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Summary. The main purpose of the article is to construct a sophisticated
polynomial proposed by Matiyasevich and Robinson [0] that is often used to
reduce the number of unknowns in diophantine representations, using the Mizar
[, [2] formalism. The polynomial

Ji(a, ..., a,x) = H (ac—i—q\/a—i—ez\/@W—i—...—&—ek\/@Wk*l)

€1,..., e €{E1}

with W = Zle z? has integer coefficients and Jj (a1y...,ak,2) = 0 for some
ai,...,ak,x € Z if and only if a1,...,ar are all squares. However although it is
nontrivial to observe that this expression is a polynomial, i.e., eliminating similar
elements in the product of all combinations of signs we obtain an expression where
every square root will occur with an even power. This work has been partially
presented in [7].
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1. PRELIMINARIES

From now on ¢, j, n, k, m denote natural numbers, a, b, x, y, z denote
objects, F', G denote finite sequence-yielding finite sequences, f, g, p, ¢ denote
finite sequences, X, Y denote sets, and D denotes a non empty set.

Let X be a finite set. The functor Qx yielding an element of Fin X is defined
by the term

(Def. 1) X.

@© 2022 The Author(s) / AMU
(Association of Mizar Users)
169 under [CC BY-SA 3.0 license


https://sciendo.com/journal/forma
https://orcid.org/0000-0002-7099-1669
http://zbmath.org/classification/?q=cc:11D45
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/hilb10_7.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

170 KAROL PAK

Now we state the propositions:

(1) Let us consider non empty sets X1, Xo, Y, a binary operation F' on Y,

an element By of Fin X1, and an element Bs of Fin X5. Suppose B; = By
and (B # () or F is unital) and F is associative and commutative. Let us
consider a function f; from X; into Y, and a function fs from X5 into Y.
Suppose fi[B1 = fa|B2. Then F-3"p f1=F-3 g, fo.
ProoOF: Consider GG; being a function from Fin X; into Y such that
F-3"p, fi = G1(B1) and for every element e of Y such that e is a unity
w.r.t. F holds G1(0)) = e and for every element z of X1, G1({z}) = fi(x)
and for every element B’ of Fin Xy such that B’ C By and B’ # () for
every element x of X; such that z € B; \ B’ holds G1(B' U {z}) =
F(GA(B), f1(x).

Consider G2 being a function from Fin X3 into Y such that -3 5 fo =
G2(B2) and for every element e of Y such that e is a unity w.r.t. F' holds
G2(0) = e and for every element = of Xo, Go({z}) = f2(z) and for every
element B’ of Fin X5 such that B’ C By and B’ # () for every element x of
Xy such that € By \ B’ holds G2(B' U {z}) = F(G2(B’), f2(x)). Define
Plset] = if $; C By, then G1($1) = G2($1) or $; = 0. For every element
B’ of Fin X7 and for every element b of X; such that P[B’] and b ¢ B’
holds P[B’ U {b}]. For every element B of Fin X1, P[B]. O

(2) Let us consider a non empty set D, elements dj, dy of D, and a binary
operation B on D. Suppose B is unital, associative, and commutative and
has inverse operation. Then

(i) B((the inverse operation w.r.t. B)(d;),d2) =(the inverse operation
w.r.t. B)(B(d, (the inverse operation w.r.t. B)(dz))), and

(ii) B(d1, (the inverse operation w.r.t. B)(dgz)) =(the inverse operation
w.r.t. B)(B((the inverse operation w.r.t. B)(dy),d2)).

(3) Let us consider a non empty set D, and binary operations A, M on D.

Suppose A is commutative, associative, and unital and M is commutative
and distributive w.r.t. A and for every element d of D, M(14,d) = 14.
Let us consider non empty, finite sets X, Y, a function f from X into D,
a function g from Y into D, an element a of Fin X, and an element b of
FinY. Then A-3, My, = M(A-Y, f,A-3,9).
PROOF: Set m = Mjy 4. Define Plset] = for every element a of Fin X for
every element b of FinY such that a = $; holds A-}", ., m = M(A->, f,
A->"1 g). Pl0x]. For every element E of Fin X and for every element e of
X such that P[E] and e ¢ E holds P[E U {e}|. For every element E of
Fin X, P[E]. O
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(4) Let us consider a non empty set D, binary operations M, A on D, and
an element d of D. Suppose M is unital and A is associative and unital
and has inverse operation and M is distributive w.r.t. A. Then

(i) if n is even, then M ® n +— (the inverse operation w.r.t. A)(d) =
M ®n+—d, and

(ii) if n is odd, then M ® n — (the inverse operation w.r.t. A)(d) =
(the inverse operation w.r.t. A)(M ©n +— d).

PROOF: Set I = the inverse operation w.r.t. A. Define P[natural number]
= if $; is even, then M ©® $; — I(d) = M © $;1 — d and if $; is not even,
then M ®$1 +— I(d) = I(M ® $1 — d). If P[i], then P[i + 1]. P[i]. O

(5) Let us consider a finite sequence s. Suppose s~!({y}) # 0. Then there
exists a permutation p of Seglen s such that

(i) (s-p)(lens) = y, and
(i) p=p~".

Let D be a non empty set. Let us note that there exists a finite sequence
of elements of D* which is non empty and non-empty. Let X, Y be non empty
sets. Let us note that X WY is non empty. Let X, Y be finite sets. One can
check that X WY is finite. Now we state the propositions:

(6) Let us consider sets X, Y. Then 2% y2Y = 2XUY,
(7) Let us consider sets X, Y7, Y2. Then X U (Y1 UY3) = (X UY])U (X UY?).

(8) If X misses JY, then YU{X} =Y.
PROOF: Define F(set) = $; U X. Consider f being a function such that
dom f = Y and for every set A such that A € Y holds f(A4) = F(A).
mgfCYU{X}. YU{X} Crngf. fis one-to-one. [

(9) Suppose m # 0. Then 2 - 2(Segm)\{1} = 2(Seg(1+m))\{1}
PROOF: Set S = (Segm)\ {1}. Set F =25. FU {0} = F. {m+1} misses
UF. Fu{{m+1}} = F. Fu2lmtl} — (Fu {0}) U (FuU {{m +1}}).
FU{0} misses FU {{m +1}}. O

2. SELECTED OPERATIONS ON SET FAMILIES

Let X be a set and a, b be objects. The functor ext(X,a,b) yielding a set is
defined by the term

(Def. 2) {AU{b}, where A is an element of X : a € A}U{A, where A is an element
of X:a¢ Aand A€ X}.

The functor swap(X, a,b) yielding a set is defined by the term
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(Def. 3) {A\ {a}U{b}, where A is an element of X : a € A} U{AU {a}, where
Ais an element of X :a ¢ A and A € X}.
Now we state the propositions:
(10) Ify ¢ UJY, then Y = ext(Y,x,y).
PROOF: Set P = {X, where X is an element of Y : x € X}. Set P; =
{X U{y}, where X is an element of ¥ : x € X}. Set N = {X, where
X is an element of YV : ¢ X and X € Y}. Define F(set) = $; U {y}.
Consider f being a function such that dom f = P and for every set A
such that A € P holds f(A) = F(A). rng f C Ps. P Crng f. f is one-to-
one. PCY NCY. Y CNUP. N misses P;. N misses P. [J
(11) Ify ¢ Y, then Y = swap(Y,,y).
PROOF: Set P = {X, where X is an element of Y : x € X}. Set P; =
{X\{x}U{y}, where X is an element of Y : x € X}. Set N = {X, where
X isan element of Y : ¢ X and X € Y}. Set Ny = {X U {z}, where
X is an element of Y : x ¢ X and X € Y}. Define F(set) = $1\ {z}U{y}.
Consider f being a function such that dom f = P and for every set
A such that A € P holds f(A) = F(A). y»ngf C Ps. Ps Crngf. f is
one-to-one. Define G(set) = $; U {z}. Consider ¢g being a function such
that dom g = N and for every set A such that A € N holds g(A) = G(A).
rmgg C No. No Crngg. g is one-to-one. PC Y NCY Y C NUP. Ny
misses P5. N misses P. [
(12) swap(0,z,y) = 0.
(13) swap(X UY,z,y) = swap(X, z,y) Uswap(Y, z,y).
(14) Y eswap(X,z,y) and z Zyand y ¢ JX,thenz €Y iff y ¢ Y.
(15) ext(0,z,y) = 0.
(16) ext(XUY,z,y) =ext(X,z,y) Uext(Y, x,y).
(17) Y eext(X,z,y) and y¢ UX, thenz €Y iff y € V.
Let X be a finite set and a, b be objects. Observe that swap(X, a, b) is finite
and ext(X,a,b) is finite.
Let f be a function. The functor Swap(f,a,b) yielding a function is defined
by
(Def. 4) dom it = dom f and for every x such that z € dom f holds if a € f(z),
then it(x) = f(z) \ {a} U{b} and if a ¢ f(z), then it(x) = f(x) U{a}.
The functor Ext(f,a,b) yielding a function is defined by
(Def. 5) dom it = dom f and for every z such that x € dom f holds if a € f(x),
then it(z) = f(x) U{b} and if a ¢ f(z), then it(x) = f(z).
Let f be a finite sequence. Observe that Swap(f, a,b) is (len f)-element and
finite sequence-like and Ext(f,a,b) is (len f)-element and finite sequence-like.
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Let us consider finite sequences f, g. Now we state the propositions:
(18) Swap(f " g,a,b) = Swap(f,a,b) ~ Swap(g, a,b).
PROOF: Set Sy = Swap(f, a,b). Set S11 = Swap(g, a,b). Set S190 = Swap(f~
g,a,b). For every k such that 1 < k < len Syp holds Sig(k) = (S9 ™ S11) (k).
0
(19) Ext(f " g,a,b) = Ext(f,a,b) " Ext(g,a,b).
PROOF: Set Eo5 = EXt(f, a, b) Set Eo7 = Ext(g, a, b) Set Eog = EXt(f -
g,a,b). For every k such that 1 < k < len Fy holds Fag(k) = (Ea5 ~
Ey7) (k). O
Let us consider a function f. Now we state the propositions:

(20) Ifb# x and b # y, then b € (Ext(f,z,y))(a) iff b € f(a).
Proor: If b € (Ext(f,z,y))(a), then b € f(a). O

(21) Ifb# x and b # y, then b € (Swap(f,z,y))(a) iff b € f(a).
Proor: If b € (Swap(f, z,y))(a), then b € f(a). O

(22) Ifzx#yandy ¢ UX andy ¢ Y, then ext(X, z,y) misses swap(Y, z,y).
The theorem is a consequence of (14) and (17).

