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Summary. Previous Mizar articles [7, 6, 5] formalized the implicit and
inverse function theorems for Frechet continuously differentiable maps on Banach
spaces. In this paper, using the Mizar system [1], [2], we formalize these theorems
on Euclidean spaces by specializing them. We referred to [4], [12], [10], [11] in
this formalization.
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1. Matrix and Linear Transformation on Euclidean Spaces

Let n be a natural number. One can check that 〈En, ‖·‖〉 is finite dimensional.
Now we state the propositions:

(1) Let us consider a non zero natural number n, and a real normed space
X. Then every linear operator from 〈En, ‖ · ‖〉 into X is Lipschitzian.

(2) Let us consider a non zero natural number m, and finite sequences s,
t of elements of Rm. Suppose 1 ¬ len s and s = t� len s. Let us consider
a natural number i. If 1 ¬ i ¬ len s, then (accum t)(i) = (accum s)(i).
Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ len s, then (accum t)($1) =
(accum s)($1). For every natural number n such that P[n] holds P[n+ 1].
For every natural number n, P[n]. �
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(3) Let us consider a non zero natural number m, finite sequences s, s1 of
elements of Rm, and an element s0 of Rm. If s1 = s a 〈s0〉, then

∑
s1 =∑

s+ s0. The theorem is a consequence of (2).

(4) Let us consider a non zero natural number m, a finite sequence s of
elements of Rm, and a natural number j. Suppose 1 ¬ j ¬ m. Then there
exists a finite sequence t of elements of R such that

(i) len t = len s, and

(ii) for every natural number i such that 1 ¬ i ¬ len s there exists an ele-
ment s2 of Rm such that s2 = s(i) and t(i) = s2(j), and

(iii) (
∑
s)(j) =

∑
t.

Proof: Define P[natural number] ≡ for every finite sequence s of elements
ofRm for every natural number j such that len s = $1 and 1 ¬ j ¬ m there
exists a finite sequence t of elements of R such that len t = len s and for
every natural number i such that 1 ¬ i ¬ len s there exists an element s2
of Rm such that s2 = s(i) and t(i) = s2(j) and (

∑
s)(j) =

∑
t. P[0]. For

every natural number n such that P[n] holds P[n+ 1]. For every natural
number n, P[n]. �

(5) Let us consider a non zero natural number m, and an element x of Rm.
Then there exists a finite sequence s of elements of Rm such that

(i) dom s = Segm, and

(ii) for every natural number i such that 1 ¬ i ¬ m there exists an ele-
ment e of Rm such that e = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(1) and s(i) =

(proj(i,m))(x) · e, and

(iii)
∑
s = x.

Proof: Define P[natural number, object] ≡ there exists an element e of
Rm such that e = (reproj($1, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(1) and $2 = (proj($1,m))(x) · e.

For every natural number i such that i ∈ Segm there exists an element
y of Rm such that P[i, y]. Consider s being a finite sequence of elements
of Rm such that dom s = Segm and for every natural number i such that
i ∈ Segm holds P[i, s(i)]. For every natural number i such that 1 ¬ i ¬ m
there exists an element e of Rm such that e = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(1) and

s(i) = (proj(i,m))(x) · e. For every natural number i such that 1 ¬ i ¬
len
∑
s holds (

∑
s)(i) = x(i). �

(6) Let us consider non zero elements m, n of N, and a matrix M over RF
of dimension m×n. Then Mx2Tran(M) is a Lipschitzian linear operator
from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉.
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Proof: Reconsider f = Mx2Tran(M) as a function from 〈Em, ‖ · ‖〉 into
〈En, ‖·‖〉. For every elements x, y of 〈Em, ‖·‖〉, f(x+y) = f(x)+f(y). For
every vector x of 〈Em, ‖ · ‖〉 and for every real number a, f(a ·x) = a ·f(x)
by [8, (4),(8)]. �

Let us consider a non zero element m of N and a linear operator f from
〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉. Now we state the propositions:

(7) Suppose f is bijective. Then there exists a Lipschitzian linear operator
g from 〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉 such that

(i) g = f−1, and

(ii) g is one-to-one and onto.

(8) Suppose f is bijective. Then there exists a point g of the real norm space
of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉 such that

(i) g = f , and

(ii) g is invertible.

The theorem is a consequence of (7).

Let us consider non zero elements m, n of N and a square matrix M over
RF of dimension m. Now we state the propositions:

(9) Mx2Tran(M) is bijective if and only if DetM 6= 0RF .

