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Summary. Previous Mizar articles [7, [6, 5] formalized the implicit and
inverse function theorems for Frechet continuously differentiable maps on Banach
spaces. In this paper, using the Mizar system [I], [2], we formalize these theorems
on Euclidean spaces by specializing them. We referred to [4], [12], [10], [1I] in
this formalization.
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1. MATRIX AND LINEAR TRANSFORMATION ON EUCLIDEAN SPACES

Let n be a natural number. One can check that (€™, ||-||) is finite dimensional.
Now we state the propositions:

(1) Let us consider a non zero natural number n, and a real normed space
X. Then every linear operator from (", || - ||) into X is Lipschitzian.

(2) Let us consider a non zero natural number m, and finite sequences s,
t of elements of R™. Suppose 1 < lens and s = t[lens. Let us consider
a natural number 7. If 1 <14 <lens, then (accumt)(i) = (accum s)(7).
PROOF: Define P[natural number| =if 1 < $; < len s, then (accumt)($;) =
(accum s)($1). For every natural number n such that P[n] holds P[n + 1].
For every natural number n, P[n]. O
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(3) Let us consider a non zero natural number m, finite sequences s, s; of
elements of R™, and an element sy of R™. If s1 = s~ (sq), then > s1 =
> s+ sp. The theorem is a consequence of (2).

(4) Let us consider a non zero natural number m, a finite sequence s of
elements of R™, and a natural number j. Suppose 1 < j < m. Then there
exists a finite sequence ¢ of elements of R such that

(i) lent =lens, and

(ii) for every natural number i such that 1 < i < len s there exists an ele-
ment sy of R™ such that sy = s(i) and ¢(i) = s2(j), and

(i) (X2s)() =2t
PROOF: Define P[natural number] = for every finite sequence s of elements
of R™ for every natural number j such that len s = $; and 1 < j < m there
exists a finite sequence t of elements of R such that lent = len s and for
every natural number ¢ such that 1 < ¢ < len s there exists an element ss
of R™ such that sy = s(i) and ¢(i) = 82( 1) and (3°s)(j) = >_t. P[0]. For
every natural number n such that P[n| holds P[n + 1]. For every natural
number n, P[n]. O

(5) Let us consider a non zero natural number m, and an element x of R™.
Then there exists a finite sequence s of elements of R™ such that

(i) dom s = Segm, and
(ii) for every natural number i such that 1 < i < m there exists an ele-
ment e of R™ such that e = (reproj(i, (0,...,0)))(1) and s(i) =
———

(proj(i,m))(x) - ¢, and
(iii) Y s==.
PROOF: Define P[natural number, object] = there exists an element e of
R™ such that e = (reproj($1, (0,...,0)))(1) and $2 = (proj($1,m))(x) - e.
——

For every natural number i such ntlhat 1 € Segm there exists an element

y of R™ such that P[i,y]. Consider s being a finite sequence of elements

of R™ such that dom s = Segm and for every natural number ¢ such that

i € Segm holds P[i, s(i)]. For every natural number 7 such that 1 <i < m

there exists an element e of R™ such that e = (reproj(i, (0,...,0)))(1) and
——

m
s(i) = (proj(i,m))(x) - e. For every natural number ¢ such that 1 < ¢ <

len" s holds (3" s)(i) = z(¢). O
(6) Let us consider non zero elements m, n of N, and a matrix M over Rp

of dimension mxn. Then Mx2Tran(M) is a Lipschitzian linear operator
from (£, [| - [} into (€™, [| - [)-
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PROOF: Reconsider f = Mx2Tran(M) as a function from (€™, | - ||) into
(€™ |- 1))- For every elements x, y of (€™, |||}, f(z+y) = f(x)+f(y). For
every vector x of (€™, -||) and for every real number a, f(a-z) = a- f(z)

by [8, (4),(8)]. O

Let us consider a non zero element m of N and a linear operator f from
(™, - Iy into (E™, || - |I). Now we state the propositions:

(7) Suppose f is bijective. Then there exists a Lipschitzian linear operator
g from (E™ || - ||) into (E™, || - ||) such that

(i) g=f" and
(ii) g is one-to-one and onto.