(23) Let us consider functions f, g. Then (Swap(f,x,y))-g = Swap(f-g,z,y).
PROOF: Set S = Swap(f,x,y). Set S11 = Swap(f - g,z,y). dom(S - g) C
dom(f - g). dom(f - g) C dom(S - g). For every a such that a € dom Si;
holds S11(a) = (S - ¢g)(a). O

(24) Let us consider a function f. Then Swap(f,z,y)[X = Swap(f[X,z,y).
The theorem is a consequence of (23).

(25) Let us consider functions f, g. Then (Ext(f,z,y)) g = Ext(f - g,z,y).
PRrOOF: Set E = Ext(f,z,y). Set Ear = Ext(f - g,z,y). dom(E - g) C
dom(f - g). dom(f - ¢g) C dom(E - g). For every a such that a € dom Fa7
holds Eg7(a) = (E - g)(a). O

(26) Let us consider a function f. Then Ext(f,z,y)|X = Ext(fX,z,y). The
theorem is a consequence of (25).

Let X be a finite set. Let us observe that every enumeration of X is X-
element and X-valued. Let us consider a finite set F' and an enumeration F of
F. Now we state the propositions:

(27) Ify ¢ UF, then Swap(F,x,y) is an enumeration of swap(F,z,y). The
theorem is a consequence of (11).
)

(28) If y ¢ UF, then Ext(E,z,y) is an enumeration of ext(F,z,y). The
theorem is a consequence of (10).

(29) Ifx € X, then ext({X},z,y) = {X U{y}}.
(30) Ifz ¢ X, then ext({X},z,y) = {X}.
(31) Ifx € X, then swap({X},z,y) = {X \ {z} U{y}}.
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(32) If x ¢ X, then swap({X},z,y) = {X U{z}}.
Let X be a non empty set and a, b be objects. One can check that ext(X, a, b)
is non empty and swap(X, a,b) is non empty. Now we state the propositions:
(33) Ify¢UXandy ¢ Y, then X misses Y iff ext(X, z,y) misses ext(Y, z,y).
ProOF: If X misses Y, then ext(X,z,y) misses ext(Y,z,y). Consider a
being an object such that a € X and a € Y. [J
(34) Ifz#yandy ¢ UX and y ¢ UY, then X misses YV iff swap(X, z,y)
misses swap(Y, z,y).
PrOOF: If X misses Y, then swap(X,z,y) misses swap(Y, z,y). Consider
a being an object such that a € X and a € Y. U

Let us consider a function f. Now we state the propositions:

(35) If z € dom f, then Ext((f(2)),x,y) = (Ext(f,z,y))(2)).

(36) If z € dom f, then Swap((f(2)),z,y) = ((Swap(f,z,y))(2)).

(37) If z € dom f, then ext({f(2)},z,v) = {(Ext(f,z,y))(z)}. The theorem
is a consequence of (29) and (30).

(38) If z € dom f, then swap({f(2)},z,y) = {(Swap(f,z,v))(z)}. The the-
orem is a consequence of (31) and (32).

(39) Suppose m # 0. Then 25eg(m+2)N\ {1} — ext(2(Sealm+DNI} 1 4 2 4
m) Uswap(205eg(m+ON1} 1 4 2 +m). The theorem is a consequence of
(10), (11), (9), and (22).

3. FuNcTION WHERE EACH VALUE 1S REPEATED AN EVEN NUMBER OF
TIMES

Let f be a finite function. We say that f has evenly repeated values if and
only if

(Def. 6)  f~1({y}) is even.
One can verify that every finite function which is empty has also evenly
repeated values.
Let = be an object. Observe that (z,z) has evenly repeated values.
Now we state the proposition:

(40) Let us consider finite sequences f, g with evenly repeated values. Then
f 7 g has evenly repeated values.

Let F be a set. We say that F' is with evenly repeated values-member if and
only if

(Def. 7) for every object y such that y € F holds y is a finite function with evenly
repeated values.
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One can verify that every set which is empty is also with evenly repeated
values-member.

Let X be a finite sequence-membered set. Note that every element of Fin X
is finite sequence-membered.

Let Y be a finite sequence-membered set. Note that X UY is finite sequence-
membered. Now we state the propositions:

(41) Let us consider finite sequence-membered sets P;, Sy, S3. Then P} ~
(S1US2) =P~ S1UP " S,.

(42) Let us consider finite sequence-membered sets Py, Py, Si. Then (P} U
PQ)ASI =P "S5 uUP "5

(43) Let us consider finite sequences f, g. Then {f} =~ {g} = {f ~ g}

Let f be a finite function with evenly repeated values. Observe that {f}
is with evenly repeated values-member. Let g be a finite function with evenly
repeated values. Let us note that {f, g} is with evenly repeated values-member.
Let F, G be with evenly repeated values-member, finite sequence-membered
sets. Let us note that F' ~ G is with evenly repeated values-member. Now we
state the proposition:

(44) Let us consider a finite function f, and a permutation p of dom f. Then
f has evenly repeated values if and only if f-p has evenly repeated values.
PRrooF: If f has evenly repeated values, then f - p has evenly repeated
values. [J

4. CARTESIAN PRODUCT OF DOMAINS IN FINITE SEQUENCES

Let F' be a finite sequence-yielding finite sequence. The functor dom, F'(k)
yielding a finite subset of N* is defined by
(Def. 8) for every object z, x € it iff there exists a finite sequence p such that
p =x and lenp = len F" and for every i such that ¢ € dom p holds p(i) €
dom(F'(7)).
Now we state the propositions:
(45) dom, F'(k) is not empty if and only if F' is non-empty.
PRrROOF: If dom,, F'(k) is not empty, then F' is non-empty. Set L = len F' —
1. For every ¢ such that i € dom L holds L(7) € dom(F(7)). O
(46) domy (k) = {0}.
Let F' be a finite sequence-yielding finite sequence. Let us observe that
domy, F'(k) is finite sequence-membered. Now we state the proposition:

(47) p € dom, F(k) if and only if lenp = len F' and for every i such that
i € domp holds p(i) € dom(F'(7)).
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Let F be a finite sequence-yielding finite sequence. Let us note that every
element of dom,, F'(k) is N-valued.

Let F' be a non-empty, finite sequence-yielding finite sequence. Let us note
that dom, F'(x) is non empty. Now we state the propositions:

(48) If f € dom, F(k) and g € dom, G(k), then f ™ g € dom, F ™ G(k).
PROOF: Set fi11=f"g.Set Fs=F " G.lenf =len F and leng = lenG.
For every i such that i € dom f17 holds f11(i) € dom(Fg(7)). O

(49) Let us consider finite sequence-membered sets P, S. Suppose P C dom,
F(x) and S C dom, G(k). Then P~ S C dom, F' ™ G(k). The theorem is
a consequence of (48).

(50) Suppose (lenf =lenF or leng = lenG) and f = g € dom, F = G(k).
Then

(i) f € domy F(k), and

(ii) g € dom, G(k).
PROOF: Set f11 = f"g. Set Fs = F~G. len f1; = len f+len g and len Fg =
len F' 4 len G and len Fg = len f1;. For every ¢ such that ¢ € dom f holds
f(i) € dom(F(3)). For every i such that ¢ € dom g holds g(i) € dom(G(7)).
O

(51) f € domg(g)(k) if and only if len f = 1 and f(1) € dom g. The theorem
is a consequence of (47).

(52) dom, F ™~ (g~ (x))(k) = domg F ~ (g9)(k) U{f ™ (1 + leng), where f is
an element of dom, F'(k) : f € domy F(k)}.

PROOF: Set S = {f 7 (1 + leng), where f is an element of dom, F(k) :
f € domy F(k)}. Set g4 = g~ (z). dom,, F ™ (g4) (k) C dom, F ™~ (g)(k)US.
U

(563) dom, F'~ {(z))(rk) = {f " (1), where f is an element of dom, F (k) : f €
dom,, F'(k)}. The theorem is a consequence of (45) and (52).

(54) Let us consider finite sequence-yielding finite sequences F', G. Then
(the concatenation of N)°((domy F'(k)) X (dom, G(k))) = dom, F'~ G(k).
PROOF: Set C' = the concatenation of N. C°((dom,, F'(k))x (dom, G(k))) C
dom, F'~ G(k) by [3, (4)], (48). Reconsider f1; = zy as an N-valued finite
sequence. len f1; = len(F = G) = len F' + len G. Set f = fi1[len F. Con-
sider g being a finite sequence such that f1; = f ~g. f € dom, F(k) and
g € dom,, G(k). O

(55) dom(f)(k) = {(i), where i is an element of N : i € dom f}.

PROOF: domy (f)(k) C {(i), where i is an element of N : ¢ € dom f}. Con-
sider i being an element of N such that y = (i) and i € dom f. O

Let us consider n and F'. One can check that F'[n is finite sequence-yielding.
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Now we state the propositions:

(56) If f € dom, F(k), then fIn € dom, F[n(k). The theorem is a consequ-
ence of (47).

(57) dom,(g)(k) =leng.
PRrROOF: Set G = (g). Define Plobject,object] = for every finite sequ-
ence f such that f = $; holds f(1) = $2. For every object z such
that € dom, G(k) there exists an object y such that y € domg and
Plz,y]. Consider F' being a function such that dom F' = dom, G(x) and
rng F' C domg and for every object = such that x € dom, G(x) holds
Plz, F(z)]. F is one-to-one. domg C rng F. [J

(58) domy F ™ (f)(k) = domy F(r) - (len f).
PROOF: Define D[natural number| = for every finite sequence f such that
len f = §; holds dom, F ~ (f)(k) = domy F'(x) - (len f). D[0]. If D[n],
then D[n + 1]. D[n]. O

5. SOME OPERATIONS ON FINITE SEQUENCES

Let F be a finite sequence-yielding finite sequence. The functor App(F)
yielding a finite sequence-yielding function is defined by

(Def. 9) domit = domy, F(k) and for every finite sequence p such that p €
domy, F'(k) holds lenit(p) = lenp and for every i such that i € domp
holds (it(p))(i) = F(i)(p(i))-

Let D be a non empty set and F' be a (D*)-valued finite sequence. Let us
note that the functor App(F) yields a function from dom, F'(x) into D*. Now
we state the propositions:

(59) (App(0))(@) = 0. The theorem is a consequence of (46).

