On Implicit and Inverse Function Theorems on Euclidean Spaces ${ }^{1}$

Kazuhisa Nakasho
Yamaguchi University
Yamaguchi, Japan

Yasunari Shidama
Karuizawa Hotch 244-1
Nagano, Japan

Abstract

Summary. Previous Mizar articles 7, 6, 5 formalized the implicit and inverse function theorems for Frechet continuously differentiable maps on Banach spaces. In this paper, using the Mizar system [1], [2] , we formalize these theorems on Euclidean spaces by specializing them. We referred to [4, [12, 10, [11 in this formalization.

MSC: 26B10 47J07 68V20
Keywords: implicit function theorem; inverse function theorem; continuously differentiable function

MML identifier: NDIFF11, version: 8.1.12 5.71.1431

1. Matrix and Linear Transformation on Euclidean Spaces

Let n be a natural number. One can check that $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ is finite dimensional. Now we state the propositions:
(1) Let us consider a non zero natural number n, and a real normed space X. Then every linear operator from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ into X is Lipschitzian.
(2) Let us consider a non zero natural number m, and finite sequences s, t of elements of \mathcal{R}^{m}. Suppose $1 \leqslant \operatorname{len} s$ and $s=t \upharpoonright$ len s. Let us consider a natural number i. If $1 \leqslant i \leqslant \operatorname{len} s$, then $(\operatorname{accum} t)(i)=(\operatorname{accum} s)(i)$. Proof: Define \mathcal{P} [natural number] \equiv if $1 \leqslant \$_{1} \leqslant$ len s, then $(\operatorname{accum} t)\left(\$_{1}\right)=$ (accum $s)\left(\$_{1}\right)$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$.

[^0](3) Let us consider a non zero natural number m, finite sequences s, s_{1} of elements of \mathcal{R}^{m}, and an element s_{0} of \mathcal{R}^{m}. If $s_{1}=s^{\wedge}\left\langle s_{0}\right\rangle$, then $\sum s_{1}=$ $\sum s+s_{0}$. The theorem is a consequence of (2).
(4) Let us consider a non zero natural number m, a finite sequence s of elements of \mathcal{R}^{m}, and a natural number j. Suppose $1 \leqslant j \leqslant m$. Then there exists a finite sequence t of elements of \mathbb{R} such that
(i) $\operatorname{len} t=\operatorname{len} s$, and
(ii) for every natural number i such that $1 \leqslant i \leqslant$ len s there exists an element s_{2} of \mathcal{R}^{m} such that $s_{2}=s(i)$ and $t(i)=s_{2}(j)$, and
(iii) $\left(\sum s\right)(j)=\sum t$.

Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence s of elements of \mathcal{R}^{m} for every natural number j such that len $s=\$_{1}$ and $1 \leqslant j \leqslant m$ there exists a finite sequence t of elements of \mathbb{R} such that len $t=\operatorname{len} s$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} s$ there exists an element s_{2} of \mathcal{R}^{m} such that $s_{2}=s(i)$ and $t(i)=s_{2}(j)$ and $\left(\sum s\right)(j)=\sum t$. $\mathcal{P}[0]$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$.
(5) Let us consider a non zero natural number m, and an element x of \mathcal{R}^{m}. Then there exists a finite sequence s of elements of \mathcal{R}^{m} such that
(i) $\operatorname{dom} s=\operatorname{Seg} m$, and
(ii) for every natural number i such that $1 \leqslant i \leqslant m$ there exists an element e of \mathcal{R}^{m} such that $e=(\operatorname{reproj}(i,(\underbrace{0, \ldots, 0}_{m}\rangle))(1)$ and $s(i)=$ $(\operatorname{proj}(i, m))(x) \cdot e$, and
(iii) $\sum s=x$.