(8) Suppose f is bijective. Then there exists a point g of the real norm space
of bounded linear operators from (™, | - ||) into (€™, | - ||) such that

(i) g=/f, and
(ii) g is invertible.
The theorem is a consequence of (7).
Let us consider non zero elements m, n of N and a square matrix M over
Rp of dimension m. Now we state the propositions:
(9) Mx2Tran(M) is bijective if and only if Det M # Og..

(10) Mx2Tran(M) is bijective if and only if M is invertible.

(11) Let us consider a non zero element m of N, and a point f of the real
norm space of bounded linear operators from (E™, | - ||) into (€™, - |)-
Suppose f is one-to-one and rng f = the carrier of (€™, - ||). Then f is
invertible. The theorem is a consequence of (8).

Let us consider a non zero element m of N, a point f of the real norm space
of bounded linear operators from (€™, | -||) into (€™, ]| -||), and a square matrix
M over Ry of dimension m. Now we state the propositions:

(12) If f = Mx2Tran(M ), then f is invertible iff M is invertible. The theorem
is a consequence of (10) and (11).

(13) If f = Mx2Tran(M ), then f is invertible iff Det M # Ogr,. The theorem
is a consequence of (12).

Let us consider non zero elements m, n of N. Now we state the propositions:
(14) There exists a function f from R™ x R™ into R™*" such that

(i) for every element x of R™ and for every element y of R"™, f(x,y) =
x "y, and

(ii) f is one-to-one and onto.
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PROOF: Define S[object, object, object] = there exists an element = of R™
and there exists an element y of R™ such that z = $; and y = $5 and
$3 = x 7 y. For every objects x, y such that x € R™ and y € R" there
exists an object z such that z € R™™ and S[z,y, z]. Consider f being
a function from R™ x R™ into R™™ such that for every objects x, y such
that x € R™ and y € R™ holds S[x,y, f(z,y)]. For every element x of R
and for every element y of R", f(x,y) =z " y. O

There exists a function f from (€™, - ||) x (E™,] - ||) into (E™F™ || - ||)
such that
(i) f is one-to-one and onto, and
(ii) for every element z of R™ and for every element y of R", f(z,y) =
x "y, and
(iii) for every points u, v of (E™ || -[|) x (E™, || - |), f(u+v) = f(u)+ f(v),
and
(iv) for every point u of (€™, | -]|) x (€™, - ||) and for every real number

ry f(r-u) =7 f(u), and
(v) FOgem jysen -1y) = Oggmen |p.y» and
(vi) for every point u of (E™, || - [|) x (€™, || - [I), I f(w)| = [Jull.

Proor: Consider f being a function from R™ x R" into R™*" such that
for every element x of R™ and for every element y of R", f(z,y) =2 "y

and f is one-to-one and onto. For every points u, v of (E™, |||} x (E™, || ])),
f(u+v) = f(u)+ f(v). For every point u of (£™, - ||) x (€™, -||) and for
every real number r, f(r-u) = - f(u). For every point u of (€™, || - ||) X

E™ -1 1 @)l = [l by [, (18)]. O

2. TOTAL DERIVATIVE AND PARTIAL DERIVATIVE

Now we state the propositions:
(16)

Let us consider real normed spaces X, Y, a point  of X, and a Lipschit-
zian linear operator f from X into Y. Then

(i) f is differentiable in x, and

(i) f=f'(z).

PROOF: Set C = Qx. Reconsider g = (the carrier of X) —— 0Oy as
a partial function from X to Y. Reconsider fy = f as an element of
BdLinOps(X,Y). For every (0x )-convergent sequence h of X such that h is
non-zero holds ||h|| =t (g«h) is convergent and lim(||h||~*- (g+h)) = Oy. For
every point g of X such that xo € C holds f/,,— f/z = fo(20o—2)+9/29—a-
|
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(17) Let us consider a non zero natural number n, a natural number i, and
a point z of (€™, || - ||). Suppose 1 < i < n. Then

(i) Proj(i,n) is differentiable in z, and
(i) (Proj(i, n))'(z) = Proj(i, ).
The theorem is a consequence of (16).

Let us consider non zero natural numbers m, n, a partial function f from
R™ to R", and an element x of R™. Now we state the propositions:

(18) f is differentiable in x if and only if for every natural number i such
that 1 < i < n there exists a partial function f; from R™ to R! such that
fi = (Proj(i,n)) - f and f; is differentiable in z.

