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Summary. We formalize in the Mizar system [3], [4] some basic properties
on left module over a ring such as constructing a module via a ring of endomor-
phism of an abelian group and the set of all homomorphisms of modules form a
module [I] along with Ch. 2 set. 1 of [2].

The formalized items are shown in the below list with notations: M, for an

“ ”

Abelian group with a suffix “4,” and M without a suffix is used for left modules
over a ring.

1. The endomorphism ring of an abelian group denoted by End(Mgy).

2. A pair of an Abelian group M,; and a ring homomorphism R LA End(Mgs)
determines a left R-module, formalized as a function AbGrLMod (Mg, p)
in the article.

3. The set of all functions from M to N form R-module and denoted by
Func_Modgr(M, N).
4. The set R-module homomorphisms of M to N, denoted by Hompg (M, N),

forms R-module.

5. A formal proof of Hompg(R, M) = M is given, where the R denotes the
regular representation of R, i.e. we regard R itself as a left R-module.

6. A formal proof of AbGrLMod(M,,,p') & M where M, is an abelian
group obtained by removing the scalar multiplication from M, and p’ is
obtained by currying the scalar multiplication of M.

The removal of the multiplication from M has been done by the forgettable
functor defined as AbGr in the article.
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Let M, N be Abelian groups. The functor ADD(M, N) yielding a binary
operation on (the carrier of IV)(the carrier of M) j5 qefined by

(Def. 1) for every elements f, g of (the carrier of N)?, it(f,g) = (the addition
of N)°(f, g), where « is the carrier of M.

Now we state the propositions:

(1) Let us consider Abelian groups M, N, and elements f, g, h of (the carrier
of N)®. Then h = (ADD(M, N))(f,g) if and only if for every element x
of the carrier of M, h(x) = f(x) + g(z), where « is the carrier of M.

(2) Let us consider Abelian groups M, N, and homomorphisms f, g from

M to N. Then (ADD(M, N))(f,g) is a homomorphism from M to N. The
theorem is a consequence of (1).

Let M be an Abelian group. The functor set_End(M) yielding a non empty
subset of (the carrier of M)(the carrier of M) is defined by the term

(Def. 2) {f, where f is a function from M into M : f is an endomorphism of M }.

The functor add_End(M) yielding a binary operation on set_End(M) is de-
fined by the term

(Def. 3) ADD(M, M)|[(set_End(M) x set_End(M)).

Now we state the proposition:

(3) Let us consider an Abelian group M, and endomorphisms f, g of M.
Then

(i) f, g € (the carrier of M )%, and
(i) (add End(M))({f, g)) = (ADD(M, M))(f, ), and
(iii) (ADD(M, M))(f,g) is an endomorphism of M,

where « is the carrier of M. The theorem is a consequence of (2).

From now on M, N denote Abelian groups. Let M be an Abelian group
and f, g be elements of (the carrier of M )(the carrier of M) T ot ug note that the
functor g - f yields an element of (the carrier of N/ )(the carrier of M),

We prepare composition of homomorphisms.

Let M be an Abelian group. The functor FuncComp(M) yielding a binary
operation on (the carrier of M )(the carrier of M) 5 defined by

(Def. 4) for every elements f, g of (the carrier of M)®, it(f,g) = f - g, where «
is the carrier of M.

(4) Let us consider Abelian groups M, N, and elements f, g of (the carrier of

N)*. Then (ADD(M, N))(f,g9) = (ADD(M, N))(g, f), where « is the car-
rier of M. The theorem is a consequence of (1).
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(5) ENDOMORPHISM OF M IS CLOSED UNDER COMPOSITION:
Let us consider an Abelian group M, and endomorphisms f, g of M. Then
(FuncComp(M))(f, g) is an endomorphism of M.
PRrROOF: Reconsider F' = (FuncComp(M))(f, g) as an element of (the carrier
of M )(the carrier of M) " i¢ additive. (]
Let M be an Abelian group. The functor mult_End(M) yielding a binary
operation on set_End (M) is defined by the term
(Def. 5)  FuncComp(M)[(set_End(M) x set_End(M)).
Now we state the proposition:
(6) Let us consider an Abelian group M, and endomorphisms f, g of M.
Then

