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Summary.We formalize in the Mizar system [3], [4] some basic properties
on left module over a ring such as constructing a module via a ring of endomor-
phism of an abelian group and the set of all homomorphisms of modules form a
module [1] along with Ch. 2 set. 1 of [2].

The formalized items are shown in the below list with notations: Mab for an
Abelian group with a suffix “ab” and M without a suffix is used for left modules
over a ring.

1. The endomorphism ring of an abelian group denoted by End(Mab).

2. A pair of an Abelian group Mab and a ring homomorphism R
ρ→ End(Mab)

determines a left R-module, formalized as a function AbGrLMod(Mab, ρ)
in the article.

3. The set of all functions from M to N form R-module and denoted by
Func ModR(M,N).

4. The set R-module homomorphisms of M to N , denoted by HomR(M,N),
forms R-module.

5. A formal proof of HomR(R̄,M) ∼= M is given, where the R̄ denotes the
regular representation of R, i.e. we regard R itself as a left R-module.

6. A formal proof of AbGrLMod(M ′ab, ρ
′) ∼= M where M ′ab is an abelian

group obtained by removing the scalar multiplication from M , and ρ′ is
obtained by currying the scalar multiplication of M .

The removal of the multiplication from M has been done by the forgettable
functor defined as AbGr in the article.

MSC: 13C05 13C60 68V20

Keywords: module; endomorphism ring

MML identifier: LMOD XX1, version: 8.1.12 5.71.1431
c© 2022 The Author(s) / AMU
(Association of Mizar Users)
under CC BY-SA 3.0 license211

https://sciendo.com/journal/forma
http://zbmath.org/classification/?q=cc:13C05
http://zbmath.org/classification/?q=cc:13C60
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/lmod_xx1.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


212 yasushige watase

Let M , N be Abelian groups. The functor ADD(M,N) yielding a binary
operation on (the carrier of N)(the carrier of M) is defined by

(Def. 1) for every elements f , g of (the carrier of N)α, it(f, g) = (the addition
of N)◦(f, g), where α is the carrier of M .

Now we state the propositions:

(1) Let us consider Abelian groupsM ,N , and elements f , g, h of (the carrier
of N)α. Then h = (ADD(M,N))(f, g) if and only if for every element x
of the carrier of M , h(x) = f(x) + g(x), where α is the carrier of M .

(2) Let us consider Abelian groups M , N , and homomorphisms f , g from
M to N . Then (ADD(M,N))(f, g) is a homomorphism from M to N . The
theorem is a consequence of (1).

Let M be an Abelian group. The functor set End(M) yielding a non empty
subset of (the carrier of M)(the carrier of M) is defined by the term

(Def. 2) {f , where f is a function from M into M : f is an endomorphism of M}.

The functor add End(M) yielding a binary operation on set End(M) is de-
fined by the term

(Def. 3) ADD(M,M)�(set End(M)× set End(M)).

Now we state the proposition:

(3) Let us consider an Abelian group M , and endomorphisms f , g of M .
Then

(i) f , g ∈ (the carrier of M)α, and

(ii) (add End(M))(〈〈f, g〉〉) = (ADD(M,M))(f, g), and

(iii) (ADD(M,M))(f, g) is an endomorphism of M ,

where α is the carrier of M . The theorem is a consequence of (2).

From now on M , N denote Abelian groups. Let M be an Abelian group
and f , g be elements of (the carrier of M)(the carrier of M). Let us note that the
functor g · f yields an element of (the carrier of M)(the carrier of M).

We prepare composition of homomorphisms.
Let M be an Abelian group. The functor FuncComp(M) yielding a binary

operation on (the carrier of M)(the carrier of M) is defined by

(Def. 4) for every elements f , g of (the carrier of M)α, it(f, g) = f · g, where α
is the carrier of M .

