

## Elementary Number Theory Problems. Part IV

Artur Korniłowicz<sup>D</sup> Institute of Computer Science University of Białystok Poland

Summary. In this paper problems 17, 18, 26, 27, 28, and 98 from [9] are formalized, using the Mizar formalism [8], [2], [3], [6].

 $MSC: \ 11A41 \quad 03B35 \quad 68V20$ 

Keywords: number theory; divisibility; primes

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{NUMBER04}, \ \mathrm{version:} \ \mathtt{8.1.12} \ \mathtt{5.71.1431}$ 

## 1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i denotes an integer, r denotes a real number, and p denotes a prime number.

Let p be a prime number. One can verify that 1 mod p reduces to 1.

Let us consider n. One can verify that  $\varepsilon_{\mathbb{N}} \mod n$  reduces to  $\varepsilon_{\mathbb{N}}$  and  $\varepsilon_{\mathbb{Z}} \mod n$  reduces to  $\varepsilon_{\mathbb{Z}}$ . Now we state the proposition:

(1) Let us consider a non empty, natural-membered set X. Suppose for every a such that  $a \in X$  there exists b such that b > a and  $b \in X$ . Then X is infinite.

Let us note that  $\mathbb{N}_{even}$  is infinite and  $\mathbb{N}_{odd}$  is infinite and every element of  $\mathbb{N}_{even}$  is even and every element of  $\mathbb{N}_{odd}$  is odd. Now we state the propositions:

(2)  $n \mod (k+1) = 0$  or ... or  $n \mod (k+1) = k$ .

- (3) Let us consider integers a, b, c. If  $a \cdot b \mid c$ , then  $a \mid c$  and  $b \mid c$ .
- (4) Let us consider integers a, b, m. If  $a \equiv b \pmod{m}$ , then  $m \nmid a$  or  $m \mid b$ .

- (5) If k is odd, then  $(-1)^k \equiv -1 \pmod{n}$ .
- (6) Let us consider integers a, b. Suppose  $k \neq 0$  and  $a \equiv b \pmod{n^k}$ . Then  $a \equiv b \pmod{n}$ .
- (7)  $2^{4 \cdot n} \equiv 1 \pmod{5}$ . PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv 2^{4 \cdot \$_1} \equiv 1 \pmod{5}$ .  $\mathcal{P}[0]$ . For every k such that  $\mathcal{P}[k]$  holds  $\mathcal{P}[k+1]$ .  $\mathcal{P}[k]$ .  $\Box$
- (8)  $2^{12 \cdot n} \equiv 1 \pmod{13}$ . PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv 2^{12 \cdot \$_1} \equiv 1 \pmod{13}$ .  $\mathcal{P}[0]$ . For every k such that  $\mathcal{P}[k]$  holds  $\mathcal{P}[k+1]$ .  $\mathcal{P}[k]$ .  $\Box$
- (9)  $\langle i \rangle \mod n = \langle i \mod n \rangle.$
- (10) If  $n \neq 0$ , then for every integer-valued finite sequence  $f, \sum f \equiv \sum (f \mod n) \pmod{n}$ .

PROOF: Define  $\mathcal{P}[\text{finite sequence of elements of } \mathbb{Z}] \equiv \sum \$_1 \equiv \sum (\$_1 \mod n) \pmod{n}$ . For every finite sequence p of elements of  $\mathbb{Z}$  and for every element x of  $\mathbb{Z}$  such that  $\mathcal{P}[p]$  holds  $\mathcal{P}[p \cap \langle x \rangle]$ . For every finite sequence p of elements of  $\mathbb{Z}$ ,  $\mathcal{P}[p]$ .  $\Box$ 

- (11) If  $(a \neq 0 \text{ or } b \neq 0)$  and  $c \neq 0$  and a, b, c are mutually coprime, then  $a \cdot b$  and c are relatively prime.
- (12) If  $(a \neq 0 \text{ or } b \neq 0)$  and  $c \neq 0$  and a, b, c are mutually coprime and  $a \mid n$  and  $b \mid n$  and  $c \mid n$ , then  $a \cdot b \cdot c \mid n$ .
- (13) If k is odd, then  $a^n + 1 | a^{n \cdot k} + 1$ .
- (14) Let us consider an even natural number n. Suppose  $n \mid 2^n + 2$ . Then there exists a non zero, odd natural number k such that  $2^n + 2 = n \cdot k$ .