(i) f, g € (the carrier of M)®, and
(i) (mult-End(M))({f, g)) = (FuncComp(M))(f, g), and
(iii) (FuncComp(M))(f,g) is an endomorphism of M,

where « is the carrier of M. The theorem is a consequence of (5).
Let M be an Abelian group. The functors: 0_End(M ) and 1_End (M) yielding
elements of set_End(M) are defined by terms
(Def. 6) ZeroMap(M, M),
(Def. 7) idy,
respectively. Let f be an element of set_End(M). The functor Inv f yielding
an element of set_End(M) is defined by
(Def. 8) for every element x of M, it(x) = f(—=x).
Now we state the proposition:
(7) Let us consider an Abelian group M, and an element f of set_End(M).
Then (ADD(M, M))(f,Inv f) = ZeroMap(M, M).
ProoF: Consider f; being a function from the carrier of M into the carrier
of M such that f; = f and f; is an endomorphism of M. Consider g; being
a function from the carrier of M into the carrier of M such that g, = Inv f
and g1 is an endomorphism of M. For every element x of the carrier of M,
(ADD(M, M))(f1, g1)(x) = (ZeroMap(M, M))(x). O
We define the Ring of Endomorphism of M as a structure.
Let M be an Abelian group. The functor End Ring(M) yielding a strict,
non empty double loop structure is defined by the term
(Def. 9)  (set_End(M),add-End(M ), mult_End (M), 1_End(M),0-End(M)).
Now we state the proposition:

(8) THE STRUCTURE OF END-RING(M) TURNS TO BE A RING:
Let us consider an Abelian group M. Then End _Ring(M) is a ring.
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Let M be an Abelian group. One can verify that End_Ring(M) is Abelian,
add-associative, right zeroed, right complementable, associative, well unital, and
distributive and End_Ring(M) is strict.

In the sequel R denotes a ring and r denotes an element of R.

Let us consider R. Let M, N be left modules over R.

A homomorphism from M to N by R is a function from M into N defined
by

(Def. 10) it is additive and homogeneous.

Now we state the proposition:

(9) Let us consider left modules M, N over R, and a homomorphism f from
M to N by R. Suppose f is one-to-one and onto. Then f~! is a homo-
morphism from N to M by R.

PROOF: Reconsider ¢ = f~! as a function from N into M. For every
elements a, b of the carrier of N, g(a+b) = g(a)+ g(b). For every element
r of R and for every element a of the carrier of N, g(r-a) =r-g(a). O
Let us consider R. Let M, N be left modules over R. We say that M = N
if and only if
(Def. 11) there exists a homomorphism f from M to N by R such that f is one-
to-one and onto.
Let M be a left module over R.
An endomorphism of R and M is a homomorphism from M to M by R.
Now we state the propositions:

(10) Let us consider a left module M over R. Then M = M.
(11) Let us consider left modules M, N over R. If M = N, then N = M.
The theorem is a consequence of (9).

Let us consider R. Let M, N be left modules over R. Observe that the
predicate M =2 N is reflexive and symmetric. Now we state the propositions:

(12) Let us consider left modules L, M, N over R. If L = M and M = N,
then L =2 N.
ProOOF: Consider f being a homomorphism from L to M by R such that
f is one-to-one and onto. Consider g being a homomorphism from M to N
by R such that g is one-to-one and onto. Reconsider G = ¢- f as a function
from L into N. For every elements z, y of L, G(z +y) = G(x) + G(y). For
every element x of L and for every element a of R, G(a-z) =a-G(z). O

(13) Let us consider left modules M, N over R, and a homomorphism f from
M to N by R. Then f is one-to-one if and only if ker f = {05/}
PROOF: If f is one-to-one, then ker f = {0p/}. For every objects x1, x2
such that z1, x9 € dom f and f(z1) = f(x2) holds z1 = x9. O
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Let us consider R. Let M be an Abelian group and s be a function from
R into End_Ring(M). The functor LModlmult(), s) yielding a function from
(the carrier of R) x (the carrier of M) into the carrier of M is defined by

(Def. 12) for every element x of the carrier of R and for every element y of the car-
rier of M, there exists an endomorphism h of M such that h = s(z) and
it(z,y) = h(y).
The functor AbGrLMod (M, s) yielding a strict, non empty vector space
structure over R is defined by the term

(Def. 13)  (the carrier of M, the addition of M, 0ss, LModlmult(M, s)).
Now we state the proposition:

(14) Let us consider an Abelian group M, and a function s from R into

End_Ring(M). Suppose s inherits ring homomorphism.
Then AbGrLMod (M, s) is a left module over R.
PRrOOF: AbGrLMod (M, s) is Abelian. AbGrLMod(M, s) is add-associative.
AbGrLMod(M, s) is right zeroed. AbGrLMod(M, s) is right complemen-
table. AbGrLMod (M, s) is scalar unital. [J

The set of all functions from R-module M into R-module N form R-module.

In the sequel M, N denote left modules over R.