(4) Let us consider Abelian groupsM ,N , and elements f , g of (the carrier of
N)α. Then (ADD(M,N))(f, g) = (ADD(M,N))(g, f), where α is the car-
rier of M . The theorem is a consequence of (1).
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(5) Endomorphism of M is closed under Composition:
Let us consider an Abelian group M , and endomorphisms f , g of M . Then
(FuncComp(M))(f, g) is an endomorphism of M .
Proof: Reconsider F = (FuncComp(M))(f, g) as an element of (the carrier
of M)(the carrier of M). F is additive. �

Let M be an Abelian group. The functor mult End(M) yielding a binary
operation on set End(M) is defined by the term

(Def. 5) FuncComp(M)�(set End(M)× set End(M)).

Now we state the proposition:

(6) Let us consider an Abelian group M , and endomorphisms f , g of M .
Then

(i) f , g ∈ (the carrier of M)α, and

(ii) (mult End(M))(〈〈f, g〉〉) = (FuncComp(M))(f, g), and

(iii) (FuncComp(M))(f, g) is an endomorphism of M ,

where α is the carrier of M . The theorem is a consequence of (5).

Let M be an Abelian group. The functors: 0 End(M) and 1 End(M) yielding
elements of set End(M) are defined by terms

(Def. 6) ZeroMap(M,M),

(Def. 7) idM ,

respectively. Let f be an element of set End(M). The functor Inv f yielding
an element of set End(M) is defined by

(Def. 8) for every element x of M , it(x) = f(−x).

Now we state the proposition:

(7) Let us consider an Abelian group M , and an element f of set End(M).
Then (ADD(M,M))(f, Inv f) = ZeroMap(M,M).
Proof: Consider f1 being a function from the carrier of M into the carrier
of M such that f1 = f and f1 is an endomorphism of M . Consider g1 being
a function from the carrier of M into the carrier of M such that g1 = Inv f
and g1 is an endomorphism of M . For every element x of the carrier of M ,
(ADD(M,M))(f1, g1)(x) = (ZeroMap(M,M))(x). �

We define the Ring of Endomorphism of M as a structure.
Let M be an Abelian group. The functor End Ring(M) yielding a strict,

non empty double loop structure is defined by the term

(Def. 9) 〈set End(M), add End(M),mult End(M), 1 End(M), 0 End(M)〉.
Now we state the proposition:

(8) The structure of End-Ring(M) turns to be a Ring:
Let us consider an Abelian group M . Then End Ring(M) is a ring.
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Let M be an Abelian group. One can verify that End Ring(M) is Abelian,
add-associative, right zeroed, right complementable, associative, well unital, and
distributive and End Ring(M) is strict.

In the sequel R denotes a ring and r denotes an element of R.
Let us consider R. Let M , N be left modules over R.
A homomorphism from M to N by R is a function from M into N defined

by

(Def. 10) it is additive and homogeneous.

Now we state the proposition:

(9) Let us consider left modules M , N over R, and a homomorphism f from
M to N by R. Suppose f is one-to-one and onto. Then f−1 is a homo-
morphism from N to M by R.
Proof: Reconsider g = f−1 as a function from N into M . For every
elements a, b of the carrier of N , g(a+ b) = g(a) + g(b). For every element
r of R and for every element a of the carrier of N , g(r · a) = r · g(a). �

Let us consider R. Let M , N be left modules over R. We say that M ∼= N

if and only if

(Def. 11) there exists a homomorphism f from M to N by R such that f is one-
to-one and onto.

Let M be a left module over R.
An endomorphism of R and M is a homomorphism from M to M by R.

Now we state the propositions:

(10) Let us consider a left module M over R. Then M ∼= M .

(11) Let us consider left modules M , N over R. If M ∼= N , then N ∼= M .
The theorem is a consequence of (9).

