number m such
that for every natural number l such that l < m holds P[l] holds P[m] by
[3, (28)], [6, (29)]. For every natural number n, P[n]. Consider p, q being
natural numbers such that p = 4 · q + 3 and p is prime and p | n. �

The functor 4k + 3 Primes yielding a subset of N is defined by

(Def. 1) for every natural number n, n ∈ it iff there exists a natural number k
such that n = 4 · k + 3 and n is prime.

Now we state the proposition:

(4) Let us consider a natural number n. If n ∈ 4k + 3 Primes, then n  3.

Let us observe that 4k + 3 Primes is infinite. Now we state the proposition:

(5) Let us consider a natural number n. Suppose n ∈ 4k + 3 Primes. Let
us consider an even natural number x, and a natural number i. Then
n - x ↑↑(i+ 2) + 1. The theorem is a consequence of (4).

3. Problem 31

Now we state the propositions:

(6) Let us consider an integer a. If 3 - a, then a3 mod 9 = 1 or a3 mod 9 = 8.

(7) Let us consider integers a, b, c. If 9 | a3 + b3 + c3, then 3 | a or 3 | b or
3 | c. The theorem is a consequence of (6).

4. Problem 32

Now we state the propositions:

(8) Let us consider integers a, b, c, n. Then a+ b+ c mod n = (a mod n) +
(b mod n) + (c mod n) mod n.
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(9) Let us consider integers a, b, c, d, n. Then a + b + c + d mod n =
(a mod n) + (b mod n) + (c mod n) + (d mod n) mod n. The theorem is
a consequence of (8).

(10) Let us consider integers a, b, c, d, e, n. Then a+ b+ c+ d+ e mod n =
(a mod n) + (b mod n) + (c mod n) + (d mod n) + (e mod n) mod n. The
theorem is a consequence of (9).

(11) Let us consider integers a1, a2, a3, a4, a5. Suppose 9 | a13 + a23 + a33 +
a4
3+ a53. Then 3 | a1 · a2 · a3 · a4 · a5. The theorem is a consequence of (6)

and (10).

5. Problem 33

From now on a, b, c, k, m, n denote natural numbers and p denotes a prime
number. Now we state the propositions:

(12) n mod (k + 1) = 0 or ... or n mod (k + 1) = k.

(13) Let us consider natural numbers x, y, z. If x and y are relatively prime
and x2 + y2 = z4, then 7 | x · y.

(14) (i) 15 and 20 are not relatively prime, and

(ii) 152 + 202 = 54, and

(iii) 7 - 15 · 20.

6. Problem 35

Let x, y be natural numbers. We say that x and y satisfy Sierpiński Problem
35 if and only if

(Def. 2) x ·(x+1) | y ·(y+1) and x - y and x+1 - y and x - y+1 and x+1 - y+1.

Now we state the propositions:

(15) Let us consider natural numbers x, y. Suppose x = 36 · k + 14 and
y = (12 · k + 5) · (18 · k + 7). Then x and y satisfy Sierpiński Problem 35.

(16) {〈〈x, y〉〉, where x, y are natural numbers : x and y satisfy Sierpiński
Problem 35} is infinite.
Proof: Set A = {〈〈x, y〉〉, where x, y are natural numbers : x and y satisfy
Sierpiński Problem 35}. Define F(natural number) = 〈〈36 · $1 + 14, (12 ·
$1+5)·(18·$1+7)〉〉. Consider f being a many sorted set indexed by N such
that for every element d of N, f(d) = F(d). rng f ⊆ A. f is one-to-one. �

(17) 14 and 35 satisfy Sierpiński Problem 35.
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(18) There exist no natural numbers x, y such that x < 14 and y < 35 and x
and y satisfy Sierpiński Problem 35.

7. Problem 40

Now we state the propositions:

(19) If a | b, then na − 1 | nb − 1.

(20) 22
n

+ 1 | 222
n
+1 − 2. The theorem is a consequence of (19).

8. Problem 47

Now we state the propositions:

(21) If n | 4, then n = 1 or n = 2 or n = 4.

(22) If n > 6, then there exist natural numbers a, b such that a > 1 and
b > 1 and n = a + b and a and b are relatively prime. The theorem is
a consequence of (21).

9. Problem 76

Let n be a natural number. We say that n satisfies Sierpiński Problem 76a
if and only if

(Def. 3) for every natural number x such that n < x < n + 10 holds x is not
prime.

Let m be a natural number. We say that m satisfies Sierpiński Problem 76b
if and only if

(Def. 4) for every natural number x such that 10 ·m < x < 10 · (m+ 1) holds x
is not prime.

Now we state the propositions:

(23) 113 satisfies Sierpiński Problem 76a.

(24) 114 satisfies Sierpiński Problem 76a.

(25) 115 satisfies Sierpiński Problem 76a.

(26) 116 satisfies Sierpiński Problem 76a.

(27) 117 satisfies Sierpiński Problem 76a.

(28) 139 satisfies Sierpiński Problem 76a.

(29) 181 satisfies Sierpiński Problem 76a.
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(30) If n satisfies Sierpiński Problem 76a and n ¬ 181,
then n ∈ {113, 114, 115, 116, 117, 139, 181}.

(31) 20 satisfies Sierpiński Problem 76b.

(32) 32 satisfies Sierpiński Problem 76b.

(33) 51 satisfies Sierpiński Problem 76b.

(34) 53 satisfies Sierpiński Problem 76b.

(35) 62 satisfies Sierpiński Problem 76b.

(36) If m satisfies Sierpiński Problem 76b and m ¬ 62,
then m ∈ {20, 32, 51, 53, 62}.

10. Problem 79

Now we state the propositions:

(37) If c 6= 0 and c < b, then a·b+cb is not integer.

(38) There exist no positive natural numbers m, n such that m2 − n2 = 1.

(39) There exist no positive natural numbers m, n such that m2 − n2 = 4.
The theorem is a consequence of (38).

(40) (2 · n+ 1)2 mod 8 = 1.
Proof: Define P[natural number] ≡ (2 · $1+ 1)2 mod 8 = 1. If P[k], then
P[k + 1]. P[k]. �

(41) If n is odd, then n2 mod 8 = 1. The theorem is a consequence of (40).

(42) Let us consider prime numbers q, s, t. Suppose q2 = s2 + t2. Then

(i) s is even and t is odd, or

(ii) s is odd and t is even.

The theorem is a consequence of (39).

(43) There exist no prime numbers q, s, t such that q2 = s2+t2. The theorem
is a consequence of (42) and (39).

(44) Let us consider prime numbers p, q, r, s, t. Suppose p2+q2 = r2+s2+t2.
Then

(i) p is even, or

(ii) q is even, or

(iii) r is even, or

(iv) s is even, or

(v) t is even.

(45) There exist no prime numbers p, q, r, s, t such that p2+q2 = r2+s2+t2.
The theorem is a consequence of (43) and (41).
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