(60) If i € dom f, then (App((f)))((Z)) = (f(7)). The theorem is a consequ-
ence of (51).
(61) Suppose f € domy F (k) and g € dom,, G(k). Then (App(F~G))(f"g) =
(App(F))(f) ~ (App(G))(9).
PROOF: Set Fg = F'~ G. Set Ay = App(F'). Set A3 = App(G). Set Ay =
App(Fg). f ™ g € domy, F3(k). len f = len F' and len g = len G. For every i
such that 1 <i <len Aa(f ~g) holds Aa(f ~g)(i) = (A1(f) " As(g))(7). O
Let D be a non empty set and F' be a non empty, (D*)-valued finite sequence.
One can verify that App(F') is non-empty.
Let f be a (D*)-valued function and x be an object. One can check that
the functor f(x) yields a finite sequence of elements of D. Let B be a binary
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operation on D and F be a (D*)-valued function. The functor B ® F yielding
a function from dom F' into D is defined by

(Def. 10) for every z such that € dom F holds it(x) = B ® F(x).

From now on B, A, M denote binary operations on D, F, G denote (D*)-
valued finite sequences, f denotes a finite sequence of elements of D, and d, dy,
do denote elements of D.

Let D be a non empty set, B be a binary operation on D, and F' be a (D*)-
valued finite sequence. Let us observe that B ® F' is (len F')-element and finite
sequence-like.

Let D be a set and f be a finite sequence of elements of D. Observe that
the functor (f) yields a finite sequence of elements of D*. Now we state the
propositions:

(62) Ao(f)=(A0/f).

(63) AOGF~"G=(AOF)" (A0G).
PROOF: Set Fg = F' ~ (. For every n such that 1 < n < lenF + lenG
holds (A® Fg)(n) = ((AGF) " (A®G))(n). O

Let f be a non empty finite sequence. Observe that (f) is non-empty.

From now on F', G denote non-empty, non empty finite sequences of elements
of D* and f denotes a non empty finite sequence of elements of D.

Now we state the propositions:

(64) Suppose A is commutative and associative. Let us consider non emp-
ty finite sequences f, g, a function F' from dom f into D, a function G
from domg into D, and a function Fg from dom(f ~ ¢) into D. Sup-
pose f = F and g = G and f " g = Fg. Then A-)> g Fy =

dom(f7 g)
A(A- 2 Qom 5 > A- 2 Qoms Q).
PROOF: Define Plnatural number] = for every non empty finite sequences
f, g such that $; = len g for every function F' from dom f into D for every
function G from dom g into D for every function Fg from dom(f ™ g) into
D such that f = F and ¢ = G and f ~ g = Fg holds A- ZQdom(qu) Fy =

A(A-3 0 s A Yy, @)- P1]. For every n such that 1 < n holds if
P[n], then Pln + 1]. For every n such that 1 < n holds P[n]. O

(65) Suppose M is commutative and associative. Then M-3 g (A®

dom(F™G)
FPG) = MM-Yq, (AOF),M->qg . (A®G)). The theorem is
a consequence of (63) and (64).

(66) If M is commutative and associative, then M-3 ¢ AG(f)) = A f.

(
m(f)
The theorem is a consequence of (62).

(67) Suppose M is commutative and associative and A is commutative and
associative and M is left distributive w.r.t. A. Let us consider a function
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fo from dom f into D. Suppose for every z such that x € dom f holds
fol@) = M(M-Yq,, (A® F),f(@)). Then M- (A®F "
() = A-Sq,.., fo

PROOF: Define P[natural number] = for every f such that len f = $; for

every function fg from dom f into D such that for every x such that x €
dom f holds fo(z) = M(M->q, (A®F), f(x)) holds M- 2o,
(A0 F~(f) = A-Yq,,., fo- f P[n], then Pln+1]. P[n]. O
(68) Suppose len F' =1 and M is commutative and associative and A is com-
mutative and associative. Then M-3q  (AGF) = A- ZQdom(App(F)) (Mo
App(F)).
PROOF: Set Fy; = F(1). Set f = M © App(F). Set X = dom(App(F)).
Consider G being a function from Fin X into D such that A-3 g f =
G(flx) and for every element e of D such that e is a unity w.r.t. A holds
G(0) = e and for every element = of X, G({z}) = f(x) and for every
element B’ of Fin X such that B’ C Qx and B’ # () for every element x
of X such that z € Qx \ B’ holds G(B' U{x}) = A(G(B’), f(x)).
Consider s being a sequence of D such that s(1) = Fi(1) and for
every natural number n such that 0 # n and n < len F; holds s(n+ 1) =
A(s(n), Fi(n+ 1)) and A ® F; = s(len F}). Define R(natural number) =
{(7), where i is an element of N : i € Seg$;}. Define P[natural number] =
if $1 < len Fy, then for every element B’ of Fin X such that B’ = R($;)
holds G(B’) = s($1). PJ[1]. For every j such that 1 < j holds if P[j], then
P[j + 1]. For every i such that 1 < i holds P[i]. R(len F}) = X. O

(69) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and M is distributive w.r.t. A. Then M-3"q (A ©®
F) = A-320,0mamiry (M © App(F)).
PROOF: Define R [natural number| = for every non-empty, non empty fini-
te sequence F of elements of D* such that len ' = $; holds M- (A®
F)=A- ZQdom(App(F))(M ® App(F)). If R[n], then Rin + 1]. R[n]. O

om(F7(f))

om(F7(f))

6. COMBINATION OF SIGN AND CHARACTERISTIC FUNCTIONS

Let D be a non empty set, B be a binary operation on D, f be a finite sequence
of elements of D, and X be a set. The functor SignGen( f, B, X) yielding a finite
sequence of elements of D is defined by

(Def. 11) dom it = dom f and for every i such that i € dom it holds if i € X,
then it(i) = (the inverse operation w.r.t. B)(f(i)) and if i ¢ X, then
it(i) = f(3).
Note that SignGen(f, B, X) is (len f)-element.
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From now on f, g denote finite sequences of elements of D, a, b, ¢ denote
sets, and F', Fy, F5 denote finite sets. Now we state the propositions:

(70) If X misses dom f, then SignGen(f, B, X) = f.

(71) SignGen(f, B,0) = f. The theorem is a consequence of (70).

(72) SignGen(f[n, B, X) = SignGen(f, B, X)[n.

(73) Suppose n + 1 = lenf and n +1 € X. Then SignGen(f,B,X) =

SignGen(fIn, B, X) ~ ((the inverse operation w.r.t. B)(f(n+1))).
PROOF: Set n; = n + 1. Set I = (the inverse operation w.r.t. B)(f(n1)).
SignGen(fn, B, X) = SignGen(f, B, X)[n. For every i such that 1 <1i <
len SignGen( f, B, X) holds (SignGen(f, B, X))(i) = (SignGen(f[n, B, X)™
(I))(@). O
(74) Ifn+1 =1len f and n+1 ¢ X, then SignGen(f, B, X) = SignGen(f[n, B,
X) ™ (fn+ 1),
PROOF: Set ny =n+1. Set I = f(n1). SignGen(fIn, B, X) = SignGen(f,
B, X)[n. For every i such that 1 < < len SignGen(f, B, X) holds
(SignGen(f, B, X))(i) = (SignGen(f[n,B, X) ~ (I))(:). O
(75) If dom f C X, then SignGen(f, B, X) = (the inverse operation w.r.t.
B) - f.
PROOF: For every k such that k € dom(SignGen(f, B, X)) holds
(SignGen(f, B, X))(k) = ((the inverse operation w.r.t. B)- f)(k). O
(76) If B is unital and associative and has inverse operation, then
SignGen(SignGen(f, B, X), B, X) = f.
PRrOOF: Set C' = SignGen(f, B, X). For every k such that 1 < k < len f
holds (SignGen(C, B, X))(k) = f(k). O
Let E be a non empty set, D be a set, p be a D-valued finite sequence, and
h be a function from D into E. Let us observe that h - p is (lenp)-element and
finite sequence-like.
Let D be a non empty set, B be a binary operation on D, f be a finite
sequence of elements of D, and F be a finite set. The functor SignGenOp( f, B, F)
yielding a function from F' into D* is defined by

(Def. 12) if X € F, then it(X) = SignGen(f, B, X).
Now we state the propositions:
(77) Let us consider an enumeration F of {z}. Then E = (z).

(78) Let us consider an enumeration E of { X }. Then (SignGenOp(f, B,{X}))-
E = (SignGen(f, B, X)). The theorem is a consequence of (77).

(79) Let us consider an enumeration E; of Fj, and an enumeration Fy of F5.
Suppose Fy misses Fy. Then Eq ™ Es is an enumeration of Fy U F.
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(80) Let us consider an enumeration E of F. Suppose ¢ € domFE or i €
dom((SignGenOp(f, B, F)) - E). Then ((SignGenOp(f,B,F)) - E)(i) =
SignGen(f, B, E(i)).

PRrOOF: Set C' = SignGenOp(f, B, F). i € dom(C - E). O

(81) Let us consider an enumeration F; of Fj, an enumeration Fy of Fb,
and an enumeration FEq9 of Fy U Fy. Suppose Fio = Ei ~ Es. Then
(SignGenOp(f, B, F1 U Fy)) - E12 =
(SignGenOp(f, B, F1)) - E1 ~ (SignGenOp(f, B, F»)) - Es.

PRrROOF: Set C; = SignGenOp(f, B, F1). Set Cy = SignGenOp(f, B, F»).
Set C12 = SignGenOp(f, B, F1 U Fy). For every k such that 1 < k <
len 012 . E12 holds (Clg . Elg)(k)) = (Cl . E1 - CQ . EQ)(k) O

Let us consider an enumeration F of F'. Now we state the propositions:

(82) Suppose (B is unital or len f > 1) and 1 +lenf ¢ JF. Then B ©
(SignGenOp(f ~ (d), B, F)) - E = B°(B ® (SignGenOp(f, B, F)) - E,d).
PRrROOF: Set fip = f ~ (d). Set C = SignGenOp(f, B, F). Set Cay3 =
SignGenOp( fi0, B, F'). For every z such that € dom(C-FE) holds (B°(B®
C-E,d)(z) = (B® Coy - E)(z). O

(83) Suppose (B is unital or lenf > 1) and 1 +lenf € (N F. Then B ®
(SignGenOp(f ~(d),B,F))-E =
B°(B ® (SignGenOp(f, B, F')) - E, (the inverse operation w.r.t. B)(d)).
PROOF: Set fiop = f 7 (d). Set C = SignGenOp(f, B, F). Set Ca3 =
SignGenOp( f19, B, F'). Set I = the inverse operation w.r.t. B. For every
x such that z € dom(C-E) holds (B°(B&C-E,I(d)))(x) = (BoCas-E)(x).
O

(84) Suppose (B isunital orlen f > 1) and B is associative and 1+len f ¢ |J F’
and 2+1len f ¢ U F. Then B ® (SignGenOp((f ~(d1)) "~ (d2), B, F))-E =
B ® (SignGenOp(f ~ (B(dy,ds)), B, F)) - E. The theorem is a consequence
of (82).

