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Summary. In this paper problems 17, 18, 26, 27, 28, and 98 from [9] are
formalized, using the Mizar formalism [8], [2], [3], [6].
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1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i
denotes an integer, r denotes a real number, and p denotes a prime number.

Let p be a prime number. One can verify that 1 mod p reduces to 1.
Let us consider n. One can verify that εN mod n reduces to εN and εZ mod n

reduces to εZ. Now we state the proposition:

(1) Let us consider a non empty, natural-membered set X. Suppose for every
a such that a ∈ X there exists b such that b > a and b ∈ X. Then X is
infinite.

Let us note that Neven is infinite and Nodd is infinite and every element of
Neven is even and every element of Nodd is odd. Now we state the propositions:

(2) n mod (k + 1) = 0 or ... or n mod (k + 1) = k.

(3) Let us consider integers a, b, c. If a · b | c, then a | c and b | c.
(4) Let us consider integers a, b, m. If a ≡ b (modm), then m - a or m | b.
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(5) If k is odd, then (−1)k ≡ −1 (modn).

(6) Let us consider integers a, b. Suppose k 6= 0 and a ≡ b (modnk). Then
a ≡ b (modn).

(7) 24·n ≡ 1 (mod 5).
Proof: Define P[natural number] ≡ 24·$1 ≡ 1 (mod 5). P[0]. For every k
such that P[k] holds P[k + 1]. P[k]. �

(8) 212·n ≡ 1 (mod 13).
Proof: Define P[natural number] ≡ 212·$1 ≡ 1 (mod 13). P[0]. For every
k such that P[k] holds P[k + 1]. P[k]. �

(9) 〈i〉 mod n = 〈i mod n〉.
(10) If n 6= 0, then for every integer-valued finite sequence f ,

∑
f ≡
∑

(f mod
n) (modn).
Proof: Define P[finite sequence of elements of Z] ≡

∑
$1 ≡

∑
($1 mod

n) (modn). For every finite sequence p of elements of Z and for every
element x of Z such that P[p] holds P[p a 〈x〉]. For every finite sequence
p of elements of Z, P[p]. �

(11) If (a 6= 0 or b 6= 0) and c 6= 0 and a, b, c are mutually coprime, then a · b
and c are relatively prime.

(12) If (a 6= 0 or b 6= 0) and c 6= 0 and a, b, c are mutually coprime and a | n
and b | n and c | n, then a · b · c | n.

(13) If k is odd, then an + 1 | an·k + 1.

(14) Let us consider an even natural number n. Suppose n | 2n + 2. Then
there exists a non zero, odd natural number k such that 2n + 2 = n · k.

2. Main Problems

Now we state the propositions:

(15) Let us consider an even natural number n. Suppose n | 2n + 2 and
n− 1 | 2n + 1. Let us consider a natural number n1. If n1 = 2n + 2, then
n1−1 | 2n1 + 1 and n1 | 2n1 + 2. The theorem is a consequence of (14) and
(13).

(16) {n, where n is a non zero, even natural number : n | 2n + 2 and n− 1 |
2n + 1} is infinite.
Proof: Set X = {n, where n is a non zero, even natural number : n |
2n + 2 and n− 1 | 2n + 1}. X is natural-membered. For every a such that
a ∈ X there exists b such that b > a and b ∈ X. �

Let i be an integer. We say that i is double odd if and only if

(Def. 1) there exists an odd integer j such that i = 2 · j.
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Let i be a natural number. Let us observe that i is double odd if and only if
the condition (Def. 2) is satisfied.

(Def. 2) there exists an odd natural number j such that i = 2 · j.
Note that there exists an integer which is double odd and every integer which

is double odd is also even. Let i be an odd integer. Observe that i2+ 1 is double
odd and i2 + 1 is double odd.

Let r be a complex number and n be a natural number. The functor OddEven -
Powers(r, n) yielding a complex-valued finite sequence is defined by

(Def. 3) len it = n and for every natural number i such that 1 ¬ i ¬ n for every
natural number m such that m = n − i holds if i is odd, then it(i) = rm

and if i is even, then it(i) = −rm.

Let r be a real number. Let us observe that OddEvenPowers(r, n) is real-
valued. Let r be an integer. Let us observe that OddEvenPowers(r, n) is Z-
valued. Let us consider a complex number r. Now we state the propositions:

(17) OddEvenPowers(r, 1) = 〈1〉.
(18)

∑
OddEvenPowers(r, 1) = 1. The theorem is a consequence of (17).

(19) OddEvenPowers(r, 2·(k+1)+1) = 〈r2·k+2,−r2·k+1〉aOddEvenPowers(r, 2·
k + 1).
Proof: Set n = 2·(k+1)+1. SetN = 2·k+1. Set f = OddEvenPowers(r, n).
Set p = 〈r2·k+2,−r2·k+1〉. Set q = OddEvenPowers(r,N). For every natu-
ral number x such that x ∈ dom p holds f(x) = p(x). For every natural
number x such that x ∈ dom q holds f(len p+ x) = q(x). �

(20)
∑

OddEvenPowers(r, 2·k+3) = r2·k+2−r2·k+1+
∑

OddEvenPowers(r, 2·
k + 1). The theorem is a consequence of (19).