Let us consider R, M, and N. The functor 0_Funcs(M, N) yielding an ele-

ment of (the carrier of N)(the carrier of M) i defined by the term

(Def. 14)  ZeroMap(M, N).
The functor ADD(M, N) yielding a binary operation on (the carrier of
N)(the carrier of M) is defined by

(Def. 15) for every elements f, g of (the carrier of N)*, it(f,g) = (the addition
of N)°(f, g), where « is the carrier of M.

From now on f, g, h denote elements of (the carrier of )(the carrier of M),

Now we state the proposition:

(15) h = (ADD(M,N))(f,g) if and only if for every element x of the carrier
of M, h(z) = f(z) + g(z).

Let us consider R, M, and N. Let F be a function from (the carrier of R) x
(the carrier of N) into the carrier of N, a be an element of the carrier of R,
and f be a function from M into N. Observe that the functor F°(a, f) yields
an element of (the carrier of N)(the carrier of M) The functor LMULT(M, N) yiel-
ding a function from (the carrier of R) x (the carrier of N )(the carrier of M) ¢
(the carrier of IV)(the carrier of M) jq defined by

(Def. 16) for every element a of the carrier of R and for every element f of
(the carrier of N)® and for every element x of the carrier of M, it({a,
(@) =a- f(x), where a is the carrier of M.
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The functor Func_Mod (R, M, N) yielding a non empty vector space structure
over R is defined by the term

(Def. 17)  ((the carrier of N)*, ADD(M, N),0_Funcs(M, N), LMULT (M, N)), whe-

re « is the carrier of M.
Now we state the proposition:

(16) Let us consider an element a of the carrier of R, and elements f, h of
(the carrier of N)®. Then h = (LMULT (M, N))({a, f)) if and only if for
every element x of M, h(x) = a - f(x), where « is the carrier of M.

In the sequel a, b denote elements of the carrier of R.

Let us consider R, M, and N. Note that Func_Mod(R, M, N) is Abelian,
add-associative, right zeroed, right complementable, vector distributive, scalar
distributive, scalar associative, and scalar unital. Now we state the proposition:

(17) Func_Mod(R, M, N) is a left module over R.

From now on R denotes a commutative ring and M, M7, N, Ny denote left
modules over R. Now we state the proposition:

(18) HoMm(M,N) THE SET OF ALL R HOMOMORPHISMS FORM LEFT R-
MODULE:
Let us consider homomorphisms f, g from M to N by R.
Then (ADD(M, N))(f,g) is a homomorphism from M to N by R. The
theorem is a consequence of (15).

Let us consider R, Mj, M, and N. Let f be an element of (the carrier of
M)(the carrier of Mi) anq ¢ be an element of (the carrier of NN)(the carrier of M)
Let us observe that the functor g - f yields an element of (the carrier of
N )(the carrier of M1) Now we state the propositions:

(19) Let us consider left modules M, N, M; over R, a homomorphism f from
M to N by R, and a homomorphism u from M; to M by R. Then f-u is
a homomorphism from M; to N by R.
PROOF: For every elements x1, y; of the carrier of M; and for every element
aof B, (f-w)@1+ ) = (f - w)@1) + (f - w)n) and a- (f - u)(w1) =
a- (f-u)(xy). For every element x; of the carrier of M; and for every
element a of R, (f-u)(a-x1)=a-(f u)(z1). O

(20) Let us consider an element a of the carrier of R, and a homomorphism
g from M to N by R. Then (LMULT(M, N))({a, g)) is a homomorphism
from M to N by R.

Let us consider R, M, and N. The functor set_Hom(M, N) yielding a non
empty subset of (the carrier of N)(the carrier of M) is defined by the term

(Def. 18) {f, where f is a function from M into N : f is a homomorphism from
M to N by R}.
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The functor add_Hom(M, N) yielding a binary operation on set_Hom (M, N)

is defined by the term
(Def. 19) ADD(M, N)[(set_-Hom(M, N) x set_Hom(M, N)).

Let F' be a function from (the carrier of R)x (the carrier of N) into the carrier
of N, a be an element of the carrier of R, and f be a function from M into
N. One can verify that the functor F°(a, f) yields an element of (the carrier
of IN)(the carrier of M) “The functor lmult_Hom(M, N) yielding a function from
(the carrier of R) x set_Hom(M, N) into set_Hom (M, N) is defined by the term

(Def. 20) LMULT(M, N)[((the carrier of R) x set_Hom(M, N)).

The functor 0_-Hom(M, N) yielding an element of set_Hom(M, N) is defined
by the term

(Def. 21) ZeroMap(M, N).

