Elementary Number Theory Problems. Part IV

Artur Korniłowicz
Institute of Computer Science
University of Białystok
Poland

Summary. In this paper problems $17,18,26,27,28$, and 98 from [9] are formalized, using the Mizar formalism [8, [2], 3], [6].

MSC: 11A41 03B35 68V20
Keywords: number theory; divisibility; primes
MML identifier: NUMBERO4, version: 8.1.12 5.71.1431

1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i denotes an integer, r denotes a real number, and p denotes a prime number.

Let p be a prime number. One can verify that $1 \bmod p$ reduces to 1 .
Let us consider n. One can verify that $\varepsilon_{\mathbb{N}} \bmod n$ reduces to $\varepsilon_{\mathbb{N}}$ and $\varepsilon_{\mathbb{Z}} \bmod n$ reduces to $\varepsilon_{\mathbb{Z}}$. Now we state the proposition:
(1) Let us consider a non empty, natural-membered set X. Suppose for every a such that $a \in X$ there exists b such that $b>a$ and $b \in X$. Then X is infinite.
Let us note that $\mathbb{N}_{\text {even }}$ is infinite and $\mathbb{N}_{\text {odd }}$ is infinite and every element of $\mathbb{N}_{\text {even }}$ is even and every element of $\mathbb{N}_{\text {odd }}$ is odd. Now we state the propositions:
(2) $n \bmod (k+1)=0$ or \ldots or $n \bmod (k+1)=k$.
(3) Let us consider integers a, b, c. If $a \cdot b \mid c$, then $a \mid c$ and $b \mid c$.
(4) Let us consider integers a, b, m. If $a \equiv b(\bmod m)$, then $m \nmid a$ or $m \mid b$.
(5) If k is odd, then $(-1)^{k} \equiv-1(\bmod n)$.
(6) Let us consider integers a, b. Suppose $k \neq 0$ and $a \equiv b\left(\bmod n^{k}\right)$. Then $a \equiv b(\bmod n)$.
(7) $2^{4 \cdot n} \equiv 1(\bmod 5)$.

Proof: Define \mathcal{P} [natural number] $\equiv 2^{4 \cdot \$_{1}} \equiv 1(\bmod 5) . \mathcal{P}[0]$. For every k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. $\mathcal{P}[k]$.
(8) $2^{12 \cdot n} \equiv 1(\bmod 13)$.

Proof: Define \mathcal{P} [natural number] $\equiv 2^{12 \cdot \$_{1}} \equiv 1(\bmod 13) . \mathcal{P}[0]$. For every k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1] . \mathcal{P}[k]$.
(9) $\langle i\rangle \bmod n=\langle i \bmod n\rangle$.
(10) If $n \neq 0$, then for every integer-valued finite sequence $f, \sum f \equiv \sum(f \bmod$ $n)(\bmod n)$.
Proof: Define \mathcal{P} [finite sequence of elements of $\mathbb{Z}] \equiv \sum \$_{1} \equiv \sum\left(\$_{1} \bmod \right.$ $n)(\bmod n)$. For every finite sequence p of elements of \mathbb{Z} and for every element x of \mathbb{Z} such that $\mathcal{P}[p]$ holds $\mathcal{P}\left[p^{\frown}\langle x\rangle\right]$. For every finite sequence p of elements of $\mathbb{Z}, \mathcal{P}[p]$.
(11) If ($a \neq 0$ or $b \neq 0$) and $c \neq 0$ and a, b, c are mutually coprime, then $a \cdot b$ and c are relatively prime.
(12) If ($a \neq 0$ or $b \neq 0$) and $c \neq 0$ and a, b, c are mutually coprime and $a \mid n$ and $b \mid n$ and $c \mid n$, then $a \cdot b \cdot c \mid n$.
(13) If k is odd, then $a^{n}+1 \mid a^{n \cdot k}+1$.
(14) Let us consider an even natural number n. Suppose $n \mid 2^{n}+2$. Then there exists a non zero, odd natural number k such that $2^{n}+2=n \cdot k$.