Proof: Define \mathcal{P} [natural number, object] \equiv there exists an element e of \mathcal{R}^{m} such that $e=(\operatorname{reproj}(\$_{1},(\underbrace{0, \ldots, 0}_{m}\rangle))(1)$ and $\$_{2}=\left(\operatorname{proj}\left(\$_{1}, m\right)\right)(x) \cdot e$.
For every natural number i such that $i \in \operatorname{Seg} m$ there exists an element y of \mathcal{R}^{m} such that $\mathcal{P}[i, y]$. Consider s being a finite sequence of elements of \mathcal{R}^{m} such that dom $s=\operatorname{Seg} m$ and for every natural number i such that $i \in \operatorname{Seg} m$ holds $\mathcal{P}[i, s(i)]$. For every natural number i such that $1 \leqslant i \leqslant m$ there exists an element e of \mathcal{R}^{m} such that $e=(\operatorname{reproj}(i,\langle\underbrace{0, \ldots, 0}_{m}\rangle))(1)$ and $s(i)=(\operatorname{proj}(i, m))(x) \cdot e$. For every natural number i such that $1 \leqslant i \leqslant$ len $\sum s$ holds $\left(\sum s\right)(i)=x(i)$.
(6) Let us consider non zero elements m, n of \mathbb{N}, and a matrix M over \mathbb{R}_{F} of dimension $m \times n$. Then $\operatorname{Mx} 2 \operatorname{Tran}(M)$ is a Lipschitzian linear operator from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.

Proof: Reconsider $f=\operatorname{Mx} 2 \operatorname{Tran}(M)$ as a function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. For every elements x, y of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle, f(x+y)=f(x)+f(y)$. For every vector x of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ and for every real number $a, f(a \cdot x)=a \cdot f(x)$ by [8, (4),(8)].
Let us consider a non zero element m of \mathbb{N} and a linear operator f from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Now we state the propositions:
(7) Suppose f is bijective. Then there exists a Lipschitzian linear operator g from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that
(i) $g=f^{-1}$, and
(ii) g is one-to-one and onto.
(8) Suppose f is bijective. Then there exists a point g of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that
(i) $g=f$, and
(ii) g is invertible.

The theorem is a consequence of (7).
Let us consider non zero elements m, n of \mathbb{N} and a square matrix M over \mathbb{R}_{F} of dimension m. Now we state the propositions:
(9) $\operatorname{Mx} 2 \operatorname{Tran}(M)$ is bijective if and only if $\operatorname{Det} M \neq 0_{\mathbb{R}_{F}}$.
(10) $\operatorname{Mx} 2 \operatorname{Tran}(M)$ is bijective if and only if M is invertible.
(11) Let us consider a non zero element m of \mathbb{N}, and a point f of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose f is one-to-one and $\operatorname{rng} f=$ the carrier of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Then f is invertible. The theorem is a consequence of (8).
Let us consider a non zero element m of \mathbb{N}, a point f of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and a square matrix M over \mathbb{R}_{F} of dimension m. Now we state the propositions:
(12) If $f=\operatorname{Mx} 2 \operatorname{Tran}(M)$, then f is invertible iff M is invertible. The theorem is a consequence of (10) and (11).
(13) If $f=\operatorname{Mx} 2 \operatorname{Tran}(M)$, then f is invertible iff $\operatorname{Det} M \neq 0_{\mathbb{R}_{F}}$. The theorem is a consequence of (12).
Let us consider non zero elements m, n of \mathbb{N}. Now we state the propositions:
(14) There exists a function f from $\mathcal{R}^{m} \times \mathcal{R}^{n}$ into \mathcal{R}^{m+n} such that
(i) for every element x of \mathcal{R}^{m} and for every element y of $\mathcal{R}^{n}, f(x, y)=$ $x^{\wedge} y$, and
(ii) f is one-to-one and onto.

Proof: Define \mathcal{S} [object, object, object] \equiv there exists an element x of \mathcal{R}^{m} and there exists an element y of \mathcal{R}^{n} such that $x=\$_{1}$ and $y=\$_{2}$ and $\$_{3}=x^{\frown} y$. For every objects x, y such that $x \in \mathcal{R}^{m}$ and $y \in \mathcal{R}^{n}$ there exists an object z such that $z \in \mathcal{R}^{m+n}$ and $\mathcal{S}[x, y, z]$. Consider f being a function from $\mathcal{R}^{m} \times \mathcal{R}^{n}$ into \mathcal{R}^{m+n} such that for every objects x, y such that $x \in \mathcal{R}^{m}$ and $y \in \mathcal{R}^{n}$ holds $\mathcal{S}[x, y, f(x, y)]$. For every element x of \mathcal{R}^{m} and for every element y of $\mathcal{R}^{n}, f(x, y)=x^{\complement} y$.
(15) There exists a function f from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{m+n},\|\cdot\|\right\rangle$ such that
(i) f is one-to-one and onto, and
(ii) for every element x of \mathcal{R}^{m} and for every element y of $\mathcal{R}^{n}, f(x, y)=$ $x^{\frown} y$, and
(iii) for every points u, v of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, f(u+v)=f(u)+f(v)$, and
(iv) for every point u of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and for every real number $r, f(r \cdot u)=r \cdot f(u)$, and
(v) $f\left(0_{\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle}\right)=0_{\left\langle\mathcal{E}^{m+n},\|\cdot\|\right\rangle}$, and
(vi) for every point u of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle,\|f(u)\|=\|u\|$.