Let us consider R. Let M , N be left modules over R. Observe that the
predicate M ∼= N is reflexive and symmetric. Now we state the propositions:

(12) Let us consider left modules L, M , N over R. If L ∼= M and M ∼= N ,
then L ∼= N .
Proof: Consider f being a homomorphism from L to M by R such that
f is one-to-one and onto. Consider g being a homomorphism from M to N
by R such that g is one-to-one and onto. Reconsider G = g ·f as a function
from L into N . For every elements x, y of L, G(x+ y) = G(x) +G(y). For
every element x of L and for every element a of R, G(a · x) = a ·G(x). �

(13) Let us consider left modules M , N over R, and a homomorphism f from
M to N by R. Then f is one-to-one if and only if ker f = {0M}.
Proof: If f is one-to-one, then ker f = {0M}. For every objects x1, x2
such that x1, x2 ∈ dom f and f(x1) = f(x2) holds x1 = x2. �
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Let us consider R. Let M be an Abelian group and s be a function from
R into End Ring(M). The functor LModlmult(M, s) yielding a function from
(the carrier of R)× (the carrier of M) into the carrier of M is defined by

(Def. 12) for every element x of the carrier of R and for every element y of the car-
rier of M , there exists an endomorphism h of M such that h = s(x) and
it(x, y) = h(y).

The functor AbGrLMod(M, s) yielding a strict, non empty vector space
structure over R is defined by the term

(Def. 13) 〈the carrier of M, the addition of M, 0M ,LModlmult(M, s)〉.
Now we state the proposition:

(14) Let us consider an Abelian group M , and a function s from R into
End Ring(M). Suppose s inherits ring homomorphism.
Then AbGrLMod(M, s) is a left module over R.
Proof: AbGrLMod(M, s) is Abelian. AbGrLMod(M, s) is add-associative.
AbGrLMod(M, s) is right zeroed. AbGrLMod(M, s) is right complemen-
table. AbGrLMod(M, s) is scalar unital. �

The set of all functions from R-module M into R-module N form R-module.
In the sequel M , N denote left modules over R.
Let us consider R, M , and N . The functor 0 Funcs(M,N) yielding an ele-

ment of (the carrier of N)(the carrier of M) is defined by the term

(Def. 14) ZeroMap(M,N).

The functor ADD(M,N) yielding a binary operation on (the carrier of
N)(the carrier of M) is defined by

(Def. 15) for every elements f , g of (the carrier of N)α, it(f, g) = (the addition
of N)◦(f, g), where α is the carrier of M .

From now on f , g, h denote elements of (the carrier of N)(the carrier of M).
Now we state the proposition:

(15) h = (ADD(M,N))(f, g) if and only if for every element x of the carrier
of M , h(x) = f(x) + g(x).

Let us consider R, M , and N . Let F be a function from (the carrier of R)×
(the carrier of N) into the carrier of N , a be an element of the carrier of R,
and f be a function from M into N . Observe that the functor F ◦(a, f) yields
an element of (the carrier of N)(the carrier of M). The functor LMULT(M,N) yiel-
ding a function from (the carrier of R) × (the carrier of N)(the carrier of M) into
(the carrier of N)(the carrier of M) is defined by

(Def. 16) for every element a of the carrier of R and for every element f of
(the carrier of N)α and for every element x of the carrier of M , it(〈〈a,
f〉〉)(x) = a · f(x), where α is the carrier of M .
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The functor Func Mod(R,M,N) yielding a non empty vector space structure
over R is defined by the term

(Def. 17) 〈(the carrier ofN)α,ADD(M,N), 0 Funcs(M,N),LMULT(M,N)〉, whe-
re α is the carrier of M .

Now we state the proposition:

(16) Let us consider an element a of the carrier of R, and elements f , h of
(the carrier of N)α. Then h = (LMULT(M,N))(〈〈a, f〉〉) if and only if for
every element x of M , h(x) = a · f(x), where α is the carrier of M .

In the sequel a, b denote elements of the carrier of R.
Let us consider R, M , and N . Note that Func Mod(R,M,N) is Abelian,

add-associative, right zeroed, right complementable, vector distributive, scalar
distributive, scalar associative, and scalar unital. Now we state the proposition:

(17) Func Mod(R,M,N) is a left module over R.