## 2. Main Problems

Now we state the propositions:

- (15) Let us consider an even natural number n. Suppose  $n \mid 2^n + 2$  and  $n-1 \mid 2^n + 1$ . Let us consider a natural number  $n_1$ . If  $n_1 = 2^n + 2$ , then  $n_1 1 \mid 2^{n_1} + 1$  and  $n_1 \mid 2^{n_1} + 2$ . The theorem is a consequence of (14) and (13).
- (16) {n, where n is a non zero, even natural number :  $n \mid 2^n + 2$  and  $n 1 \mid 2^n + 1$  is infinite.

PROOF: Set  $X = \{n, \text{ where } n \text{ is a non zero, even natural number } : n \mid 2^n + 2 \text{ and } n - 1 \mid 2^n + 1\}$ . X is natural-membered. For every a such that  $a \in X$  there exists b such that b > a and  $b \in X$ .  $\Box$ 

Let i be an integer. We say that i is double odd if and only if

(Def. 1) there exists an odd integer j such that  $i = 2 \cdot j$ .

Let i be a natural number. Let us observe that i is double odd if and only if the condition (Def. 2) is satisfied.

(Def. 2) there exists an odd natural number j such that  $i = 2 \cdot j$ .

Note that there exists an integer which is double odd and every integer which is double odd is also even. Let i be an odd integer. Observe that  $i^2 + 1$  is double odd and  $i^2 + 1$  is double odd.

Let r be a complex number and n be a natural number. The functor OddEven-Powers(r, n) yielding a complex-valued finite sequence is defined by

(Def. 3) len it = n and for every natural number i such that  $1 \le i \le n$  for every natural number m such that m = n - i holds if i is odd, then  $it(i) = r^m$  and if i is even, then  $it(i) = -r^m$ .

Let r be a real number. Let us observe that OddEvenPowers(r, n) is realvalued. Let r be an integer. Let us observe that OddEvenPowers(r, n) is  $\mathbb{Z}$ valued. Let us consider a complex number r. Now we state the propositions:

- (17) OddEvenPowers $(r, 1) = \langle 1 \rangle$ .
- (18)  $\sum \text{OddEvenPowers}(r, 1) = 1$ . The theorem is a consequence of (17).
- (19) OddEvenPowers $(r, 2 \cdot (k+1)+1) = \langle r^{2 \cdot k+2}, -r^{2 \cdot k+1} \rangle^{\circ} OddEvenPowers<math>(r, 2 \cdot k+1)$ .

PROOF: Set  $n = 2 \cdot (k+1)+1$ . Set  $N = 2 \cdot k+1$ . Set f = OddEvenPowers(r, n). Set  $p = \langle r^{2 \cdot k+2}, -r^{2 \cdot k+1} \rangle$ . Set q = OddEvenPowers(r, N). For every natural number x such that  $x \in \text{dom } p$  holds f(x) = p(x). For every natural number x such that  $x \in \text{dom } q$  holds  $f(\ln p + x) = q(x)$ .  $\Box$ 

- (20)  $\sum \text{OddEvenPowers}(r, 2 \cdot k + 3) = r^{2 \cdot k + 2} r^{2 \cdot k + 1} + \sum \text{OddEvenPowers}(r, 2 \cdot k + 1)$ . The theorem is a consequence of (19).
- (21)  $r^{2 \cdot n+1} + 1 = (r+1) \cdot (\sum \text{OddEvenPowers}(r, 2 \cdot n+1)).$ PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv r^{2 \cdot \$_1 + 1} + 1 = (r+1) \cdot (\sum \text{OddEvenPo-wers}(r, 2 \cdot \$_1 + 1)). \mathcal{P}[0].$  If  $\mathcal{P}[k]$ , then  $\mathcal{P}[k+1]. \mathcal{P}[k]. \square$

Let us consider an odd prime number p. Now we state the propositions:

(22) If 
$$p^{k+1} \mid a^{p^k} + 1$$
, then  $p^{k+2} \mid a^{p^{k+1}} + 1$ .