The functor Hom(R, M, N) yielding a non empty vector space structure over
R is defined by the term

(Def. 22) (set_Hom(M, N),add Hom(M, N),0_-Hom(M, N),lmult_ Hom(M, N)).
Let us note that Hom(R, M, N) is non empty. Now we state the propositions:
(21) Let us consider homomorphisms f, g from M to N by R. Then
(i) f, g € (the carrier of N)®, and
(i) (add-Hom(M, N))({f, g)) = (ADD(M, N))(f,g), and
(iii) (ADD(M,N))(f,g) is a homomorphism from M to N by R,

where « is the carrier of M. The theorem is a consequence of (18).

(22) Let us consider an element a of the carrier of R, and a homomorphism

f from M to N by R. Then

(i) (lmult_-Hom(M, N))({a, f)) = (LMULT(M, N))({a, f)), and

(ii) (LMULT(M,N))({a, f)) is a homomorphism from M to N by R.
The theorem is a consequence of (20).

(23) Let us consider elements f1, g1 of Func_Mod(R, M, N), and elements f,
g of Hom(R,M,N). If fi = f and g1 = g, then f 4+ g = f1 + g1. The
theorem is a consequence of (21).

(24) Hom(R, M, N) is a left module over R. The theorem is a consequence of
(23).

Let us consider R, M, and N. Note that Hom(R, M, N) is Abelian, add-
associative, right zeroed, right complementable, vector distributive, scalar di-
stributive, scalar associative, and scalar unital.

Let us consider M. Let u be a homomorphism from M; to M by R. The
functor 7(N,u) yielding a function from Hom(R, M, N) into Hom(R, M1, N) is
defined by

217
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(Def. 23) for every element f of Hom(R, M, N), there exists a homomorphism f;
from M to N by R such that f = f1 and it(f) = f1 - u.

Let us note that 7(NV,u) is additive and homogeneous. Now we state the
proposition:

(25) Let us consider a homomorphism u from M; to M by R. Then 7(N,u)
is a homomorphism from Hom(R, M, N) to Hom(R, My, N) by R.

Let us consider R, M, N, and Ni. Let v be a homomorphism from N to
Ny by R. The functor ¢(M,u) yielding a function from Hom(R, M, N) into
Hom(R, M, N;) is defined by

(Def. 24) for every element f of Hom(R, M, N), there exists a homomorphism f;
from M to N by R such that f = f1 and it(f) =u- f1.

Let us observe that ¢(M, u) is additive and homogeneous. Now we state the
propositions:

(26) Let us consider a homomorphism u from N to Ny by R. Then ¢(M,u)
is a homomorphism from Hom(R, M, N) to Hom(R, M, N1) by R.

(27) Hom(R, LeftMod(R), M) = M.
PRrROOF: Reconsider Ry = LeftMod(R) as a left module over R. Recon-
sider m; = 1g as an element of R;. Define F(element of (the carrier of
M )(the carrier of R1))y — ¢, (1), Consider G being a function from (the carri-
er of M )(the carrier of R} into M such that For every element z of (the carrier
of M)*, G(z) = F(x), where « is the carrier of R;. For every elements f,
g of (the carrier of M), G((ADD(Ry, M))(f,9)) = G(f)+ G(g), where «
is the carrier of R;.

For every element f of (the carrier of M) and for every element a of

R, G((LMULT(R1, M))({a, f))) = a-G(f), where « is the carrier of Rj.
Set ¢ = the carrier of Hom(R, Ry, M). Set G; = GJc. For every object
y such that y € rng Gy holds y € the carrier of M. For every elements
[, g of Hom(R, Ry, M), Gi(f + g9) = G1(f) + G1(g). For every element
f of Hom(R, R1, M) and for every element a of R, Gi(a- f) = a - Gi(f).
ker G1 = {OHom(R,R,,M)}- For every object y such that y € the carrier of
M holds y € rng Gy. O

Correspondence between Abelian Group (AbGr) and left R-module.
Let us consider R and M. The functor AbGr(M) yielding a non empty, strict
Abelian group is defined by the term
(Def. 25) (the carrier of M, the addition of M,0,/).
Let us consider N. Let f be a homomorphism from M to N by R. The
functor AbGr(f) yielding a function from AbGr(M) into AbGr(N) is defined
by
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(Def. 26) for every object x such that = € the carrier of AbGr(M) holds it(x) =
f ().
Now we state the proposition:

(28) Let us consider a homomorphism f from M to N by R. Then AbGr(f)
is a homomorphism from AbGr(M) to AbGr(N).

Let us consider endomorphisms f, g, h of R and M. Now we state the
propositions:

(29) AbGr(h) = (FuncComp(AbGr(M)))(AbGr(f), AbGr(g)) if and only if
for every element z of the carrier of AbGr(M), (AbGr(h))(z) = ((AbGr(f))-
(AbGr(g)))().