(21) r2·n+1 + 1 = (r + 1) · (
∑

OddEvenPowers(r, 2 · n+ 1)).
Proof: Define P[natural number] ≡ r2·$1+1+1 = (r+1)·(

∑
OddEvenPo -

wers(r, 2 · $1 + 1)). P[0]. If P[k], then P[k + 1]. P[k]. �

Let us consider an odd prime number p. Now we state the propositions:

(22) If pk+1 | apk + 1, then pk+2 | apk+1 + 1.
Proof: Set b = ap

k
. b ≡ −1 (mod p). For every natural number L,

b2·L ≡ 1 (mod p). For every natural number L, b2·L+1 ≡ −1 (mod p) by [1,
(34)]. Reconsider F = OddEvenPowers(b, p) as a Z-valued finite sequence.
ReconsiderM = F mod p as a Z-valued finite sequence. For every natural
number x such that 1 ¬ x ¬ lenF holds M(x) = 1. Set P = p 7→ 1. For
every k such that k ∈ domP holds M(k) = P (k).

∑
F ≡

∑
M (mod p).

�

(23) If p | a+ 1, then pk+1 | apk + 1 and pk | apk + 1.
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Proof: Define P[natural number] ≡ p$1+1 | ap$1 + 1. For every natural
number x such that P[x] holds P[x+1]. For every natural number x, P[x].
�

(24) Let us consider an odd natural number a. Suppose a > 1. Let us consider
a natural number s. Suppose s is double odd and as+ 1 is double odd and
s | as + 1. Then

(i) as + 1 > s, and

(ii) as + 1 is double odd, and

(iii) aa
s+1 + 1 is double odd, and

(iv) as + 1 | aas+1 + 1.

(25) Let us consider a natural number a. If a > 1, then {n, where n is a natural
number : n | an + 1} is infinite. The theorem is a consequence of (24) and
(1).

(26) {n, where n is a natural number : n | 2n + 2} is infinite. The theorem is
a consequence of (16).

(27) {n, where n is a natural number : 5 | 2n − 3} is infinite.
Proof: Set A = {n, where n is a natural number : 5 | 2n − 3}. Define
F(natural number) = 4 · $1 + 3. Consider f being a many sorted set
indexed by N such that for every element d of N, f(d) = F(d). rng f ⊆ A.
f is one-to-one. �

(28) {n, where n is a natural number : 13 | 2n − 3} is infinite.
Proof: Set A = {n, where n is a natural number : 13 | 2n − 3}. Define
F(natural number) = 12 · $1 + 4. Consider f being a many sorted set
indexed by N such that for every element d of N, f(d) = F(d). rng f ⊆ A.
f is one-to-one. �

(29) 2n+12 ≡ 2n (mod 65).

(30) 2n ≡ 2nmod12 (mod 65).
Proof: Define P[natural number] ≡ 2$1 ≡ 2$1mod 12 (mod 65). If P[k],
then P[k + 1] by [7, (11)], [4, (4)]. P[k]. �

(31) 65 - 2n − 3. The theorem is a consequence of (30) and (2).

(32) 341 is composite.

(33) 561 is composite.

(34) 645 is composite.

(35) 1105 is composite.

(36) 341 | 2341 − 2.

(37) 3 | 2561 − 2.

(38) 11 | 2561 − 2.
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(39) 17 | 2561 − 2.

(40) 561 | 2561−2. The theorem is a consequence of (37), (38), (39), and (12).

(41) 3 | 2645 − 2.

(42) 5 | 2645 − 2.

(43) 43 | 2645 − 2.

(44) 645 | 2645−2. The theorem is a consequence of (41), (42), (43), and (12).

(45) 5 | 21105 − 2.

(46) 13 | 21105 − 2.

(47) 17 | 21105 − 2.

(48) 1105 | 21105 − 2. The theorem is a consequence of (45), (46), (47), and
(12).

(49) Let us consider a composite natural number n. If n ¬ 1105 and n | 2n−2,
then n ∈ {341, 561, 645, 1105}.

(50) 341 - 3341 − 3. The theorem is a consequence of (4) and (3).

(51) 3 | 3561 − 3.

(52) 11 | 3561 − 3.

(53) 17 | 3561 − 3.

(54) 561 | 3561−3. The theorem is a consequence of (51), (52), (53), and (12).

Now we state the propositions:

(55) 43 - 3645 − 3.

(56) 645 - 3645 − 3. The theorem is a consequence of (55).

Now we state the propositions:

(57) 5 | 31105 − 3.

(58) 13 | 31105 − 3.

(59) 17 | 31105 − 3.

(60) 1105 | 31105 − 3. The theorem is a consequence of (57), (58), (59), and
(12).

(61) If n ¬ 1105 and n is composite and n | 2n − 2 and n | 3n − 3, then
n ∈ {561, 1105}. The theorem is a consequence of (49), (50), and (56).

(62) If n | 2n − 2 and n - 3n − 3, then n is composite.

(63) If n ¬ 341 and n | 2n − 2 and n - 3n − 3, then n = 341. The theorem is
a consequence of (62) and (49).

(64) If m and n are relatively prime, then a ·n+m and n are relatively prime.

(65) 7 | 106·k+4 + 3. The theorem is a consequence of (64).

(66) 106·k+4 + 3 is composite. The theorem is a consequence of (65).
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(67) {10n+ 3, where n is a natural number : 10n+ 3 is composite} is infinite.
Proof: SetX = {10n+3, where n is a natural number : 10n+3 is compo-
site}. Set z = 106·0+4 + 3. z is composite. X is natural-membered. For
every a such that a ∈ X there exists b such that b > a and b ∈ X by [5,
(66)]. �
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