PROOF: Set  $b = a^{p^k}$ .  $b \equiv -1 \pmod{p}$ . For every natural number L,  $b^{2 \cdot L} \equiv 1 \pmod{p}$ . For every natural number L,  $b^{2 \cdot L+1} \equiv -1 \pmod{p}$  by [1, (34)]. Reconsider F = OddEvenPowers(b, p) as a  $\mathbb{Z}$ -valued finite sequence. Reconsider  $M = F \mod p$  as a  $\mathbb{Z}$ -valued finite sequence. For every natural number x such that  $1 \leq x \leq \ln F$  holds M(x) = 1. Set  $P = p \mapsto 1$ . For every k such that  $k \in \dim P$  holds M(k) = P(k).  $\sum F \equiv \sum M \pmod{p}$ .  $\Box$ 

(23) If 
$$p \mid a+1$$
, then  $p^{k+1} \mid a^{p^k} + 1$  and  $p^k \mid a^{p^k} + 1$ .

PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv p^{\$_1+1} \mid a^{p^{\$_1}} + 1$ . For every natural number x such that  $\mathcal{P}[x]$  holds  $\mathcal{P}[x+1]$ . For every natural number  $x, \mathcal{P}[x]$ .  $\Box$ 

- (24) Let us consider an odd natural number a. Suppose a > 1. Let us consider a natural number s. Suppose s is double odd and  $a^s + 1$  is double odd and  $s \mid a^s + 1$ . Then
  - (i)  $a^{s} + 1 > s$ , and
  - (ii)  $a^s + 1$  is double odd, and
  - (iii)  $a^{a^s+1} + 1$  is double odd, and
  - (iv)  $a^s + 1 \mid a^{a^s + 1} + 1$ .
- (25) Let us consider a natural number a. If a > 1, then  $\{n, \text{ where } n \text{ is a natural number} : n \mid a^n + 1\}$  is infinite. The theorem is a consequence of (24) and (1).
- (26) {n, where n is a natural number :  $n \mid 2^n + 2$ } is infinite. The theorem is a consequence of (16).
- (27) {n, where n is a natural number  $: 5 | 2^n 3$ } is infinite. PROOF: Set  $A = \{n, \text{ where } n \text{ is a natural number } : 5 | 2^n - 3\}$ . Define  $\mathcal{F}(\text{natural number}) = 4 \cdot \$_1 + 3$ . Consider f being a many sorted set indexed by  $\mathbb{N}$  such that for every element d of  $\mathbb{N}$ ,  $f(d) = \mathcal{F}(d)$ . rng  $f \subseteq A$ . f is one-to-one.  $\Box$
- (28) {n, where n is a natural number :  $13 | 2^n 3$ } is infinite. PROOF: Set  $A = \{n, \text{ where } n \text{ is a natural number : } 13 | 2^n - 3\}$ . Define  $\mathcal{F}(\text{natural number}) = 12 \cdot \$_1 + 4$ . Consider f being a many sorted set indexed by  $\mathbb{N}$  such that for every element d of  $\mathbb{N}$ ,  $f(d) = \mathcal{F}(d)$ . rng  $f \subseteq A$ . f is one-to-one.  $\Box$
- (29)  $2^{n+12} \equiv 2^n \pmod{65}$ .
- (30)  $2^n \equiv 2^{n \mod 12} \pmod{65}.$

PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv 2^{\$_1} \equiv 2^{\$_1 \mod 12} \pmod{65}$ . If  $\mathcal{P}[k]$ , then  $\mathcal{P}[k+1]$  by [7, (11)], [4, (4)].  $\mathcal{P}[k]$ .  $\Box$ 

- (31)  $65 \nmid 2^n 3$ . The theorem is a consequence of (30) and (2).
- (32) 341 is composite.
- (33) 561 is composite.
- (34) 645 is composite.
- (35) 1105 is composite.
- $(36) \quad 341 \mid 2^{341} 2.$
- $(37) \quad 3 \mid 2^{561} 2.$
- $(38) \quad 11 \mid 2^{561} 2.$