Proof: Consider f being a function from $\mathcal{R}^{m} \times \mathcal{R}^{n}$ into \mathcal{R}^{m+n} such that for every element x of \mathcal{R}^{m} and for every element y of $\mathcal{R}^{n}, f(x, y)=x^{\frown} y$ and f is one-to-one and onto. For every points u, v of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, $f(u+v)=f(u)+f(v)$. For every point u of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and for every real number $r, f(r \cdot u)=r \cdot f(u)$. For every point u of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle \times$ $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle,\|f(u)\|=\|u\|$ by [9, (18)].

2. Total Derivative and Partial Derivative

Now we state the propositions:
(16) Let us consider real normed spaces X, Y, a point x of X, and a Lipschitzian linear operator f from X into Y. Then
(i) f is differentiable in x, and
(ii) $f=f^{\prime}(x)$.

Proof: Set $C=\Omega_{X}$. Reconsider $g=$ (the carrier of X) $\longmapsto 0_{Y}$ as a partial function from X to Y. Reconsider $f_{0}=f$ as an element of $\operatorname{BdLinOps}(X, Y)$. For every $\left(0_{X}\right)$-convergent sequence h of X such that h is non-zero holds $\|h\|^{-1} \cdot\left(g_{*} h\right)$ is convergent and $\lim \left(\|h\|^{-1} \cdot\left(g_{*} h\right)\right)=0_{Y}$. For every point x_{0} of X such that $x_{0} \in C$ holds $f_{/ x_{0}}-f_{/ x}=f_{0}\left(x_{0}-x\right)+g_{/ x_{0}-x}$.
(17) Let us consider a non zero natural number n, a natural number i, and a point x of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $1 \leqslant i \leqslant n$. Then
(i) $\operatorname{Proj}(i, n)$ is differentiable in x, and
(ii) $(\operatorname{Proj}(i, n))^{\prime}(x)=\operatorname{Proj}(i, n)$.

The theorem is a consequence of (16).
Let us consider non zero natural numbers m, n, a partial function f from \mathcal{R}^{m} to \mathcal{R}^{n}, and an element x of \mathcal{R}^{m}. Now we state the propositions:
(18) f is differentiable in x if and only if for every natural number i such that $1 \leqslant i \leqslant n$ there exists a partial function f_{1} from \mathcal{R}^{m} to \mathcal{R}^{1} such that $f_{1}=(\operatorname{Proj}(i, n)) \cdot f$ and f_{1} is differentiable in x.
(19) f is differentiable in x if and only if for every natural number i such that $1 \leqslant i \leqslant n$ there exists a partial function f_{1} from \mathcal{R}^{m} to \mathbb{R} such that $f_{1}=(\operatorname{proj}(i, n)) \cdot f$ and f_{1} is differentiable in x.
Proof: For every natural number $i,\langle(\operatorname{proj}(i, n)) \cdot f\rangle=(\operatorname{Proj}(i, n)) \cdot f$ by [3, (11)]. For every natural number i such that $1 \leqslant i \leqslant n$ there exists a partial function F_{1} from \mathcal{R}^{m} to \mathcal{R}^{1} such that $F_{1}=(\operatorname{Proj}(i, n)) \cdot f$ and F_{1} is differentiable in x.
(20) Let us consider non zero natural numbers m, n, a partial function f from \mathcal{R}^{m} to \mathcal{R}^{n}, and an element x of \mathcal{R}^{m}. Suppose f is differentiable in x. Let us consider a natural number i, and a partial function f_{1} from \mathcal{R}^{m} to \mathbb{R}. Suppose $1 \leqslant i \leqslant n$ and $f_{1}=(\operatorname{proj}(i, n)) \cdot f$. Then
(i) f_{1} is differentiable in x, and
(ii) $f_{1}^{\prime}(x)=(\operatorname{proj}(i, n)) \cdot\left(f^{\prime}(x)\right)$.