(85) Suppose (B is unital or len f > 1) and B is associative and 1+len f ¢ |J F’
and 2+len f € N F. Then BO(SignGenOp((f~(d1))"(d2), B, F))-E = BO
(SignGenOp(f ~ (B(d1, (the inverse operation w.r.t. B)(ds))), B, F))-E.
The theorem is a consequence of (83) and (82).

(86) Suppose B is unital, associative, and commutative and has inverse ope-
ration and 1+len f € (N F and 2+len f ¢ |J F. Then B® (SignGenOp((f ™
(d1))"(d2), B, F))-E = B®(SignGenOp(f~(B(d1, ((the inverse operation
w.r.t. B)(dz2))), B, F))- E. The theorem is a consequence of (82), (83), and
(2).

(87) Suppose B is unital, associative, and commutative and has inverse ope-
ration and 1 +1len f, 2+1len f € (F. Then B ® (SignGenOp((f ™ (d1)) ™
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(d2), B, F))-E = B®(SignGenOp(f~(B(d1,d2)), B, F))- E. The theorem
is a consequence of (83) and (2).

(88) If X misses |J F, then there exists an enumeration E3s of F'U {X} such
that for every i such that ¢ € dom E holds E36(i) = X U E(7).

PROOF: Define F(set) = F($1) U X. Consider f being a function such
that dom f = dom E and for every set A such that A € dom F holds
f(A)=F(A). mgf CFU{X}. FU{X} Crngf. f is one-to-one. [J

(89) SignGen(f, B, X) = SignGen(f, B, X Ndom f).

(90) Let us consider an enumeration E; of F1, and an enumeration Fy of Fj.
Suppose ?1 = ?2 and for every ¢ such that ¢ € dom F; holds dom f N
Eq(i) = dom f N E5(i). Then (SignGenOp(f, A, F1)) - By =
(SignGenOp(f, A, F3)) - Es.

PRrROOF: Set C; = SignGenOp(f, A, F1). Set Cy = SignGenOp(f, A, F»).
For every i such that 1 <14 <len E; holds (Cy - E1)(i) = (Cq - E2)(i). O

(91) Suppose A is unital, associative, and commutative and has inverse ope-
ration. Let us consider a finite, non empty set F'. Suppose |JF C dom f.
Let us consider finite sets Fj, Fb. Suppose I} = F U ollen f+1} 4nd Fy =
Fu2llenf+llenf+2} Then there exists an enumeration Fy of Fy and there
exists an enumeration Ey of Fh such that A ® (SignGenOp((f ~ (d1)) ~
(d2), A, F»)) - E2 = (A © (SignGenOp(f ™ (A(d1,d2)), A, F1)) - E1) ~ (A©®
(SignGenOp(f~(A(dy, (the inverse operation w.r.t. A)(da))), A, F1))-E1).
PROOF: Set L =len f. Set Uy = FU{{L +1}}. Set Uy = F U {{L + 2}}.
Set Ujg = FU{{L + 1,L + 2}}. Set E = the enumeration of F. Set
I = the inverse operation w.r.t. A. Set fio = (f 7 (dy)) ~ (d2). Set f3 =
f 7 (A(d1,d2)). Set fu = f 7 (A(dy, I(d2))).

Consider F; being an enumeration of U; such that for every ¢ such
that i € dom F holds Fy(i) ={L+1}UE(i). L+2¢ JU;. L+1¢ JUs.
If a € Uyo, then L+ 1, L4+ 2 € a. Consider Fy being an enumeration of Us
such that for every i such that ¢ € dom E holds Es(i) = {L + 2} U E(i).
Consider Fps being an enumeration of Uiy such that for every ¢ such
that ¢ € dom E holds E12(i) = {L + 1,L + 2} U E(i). F misses U;. Uy
misses Us. Reconsider E7 = Eo ™ Eq as an enumeration of Uy U Uy. F
misses Ura. Reconsider F37; = E ~ Ejp as an enumeration of F'U Uys.
Up = F = Uy. Ujpg = F = U, . For every i such that i € dom F; holds
dom f3 N E1(i) = dom f3 N Eq2(i). For every ¢ such that ¢ € dom E holds
dom fy N E(i) = dom fy N FE5(i). F U Ujg misses Us U Uy.

Reconsider F1¢ = E37 © E7 as an enumeration of (F' U Ujz) U (Us U
U). {0y U {{L+1,L+2}}) U ({{L + 1}} U {{L + 2}}) = 2{L+LL+2}
F = F@{@} FuUU; = F@({@}U{{L+1,L+2}}) and Uy, UU; =
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Fu ({{L+1}} U{{L+ 2}}). Reconsider e; = Ejs as an enumeration of
Fy,. FUU; = FU ({@} U {{L + 1}}) AG (SignGenOp(flg,A,F U U12)) .
Es; = A® (SignGenOp(flg, A, F)) -E7 (SignGenOp(fl% A, Ulg)) - Fro.
A © (SignGenOp(fi2, A, Uz UUy)) - B7 = A © (SignGenOp( fi2, A, U2)) -
E2 - (SignGenOp(flg, A, Ul)) . El. (SignGenOp(flg, A, FQ)) €1 =
(SignGenOp(flg, A, (F U U12) U (UQ U U1))) - Fg. O

7. PRODUCT OVER ALL COMBINATIONS OF SINGS

Let D be a non empty set, A be a binary operation on D, and M be a binary
operation on D. Assume M is commutative and associative. Let f be a finite se-
quence of elements of D and F be a finite set. The functor SignGenOp(f, M, A, F')
yielding an element of D is defined by

(Def. 13) for every enumeration E of 2F, it = M-
(SignGenOp(f, 4,2F)) - E).

Now we state the propositions:

(A®

dom((SignGenOp(f,A,2F))-E)

(92) Suppose M is commutative and associative and A is commutative, asso-

ciative, and unital and has inverse operation and M is distributive w.r.t.
A. Let us consider non-empty, non empty finite sequences Cy, C7, Cs of
elements of D*. Suppose C5 = C4 ~ C7. Let us consider an element Sy of
Findom(App(Ci)), an element sy of dom(App(C7)), and an element Sio
of Findom(App(Cs)). Suppose S12 = S1 ™ {s2}. Then M(A-3 g (M ©
ApD(C4)), (M © App(Cy))(s2)) = A- Y, (M © App(Cs)).
PROOF: Define P[set] = for every element S; of Fin dom(App(Cy)) for eve-
ry element S12 of Fin dom(App(Cs)) such that S; = $; and S12 = S17{s2}
holds M (A-3g, (M®App(Ca)), A-Xo(s,y,(MOAPDP(C7))) = A- 305, (MO
App(Cs)). Pllaom(app(cy))]- For every element B’ of Findom(App(Cy))
and for every element b of dom(App(Cy)) such that P[B’] and b ¢ B’
holds P[B’ U {b}]. For every element B of Findom(App(Cy)), P[B]. O

(93) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and has inverse operation and M is distributive w.r.t.
A. Let us consider non-empty, non empty finite sequences Cy, C7, C5 of
elements of D*. Suppose C5 = C4 ™~ C7. Let us consider an element S; of
Findom(App(Ciy)), an element Sy of Findom(App(C7)), and an element
S12 of Findom(App(Cs)). Suppose S12 = S1 7 Sa. Then M(A-3Y g (M ©
App(Cy)), A- 325, (M © App(C7))) = A-325,,(M © App(Cs)).
PROOF: Set a; = A-} "5 (M ® App(Cy)). Define P[natural number] = for
every element Sy of Fin dom(App(C?)) for every element S92 of Fin dom(A-
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pp(Cs)) such that So = $; and S1o = S ™ Sy holds M (ay, A- Y5, (M ©
App(C7))) = A-32s,,(M © App(Cs)). P[0]. If Pn], then P[n + 1] by [6,
(55)], 4, (16)]. P[n]. O
(94) Let us consider an enumeration Ej of Fy. Then dom,(SignGenOp(f, A4,
F1)) - E1(k) € dom(SignGenOp(f ~ g, A, F1)) - E1(k).
PROOF: lenz = len E;. For every i such that i € domx holds x(i) €
dom(((SignGenOp(f "~ g, A, F1)) - E1)(i)). O
(95) Suppose A is unital, commutative, and associative. Let us consider an enu-
meration F7 of F}, and non-empty, non empty finite sequences Cy, Cr
of elements of D*. Suppose Cy = (SignGenOp(f, A, F1)) - E1 and C7 =
(SignGenOp(f~g, A, F1))-Ej. Let us consider an element S} of Fin dom(Ap-
P(Cy)), and an element Sy of Fin dom(App(C7)). Suppose S1 = Ss.
Then A-37g, (M © App(Cy)) = A-32g,(M © App(C7)).
PROOF: For every x such that z € dom((M ® App(Cy))[S1) holds ((M ®
App(C))[51) () = (M © App(C7))[52)(x). O
(96) Let us consider an enumeration F of F. Suppose len E = n + 1. Then
(i) Eln is an enumeration of F'\ {E(len F)}, and
(ii) (E(len E)) is an enumeration of {E(len E)}, and
(ii) F=F\{E(lenE)} U{E(len E)}.
Let F' be a with evenly repeated values-member set. Note that every element
of F' is finite, function-like, and relation-like and every element of F' has evenly
repeated values. Now we state the proposition:

(97) Let us consider an enumeration F; of Fj, and a function p. Suppose
U F1 € domp and p[{J F} is one-to-one. Then

(i) (°p) - By is an enumeration of (°p)°Fy, and

i) Br = (°p) B
PROOF: Set Is = °f. Reconsider f; = I3 - F1 as a finite sequence. f7 is
one-to-one. rng f7 C (°f)°F1. (°f)°F1 Crng f7. O
Let us consider an enumeration E; of Fi, a function g, an enumeration ¢;
of (°¢g)°F1, a finite sequence fi; of elements of D, and a finite sequence s. Now
we state the propositions:

(98) Suppose JF; € domg and g[ | Fy is one-to-one. Then suppose g; =
(°g)-E1. Then suppose ¢° dom f C dom f17. Then suppose s € dom, (SignGe-
nOp(f, A, F1)) - E1(k) and rng s C dom g.