- $(39) \quad 17 \mid 2^{561} 2.$
- (40)  $561 \mid 2^{561} 2$ . The theorem is a consequence of (37), (38), (39), and (12).
- $(41) \quad 3 \mid 2^{645} 2.$
- $(42) \quad 5 \mid 2^{645} 2.$
- $(43) \quad 43 \mid 2^{645} 2.$
- (44) 645 |  $2^{645} 2$ . The theorem is a consequence of (41), (42), (43), and (12).
- $(45) \quad 5 \mid 2^{1105} 2.$
- $(46) \quad 13 \mid 2^{1105} 2.$
- $(47) \quad 17 \mid 2^{1105} 2.$
- (48)  $1105 \mid 2^{1105} 2$ . The theorem is a consequence of (45), (46), (47), and (12).
- (49) Let us consider a composite natural number n. If  $n \leq 1105$  and  $n \mid 2^n 2$ , then  $n \in \{341, 561, 645, 1105\}$ .
- (50)  $341 \nmid 3^{341} 3$ . The theorem is a consequence of (4) and (3).
- $(51) \quad 3 \mid 3^{561} 3.$
- (52) 11 |  $3^{561} 3$ .
- $(53) \quad 17 \mid 3^{561} 3.$
- (54) 561 |  $3^{561}$  3. The theorem is a consequence of (51), (52), (53), and (12). Now we state the propositions:

(55)  $43 \nmid 3^{645} - 3.$ 

(56)  $645 \nmid 3^{645} - 3$ . The theorem is a consequence of (55).

Now we state the propositions:

- (57) 5 |  $3^{1105} 3$ .
- $(58) \quad 13 \mid 3^{1105} 3.$
- (59) 17 |  $3^{1105} 3$ .
- (60)  $1105 \mid 3^{1105} 3$ . The theorem is a consequence of (57), (58), (59), and (12).
- (61) If  $n \leq 1105$  and n is composite and  $n \mid 2^n 2$  and  $n \mid 3^n 3$ , then  $n \in \{561, 1105\}$ . The theorem is a consequence of (49), (50), and (56).
- (62) If  $n \mid 2^n 2$  and  $n \nmid 3^n 3$ , then n is composite.
- (63) If  $n \leq 341$  and  $n \mid 2^n 2$  and  $n \nmid 3^n 3$ , then n = 341. The theorem is a consequence of (62) and (49).
- (64) If m and n are relatively prime, then  $a \cdot n + m$  and n are relatively prime.
- (65)  $7 \mid 10^{6 \cdot k + 4} + 3$ . The theorem is a consequence of (64).
- (66)  $10^{6 \cdot k+4} + 3$  is composite. The theorem is a consequence of (65).

(67)  $\{10^n + 3, \text{ where } n \text{ is a natural number }: 10^n + 3 \text{ is composite}\}$  is infinite. PROOF: Set  $X = \{10^n + 3, \text{ where } n \text{ is a natural number }: 10^n + 3 \text{ is composite}\}$ . Set  $z = 10^{6 \cdot 0 + 4} + 3$ . z is composite. X is natural-membered. For every a such that  $a \in X$  there exists b such that b > a and  $b \in X$  by [5, (66)].  $\Box$ 

## References

- Kenichi Arai and Hiroyuki Okazaki. Properties of primes and multiplicative group of a field. Formalized Mathematics, 17(2):151–155, 2009. doi:10.2478/v10037-009-0017-7.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Čarette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8\_17.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [4] Yoshinori Fujisawa and Yasushi Fuwa. Definitions of radix- $2^k$  signed-digit number and its adder algorithm. Formalized Mathematics, 9(1):71–75, 2001.
- [5] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. *Formalized Mathematics*, 7(2):317–321, 1998.
- [6] Artur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems & Structures, 44:238–250, December 2015. doi:10.1016/j.cl.2015.07.002.
- [7] Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. *Formalized Mathematics*, 15(4):181–187, 2007. doi:10.2478/v10037-007-0022-7.
- [8] Adam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308. Springer, 2020. doi:10.1007/978-3-030-53518-6\_22.
- [9] Wacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.

Accepted September 30, 2022