The theorem is a consequence of (19).
(21) Let us consider non zero natural numbers m, n, a partial function f from \mathcal{R}^{m} to \mathcal{R}^{n}, and an element x of \mathcal{R}^{m}. Suppose f is differentiable in x. Let us consider natural numbers i, j. Suppose $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$. Then f is partially differentiable in x w.r.t. i and j. The theorem is a consequence of (19).
(22) Let us consider non zero natural numbers m, n, a partial function f from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and an element x of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose f is differentiable in x. Let us consider natural numbers i, j. Suppose $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$. Then f is partially differentiable in x w.r.t. i and j.
(23) Let us consider a non zero natural number m, a partial function f from \mathcal{R}^{m} to \mathbb{R}, and an element x of \mathcal{R}^{m}. Suppose f is differentiable in x. Let us consider elements u, v of \mathcal{R}^{m}. Then $\left(f^{\prime}(x)\right)(u+v)=\left(f^{\prime}(x)\right)(u)+\left(f^{\prime}(x)\right)(v)$.
(24) Let us consider a non zero natural number m, a partial function f from \mathcal{R}^{m} to \mathbb{R}, and an element x of \mathcal{R}^{m}. Suppose f is differentiable in x. Let us consider an element u of \mathcal{R}^{m}, and a real number a. Then $\left(f^{\prime}(x)\right)(a \cdot u)=$ $a \cdot\left(f^{\prime}(x)\right)(u)$.
(25) Let us consider a non zero natural number m, a partial function f from \mathcal{R}^{m} to \mathbb{R}, and an element x of \mathcal{R}^{m}. Suppose f is differentiable in x. Let us consider a finite sequence s of elements of \mathcal{R}^{m}, and a finite sequence t of elements of \mathbb{R}. Suppose $\operatorname{dom} s=\operatorname{dom} t$ and for every natural number i such that $i \in \operatorname{dom} s$ holds $t(i)=\left(f^{\prime}(x)\right)(s(i))$. Then $\left(f^{\prime}(x)\right)\left(\sum s\right)=\sum t$. Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence s of elements of \mathcal{R}^{m} for every finite sequence t of elements of \mathbb{R} such that len $s=\$_{1}$ and $\operatorname{dom} s=\operatorname{dom} t$ and for every natural number i such that $i \in \operatorname{dom} s$ holds $t(i)=\left(f^{\prime}(x)\right)(s(i))$ holds $\left(f^{\prime}(x)\right)\left(\sum s\right)=\sum t$. $\mathcal{P}[0]$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number n, $\mathcal{P}[n]$.
(26) Let us consider a non zero natural number m, a partial function f from \mathcal{R}^{m} to \mathbb{R}, and an element x of \mathcal{R}^{m}. Suppose f is differentiable in x. Let us consider an element d_{1} of \mathcal{R}^{m}. Then there exists a finite sequence d_{2} of elements of \mathbb{R} such that
(i) $\operatorname{dom} d_{2}=\operatorname{Seg} m$, and
(ii) for every natural number i such that $1 \leqslant i \leqslant m$ holds $d_{2}(i)=$ $(\operatorname{proj}(i, m))\left(d_{1}\right) \cdot(\operatorname{partdiff}(f, x, i))$, and
(iii) $\left(f^{\prime}(x)\right)\left(d_{1}\right)=\sum d_{2}$.