(19) f is differentiable in z if and only if for every natural number i such
that 1 < i < n there exists a partial function f; from R™ to R such that
f1 = (proj(i,n)) - f and f; is differentiable in x.
PROOF: For every natural number i, ((proj(i,n)) - f) = (Proj(i,n)) - f by
[3, (11)]. For every natural number i such that 1 < i < n there exists
a partial function Fy from R™ to R' such that F; = (Proj(i,n)) - f and
Fi is differentiable in . O

(20) Let us consider non zero natural numbers m, n, a partial function f from
R™ to R", and an element z of R™. Suppose f is differentiable in z. Let
us consider a natural number 4, and a partial function f; from R™ to R.
Suppose 1 < i < n and f; = (proj(i,n)) - f. Then

(i) f1 is differentiable in z, and

(i) f1'(z) = (proj(i,n)) - (f'(x)).
The theorem is a consequence of (19).

(21) Let us consider non zero natural numbers m, n, a partial function f from
R™ to R", and an element x of R™. Suppose f is differentiable in z. Let us
consider natural numbers i, j. Suppose 1 < i< m and 1 < j < n. Then f
is partially differentiable in  w.r.t. ¢ and j. The theorem is a consequence
of (19).

(22) Let us consider non zero natural numbers m, n, a partial function f
from (E™, || - ||) to (€™, - ||), and an element x of (£™,| - ||). Suppose
f is differentiable in x. Let us consider natural numbers i, j. Suppose
1<i<mand1l<j<n. Then f is partially differentiable in z w.r.t. ¢
and j.

(23) Let us consider a non zero natural number m, a partial function f from

R™ to R, and an element x of R™. Suppose f is differentiable in z. Let us
consider elements u, v of R™. Then (f'(x))(u+v) = (f'(z))(u)+(f'(x))(v).
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(24) Let us consider a non zero natural number m, a partial function f from
R™ to R, and an element x of R™. Suppose f is differentiable in x. Let us
consider an element u of R™, and a real number a. Then (f'(z))(a-u) =
a- (f'(x))(u).

(25) Let us consider a non zero natural number m, a partial function f from
R™ to R, and an element x of R™. Suppose f is differentiable in z. Let
us consider a finite sequence s of elements of R™, and a finite sequence t
of elements of R. Suppose dom s = domt and for every natural number 4
such that i € dom s holds (i) = (f'(z))(s(2)). Then (f'(z))(Xs) =X t.
PROOF: Define P[natural number| = for every finite sequence s of elements
of R™ for every finite sequence ¢ of elements of R such that len s = $; and
dom s = domt and for every natural number ¢ such that ¢ € dom s holds
t(i) = (f'(x))(s(i)) holds (f'(x))(>°s) = >_t. P[0]. For every natural
number n such that P[n| holds P[n + 1]. For every natural number n,
Pln]. O

(26) Let us consider a non zero natural number m, a partial function f from
R™ to R, and an element x of R™. Suppose f is differentiable in x. Let
us consider an element d; of R™. Then there exists a finite sequence dy of
elements of R such that

(i) domdy = Segm, and

(ii) for every natural number 7 such that 1 < i < m holds da(i) =
(proj(i,m))(dy) - (partdiff(f, z,4)), and

(i) (f'(x))(d1) = 3 da.

ProoOF: Consider s being a finite sequence of elements of R™ such that

doms = Segm and for every natural number ¢ such that 1 < i < m
there exists an element e of R™ such that e = (reproj(, (0,...,0)))(1)
——

and s(i) = (proj(i,m))(d1) - e and Y s = dy. Define F(natural nrlnlmber) =
(f'(2))(s(%1))(€ R). Consider ds being a finite sequence of elements of R
such that len do = m and for every natural number ¢ such that i € dom ds
holds da(i) = F(i). For every natural number i such that ¢ € dom ds holds
da(i) = (f'(x))(s(i)). For every natural number i such that 1 < i < m
holds dy(i) = (proj(i,m))(dy) - (partdiff (f, z,4)). O

(27) Let us consider non zero elements m, n of N, a subset X of (€™, - |]),
and a partial function f from (€™, - ||) to (€™, - ||). Suppose X is open
and X C dom f. Then f is differentiable on X and ffX is continuous on
X if and only if for every natural numbers i, j such that 1 < ¢ < m and
1 < j < nholds (Proj(j,n))- f is partially differentiable on X w.r.t. i and
(Proj(j,n)) - fI'X is continuous on X.
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PRrROOF: For every natural number ¢ such that 1 < ¢ < m holds f is
partially differentiable on X w.r.t. ¢ and f[*X is continuous on X. OJ

3. JACOBIAN MATRIX

Let m, n be non zero natural numbers, f be a partial function from R™ to
R"™, and x be an element of R™. The functor Jacobian(f,z) yielding a matrix
over Rp of dimension mxn is defined by

(Def. 1) for every natural numbers 4, j such that i € Segm and j € Segn holds
it; ; = partdiff(f, x, 1, 5).