Then g - s € dom,(SignGenOp(fi1, A, (°9)°F1)) - g1(K).
PROOF: len(SignGenOp(f, A, F1))-E1 = len E; = len g1 = len(SignGenOp( f,
A, (°g)°F1))- g1 Reconsider g3 = g-s as a finite sequence. len s = len(Sign-
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GenOp(f, A, Fy)) - Eq. For every i such that i« € domgs holds g3(i) €
dom(((SignGenOp(gf, A, (°9)°F1)) - g1)(i)). O
(99) Suppose J F; € dom g and g is one-to-one. Then suppose g1 = (°g) - F1.

Then suppose fi1 = f - (¢7")[dom fi; and g°dom f C dom fi;. Then
suppose s € domy(SignGenOp(f, A, F})) - E1(k) and rng s C dom g. Then
(App((SignGenOp(f, A, F1))-E1))(s) = (App((SignGenOp(f11, A, (°g)°F1))-
g s).
PROOF: len(SignGenOp(f, A, F1))-E1 = len E) = len g1 = len(SignGenOp
(f,A,(°9)°F1)) - g1. Reconsider g3 = g - s as a finite sequence. Reconsider
g3 = g-s as a finite sequence. len g3 = len s = len(SignGenOp(f, A, (°g)°F1))-
g1- g3 € dom,(SignGenOp(gf, A, (°9)°F1))-g1(k). len s = len(SignGenOp( f,
A, Fy))-E1. g3 =g-s and g3 € dom,(SignGenOp(gf, 4, (°9)°F1)) - g1(k).
For every i such that 1 < 7 < lens holds (App((SignGenOp(f, A, F1)) -
E1))(5)(7) = (App((SignGenOp(gf, A, (°g)°F1)) - 91)) (98) (i) O

(100) Let us consider an enumeration Ej of Fj. Suppose |J F1 C dom f. Let us
consider a permutation g of dom f, and an enumeration g; of (°g)°F}.
Suppose g1 = (°g) - E1. Let us consider a finite sequence fi; of ele-
ments of D. Suppose fi; = f - (g~ !). Let us consider an element S; of
Fin dom(App((SignGenOp(f, A, F1))- E1)). Then {g- s, where s is a finite
sequence of elements of N : s € 51} is an element of Fin dom(App((SignGen-
Op(f11,4,(°9)°F1)) - g1)).
PROOF: {g - s, where s is a finite sequence of elements of N : s € S;} C
dom(App((SignGenOp(fi1, 4, (°9)°F1)) - 91)). O

(101) Suppose A is unital, commutative, and associative. Let us consider an enu-
meration £y of Fy. Suppose |J F} C dom f. Let us consider a permutation
g of dom f, and an enumeration g; of (°¢)°Fi. Suppose g1 = (°g) - E1.
Let us consider a finite sequence fi1; of elements of D. Suppose fi1 =
f - (g7Y). Let us consider non-empty, non empty finite sequences Ci,
C7 of elements of D*. Suppose Cy = (SignGenOp(f, A, F1)) - E; and
C7 = (SignGenOp(fi1, A4, (°9)°F1)) - g1. Let us consider an element S;
of Findom(App(Cy)), and an element Sy of Findom(App(C7)). Suppose
Sy = {g - s, where s is a finite sequence of elements of N : s € S;}. Then
A- Y5, (M © App(Cy)) = A- Y, (M © App(Cr)).
PROOF: Define P[set] = for every element S; of Findom(App(Cy)) for
every element Sy of Findom(App(C7)) such that S; = $; and Sz = {g -
s, where s is a finite sequence of elements of N : s € Sy} holds A- "¢ (M©®
App(Cy)) = A-3"5,(MOApPP(C7)). PlDaom(app(cy))l- For every element B’
of Findom(App(C4)) and for every element b of dom(App(Cl4)) such that
P[B'] and b ¢ B’ holds P[B'U{b}]. For every element B of Fin dom(App(Cy)),
P[B]. O
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(102) Let us consider an enumeration F; of Fj. Suppose n € dom f. Then
len E1 — n € dom,(SignGenOp(f, A, F1)) - E1(k).
PRrROOF: Set C3 = (SignGenOp(f, A, F1)) - E1. Set s = len Ey — n. For
every 4 such that ¢ € dom s holds s(i) € dom(C3(¢)). O

(103) Suppose B is unital, associative, and commutative and has inverse opera-
tion. Then (the inverse operation w.r.t. B)(B(d1,d2)) = B((the inverse
operation w.r.t. B)(dy), (the inverse operation w.r.t. B)(d)).

Let = be an object and n be an even natural number. One can check that
n — x has evenly repeated values.
Let us consider finite sequences f, g. Now we state the propositions:

(104) If f ~ g has evenly repeated values and f has evenly repeated values,
then g has evenly repeated values.

(105) If f ™ g has evenly repeated values and g has evenly repeated values,
then f has evenly repeated values.

Let z be an object and n be an even natural number. Let us note that n +— x
has evenly repeated values.

Let X, Y be with evenly repeated values-member sets. Note that X UY is
with evenly repeated values-member.

Let n, k be natural numbers. The functor doms(n, k) yielding a finite sequence-
membered, finite set is defined by the term

(Def. 14)  (Segn)*.

Note that every element of doms(n, k) is (Segn)-valued.
Let n be a non empty natural number and k£ be a natural number. Let us
note that doms(n, k) is non empty and every element of doms(n, k) is k-element.

Now we state the proposition:
(106) Let us consider an enumeration E of F'. Then dom, (SignGenOp(f, A, F))-
E(k) = doms(len f, F).
PROOF: dom,(SignGenOp(f, 4, F)) - E(x) C doms(len f, F). Consider s

being an element of (Seglen f)* such that x = s and lens = F. For every
i such that ¢ € dom s holds s(i) € dom(((SignGenOp(f, A, F)) - E)(i)). O
Let us consider an enumeration Fq of F; and an enumeration Fy of Fy. Now
we state the propositions:
(107) Suppose Fy = F, and len f < len g. Then dom, (SignGenOp(f, A, F})) -
Eq(k) € dom, (SignGenOp(g, A, F»)) - Ea2(k).
PROOF: lenz = len(SignGenOp(g, A, F3)) - Es. For every i such that i €
dom z holds z(7) € dom(((SignGenOp(g, A, F3)) - E2)(7)). O

(108) Suppose ?1 = ?2 Then domy (SignGenOp(f, A, F1)) - E1(k) =
dom,, (SignGenOp(f, 4, F3)) - Ea(k).
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PROOF: domy (SignGenOp(f, A, F1))-E1(k) C dom,(SignGenOp(f, A, F5))-
Es(k). lenx = len(SignGenOp(f, A, F1)) - Ey. For every i such that i €
dom z holds z(i) € dom(((SignGenOp(f, A, F1)) - E1)(4)). O

(109) Let us consider an enumeration F of F, and a permutation p of dom E.
Then F - p is an enumeration of F.

Let us consider an enumeration F of F', a permutation p of dom F, and

a finite sequence s. Now we state the propositions:

(110) If s € dom,(SignGenOp(f, A, F)) - E(k),

then s - p € dom,(SignGenOp(f, A, F)) - (E - p)(k).
PROOF: Reconsider Fog = E-p as an enumeration of F'. len s = len(SignGe-
nOp(f, A, F))-E =len E = F. Reconsider s; = s - p as a finite sequence.
For every i such that i € dom s7 holds s7(7) € dom(((SignGenOp(f, A, F))-
Es)(i). U

(111) Suppose s € dom, (SignGenOp(f, A, F'))- E(x). Then (App((SignGenOp
(f, A, F)) - E))(s) - p = (App((SignGenOp(f, 4, F)) - (E - p)))(s - p).
PROOF: Set C' = SignGenOp(f, A, F). s-p € dom, C-(E-p)(r). Reconsider
s7 = s-p as a finite sequence. lens = lenC' - F = len E. For every i such
that i € dom((App(C - (E - p)))(s7)) holds ((App(C - E))(s) - p)(i) =
(App(C - (E - p)))(s7)(i). O

(112) Suppose M is commutative and associative. Then suppose s € dom,(Sign-
GenOp(f, A, F))-E(k) and (len s > 1 or M is unital). Then (M ®App((Sign-
GenOp(f, A, F))- E))(s) = (M®App((SignGenOp(f, 4, F))-(E-p)))(s-p).
The theorem is a consequence of (110), (47), and (111).

(113) Let us consider an enumeration E of F', a permutation p of dom E, and
an element S of Findom(App((SignGenOp(f, A, F)) - E)). Then {s - p,
where s is a finite sequence of elements of N : s € S} is an element of
Fin dom(App((SignGenOp(f, A, F')) - (E - p))). The theorem is a consequ-
ence of (110).

(114) Let us consider an enumeration E of F', a permutation p of dom E, and
an element S of Findoms(n, F'). Then {s - p, where s is a finite sequence
of elements of N : s € S} is an element of Findoms(n, F'). The theorem
is a consequence of (109), (110), and (106).

(115) Suppose M is commutative and associative and A is unital, commutative,
and associative. Let us consider an enumeration F of F', and a permutation
p of dom E. Suppose M is unital or len E > 1. Let us consider non-
empty, non empty finite sequences C5, C1; of elements of D*. Suppose
C3 = (SignGenOp(f, A, F)) - E and C;; = (SignGenOp(f, A, F)) - (E - p).
Let us consider an element S of Findom(App(C3)), and an element Si3
of Findom(App(Ci1)).
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Suppose S13 = {s - p, where s is a finite sequence of elements of N :

s € S}. Then A-37¢(M © App(C3)) = A- 35, (M © App(C11)).
PROOF: Define P([set] = for every element S of Fin dom(App(Cs)) for eve-
ry element Si3 of Findom(App(Ci1)) such that S = $; and S13 = {s -
p, where s is a finite sequence of elements of N : s € S} holds A- > ¢(M ©
App(C3)) = A-35,,(M © App(C11)). Pllaom(app(cs))- For every ele-
ment B’ of Findom(App(Cs3)) and for every element b of dom(App(Cs))
such that P[B’] and b ¢ B’ holds P[B’ U {b}]. For every element B of
Findom(App(Cs)), P[B]. O

Suppose A is unital and associative and has inverse operation. Let us
consider finite sets F, Fy. Suppose Fy = F © 2llenf+1} and (JF C dom f.
Let us consider an enumeration Fq of Fy. Then there exists an enumeration
Ey of Fy such that (SignGenOp(f ™ (d1), A, Fy)) - E1 = (SignGenOp(f ™
((the inverse operation w.r.t. A)(dy)), A, Fy)) - Es.
PROOF: Set I = the inverse operation w.r.t. A. Define P[object, object] =
$o € domFE; andif 1+1len f € E1($1), then E1($2) = E1($1) \ {1 + len f}
and if 1 4+len f ¢ F1($1), then E1(32) = E1(31) U{l +len f}. For every x
such that z € dom E; there exists y such that P[z,y].