From now on R denotes a commutative ring and M , M1, N , N1 denote left
modules over R. Now we state the proposition:

(18) Hom(M,N) the set of all R homomorphisms form left R-
Module:
Let us consider homomorphisms f , g from M to N by R.
Then (ADD(M,N))(f, g) is a homomorphism from M to N by R. The
theorem is a consequence of (15).

Let us consider R, M1, M , and N . Let f be an element of (the carrier of
M)(the carrier of M1) and g be an element of (the carrier of N)(the carrier of M).
Let us observe that the functor g · f yields an element of (the carrier of
N)(the carrier of M1). Now we state the propositions:

(19) Let us consider left modules M , N , M1 over R, a homomorphism f from
M to N by R, and a homomorphism u from M1 to M by R. Then f · u is
a homomorphism from M1 to N by R.
Proof: For every elements x1, y1 of the carrier ofM1 and for every element
a of R, (f · u)(x1 + y1) = (f · u)(x1) + (f · u)(y1) and a · (f · u)(x1) =
a · (f · u)(x1). For every element x1 of the carrier of M1 and for every
element a of R, (f · u)(a · x1) = a · (f · u)(x1). �

(20) Let us consider an element a of the carrier of R, and a homomorphism
g from M to N by R. Then (LMULT(M,N))(〈〈a, g〉〉) is a homomorphism
from M to N by R.

Let us consider R, M , and N . The functor set Hom(M,N) yielding a non
empty subset of (the carrier of N)(the carrier of M) is defined by the term

(Def. 18) {f , where f is a function from M into N : f is a homomorphism from
M to N by R}.
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The functor add Hom(M,N) yielding a binary operation on set Hom(M,N)
is defined by the term

(Def. 19) ADD(M,N)�(set Hom(M,N)× set Hom(M,N)).

Let F be a function from (the carrier ofR)×(the carrier ofN) into the carrier
of N , a be an element of the carrier of R, and f be a function from M into
N . One can verify that the functor F ◦(a, f) yields an element of (the carrier
of N)(the carrier of M). The functor lmult Hom(M,N) yielding a function from
(the carrier of R)× set Hom(M,N) into set Hom(M,N) is defined by the term

(Def. 20) LMULT(M,N)�((the carrier of R)× set Hom(M,N)).

The functor 0 Hom(M,N) yielding an element of set Hom(M,N) is defined
by the term

(Def. 21) ZeroMap(M,N).

The functor Hom(R,M,N) yielding a non empty vector space structure over
R is defined by the term

(Def. 22) 〈set Hom(M,N), add Hom(M,N), 0 Hom(M,N), lmult Hom(M,N)〉.
Let us note that Hom(R,M,N) is non empty. Now we state the propositions:

(21) Let us consider homomorphisms f , g from M to N by R. Then

(i) f , g ∈ (the carrier of N)α, and

(ii) (add Hom(M,N))(〈〈f, g〉〉) = (ADD(M,N))(f, g), and

(iii) (ADD(M,N))(f, g) is a homomorphism from M to N by R,

where α is the carrier of M . The theorem is a consequence of (18).

(22) Let us consider an element a of the carrier of R, and a homomorphism
f from M to N by R. Then

(i) (lmult Hom(M,N))(〈〈a, f〉〉) = (LMULT(M,N))(〈〈a, f〉〉), and

(ii) (LMULT(M,N))(〈〈a, f〉〉) is a homomorphism from M to N by R.

The theorem is a consequence of (20).

(23) Let us consider elements f1, g1 of Func Mod(R,M,N), and elements f ,
g of Hom(R,M,N). If f1 = f and g1 = g, then f + g = f1 + g1. The
theorem is a consequence of (21).

(24) Hom(R,M,N) is a left module over R. The theorem is a consequence of
(23).

Let us consider R, M , and N . Note that Hom(R,M,N) is Abelian, add-
associative, right zeroed, right complementable, vector distributive, scalar di-
stributive, scalar associative, and scalar unital.