Now we state the proposition:

(28) Let us consider non zero natural numbers m, n, a partial function f from
R™ to R™, and an element x of R™. Suppose f is differentiable in z. Then
f'(x) = Mx2Tran(Jacobian(f, z)).

PROOF: For every element d; of R™, (f'(z))(d1) =
(Mx2Tran(Jacobian(f, z)))(d1). O

Let m, n be non zero natural numbers, f be a partial function from (€™, |- ||)
to (€™, || ||, and z be a point of (€™, || - ||). The functor Jacobian(f, z) yielding
a matrix over Ry of dimension mxn is defined by

(Def. 2) there exists a partial function g from R™ to R™ and there exists an ele-
ment y of R™ such that g = f and y = = and it = Jacobian(g, y).

Now we state the proposition:

(29) Let us consider non zero elements m, n of N, a point = of (£™,] - |]),
and a partial function f from (€™, - ||) to (€™, - ||). Suppose f is dif-
ferentiable in z. Then f’(z) = Mx2Tran(Jacobian(f,z)). The theorem is
a consequence of (28).

Let us consider a non zero element m of N, a partial function f from (€™, ||-||)
to (€™, 1), and a point = of (€™, || - ||). Now we state the propositions:

(30) If f is differentiable in x, then f’(x) is invertible iff Jacobian(f,z) is
invertible. The theorem is a consequence of (29) and (12).

(31) If f is differentiable in x, then f’(z) is invertible iff Det Jacobian(f, z) #
Ogy. The theorem is a consequence of (30).
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4. IMPLICIT AND INVERSE FUNCTION THEOREMS ON EUCLIDEAN SPACES

Now we state the propositions:

(32) Let us consider non zero elements I, m, n of N, a subset Z of (€', || -||) x

(€™ 1| II), a partial function f from (', || [) x (€™, || - ||} to (€™, |- I},
a point a of (£, - ||), a point b of (€™, | - ||}, a point ¢ of (E™, | -||), and
a point z of (EL | - ||} x (€™, - ||). Suppose Z is open and dom f = Z
and f is differentiable on Z and ffZ is continuous on Z and (a, b) € Z
and f(a,b) = c and z = (a, b) and partdiff(f, z) w.r.t. 2 is invertible. Then
there exist real numbers rq, ro such that

(i) 0 <7y, and
(ii) 0 <7, and
(iii) Ball(a,r;) x Ball(b,r9) C Z, and
)

(iv) for every point x of (£!,| - ||) such that = € Ball(a,r;) there exists
a point y of (€™ || - ||) such that y € Ball(b,r2) and f(z,y) = ¢, and

(v) for every point z of (€!,]|-||) such that = € Ball(a,r;) for every points
Y1, Y2 of <gm7 || : ”> such that Y1, Y2 € Ba’ll(b) TQ) and f(xuyl) = cand
f(z,y2) = c holds y1 = y2, and

(vi) there exists a partial function g from (EL || - ||) to (€™, - ||) such
that domg = Ball(a,r1) and rngg C Ball(b,r2) and ¢ is continu-
ous on Ball(a,r1) and g(a) = b and for every point x of (&L, - ||)
such that « € Ball(a,r1) holds f(z,g(x)) = ¢ and g is differen-

tiable on Ball(a,r1) and g/[Ball( is continuous on Ball(a,r) and

a,ry)
for every point z of (£, - ||) and for every point z of (', | - ||} x
(€™, - Iy such that = € Ball(a,r1) and z = (z, g(x)) holds ¢'(z) =
—(Inv partdiff (f, z) w.r.t. 2) - (partdiff (f, z) w.r.t. 1) and for every po-
int = of (£, - ||) and for every point z of (L, |- ||) x (€™, ]| - ||) such
that = € Ball(a,r1) and z = (z, g(x)) holds partdiff(f, z) w.r.t.2 is
invertible, and

(vii) for every partial functions g1, go from (&L, - ||) to (€™, - ||) such
that dom g; = Ball(a,r1) and rng g1 C Ball(b, 2) and for every point
x of (€| - ||) such that z € Ball(a,r1) holds f(z,gi1(x)) = ¢ and
dom gy = Ball(a,r1) and rng go C Ball(b, 3) and for every point x of
(€L)]|-1|) such that = € Ball(a,r;) holds f(z, ga(x)) = ¢ holds g1 = go.