Proof: Consider s being a finite sequence of elements of \mathcal{R}^{m} such that $\operatorname{dom} s=\operatorname{Seg} m$ and for every natural number i such that $1 \leqslant i \leqslant m$ there exists an element e of \mathcal{R}^{m} such that $e=(\operatorname{reproj}(i,(\underbrace{0, \ldots, 0}_{m}\rangle))(1)$ and $s(i)=(\operatorname{proj}(i, m))\left(d_{1}\right) \cdot e$ and $\sum s=d_{1}$. Define \mathcal{F} (natural number $)=$ $\left(f^{\prime}(x)\right)\left(s\left(\$_{1}\right)\right)(\in \mathbb{R})$. Consider d_{2} being a finite sequence of elements of \mathbb{R} such that len $d_{2}=m$ and for every natural number i such that $i \in \operatorname{dom} d_{2}$ holds $d_{2}(i)=\mathcal{F}(i)$. For every natural number i such that $i \in \operatorname{dom} d_{2}$ holds $d_{2}(i)=\left(f^{\prime}(x)\right)(s(i))$. For every natural number i such that $1 \leqslant i \leqslant m$ holds $d_{2}(i)=(\operatorname{proj}(i, m))\left(d_{1}\right) \cdot(\operatorname{partdiff}(f, x, i))$.
(27) Let us consider non zero elements m, n of \mathbb{N}, a subset X of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and a partial function f from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose X is open and $X \subseteq \operatorname{dom} f$. Then f is differentiable on X and $f_{\Gamma_{X}}^{\prime}$ is continuous on X if and only if for every natural numbers i, j such that $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$ holds $(\operatorname{Proj}(j, n)) \cdot f$ is partially differentiable on X w.r.t. i and $(\operatorname{Proj}(j, n)) \cdot f \upharpoonright^{i} X$ is continuous on X.

Proof: For every natural number i such that $1 \leqslant i \leqslant m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X.

3. Jacobian Matrix

Let m, n be non zero natural numbers, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and x be an element of \mathcal{R}^{m}. The functor $\operatorname{Jacobian}(f, x)$ yielding a matrix over \mathbb{R}_{F} of dimension $m \times n$ is defined by
(Def. 1) for every natural numbers i, j such that $i \in \operatorname{Seg} m$ and $j \in \operatorname{Seg} n$ holds $i t_{i, j}=\operatorname{partdiff}(f, x, i, j)$.
Now we state the proposition:
(28) Let us consider non zero natural numbers m, n, a partial function f from \mathcal{R}^{m} to \mathcal{R}^{n}, and an element x of \mathcal{R}^{m}. Suppose f is differentiable in x. Then $f^{\prime}(x)=\operatorname{Mx} 2 \operatorname{Tran}(\operatorname{Jacobian}(f, x))$.
Proof: For every element d_{1} of $\mathcal{R}^{m},\left(f^{\prime}(x)\right)\left(d_{1}\right)=$ $(\operatorname{Mx} 2 \operatorname{Tran}(\operatorname{Jacobian}(f, x)))\left(d_{1}\right)$.
Let m, n be non zero natural numbers, f be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and x be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. The functor $\operatorname{Jacobian}(f, x)$ yielding a matrix over \mathbb{R}_{F} of dimension $m \times n$ is defined by
(Def. 2) there exists a partial function g from \mathcal{R}^{m} to \mathcal{R}^{n} and there exists an element y of \mathcal{R}^{m} such that $g=f$ and $y=x$ and $i t=\operatorname{Jacobian}(g, y)$.
Now we state the proposition:
(29) Let us consider non zero elements m, n of \mathbb{N}, a point x of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and a partial function f from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose f is differentiable in x. Then $f^{\prime}(x)=\operatorname{Mx} 2 \operatorname{Tran}(\operatorname{Jacobian}(f, x))$. The theorem is a consequence of (28).
Let us consider a non zero element m of \mathbb{N}, a partial function f from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and a point x of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Now we state the propositions:
(30) If f is differentiable in x, then $f^{\prime}(x)$ is invertible iff $\operatorname{Jacobian}(f, x)$ is invertible. The theorem is a consequence of (29) and (12).
(31) If f is differentiable in x, then $f^{\prime}(x)$ is invertible iff $\operatorname{Det} \operatorname{Jacobian}(f, x) \neq$ $0_{\mathbb{R}_{\mathrm{F}}}$. The theorem is a consequence of (30).