2. Main Problems

Now we state the propositions:
(15) Let us consider an even natural number n. Suppose $n \mid 2^{n}+2$ and $n-1 \mid 2^{n}+1$. Let us consider a natural number n_{1}. If $n_{1}=2^{n}+2$, then $n_{1}-1 \mid 2^{n_{1}}+1$ and $n_{1} \mid 2^{n_{1}}+2$. The theorem is a consequence of (14) and (13).
(16) $\left\{n\right.$, where n is a non zero, even natural number : $n \mid 2^{n}+2$ and $n-1 \mid$ $\left.2^{n}+1\right\}$ is infinite.
Proof: Set $X=\{n$, where n is a non zero, even natural number : $n \mid$ $2^{n}+2$ and $\left.n-1 \mid 2^{n}+1\right\}$. X is natural-membered. For every a such that $a \in X$ there exists b such that $b>a$ and $b \in X$.
Let i be an integer. We say that i is double odd if and only if
(Def. 1) there exists an odd integer j such that $i=2 \cdot j$.

Let i be a natural number. Let us observe that i is double odd if and only if the condition (Def. 2) is satisfied.
(Def. 2) there exists an odd natural number j such that $i=2 \cdot j$.
Note that there exists an integer which is double odd and every integer which is double odd is also even. Let i be an odd integer. Observe that $i^{2}+1$ is double odd and $i^{2}+1$ is double odd.

Let r be a complex number and n be a natural number. The functor OddEvenPowers (r, n) yielding a complex-valued finite sequence is defined by
(Def. 3) len $i t=n$ and for every natural number i such that $1 \leqslant i \leqslant n$ for every natural number m such that $m=n-i$ holds if i is odd, then $i t(i)=r^{m}$ and if i is even, then $i t(i)=-r^{m}$.
Let r be a real number. Let us observe that $\operatorname{OddEvenPowers}(r, n)$ is realvalued. Let r be an integer. Let us observe that $\operatorname{OddEvenPowers}(r, n)$ is \mathbb{Z} valued. Let us consider a complex number r. Now we state the propositions:
(17) $\operatorname{OddEvenPowers}(r, 1)=\langle 1\rangle$.
(18) $\sum \operatorname{OddEvenPowers}(r, 1)=1$. The theorem is a consequence of (17).
(19) $\operatorname{OddEvenPowers}(r, 2 \cdot(k+1)+1)=\left\langle r^{2 \cdot k+2},-r^{2 \cdot k+1}\right\rangle \cap \operatorname{OddEvenPowers}(r, 2 \cdot$ $k+1)$.
Proof: Set $n=2 \cdot(k+1)+1$. Set $N=2 \cdot k+1$. Set $f=\operatorname{OddEvenPowers}(r, n)$.
Set $p=\left\langle r^{2 \cdot k+2},-r^{2 \cdot k+1}\right\rangle$. Set $q=\operatorname{OddEvenPowers}(r, N)$. For every natural number x such that $x \in \operatorname{dom} p$ holds $f(x)=p(x)$. For every natural number x such that $x \in \operatorname{dom} q$ holds $f(\operatorname{len} p+x)=q(x)$.
(20) $\quad \sum \operatorname{OddEvenPowers}(r, 2 \cdot k+3)=r^{2 \cdot k+2}-r^{2 \cdot k+1}+\sum \operatorname{OddEvenPowers}(r, 2$. $k+1)$. The theorem is a consequence of (19).
(21) $\quad r^{2 \cdot n+1}+1=(r+1) \cdot\left(\sum \operatorname{OddEvenPowers}(r, 2 \cdot n+1)\right)$.

Proof: Define \mathcal{P} [natural number] $\equiv r^{2 \cdot \$_{1}+1}+1=(r+1) \cdot\left(\sum\right.$ OddEvenPowers $\left.\left(r, 2 \cdot \$_{1}+1\right)\right) . \mathcal{P}[0]$. If $\mathcal{P}[k]$, then $\mathcal{P}[k+1] . \mathcal{P}[k]$.