(10) Mx2Tran(M) is bijective if and only if M is invertible.

(11) Let us consider a non zero element m of N, and a point f of the real
norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉.
Suppose f is one-to-one and rng f = the carrier of 〈Em, ‖ · ‖〉. Then f is
invertible. The theorem is a consequence of (8).

Let us consider a non zero element m of N, a point f of the real norm space
of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉, and a square matrix
M over RF of dimension m. Now we state the propositions:

(12) If f = Mx2Tran(M), then f is invertible iffM is invertible. The theorem
is a consequence of (10) and (11).

(13) If f = Mx2Tran(M), then f is invertible iff DetM 6= 0RF . The theorem
is a consequence of (12).

Let us consider non zero elements m, n of N. Now we state the propositions:

(14) There exists a function f from Rm ×Rn into Rm+n such that

(i) for every element x of Rm and for every element y of Rn, f(x, y) =
x a y, and

(ii) f is one-to-one and onto.
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Proof: Define S[object, object, object] ≡ there exists an element x of Rm
and there exists an element y of Rn such that x = $1 and y = $2 and
$3 = x a y. For every objects x, y such that x ∈ Rm and y ∈ Rn there
exists an object z such that z ∈ Rm+n and S[x, y, z]. Consider f being
a function from Rm×Rn into Rm+n such that for every objects x, y such
that x ∈ Rm and y ∈ Rn holds S[x, y, f(x, y)]. For every element x of Rm
and for every element y of Rn, f(x, y) = x a y. �

(15) There exists a function f from 〈Em, ‖ · ‖〉 × 〈En, ‖ · ‖〉 into 〈Em+n, ‖ · ‖〉
such that

(i) f is one-to-one and onto, and

(ii) for every element x of Rm and for every element y of Rn, f(x, y) =
x a y, and

(iii) for every points u, v of 〈Em, ‖ · ‖〉×〈En, ‖ · ‖〉, f(u+v) = f(u) +f(v),
and

(iv) for every point u of 〈Em, ‖ · ‖〉 × 〈En, ‖ · ‖〉 and for every real number
r, f(r · u) = r · f(u), and

(v) f(0〈Em,‖·‖〉×〈En,‖·‖〉) = 0〈Em+n,‖·‖〉, and

(vi) for every point u of 〈Em, ‖ · ‖〉 × 〈En, ‖ · ‖〉, ‖f(u)‖ = ‖u‖.
Proof: Consider f being a function from Rm ×Rn into Rm+n such that
for every element x of Rm and for every element y of Rn, f(x, y) = x a y
and f is one-to-one and onto. For every points u, v of 〈Em, ‖·‖〉×〈En, ‖·‖〉,
f(u+ v) = f(u) + f(v). For every point u of 〈Em, ‖ · ‖〉× 〈En, ‖ · ‖〉 and for
every real number r, f(r · u) = r · f(u). For every point u of 〈Em, ‖ · ‖〉 ×
〈En, ‖ · ‖〉, ‖f(u)‖ = ‖u‖ by [9, (18)]. �

2. Total Derivative and Partial Derivative

Now we state the propositions:

(16) Let us consider real normed spaces X, Y, a point x of X, and a Lipschit-
zian linear operator f from X into Y. Then

(i) f is differentiable in x, and

(ii) f = f ′(x).

Proof: Set C = ΩX . Reconsider g = (the carrier of X) 7−→ 0Y as
a partial function from X to Y. Reconsider f0 = f as an element of
BdLinOps(X,Y ). For every (0X)-convergent sequence h ofX such that h is
non-zero holds ‖h‖−1 ·(g∗h) is convergent and lim(‖h‖−1 ·(g∗h)) = 0Y . For
every point x0 of X such that x0 ∈ C holds f/x0−f/x = f0(x0−x)+g/x0−x.
�
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(17) Let us consider a non zero natural number n, a natural number i, and
a point x of 〈En, ‖ · ‖〉. Suppose 1 ¬ i ¬ n. Then

(i) Proj(i, n) is differentiable in x, and

(ii) (Proj(i, n))′(x) = Proj(i, n).

The theorem is a consequence of (16).

Let us consider non zero natural numbers m, n, a partial function f from
Rm to Rn, and an element x of Rm. Now we state the propositions:

(18) f is differentiable in x if and only if for every natural number i such
that 1 ¬ i ¬ n there exists a partial function f1 from Rm to R1 such that
f1 = (Proj(i, n)) · f and f1 is differentiable in x.