Let us consider M1. Let u be a homomorphism from M1 to M by R. The
functor τ(N, u) yielding a function from Hom(R,M,N) into Hom(R,M1, N) is
defined by
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(Def. 23) for every element f of Hom(R,M,N), there exists a homomorphism f1
from M to N by R such that f = f1 and it(f) = f1 · u.

Let us note that τ(N, u) is additive and homogeneous. Now we state the
proposition:

(25) Let us consider a homomorphism u from M1 to M by R. Then τ(N, u)
is a homomorphism from Hom(R,M,N) to Hom(R,M1, N) by R.

Let us consider R, M , N , and N1. Let u be a homomorphism from N to
N1 by R. The functor φ(M,u) yielding a function from Hom(R,M,N) into
Hom(R,M,N1) is defined by

(Def. 24) for every element f of Hom(R,M,N), there exists a homomorphism f1
from M to N by R such that f = f1 and it(f) = u · f1.

Let us observe that φ(M,u) is additive and homogeneous. Now we state the
propositions:

(26) Let us consider a homomorphism u from N to N1 by R. Then φ(M,u)
is a homomorphism from Hom(R,M,N) to Hom(R,M,N1) by R.

(27) Hom(R,LeftMod(R),M) ∼= M .
Proof: Reconsider R1 = LeftMod(R) as a left module over R. Recon-
sider m1 = 1R as an element of R1. Define F(element of (the carrier of
M)(the carrier of R1)) = $1(m1). ConsiderG being a function from (the carri-
er ofM)(the carrier of R1) intoM such that For every element x of (the carrier
of M)α, G(x) = F(x), where α is the carrier of R1. For every elements f ,
g of (the carrier of M)α, G((ADD(R1,M))(f, g)) = G(f) +G(g), where α
is the carrier of R1.

For every element f of (the carrier of M)α and for every element a of
R, G((LMULT(R1,M))(〈〈a, f〉〉)) = a ·G(f), where α is the carrier of R1.
Set c = the carrier of Hom(R,R1,M). Set G1 = G�c. For every object
y such that y ∈ rngG1 holds y ∈ the carrier of M . For every elements
f , g of Hom(R,R1,M), G1(f + g) = G1(f) + G1(g). For every element
f of Hom(R,R1,M) and for every element a of R, G1(a · f) = a · G1(f).
kerG1 = {0Hom(R,R1,M)}. For every object y such that y ∈ the carrier of
M holds y ∈ rngG1. �

Correspondence between Abelian Group (AbGr) and left R-module.
Let us consider R and M . The functor AbGr(M) yielding a non empty, strict

Abelian group is defined by the term

(Def. 25) 〈the carrier of M, the addition of M, 0M 〉.
Let us consider N . Let f be a homomorphism from M to N by R. The

functor AbGr(f) yielding a function from AbGr(M) into AbGr(N) is defined
by
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(Def. 26) for every object x such that x ∈ the carrier of AbGr(M) holds it(x) =
f(x).

Now we state the proposition:

(28) Let us consider a homomorphism f from M to N by R. Then AbGr(f)
is a homomorphism from AbGr(M) to AbGr(N).

Let us consider endomorphisms f , g, h of R and M . Now we state the
propositions:

(29) AbGr(h) = (FuncComp(AbGr(M)))(AbGr(f),AbGr(g)) if and only if
for every element x of the carrier of AbGr(M), (AbGr(h))(x) = ((AbGr(f))·
(AbGr(g)))(x).