Consider p being a function such that domp = dom F; and for every

x such that x € dom E; holds P[z,p(x)]. rngp C dom E;. dom E; C
rng p. Reconsider F4 = FE; - p as an enumeration of Fy. For every i such
that 1 < i < len(SignGenOp(f ™ (d1), A, Fy)) - E1 holds ((SignGenOp(f ™
(1), A, Fy)) - F1)(i) = ((SignGenOp(f ~ (I(da)), A, Fy)) - Ey)(i). O

Suppose A is unital, associative, and commutative and has inverse ope-
ration. Let us consider a finite, non empty set F. Suppose |JF C dom f.
Let us consider finite sets Fy, Fy. Suppose Fy = F y2lenf+1} and p, =
Fu2llenf+Llen f+2} ‘Then there exist enumerations Ey, Es of Fy and the-
re exists an enumeration E of Fy such that A ® (SignGenOp((f ~ (d1)) ™
(d2), A, F3)) - E = (A © (SignGenOp(f ™ (A(d1,d2)), A, F1)) - E1) " (A ©
(SignGenOp(f~(A((the inverse operation w.r.t. A)(d1),d2)), A, F1))-E»).
The theorem is a consequence of (91), (116), and (2).

Suppose A is unital. Let us consider an enumeration E of F', and a fini-
te sequence s. Suppose F' = () and s € dom,(SignGenOp(f, B, F)) - E(k).
Then (A® App((SignGenOp(f, B, F))-E))(s) = 14. The theorem is a con-
sequence of (47) and (59).

Let us consider an enumeration E of F', a permutation p of dom FE,
and a subset S of doms(n, F'). Then {s - p, where s is a finite sequence

of elements of N : s € S} is a subset of doms(n, F). The theorem is
a consequence of (109), (110), and (106).
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(120) Let us consider finite sequences f, g. Suppose (len f = n or leng = m)

and f "~ g € doms(k,n +m). Then
(i) f € doms(k,n), and
(ii) g € doms(k,m).

(121) Let us consider a finite sequence f. If f € doms(n, k), then len f = k.

(122) Let us consider finite sequences f, g. Suppose f € doms(k,n) and g €
doms(k,m). Then f ™ g € doms(k,n + m).

(123) doms(k,n) " doms(k,m) = doms(k, n+m). The theorem is a consequence
of (122) and (120).

(124) Let us consider an enumeration E of F', a permutation p of dom E, and
a finite sequence s. Suppose s € doms(m,?). Then s-p € doms(m,?).
The theorem is a consequence of (109) and (121).

(125) If k < n, then doms(k,m) C doms(n,m).

(126) Suppose A is commutative, associative, and unital and has inverse opera-
tion and M is associative, commutative, and unital and M is distributive
w.r.t. A. Let us consider an enumeration Fq of Fi, and an enumeration o
of Fy. Suppose |J F; C Seg(1+m) and | F» C Seg(1+m). Let us consider
an enumeration Fp; of ext(Fi,1+ m, 2+ m), and an enumeration Fs3 of
swap(Fa, 14+ m,2 +m).

Suppose E17 = Ext(E71, 14+m,24+m) and Es3 = Swap(Fs, 1+m,24+m).
Let us consider an enumeration Fa; of ext(Fy,1+m,2+m)Uswap(Fy, 1+
m,2 4+ m). Suppose Fa1 = E17 ~ Es3. Let us consider finite sequences s1,
s9. Suppose s; € doms(m + 1,?1) and sy € doms(m + 1,?2) and s1 ~ sy
has evenly repeated values and s;71({14+m}) = so~ ({1 +m}). Then
there exists a subset S of doms(m + 2,?1 + ?2) such that

(i) if 5371 ({1+m}) =0, then s; " s9 € S, and

(ii) S is with evenly repeated values-member, and

(iii) for every finite sequences Cy, C7 of elements of D* and for eve-
ry f, di, and dg such that len f = m and Cy = (SignGenOp(f ™
(A(dy1,d2)), A, F1))-E1 and C7 = (SignGenOp(f~(A((the inverse ope-
ration w.r.t. A)(dy),d2)), A, F»))- Ey for every non-empty, non empty
finite sequence C17 of elements of D* such that Cy7 = (SignGenOp((f~
(d1)) ™ (d2), A,ext(F1,1 4+ len f,2 + len f) U swap(F», 1 + len f,2 +
len f)))-E; for every element S7 of Fin dom(App(Ci7)) such that S =
S7 holds M((M © App(C4))(s1), (M © App(C7))(s2)) = A-3g, (M ©
App(Ci7)) and for every finite sequence h and for every i such that
h € Sy and ¢ € dom h holds if (s1 " s2)(i) = 1+len f, then h(i) € {1+
len f,2+1en f} and if (s1 " s2)(7) # 1+1len f, then h(i) = (s1 7 s2)(1).
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PROOF: Define P[natural number] = for every F} and F for every enume-
ration Fj of F} for every enumeration Fs of F such that |J Fy C Seg(1+m)
and J F» C Seg(1+m) for every enumeration E17 of ext(Fy,14+m,24+m)
for every enumeration E33 of swap(F», 1 + m,2 4+ m) such that Ej7; =
Ext(E1,1+m,2+ m) and Es3 = Swap(FEa,1+ m,2 + m) for every enu-
meration Fa; of ext(Fi,1 + m,2 + m) U swap(Fr, 1 + m,2 + m) such
that Fo1 = FEyi7 ~ Es3 for every finite sequences si, sp such that s; €
doms(m+1, Fy) and so € doms(m+1, Fy) and s1 " s5 has evenly repeated
values and s171({1 +m}) = $1 = so~ ({1 + m}) there exists a subset S
of doms(m+2, Fy + Fy) such that if s;=1({1 +m}) =0, then 51 "s9 € S.
S is with evenly repeated values-member and for every finite sequ-
ences Cy, C7 of elements of D* and for every f, dy, and do such that
len f = m and Cy = (SignGenOp(f ™ (A(dy,d2)), A, F1)) - By and C7 =
(SignGenOp(f ~ (A((the inverse operation w.r.t. A)(dy),d2)), A, F»))-E»
for every non-empty, non empty finite sequence C17 of elements of D* such
that C17 = (SignGenOp((f ~ (d1)) ™ (d2), A,ext(F1,1+1en f,2 4+ len f) U
swap(Fy, 1+len f,2+len f)))-E9; for every element S7 of Fin dom(App(Ci7))
such that S = S7 holds M ((M ® App(Cy))(s1), (M ® App(C7))(s2)) =
A-376 (M ® App(Ci7)) and for every finite sequence h and for every
i such that h € S7 and @ € domh holds if (s; 7 s2)(i) = 1 + len f,
then h(i) € {1 +lenf,2 +len f} and if (s1 ™ s2)(i) # 1+ len f, then
h(i) = (s1 7 s2)(i). If P[n], then P[n + 1]. P[0]. P[n]. O
Suppose A is commutative, associative, and unital and has inverse ope-
ration and M is associative, commutative, and unital and M is distribu-
tive w.r.t. A. Let us consider an enumeration F; of Fy. Suppose J F1 C
Seg(1 +m). Let us consider an enumeration E7 of ext(F1,1+m,2+ m).
Suppose Ei7 = Ext(F1,1 4+ m,2 + m). Then there exists a subset S of
doms(m + 2, F}) such that
(i) S={14+m,2+m}# and
(ii) for every non-empty, non empty finite sequence C1g of elements of
D* and for every f, di, and do such that len f = m and Cig =
(SignGenOp((f ~ (d1)) ™ (d2), A,ext(F1,1 + len f,2 + len f))) - Ey7
for every element S7 of Findom(App(Cis)) such that S; = S holds
(M ® App((SignGenOp(f ™ (A(d1,d2)), A, F1)) - E1))(len By — (1 +
len f)) = A-32, (M © App(C1s))-
PROOF: Define P[natural number] = for every F} for every enumeration E;
of Fy such that [J F} C Seg(1+m) and len E; = $; for every enumeration
Eq7 of ext(Fy, 1+ m,2+ m) such that Ey7 = Ext(E1, 1+ m,2+ m) there
exists a subset S of doms(m+2, F}) such that S = {1+m, 2+m}°* 1 and
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for every non-empty, non empty finite sequence Cig of elements of D* and
for every f, di, and dy such that len f = m and Ci¢ = (SignGenOp((f ™
(d1)) ~ (d2), A,ext(F1,1 +len f,2 4+ len f))) - E17 for every element S7 of
Fin dom(App(Ci)) such that S7 = S holds (M ® App((SignGenOp(f ™
(A(dy,d2)), A, F1)) - Er))(len By v (1+1en f)) = A-3"g. (M © App(Cie)).
P[0]. If P[n], then P[n + 1]. P[n]. O

(128) Suppose A is commutative, associative, and unital and has inverse ope-
ration. Let us consider an enumeration Ey of Fy. Suppose |J F; C Seg(1+
len f). Let us consider an enumeration Ej7 of ext(Fi, 1+ len f,2 + len f),
and an enumeration Fs3 of swap(F1,1 + len f,2 + len f). Suppose Ei7 =
Ext(E1,1+1en f,2+len f) and F33 = Swap(E1,1+1len f,2+len f). Let us
consider a non-empty, non empty finite sequence Cig of elements of D*,
and a non-empty, non empty finite sequence Coq of elements of D*.