(19) f is differentiable in x if and only if for every natural number i such
that 1 ¬ i ¬ n there exists a partial function f1 from Rm to R such that
f1 = (proj(i, n)) · f and f1 is differentiable in x.
Proof: For every natural number i, 〈(proj(i, n)) · f〉 = (Proj(i, n)) · f by
[3, (11)]. For every natural number i such that 1 ¬ i ¬ n there exists
a partial function F1 from Rm to R1 such that F1 = (Proj(i, n)) · f and
F1 is differentiable in x. �

(20) Let us consider non zero natural numbersm, n, a partial function f from
Rm to Rn, and an element x of Rm. Suppose f is differentiable in x. Let
us consider a natural number i, and a partial function f1 from Rm to R.
Suppose 1 ¬ i ¬ n and f1 = (proj(i, n)) · f . Then

(i) f1 is differentiable in x, and

(ii) f1′(x) = (proj(i, n)) · (f ′(x)).

The theorem is a consequence of (19).

(21) Let us consider non zero natural numbersm, n, a partial function f from
Rm toRn, and an element x ofRm. Suppose f is differentiable in x. Let us
consider natural numbers i, j. Suppose 1 ¬ i ¬ m and 1 ¬ j ¬ n. Then f
is partially differentiable in x w.r.t. i and j. The theorem is a consequence
of (19).

(22) Let us consider non zero natural numbers m, n, a partial function f
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and an element x of 〈Em, ‖ · ‖〉. Suppose
f is differentiable in x. Let us consider natural numbers i, j. Suppose
1 ¬ i ¬ m and 1 ¬ j ¬ n. Then f is partially differentiable in x w.r.t. i
and j.

(23) Let us consider a non zero natural number m, a partial function f from
Rm to R, and an element x of Rm. Suppose f is differentiable in x. Let us
consider elements u, v ofRm. Then (f ′(x))(u+v) = (f ′(x))(u)+(f ′(x))(v).
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(24) Let us consider a non zero natural number m, a partial function f from
Rm to R, and an element x of Rm. Suppose f is differentiable in x. Let us
consider an element u of Rm, and a real number a. Then (f ′(x))(a · u) =
a · (f ′(x))(u).

(25) Let us consider a non zero natural number m, a partial function f from
Rm to R, and an element x of Rm. Suppose f is differentiable in x. Let
us consider a finite sequence s of elements of Rm, and a finite sequence t
of elements of R. Suppose dom s = dom t and for every natural number i
such that i ∈ dom s holds t(i) = (f ′(x))(s(i)). Then (f ′(x))(

∑
s) =

∑
t.

Proof: Define P[natural number] ≡ for every finite sequence s of elements
of Rm for every finite sequence t of elements of R such that len s = $1 and
dom s = dom t and for every natural number i such that i ∈ dom s holds
t(i) = (f ′(x))(s(i)) holds (f ′(x))(

∑
s) =

∑
t. P[0]. For every natural

number n such that P[n] holds P[n + 1]. For every natural number n,
P[n]. �

(26) Let us consider a non zero natural number m, a partial function f from
Rm to R, and an element x of Rm. Suppose f is differentiable in x. Let
us consider an element d1 of Rm. Then there exists a finite sequence d2 of
elements of R such that

(i) dom d2 = Segm, and

(ii) for every natural number i such that 1 ¬ i ¬ m holds d2(i) =
(proj(i,m))(d1) · (partdiff(f, x, i)), and

(iii) (f ′(x))(d1) =
∑
d2.

Proof: Consider s being a finite sequence of elements of Rm such that
dom s = Segm and for every natural number i such that 1 ¬ i ¬ m
there exists an element e of Rm such that e = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(1)

and s(i) = (proj(i,m))(d1) · e and
∑
s = d1. Define F(natural number) =

(f ′(x))(s($1))(∈ R). Consider d2 being a finite sequence of elements of R
such that len d2 = m and for every natural number i such that i ∈ dom d2
holds d2(i) = F(i). For every natural number i such that i ∈ dom d2 holds
d2(i) = (f ′(x))(s(i)). For every natural number i such that 1 ¬ i ¬ m
holds d2(i) = (proj(i,m))(d1) · (partdiff(f, x, i)). �

(27) Let us consider non zero elements m, n of N, a subset X of 〈Em, ‖ · ‖〉,
and a partial function f from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose X is open
and X ⊆ dom f . Then f is differentiable on X and f ′�X is continuous on
X if and only if for every natural numbers i, j such that 1 ¬ i ¬ m and
1 ¬ j ¬ n holds (Proj(j, n)) · f is partially differentiable on X w.r.t. i and
(Proj(j, n)) · f�iX is continuous on X.
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Proof: For every natural number i such that 1 ¬ i ¬ m holds f is
partially differentiable on X w.r.t. i and f�iX is continuous on X. �

3. Jacobian Matrix

Let m, n be non zero natural numbers, f be a partial function from Rm to
Rn, and x be an element of Rm. The functor Jacobian(f, x) yielding a matrix
over RF of dimension m×n is defined by

(Def. 1) for every natural numbers i, j such that i ∈ Segm and j ∈ Seg n holds
it i,j = partdiff(f, x, i, j).

Now we state the proposition:

(28) Let us consider non zero natural numbersm, n, a partial function f from
Rm to Rn, and an element x of Rm. Suppose f is differentiable in x. Then
f ′(x) = Mx2Tran(Jacobian(f, x)).
Proof: For every element d1 of Rm, (f ′(x))(d1) =
(Mx2Tran(Jacobian(f, x)))(d1). �

Letm, n be non zero natural numbers, f be a partial function from 〈Em, ‖·‖〉
to 〈En, ‖ · ‖〉, and x be a point of 〈Em, ‖ · ‖〉. The functor Jacobian(f, x) yielding
a matrix over RF of dimension m×n is defined by

(Def. 2) there exists a partial function g from Rm to Rn and there exists an ele-
ment y of Rm such that g = f and y = x and it = Jacobian(g, y).

Now we state the proposition:

(29) Let us consider non zero elements m, n of N, a point x of 〈Em, ‖ · ‖〉,
and a partial function f from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose f is dif-
ferentiable in x. Then f ′(x) = Mx2Tran(Jacobian(f, x)). The theorem is
a consequence of (28).

Let us consider a non zero elementm of N, a partial function f from 〈Em, ‖·‖〉
to 〈Em, ‖ · ‖〉, and a point x of 〈Em, ‖ · ‖〉. Now we state the propositions:

(30) If f is differentiable in x, then f ′(x) is invertible iff Jacobian(f, x) is
invertible. The theorem is a consequence of (29) and (12).

(31) If f is differentiable in x, then f ′(x) is invertible iff Det Jacobian(f, x) 6=
0RF . The theorem is a consequence of (30).
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4. Implicit and Inverse Function Theorems on Euclidean Spaces

Now we state the propositions:

(32) Let us consider non zero elements l, m, n of N, a subset Z of 〈E l, ‖ · ‖〉×
〈Em, ‖ · ‖〉, a partial function f from 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉,
a point a of 〈E l, ‖ · ‖〉, a point b of 〈Em, ‖ · ‖〉, a point c of 〈En, ‖ · ‖〉, and
a point z of 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉. Suppose Z is open and dom f = Z
and f is differentiable on Z and f ′�Z is continuous on Z and 〈〈a, b〉〉 ∈ Z
and f(a, b) = c and z = 〈〈a, b〉〉 and partdiff(f, z) w.r.t. 2 is invertible. Then
there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and

(iv) for every point x of 〈E l, ‖ · ‖〉 such that x ∈ Ball(a, r1) there exists
a point y of 〈Em, ‖ · ‖〉 such that y ∈ Ball(b, r2) and f(x, y) = c, and

(v) for every point x of 〈E l, ‖·‖〉 such that x ∈ Ball(a, r1) for every points
y1, y2 of 〈Em, ‖ · ‖〉 such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and
f(x, y2) = c holds y1 = y2, and

(vi) there exists a partial function g from 〈E l, ‖ · ‖〉 to 〈Em, ‖ · ‖〉 such
that dom g = Ball(a, r1) and rng g ⊆ Ball(b, r2) and g is continu-
ous on Ball(a, r1) and g(a) = b and for every point x of 〈E l, ‖ · ‖〉
such that x ∈ Ball(a, r1) holds f(x, g(x)) = c and g is differen-
tiable on Ball(a, r1) and g′�Ball(a,r1) is continuous on Ball(a, r1) and

for every point x of 〈E l, ‖ · ‖〉 and for every point z of 〈E l, ‖ · ‖〉 ×
〈Em, ‖ · ‖〉 such that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds g′(x) =
−(Inv partdiff(f, z) w.r.t. 2) · (partdiff(f, z) w.r.t. 1) and for every po-
int x of 〈E l, ‖ · ‖〉 and for every point z of 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉 such
that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds partdiff(f, z) w.r.t. 2 is
invertible, and