(30) If h = f · g, then AbGr(h) = (AbGr(f)) · (AbGr(g)).
Proof: For every element x of the carrier of AbGr(M), (AbGr(h))(x) =
((AbGr(f)) · (AbGr(g)))(x). �

(31) AbGr(h) = (ADD(AbGr(M),AbGr(M)))(AbGr(f),AbGr(g)) if and on-
ly if for every element x of the carrier of AbGr(M), (AbGr(h))(x) =
(AbGr(f))(x) + (AbGr(g))(x).
Proof: If AbGr(h) = (ADD(AbGr(M),AbGr(M)))(AbGr(f),AbGr(g)),
then for every element x of the carrier of AbGr(M), (AbGr(h))(x) =
(AbGr(f))(x) + (AbGr(g))(x). AbGr(h) = (ADD(AbGr(M),AbGr(M)))
(AbGr(f),AbGr(g)). �

(32) If h = (ADD(M,M))(f, g), then AbGr(h) =
(ADD(AbGr(M),AbGr(M)))(AbGr(f),AbGr(g)). The theorem is a con-
sequence of (15) and (31).

(33) Let us consider a ring R, a left module M over R, an element a of R, and
an element m of M . Then (curry(the left multiplication of M))(a)(m) =
a ·m.

(34) Let us consider a commutative ring R, a left module M over R, and
an element a of R. Then (curry(the left multiplication of M))(a) is an en-
domorphism of R and M .
Proof: Set f = (curry(the left multiplication of M))(a). For every ele-
ments m1, m2 of M , f(m1 + m2) = f(m1) + f(m2). For every element b
of R and for every element m of M , f(b ·m) = b · f(m). �

(35) Let us consider endomorphisms f , g, h of R and M . Suppose h = f · g.
Then AbGr(h) = (FuncComp(AbGr(M)))(AbGr(f),AbGr(g)). The the-
orem is a consequence of (30) and (29).

Let R be a commutative ring and M be a left module over R. The cano-
nical homomorphism of M into quotient field yielding a function from R into
End Ring(AbGr(M)) is defined by



220 yasushige watase

(Def. 27) for every object x such that x ∈ the carrier of R there exists an endo-
morphism f of R and M such that f = (curry(the left multiplication of
M))(x) and it(x) = AbGr(f).

Observe that the canonical homomorphism of M into quotient field is addi-
tive. Now we state the proposition:

(36) Let us consider a commutative ring R, a left module M over R, and
an element a of R. Then (the canonical homomorphism of M into quotient
field)(a) is a homomorphism from AbGr(M) to AbGr(M).

Let R be a commutative ring and M be a left module over R. One can
verify that the canonical homomorphism of M into quotient field is linear and
AbGrLMod(AbGr(M), the canonical homomorphism of M into quotient field) is
non empty, Abelian, add-associative, right zeroed, right complementable, vector
distributive, scalar distributive, scalar associative, and scalar unital.

Now we state the propositions:

(37) Let us consider a commutative ring R, and a left module M over R. Then
LModlmult(AbGr(M), the canonical homomorphism of M into quotient
field) = the left multiplication of M .
Proof: Set F = LModlmult(AbGr(M), the canonical homomorphism of
M into quotient field). For every object z such that z ∈ (the carrier of
R)× (the carrier of M) holds F (z) = (the left multiplication of M)(z). �

(38) Let us consider a commutative ring R, and a strict left module M over
R. Then AbGrLMod(AbGr(M), the canonical homomorphism of M into
quotient field) = M .
Proof: AbGrLMod(AbGr(M), the canonical homomorphism of M into
quotient field) is a submodule of M . �

Let R be a commutative ring and M be a left module over R. The functor
ρ(M) yielding a function from M into AbGrLMod(AbGr(M), the canonical
homomorphism of M into quotient field) is defined by the term

(Def. 28) idM .

Now we state the proposition:

(39) Let us consider a commutative ring R, and a left module M over R.
Then ρ(M) is additive and homogeneous.
Proof: For every element x of the carrier of M and for every element a
of R, ρ(M)(a · x) = a · ρ(M)(x) by [5, (7)]. �

Let R be a commutative ring and M be a left module over R. Observe that
ρ(M) is additive and homogeneous.

Let us consider a commutative ring R and a left module M over R. Now we
state the propositions:
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(40) ρ(M) is one-to-one and onto.

(41) M ∼= AbGrLMod(AbGr(M), the canonical homomorphism of M into
quotient field). The theorem is a consequence of (40).
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