(30) If h= f-g, then AbGr(h) = (AbGr(f)) - (AbGr(g)).

PROOF: For every element x of the carrier of AbGr(M), (AbGr(h))(z) =
((AbGr(f)) - (AbGr(g)))(x). O

(31) AbGr(h) = (ADD(AbGr(M), AbGr(M)))(AbGr(f), AbGr(g)) if and on-

ly if for every element z of the carrier of AbGr(M), (AbGr(h))(z) =
(AbGr(f))(z) + (AbGr(g))().
Proor: If AbGr(h) = (ADD(AbGr(M), AbGr(M)))(AbGr(f), AbGr(g)),
then for every element x of the carrier of AbGr(M), (AbGr(h))(z) =
(AbGr(f))(x) + (AbGr(g))(x). AbGr(h) = (ADD(AbGr(M), AbGr(M)))
(AbGr(f), AbGr(g)). O

(32) If h= (ADD(M,M))(f,qg), then AbGr(h) =
(ADD(AbGr(M), AbGr(M)))(AbGr(f), AbGr(g)). The theorem is a con-
sequence of (15) and (31).

(33) Let us consider a ring R, a left module M over R, an element a of R, and
an element m of M. Then (curry(the left multiplication of M))(a)(m) =
a-m.

(34) Let us consider a commutative ring R, a left module M over R, and
an element a of R. Then (curry(the left multiplication of M))(a) is an en-
domorphism of R and M.

PROOF: Set f = (curry(the left multiplication of M))(a). For every ele-
ments my, mg of M, f(my + mgy) = f(m1) + f(ms). For every element b
of R and for every element m of M, f(b-m)="0- f(m). O

(35) Let us consider endomorphisms f, g, h of R and M. Suppose h = f - g.
Then AbGr(h) = (FuncComp(AbGr(M)))(AbGr(f), AbGr(g)). The the-
orem is a consequence of (30) and (29).

Let R be a commutative ring and M be a left module over R. The cano-

nical homomorphism of M into quotient field yielding a function from R into
End _Ring(AbGr(M)) is defined by
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(Def. 27) for every object z such that x € the carrier of R there exists an endo-
morphism f of R and M such that f = (curry(the left multiplication of

M))(z) and it(z) = AbGr(f).
Observe that the canonical homomorphism of M into quotient field is addi-

tive. Now we state the proposition:

(36) Let us consider a commutative ring R, a left module M over R, and
an element a of R. Then (the canonical homomorphism of M into quotient
field)(a) is a homomorphism from AbGr(M) to AbGr(M).

Let R be a commutative ring and M be a left module over R. One can
verify that the canonical homomorphism of M into quotient field is linear and
AbGrLMod(AbGr(M), the canonical homomorphism of M into quotient field) is
non empty, Abelian, add-associative, right zeroed, right complementable, vector
distributive, scalar distributive, scalar associative, and scalar unital.

Now we state the propositions:

(37) Let us consider a commutative ring R, and a left module M over R. Then
LModlmult(AbGr(M ), the canonical homomorphism of M into quotient
field) = the left multiplication of M.

PRrROOF: Set F' = LModlmult(AbGr(M), the canonical homomorphism of
M into quotient field). For every object z such that z € (the carrier of
R) x (the carrier of M) holds F'(z) = (the left multiplication of M)(z). O

(38) Let us consider a commutative ring R, and a strict left module M over
R. Then AbGrLMod(AbGr(M), the canonical homomorphism of M into
quotient field) = M.

ProOF: AbGrLMod(AbGr(M), the canonical homomorphism of M into
quotient field) is a submodule of M. O

Let R be a commutative ring and M be a left module over R. The functor
p(M) yielding a function from M into AbGrLMod(AbGr(M),the canonical
homomorphism of M into quotient field) is defined by the term

(Def. 28) idpy.

Now we state the proposition:

(39) Let us consider a commutative ring R, and a left module M over R.
Then p(M) is additive and homogeneous.
PROOF: For every element z of the carrier of M and for every element
of R, p(M)(a-x) =a- p(M)(x) by [5, (7)]. O

Let R be a commutative ring and M be a left module over R. Observe that
p(M) is additive and homogeneous.

Let us consider a commutative ring R and a left module M over R. Now we
state the propositions:
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(40) p(M) is one-to-one and onto.
(41) M = AbGrLMod(AbGr(M), the canonical homomorphism of M into

2]
3]

4]

(5]

quotient field). The theorem is a consequence of (40).
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