Suppose Ci = (SignGenOp((f 7 (d1)) ™ (da), A,ext(F1,1 + len f,2 +

len f))) - E17 and Coy = (SignGenOp((f ™ {((the inverse operation w.r.t.
A)(d1)))"(da), A,swap(F1,1+len f,2+1en f)))- E33. Let us consider an ele-
ment S of Findom(App(Cis)), and an element Sy of Fin dom(App(Ca)).
Suppose S1 = Sz. Then A-3"¢ (M ©®App(Cig)) = A-> s, (M ©App(Cao))-
PROOF: Define P[natural number] = for every element S; of Fin dom(App
(C16)) for every element Sy of Findom(App(Cap)) such that S; = Ss and

S1 = 81 holds A-Y g (M © App(Cie)) = A- Y5, (M © App(Cao)). P[0]. If
P[n], then Pln + 1]. P[n]. O
(129) Suppose A is commutative, associative, and unital and has inverse ope-
ration and M is associative, commutative, and unital and M is distribu-
tive w.r.t. A. Let us consider an enumeration F; of Fy. Suppose |JF; C
Seg(1+m). Let us consider an enumeration Fs33 of swap(Fi,1+m,2+m).
Suppose F33 = Swap(FE1,1 + m,2 + m). Then there exists a subset S of
doms(m + 2, F1) such that
(i) S={14+m,2+m}F and
(ii) for every non-empty, non empty finite sequence Cyy of elements of
D* and for every f, di, and dy such that len f = m and Cy =
(SignGenOp((f~(d1)) " (d2), A,swap(F1,1+len f,2+len f)))- Es3 for
every element S7 of Fin dom(App(Cap)) such that Sy = S holds (M ®
App((SignGenOp(f~(A((the inverse operation w.r.t. A)(dy1),d2)), A,
F1)) - Eq))(len By — (1 +len f)) = A->g (M © App(Ca)).
The theorem is a consequence of (28), (127), (80), (10), (11), (107), and
(128).
(130) Suppose A is unital, associative, and commutative and has inverse opera-
tion and M is commutative and associative and len f # 0. Then SignGenOp
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((f 7 (dr)) ™ (d2), M, A, (Seg(2+len f))\ {1}) = M (SignGenOp(f ~ (A(d1,
da)), M, A, (Seg(1+len f))\{1}), SignGenOp( f ™~ (A((the inverse operation
w.r.t. A)(dy),dz2)), M, A, (Seg(1 +len f)) \ {1})). The theorem is a conse-
quence of (6), (117), and (64).

Let us consider an enumeration E of F. Suppose J F' C Seg(1 + len f).
Let us consider an enumeration F17 of ext(F,1+1len f,2+len f). Suppose
Ei7 = Ext(E,1+1len f,2 4 len f). Let us consider finite sequences Cy, Cy
of elements of D*. Suppose Cy = (SignGenOp(f ~(d), A, F))-E and Cy =
(SignGenOp((f ~ (d1)) ~ (d2), A,ext(F,1 +len f,2 4 len f))) - E17. Let us
consider a finite sequence s. Suppose s € dom, Cy(x) and rng s C dom f.
Then

(i) s € domy Cy(k), and

(i) (App(C4))(s) = (App(Co))(s).

PRrROOF: dom,, C4(r) C domy Cy(k). len E = len Cy = lens = len Cy. For
every i such that 1 < i < lens holds (App(Cy))(s)(i) = (App(Cy))(s)(i).
]

Let us consider an enumeration E of F. Suppose J F' C Seg(1 + len f).
Let us consider an enumeration Es3 of swap(F, 1+len f,2+len f). Suppose
Es3 = Swap(E,1 + len f,2 + len f). Let us consider finite sequences Cy,
Cho of elements of D*. Suppose Cy = (SignGenOp(f ™ (d), A, F)) - E and
010 = (SlgnGenOp((f - <d1>) A <d2>> A7 SW&p(F, 1+len f7 2+len f))) ’ E33-

Let us consider a finite sequence s. Suppose s € dom, Cy(k) and rng s C
dom f. Then

(i) s € domy C1p(k), and
(if) (App(C4))(s) = (App(Cr0))(s)-

ProoOF: dom, Cy(k) C domy Cy(k). len E = lenCy = lens = len Cy. For
every i such that 1 < i < lens holds (App(C4))(s)(i) = (App(Cy))(s)(7).
]

Let us consider an enumeration E; of Fj, and (D*)-valued finite se-
quences Cy, C7. Suppose Cy = (SignGenOp(f ™ (d1), A, F1)) - E1 and
C7 = (SignGenOp(f ~ (da), A, F1)) - E1. Let us consider a finite sequence
s. Suppose s € dom,, Cy(k) and 1 +len f ¢ rng s. Then

(i) s € dom, C7(k), and
(if) (App(Ca))(s) = (App(C7))(s)-

ProoOF: dom, Cy(k) C domy C7(k). lenCy = lens = len Cy. For every i
such that 1 < i <lens holds (App(Cy))(s)(7) = (App(Cr))(s)(7). O
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(134) Let us consider a finite sequence s. Suppose s~1({y}) = k. Then there
exists a permutation p of dom s and there exists a finite sequence s; such
that s-p =351 " (k+—y) and y ¢ rng s;.

(135) Let us consider a finite sequence f of elements of D. Suppose A is com-
mutative, associative, and unital and has inverse operation and M is as-
sociative, commutative, and unital and M is distributive w.r.t. A and
n € dom f. Let us consider an enumeration E of F, and a subset D of
dom E. Suppose for every i, i € D iff n € E(i). Then

(i) if D is even, then (M ® App((SignGenOp(f, A, F)) - E))(len E —
n)=M®lenE  f,,, and

(ii) if D is odd, then (M ®App((SignGenOp(f, A, F))-E))(len E +— n) =
(the inverse operation w.r.t. A)(M ©lenE +— f/,).

PROOF: Set I; = the inverse operation w.r.t. A. Define P[natural number]
= for every F such that F' = $; for every enumeration F of F for every
subset I of dom E such that for every i, i € I iff n € FE(i) holds if T is even,
then (M © App((SignGenOp(f, A, F'))-E))(len £ — n) = MOlen E — f/,

and if T is odd, then (M ® App((SignGenOp(f, A, F))- E))(len E + n) =
L(M ©lenE — f,). P[0]. If P[j], then P[j + 1]. P[;]. O

(136) Suppose M is commutative, associative, and unital and A is commuta-
tive, associative, and unital and has inverse operation and M is distri-
butive w.r.t. A. Let us consider a finite sequence f of elements of D,
an enumeration Fq of Fp, an enumeration Fo of F5, and finite sequen-
ces $1, Sa. Suppose s1 € domy(SignGenOp(f ~ (d1), A, F1)) - E1(k) and
so € domy(SignGenOp(f ™ (d2), A, F3)) - Ea(k) and s171({1+1len f}) =
so~ ({1 +1en f}). Then M((M ® App((SignGenOp(f ~(d1), A, F1))-E1))
(s1), (MOApp((SignGenOp(f~(da), A, F»))-E>))(s2)) = M ((M®App((Si-
gnGenOp(f~(dz2), A, F1))-E1))(s1), (M ©App((SignGenOp(f~(d1), A, F3))-
E))(s2))-
PROOF: Set L = 1 + len f. dom,(SignGenOp(f ~ (d1), A, F1)) - E1(k) =
domy,, (SignGenOp(f~(da), A, F1))-F1 (k) and dom, (SignGenOp(f~(da), A,
F,))-Ea(k) = dom, (SignGenOp(f~(d1), A, F»))-Ea(k). Set k = s1~H({L}).
len s1 = len(SignGenOp(f~(d1), A, F1))-E1 = len E; and len sy = len(Sign-
GenOp(f ™ (da), A, F3)) - E5 = len Es. Set k; = k — L. Consider p; being
a permutation of dom sy, S; being a finite sequence such that sy - p; =
S1 " k1 and L ¢ rng Sp. Reconsider Ey = Ej - p1 as an enumeration of Fj.
Set €3 = E4[1en 51.

Consider ey being a finite sequence such that F4 = eg ™ es. Set

Fy = rnges. Set F3 = rnges. Reconsider Fg = e3 as an enumeration
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of Fy. Reconsider F5 = ey as an enumeration of F3. Consider po being
a permutation of dom so, Sy being a finite sequence such that so - po =
Sy " ki and L ¢ rngSs. Reconsider Eg = Fs - py as an enumeration of
F5. Set es = FEg[lenS;. Consider e4 being a finite sequence such that
Es = e5 " eq. Set Fg = rnges. Set F5 = rngey. Reconsider E1g = ej
as an enumeration of Fy. Reconsider g = e4 as an enumeration of F5.
(SignGenOp(f ™ (d1), A, F1)) - B4 = (SignGenOp(f ~ (d1), A, Fy)) - Eg ~
(SignGenOp(f ~ (d1), A, F3)) - E5 and (SignGenOp(f ™ (d2), A, F»)) - Eg =
(SignGenOp(f ™ (d2), A, Fs)) - E10 ™ (SignGenOp(f ~ (d2), A, F5)) - Ey. U

Suppose M is commutative, associative, and unital and A is commu-
tative, associative, and unital and has inverse operation and M is di-
stributive w.r.t. A. Let us consider an enumeration F; of Fj. Suppose
U F1 C Seg(1+4m) and len E; is even. Let us consider an enumeration Ej7
of ext(F1,1+m,2+m), and an enumeration Fs3 of swap(Fi,1+m,2+m).
Suppose E17 = Ext(E1,14+m,2+m) and E33 = Swap(FEq,1+m,2+m).
Then there exist subsets sg, sg of doms(m + 2, F}) such that

(i) s6 € {14+m,2+m}e"F1 and
(ii) sg C {1 +m,2+m}F1 and

(iii) sg is with evenly repeated values-member, and

(iv) sg is with evenly repeated values-member, and

)
)
)
(v) for every non-empty, non empty finite sequences Cig, Cog of elements
of D* and for every f, di, and do such that len f = m and Cig =
(SignGenOp((f~(d1)) ~(d2), A, ext(F1,1+1en f,2+41en f))) - E17 and
Cao = (SignGenOp((f ~(d1)) " (da2), A,swap(Fi,1+len f,2+1en f)))-
Es3 for every element Sg of Findom(App(Cig)) for every element
S14 of Findom(App(Cy)) such that Sg = sg and Si14 = sg holds
A((M ©App((SignGenOp(f~(A(d1,dz2)), A, F1))-E1))(len Ey — (14
len f)), (M ® App((SignGenOp(f ™ (A((the inverse operation w.r.t.
A)(dr),dz)), A, F1)) - Ev))(len By — (1 +len f))) = A(A-3 g (M ©
App(Cip)), A- 22, (M © App(C20)))-

PRroOF: Set I = the inverse operation w.r.t. A. Set L3 = len Fy. Set
Ly = 1+m. Set Ly = 2+m. Consider sg being a subset of doms(m+2, F})
such that s¢ = {1 +m,2+ m}len E1 and for every non-empty, non empty
finite sequence C1g of elements of D* and for every f, di, and ds such that
len f = m and Ci6 = (SignGenOp((f "~ (d1)) " (d2), A, ext(F1,1+1en f,2+
len f)))- E17 for every element S7 of Fin dom(App(Cis)) such that S7 = sg
holds (M ® App((SignGenOp(f ™~ (A(d1,d2)), A, F1))- E1))(len By — (1 +
len f)) = A-325, (M © App(C1s))-
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Consider sg being a subset of doms(m + 2, F}) such that sg = {1 +
m,2 +m}eF1 and for every non-empty, non empty finite sequence Cag
of elements of D* and for every f, dy, and do such that len f = m and
Cy = (SignGenOp((f ™ (d1)) ~ (da), A,swap(F1,1 + len f,2 + len f))) -
Es3 for every element S7 of Findom(App(Cy)) such that S; = sg holds
(M © App((SignGenOp(f ™ (A(I(d1),d2)), A, F1)) - E1))(len By — (1 +
len f)) = A- 35 (M ® App(Ca)). Set C' = CFS({1+m, 2+ m}"#). Define
P[natural number| = if $; < len C, then there exist subsets S5, Ry, Sis,
Rg of doms(m + 2, Fy) such that S5 C rng(C1$1) and Rq = rg(C[$1) =
Rg and S15 C rng(C[$1) and S5 is with evenly repeated values-member
and Si5 is with evenly repeated values-member and for every non-empty,
non empty finite sequences Cyg, Ci5 of elements of D* and for every f,
dy, and dz such that len f = m and Cy = (SignGenOp((f ™~ (d1)) ™
(da), A,swap(F1,1 +len f,2 4+ len f))) - E33 and Ci5 = (SignGenOp((f ™
(I(d1))) ™ (de), A,swap(F1,1 +len f,2 + len f))) - E33 for every elements
S4, Rs of Findom(App(Cis)).