Let us consider an odd prime number p. Now we state the propositions:
(22) If $p^{k+1} \mid a^{p^{k}}+1$, then $p^{k+2} \mid a^{p^{k+1}}+1$.

Proof: Set $b=a^{p^{k}}$. $b \equiv-1(\bmod p)$. For every natural number L, $b^{2 \cdot L} \equiv 1(\bmod p)$. For every natural number $L, b^{2 \cdot L+1} \equiv-1(\bmod p)$ by [1, (34)]. Reconsider $F=\operatorname{OddEvenPowers}(b, p)$ as a \mathbb{Z}-valued finite sequence. Reconsider $M=F \bmod p$ as a \mathbb{Z}-valued finite sequence. For every natural number x such that $1 \leqslant x \leqslant \operatorname{len} F$ holds $M(x)=1$. Set $P=p \mapsto 1$. For every k such that $k \in \operatorname{dom} P$ holds $M(k)=P(k) . \sum F \equiv \sum M(\bmod p)$.
(23) If $p \mid a+1$, then $p^{k+1} \mid a^{p^{k}}+1$ and $p^{k} \mid a^{p^{k}}+1$.

Proof: Define \mathcal{P} [natural number] $\equiv p^{\$_{1}+1} \mid a^{p^{\$_{1}}}+1$. For every natural number x such that $\mathcal{P}[x]$ holds $\mathcal{P}[x+1]$. For every natural number $x, \mathcal{P}[x]$.
(24) Let us consider an odd natural number a. Suppose $a>1$. Let us consider a natural number s. Suppose s is double odd and $a^{s}+1$ is double odd and $s \mid a^{s}+1$. Then
(i) $a^{s}+1>s$, and
(ii) $a^{s}+1$ is double odd, and
(iii) $a^{a^{s}+1}+1$ is double odd, and
(iv) $a^{s}+1 \mid a^{a^{s}+1}+1$.
(25) Let us consider a natural number a. If $a>1$, then $\{n$, where n is a natural number : $\left.n \mid a^{n}+1\right\}$ is infinite. The theorem is a consequence of (24) and (1).
(26) $\left\{n\right.$, where n is a natural number : $\left.n \mid 2^{n}+2\right\}$ is infinite. The theorem is a consequence of (16).
(27) $\left\{n\right.$, where n is a natural number : $\left.5 \mid 2^{n}-3\right\}$ is infinite.

Proof: Set $A=\left\{n\right.$, where n is a natural number : $\left.5 \mid 2^{n}-3\right\}$. Define \mathcal{F} (natural number) $=4 \cdot \$_{1}+3$. Consider f being a many sorted set indexed by \mathbb{N} such that for every element d of $\mathbb{N}, f(d)=\mathcal{F}(d)$. rng $f \subseteq A$. f is one-to-one.
(28) $\left\{n\right.$, where n is a natural number : $\left.13 \mid 2^{n}-3\right\}$ is infinite.

Proof: Set $A=\left\{n\right.$, where n is a natural number : $\left.13 \mid 2^{n}-3\right\}$. Define \mathcal{F} (natural number) $=12 \cdot \$_{1}+4$. Consider f being a many sorted set indexed by \mathbb{N} such that for every element d of $\mathbb{N}, f(d)=\mathcal{F}(d)$. rng $f \subseteq A$.
f is one-to-one.
(29) $2^{n+12} \equiv 2^{n}(\bmod 65)$.
(30) $2^{n} \equiv 2^{n \bmod 12}(\bmod 65)$.