(vii) for every partial functions g1, g2 from 〈E l, ‖ · ‖〉 to 〈Em, ‖ · ‖〉 such
that dom g1 = Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point
x of 〈E l, ‖ · ‖〉 such that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and
dom g2 = Ball(a, r1) and rng g2 ⊆ Ball(b, r2) and for every point x of
〈E l, ‖·‖〉 such that x ∈ Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

(33) Let us consider non zero elements l, m of N, a subset Z of 〈E l, ‖ · ‖〉 ×
〈Em, ‖ · ‖〉, a partial function f from 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉 to 〈Em, ‖ · ‖〉,
a point a of 〈E l, ‖ · ‖〉, points b, c of 〈Em, ‖ · ‖〉, and a point z of 〈E l, ‖ · ‖〉×
〈Em, ‖ · ‖〉. Suppose Z is open and dom f = Z and f is differentiable on
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Z and f ′�Z is continuous on Z and 〈〈a, b〉〉 ∈ Z and f(a, b) = c and z = 〈〈a,
b〉〉 and Det Jacobian(f · (reproj2(z)), (z)2) 6= 0RF . Then there exist real
numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and

(iv) for every point x of 〈E l, ‖ · ‖〉 such that x ∈ Ball(a, r1) there exists
a point y of 〈Em, ‖ · ‖〉 such that y ∈ Ball(b, r2) and f(x, y) = c, and

(v) for every point x of 〈E l, ‖·‖〉 such that x ∈ Ball(a, r1) for every points
y1, y2 of 〈Em, ‖ · ‖〉 such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and
f(x, y2) = c holds y1 = y2, and

(vi) there exists a partial function g from 〈E l, ‖ · ‖〉 to 〈Em, ‖ · ‖〉 such
that dom g = Ball(a, r1) and rng g ⊆ Ball(b, r2) and g is continu-
ous on Ball(a, r1) and g(a) = b and for every point x of 〈E l, ‖ · ‖〉
such that x ∈ Ball(a, r1) holds f(x, g(x)) = c and g is differen-
tiable on Ball(a, r1) and g′�Ball(a,r1) is continuous on Ball(a, r1) and

for every point x of 〈E l, ‖ · ‖〉 and for every point z of 〈E l, ‖ · ‖〉 ×
〈Em, ‖ · ‖〉 such that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds g′(x) =
−(Inv partdiff(f, z) w.r.t. 2) · (partdiff(f, z) w.r.t. 1) and for every po-
int x of 〈E l, ‖ · ‖〉 and for every point z of 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉 such
that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds partdiff(f, z) w.r.t. 2 is
invertible, and

(vii) for every partial functions g1, g2 from 〈E l, ‖ · ‖〉 to 〈Em, ‖ · ‖〉 such
that dom g1 = Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point
x of 〈E l, ‖ · ‖〉 such that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and
dom g2 = Ball(a, r1) and rng g2 ⊆ Ball(b, r2) and for every point x of
〈E l, ‖·‖〉 such that x ∈ Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

The theorem is a consequence of (31).

(34) Let us consider a non zero element m of N, a subset Z of 〈Em, ‖ · ‖〉,
a partial function f from 〈Em, ‖ · ‖〉 to 〈Em, ‖ · ‖〉, a point a of 〈Em, ‖ · ‖〉,
and a point b of 〈Em, ‖ · ‖〉. Suppose Z is open and dom f = Z and f is
differentiable on Z and f ′�Z is continuous on Z and a ∈ Z and f(a) = b
and Det Jacobian(f, a) 6= 0RF .

Then there exists a subset A of 〈Em, ‖·‖〉 and there exists a subset B of
〈Em, ‖ ·‖〉 and there exists a partial function g from 〈Em, ‖ ·‖〉 to 〈Em, ‖ ·‖〉
such that A is open and B is open and A ⊆ dom f and a ∈ A and b ∈ B
and f◦A = B and dom g = B and rng g = A and dom(f�A) = A and
rng(f�A) = B and f�A is one-to-one and g is one-to-one and g = (f�A)−1
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and f�A = g−1 and g(b) = a and g is continuous on B and differentiable
on B and g′�B is continuous on B and for every point y of 〈Em, ‖ · ‖〉 such
that y ∈ B holds f ′(g/y) is invertible and for every point y of 〈Em, ‖ · ‖〉
such that y ∈ B holds g′(y) = Inv f ′(g/y). The theorem is a consequence
of (31).
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