For every elements Si4, Rs of Findom(App(Cs)) such that S; =
Sy and Ry = R3 and S15 = Si4 and Rg = Ry holds A(A— 254(M ®
App(Cis)), A- 35, (MOApPp(C))) = A(A- g, (M©APP(C15)), A- 3R,
(M @ App(Ca))). P[0]. If P[n], then Pin+ 1]. P[n]. Consider S5, R4, Sis,
Rg being subsets of doms(m + 2, Fy) such that S5 C rng(CllenC) and
Ry = rmg(CllenC) = Rg and Si5 C rng(CllenC) and S5 is with evenly
repeated values-member and Si5 is with evenly repeated values-member
and for every non-empty, non empty finite sequences Cyg, C15 of elements
of D*.

For every f, dy, and dg such that len f = m and Cyy = (SignGenOp((f~
(d1))"(d2), A, swap(F1, 1+len f,2+len f)))-E33 and C15 = (SignGenOp((f~
(I(dy)))" (da), A,swap(F1,14len f,2+1en f)))- Es3 for every elements Sy,
R3 of Fin dom(App(Ci5)) for every elements S14, Rs of Fin dom(App(Cap))
such that S; = S4 and Ry = R3 and Si5 = Si4 and Rg = Rs holds
A(A-32s,(M © App(Cis)), A- 325, (M © App(Cx))) = A(A-3j, (M ©
App(Cis)), A- 3", (M®App(Ch))). Set C15 = (SignGenOp((f (I (d1)))"
(do), A,swap(F1, L1, L2))) - E33. For every x such that € dom Cy5 holds
Cy5(x) is not empty. O

Let us consider an enumeration E of F', an enumeration F7 of ext(F,1 +
m, 2+ m), an enumeration Fs3 of swap(F, 1+ m,2+m), an enumeration Fy; of
ext(F,1 4+ m,2+ m)Uswap(F,1+m,2+ m), and finite sequences s;, so. Now
we state the propositions:

(138) Suppose A is commutative, associative, and unital and has inverse ope-
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ration and M is associative, commutative, and unital and M is distribu-
tive w.r.t. A. Then suppose JF C Seg(l + m). Then suppose Fi7 =
Ext(E,1 4+ m,2 + m) and E33 = Swap(E,1 + m,2 + m). Then sup-
pose Eo; = Ej7 7 Es3. Then suppose si, so € doms(m + 1, F) and
s1 has evenly repeated values and so has evenly repeated values and

s17 1 ({1+m}) < s '({1+m}). Then there exist subsets Dy, Dy of
doms(m + 2, F + F) such that

(i) Dy is with evenly repeated values-member, and
(ii) Do is with evenly repeated values-member, and

(iii) for every finite sequences Cy, C7 of elements of D* and for eve-
ry f, di, and dg such that len f = m and Cy = (SignGenOp(f ™
(A(dy,d9)), A, F))-E and C7 = (SignGenOp(f ~ (A((the inverse ope-
ration w.r.t. A)(dy),d2)), A, F))-E for every non-empty, non empty fi-
nite sequence C7 of elements of D* such that C17 = (SignGenOp((f™
(d1))"(da), A, ext(F,1+1en f,2+len f)Uswap(F, 1+len f,2+len f)))-
Es; for every elements Sp, So of Findom(App(Ci7)) such that S; =
Dy and Sy = D3 holds S} misses Se and A(M ((M®App(Ci))(s1), (M
App(C7))(s2)), M((M © App(Cy))(s2), (M © App(C7))(s1))) =
A-3"g5,0s,(M © App(Ci7)) and for every finite sequence h and for
every ¢ such that h € S; and i € dom(s; ™~ s2) holds if (s1 ™ s2)(i) =
1+len f, then h(i) € {1+len f,2+1en f} and if (s1 " s2)(i) # 1+len f,
then h(i) = (s1 7 s2)(i) and for every finite sequence h and for every i
such that h € Sy and i € dom(sy ™ s1) holds if (s2 ™ s1)(7) = 1+1len f,
then h(i) € {1+1len f,2 +1len f} and if (s2 " s1)(2) # 1 + len f, then
B(i) = (52~ 51)(0).

Suppose A is commutative, associative, and unital and has inverse ope-
ration and M is associative, commutative, and unital and M is distri-
butive w.r.t. A. Then suppose |JF C Seg(1l + m). Then suppose Ei7 =
Ext(E,1+4+ m,2 4+ m) and E33 = Swap(E,1+ m,2 4+ m). Then suppose
FE51 = E177 Es3. Then suppose s1, so € doms(m+1, F') and s; has evenly
repeated values and sy has evenly repeated values and s; # so. Then there
exist subsets Dy, Dy of doms(m + 2, F + F') such that

(i) D; is with evenly repeated values-member, and
(ii) Do is with evenly repeated values-member, and

(iii) for every finite sequences Cy4, C7 of elements of D* and for eve-
ry f, di, and dg such that len f = m and Cy = (SignGenOp(f ™
(A(dy,d2)), A, F))- E and C7 = (SignGenOp(f ~ (A((the inverse ope-
ration w.r.t. A)(dy),d2)), A, F))-E for every non-empty, non empty fi-
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nite sequence C17 of elements of D* such that Cy7 = (SignGenOp((f~
(d1))"(d2), A, ext(F, 1+len f,2+4len f)Uswap(F, 1+len f,2+len f)))-
Es for every elements Sp, Sy of Findom(App(Ci7)) such that S; =
Dy and S = D3 holds S; misses Sy and A(M ((M®App(Cy))(s1), (M®
App(Cr))(52)), M((M ® App(Cy)) (s2), (M © App(C))(s1)) =
A-3"g,us,(M © App(Ci7)) and for every finite sequence h and for
every 4 such that h € S; and ¢ € dom(s; ™ s2) holds if (s1 ™ s2)(i) =
1+len f, then h(i) € {1+len f,2+1en f} and if (s1 " s2)(i) # 1+len f,
then h(i) = (s1 7 s2)(7) and for every finite sequence h and for every i
such that h € Sy and i € dom(s2 ™ s1) holds if (s2 7 s1)(i) = 1+len f,
then h(i) € {1+ len f,2 4+ len f} and if (so ™ s1)(i) # 1 + len f, then
BG) = (52~ 51)(3).
The theorem is a consequence of (126), (40), (106), (47), (80), and (138).
(140) Suppose M is commutative and associative and len f = 2. Then SignGen-
Op(f, M, A, {2}) = M(A(f(1), f(2)), A(f(1), (the inverse operation w.r.t.
A)(f(2)))). The theorem is a consequence of (71), (70), and (73).
Let us consider an enumeration E of 2{2} and a non-empty, non empty finite
sequence C'5 of elements of D*. Now we state the propositions:
(141) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and has inverse operation and M is distributive w.r.t.
A. Then suppose C3 = (SignGenOp(f, A4, 2{2})) - F and len f = 2. Then
there exists an element S of Fin dom(App(Cs)) such that
(i) S={(1,1),(2,2)}, and
(i) SignGenOp(f, M, 4, {2}) = A- S 5(M ® App(C3)).
PROOF: Set I = the inverse operation w.r.t. A. Reconsider f; = f(1),
fo = f(2) as an element of D. {(1,1),(2,2)} C dom,, C3(k).
SignGenOp(f, M, A, {2}) = AMM(f1, f1), M(f2, 1(f2)))- O
(142) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and has inverse operation and M is distributive w.r.t.
A. Then suppose C3 = (SignGenOp(f, 4,212")) . E and len f = 2. Then
there exists an element S of Fin dom(App(Cs)) such that

(i) S is with evenly repeated values-member, and
(ii) SignGenOp(f, M, A, {2}) = A->"¢(M © App(Csy)).
The theorem is a consequence of (141).
(143) MAIN THEOREM:
Suppose A is commutative, associative, and unital and has inverse opera-

tion and M is associative, commutative, and unital and M is distributive
w.r.t. A and m > 1 and for every d, M(14,d) = 14.
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Then there exists an enumeration E of 2(5¢¢™\{1} and there exists a subset
S of doms(m, 2(5eem\{1}) such that S is with evenly repeated values-

member and 2(esm)\{1} 1 € § and for every non-empty, non empty
finite sequence C5 of elements of D* and for every f such that C5 =
(SignGenOp( f, A, 25e™\1})) . F and len f = m for every element Sg of
Findom(App(C3)) such that Sg = S holds SignGenOp(f, M, A, (Segm) \

{1}) = A- 225, (M © App(C3)).
PROOF: Define Plnatural number| = there exists an enumeration E of

2(Seg$1\M1} and there exists a subset S of doms($1, 2(Ses$1)\{1} ) such that

S is with evenly repeated values-member and 2(5¢¢31)\{1} - 1 € S and
for every non-empty, non empty finite sequence Cs of elements of D*
and for every f such that C3 = (SignGenOp(f, A, 2(5ee$0\1})) . E and
len f = $; for every element Sg of Findom(App(C3)) such that Sg = S
holds SignGenOp(f, M, A, (Seg $1) \ {1}) = A->_5,(M © App(C3)).

P[2]. For every natural number j such that 2 < j holds if P[j], then
P[j + 1]. For every natural number 4 such that 2 < 4 holds P[é]. O
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