Proof: Define \mathcal{P} [natural number] $\equiv 2^{\$_{1}} \equiv 2^{\$_{1} \bmod 12}(\bmod 65)$. If $\mathcal{P}[k]$, then $\mathcal{P}[k+1]$ by [7, (11)], [4, (4)]. $\mathcal{P}[k]$.
(31) $65 \nmid 2^{n}-3$. The theorem is a consequence of (30) and (2).
(32) 341 is composite.
(33) 561 is composite.
(34) 645 is composite.
(35) 1105 is composite.
(36) $341 \mid 2^{341}-2$.
(37) $3 \mid 2^{561}-2$.
(38) $11 \mid 2^{561}-2$.
(39) $17 \mid 2^{561}-2$.
(40) $561 \mid 2^{561}-2$. The theorem is a consequence of (37), (38), (39), and (12).
(41) $3 \mid 2^{645}-2$.
(42) $5 \mid 2^{645}-2$.
(43) $43 \mid 2^{645}-2$.
(44) $645 \mid 2^{645}-2$. The theorem is a consequence of (41), (42), (43), and (12).
(45) $5 \mid 2^{1105}-2$.
(46) $13 \mid 2^{1105}-2$.
(47) $17 \mid 2^{1105}-2$.
(48) $1105 \mid 2^{1105}-2$. The theorem is a consequence of (45), (46), (47), and (12).
(49) Let us consider a composite natural number n. If $n \leqslant 1105$ and $n \mid 2^{n}-2$, then $n \in\{341,561,645,1105\}$.
(50) $341 \nmid 3^{341}-3$. The theorem is a consequence of (4) and (3).
(51) $3 \mid 3^{561}-3$.
(52) $11 \mid 3^{561}-3$.
(53) $17 \mid 3^{561}-3$.
(54) $561 \mid 3^{561}-3$. The theorem is a consequence of (51), (52), (53), and (12).

Now we state the propositions:
(55) $43 \nmid 3^{645}-3$.
(56) $645 \nmid 3^{645}-3$. The theorem is a consequence of (55).

Now we state the propositions:
(57) $5 \mid 3^{1105}-3$.
(58) $13 \mid 3^{1105}-3$.
(59) $17 \mid 3^{1105}-3$.
(60) $1105 \mid 3^{1105}-3$. The theorem is a consequence of (57), (58), (59), and (12).
(61) If $n \leqslant 1105$ and n is composite and $n \mid 2^{n}-2$ and $n \mid 3^{n}-3$, then $n \in\{561,1105\}$. The theorem is a consequence of (49), (50), and (56).
(62) If $n \mid 2^{n}-2$ and $n \nmid 3^{n}-3$, then n is composite.
(63) If $n \leqslant 341$ and $n \mid 2^{n}-2$ and $n \nmid 3^{n}-3$, then $n=341$. The theorem is a consequence of (62) and (49).
(64) If m and n are relatively prime, then $a \cdot n+m$ and n are relatively prime.
(65) $7 \mid 10^{6 \cdot k+4}+3$. The theorem is a consequence of (64).
(66) $10^{6 \cdot k+4}+3$ is composite. The theorem is a consequence of (65).
(67) $\left\{10^{n}+3\right.$, where n is a natural number : $10^{n}+3$ is composite $\}$ is infinite. Proof: Set $X=\left\{10^{n}+3\right.$, where n is a natural number : $10^{n}+3$ is composite $\}$. Set $z=10^{6 \cdot 0+4}+3 . z$ is composite. X is natural-membered. For every a such that $a \in X$ there exists b such that $b>a$ and $b \in X$ by [5, (66)].

References

[1] Kenichi Arai and Hiroyuki Okazaki. Properties of primes and multiplicative group of a field. Formalized Mathematics, 17(2):151-155, 2009. doi $10.2478 /$ v10037-009-0017-7
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ siU817-017-9440-6
[4] Yoshinori Fuiisawa and Yasushi Fuwa. Definitions of radix-2 ${ }^{k}$ signed-digit number and its adder algorithm Formalized Mathematics, y(1):71-75, 2001.
[5] Yoshinori Fuiisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers Formalized Mathematıcs, 7(2):317-321, 1998.
[6] Artur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems 83 Structures, 44:238-250, December 2015. doi $10.1016 / \mathrm{j} . \mathrm{cl} .2015 .07 .002$
[7] Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics, 15(4):181-187, 2007. doi 10.2478/v10037-007-0022-7.
[8] Adam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmuller and Bruce R. Miller, editors, Intelligent Computer Mathematics - 13 th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303-308. Springer, 2020. doi 10.1007/978-3-030-53518-6_22.
[9] Wacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.
Accepted September 30, 2022