(33) Let us consider non zero elements [, m of N, a subset Z of (', - ||) x

(€™, 1| - 1), a partial function f from (%[ ) x (€™, - [I) to (€™, | - II),
a point a of (EL,||-||), points b, ¢ of (§™, ]| -}, and a point z of (EL, |- ||) x
(E™ || - |I). Suppose Z is open and dom f = Z and f is differentiable on
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Z and f{y is continuous on Z and (a, b) € Z and f(a,b) = c and z = (a,
b) and Det Jacobian(f - (reproj2(z)), (z)2) # Or,. Then there exist real
numbers rq, ro such that

(i) 0 <y, and
(ii) 0 < g, and
(iii) Ball(a,r1) x Ball(b,r2) C Z, and
)

(iv) for every point z of (£',| -||) such that = € Ball(a,r1) there exists
a point y of (€™, -||) such that y € Ball(b,r2) and f(x,y) = ¢, and

(v) for every point  of (£, ||-||) such that = € Ball(a, ;) for every points
y1, y2 of (€™, |) such that y1, yo € Ball(b,r9) and f(z,y1) = c and
f(,y2) = c holds y1 = y2, and

(vi) there exists a partial function g from (£, || - ||) to (€™, - ||) such
that domg = Ball(a,r;) and rmgg C Ball(b,r2) and ¢ is continu-
ous on Ball(a,r1) and g(a) = b and for every point x of (&4, - ||)
such that x € Ball(a,r1) holds f(z,g(x)) = ¢ and g is differen-

tiable on Ball(a,r1) and g/[BaH( is continuous on Ball(a,r1) and

a,r1)
for every point z of (£, - ||) and for every point z of ('] - ||} x
(€™, - |Iy such that = € Ball(a,r1) and z = (z, g(z)) holds ¢'(z) =
—(Inv partdiff (f, z) w.r.t. 2) - (partdiff (f, z) w.r.t. 1) and for every po-
int  of (', -||) and for every point z of (£, -||) x (§™,] -||) such
that € Ball(a,r1) and z = (z, g(x)) holds partdiff(f, z) w.r.t.2 is

invertible, and

(vii) for every partial functions g1, go from (EL,| - ||) to (€™, - ||) such
that dom g1 = Ball(a, 1) and rng g; C Ball(b, ) and for every point
x of (€L,] - ||) such that 2 € Ball(a,r1) holds f(x,g1(z)) = ¢ and
dom go = Ball(a,r1) and rng go C Ball(b, r2) and for every point x of
(€| ]1) such that 2 € Ball(a, 1) holds f(z, ga(x)) = c holds g; = go.

The theorem is a consequence of (31).

(34) Let us consider a non zero element m of N, a subset Z of (£™,] - ),
a partial function f from (E™,| - ||) to (€™, - ||), a point a of (E™, ] -||),
and a point b of (€™, - ||). Suppose Z is open and dom f = Z and f is
differentiable on Z and f], is continuous on Z and a € Z and f(a) = b
and Det Jacobian(f, a) # O,

Then there exists a subset A of (€™, |- ||) and there exists a subset B of
(€™, |I-1]) and there exists a partial function g from (€™, || -||) to (€™, |- )
such that A is open and B is open and A Cdom f and a € A and b € B
and f°A = B and domg = B and rmgg = A and dom(f]A) = A and
rmg(flA) = B and f[A is one-to-one and g is one-to-one and g = (f[A) !
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and flA =g ! and g(b) = a and g is continuous on B and differentiable
on B and g|z is continuous on B and for every point y of (€™, || - ||} such
that y € B holds f'(g,,) is invertible and for every point y of (£, ]| - ||)
such that y € B holds ¢'(y) = Inv f'(g),). The theorem is a consequence
of (31).
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