4. Implicit and Inverse Function Theorems on Euclidean Spaces

Now we state the propositions:
(32) Let us consider non zero elements l, m, n of \mathbb{N}, a subset Z of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times$ $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, a partial function f from $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, a point a of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$, a point b of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, a point c of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and a point z of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose Z is open and $\operatorname{dom} f=Z$ and f is differentiable on Z and $f_{\mid Z}^{\prime}$ is continuous on Z and $\langle a, b\rangle \in Z$ and $f(a, b)=c$ and $z=\langle a, b\rangle$ and partdiff (f, z) w.r.t. 2 is invertible. Then there exist real numbers r_{1}, r_{2} such that
(i) $0<r_{1}$, and
(ii) $0<r_{2}$, and
(iii) $\operatorname{Ball}\left(a, r_{1}\right) \times \overline{\operatorname{Ball}}\left(b, r_{2}\right) \subseteq Z$, and
(iv) for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ there exists a point y of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $y \in \operatorname{Ball}\left(b, r_{2}\right)$ and $f(x, y)=c$, and
(v) for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ for every points y_{1}, y_{2} of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $y_{1}, y_{2} \in \operatorname{Ball}\left(b, r_{2}\right)$ and $f\left(x, y_{1}\right)=c$ and $f\left(x, y_{2}\right)=c$ holds $y_{1}=y_{2}$, and
(vi) there exists a partial function g from $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $\operatorname{dom} g=\operatorname{Ball}\left(a, r_{1}\right)$ and $\operatorname{rng} g \subseteq \operatorname{Ball}\left(b, r_{2}\right)$ and g is continuous on $\operatorname{Ball}\left(a, r_{1}\right)$ and $g(a)=b$ and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ holds $f(x, g(x))=c$ and g is differentiable on $\operatorname{Ball}\left(a, r_{1}\right)$ and $g_{\left\lceil\operatorname{Ball}\left(a, r_{1}\right)\right.}^{\prime}$ is continuous on $\operatorname{Ball}\left(a, r_{1}\right)$ and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ and for every point z of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times$ $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ and $z=\langle x, g(x)\rangle$ holds $g^{\prime}(x)=$ $-(\operatorname{Inv} \operatorname{partdiff}(f, z)$ w.r.t. 2) $\cdot($ partdiff (f, z) w.r.t. 1) and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ and for every point z of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ and $z=\langle x, g(x)\rangle$ holds partdiff (f, z) w.r.t. 2 is invertible, and
(vii) for every partial functions g_{1}, g_{2} from $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that dom $g_{1}=\operatorname{Ball}\left(a, r_{1}\right)$ and $\operatorname{rng} g_{1} \subseteq \operatorname{Ball}\left(b, r_{2}\right)$ and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ holds $f\left(x, g_{1}(x)\right)=c$ and $\operatorname{dom} g_{2}=\operatorname{Ball}\left(a, r_{1}\right)$ and $\operatorname{rng} g_{2} \subseteq \operatorname{Ball}\left(b, r_{2}\right)$ and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ holds $f\left(x, g_{2}(x)\right)=c$ holds $g_{1}=g_{2}$.
(33) Let us consider non zero elements l, m of \mathbb{N}, a subset Z of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times$ $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, a partial function f from $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, a point a of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$, points b, c of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and a point z of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times$ $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose Z is open and $\operatorname{dom} f=Z$ and f is differentiable on
Z and $f_{\lceil }^{\prime}$ is continuous on Z and $\langle a, b\rangle \in Z$ and $f(a, b)=c$ and $z=\langle a$, $b\rangle$ and $\operatorname{Det} \operatorname{Jacobian}\left(f \cdot(\operatorname{reproj} 2(z)),(z)_{\mathbf{2}}\right) \neq 0_{\mathbb{R}_{\mathrm{F}}}$. Then there exist real numbers r_{1}, r_{2} such that
(i) $0<r_{1}$, and
(ii) $0<r_{2}$, and
(iii) $\operatorname{Ball}\left(a, r_{1}\right) \times \overline{\operatorname{Ball}}\left(b, r_{2}\right) \subseteq Z$, and
(iv) for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ there exists a point y of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $y \in \operatorname{Ball}\left(b, r_{2}\right)$ and $f(x, y)=c$, and
(v) for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ for every points y_{1}, y_{2} of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $y_{1}, y_{2} \in \operatorname{Ball}\left(b, r_{2}\right)$ and $f\left(x, y_{1}\right)=c$ and $f\left(x, y_{2}\right)=c$ holds $y_{1}=y_{2}$, and
(vi) there exists a partial function g from $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $\operatorname{dom} g=\operatorname{Ball}\left(a, r_{1}\right)$ and $\operatorname{rng} g \subseteq \operatorname{Ball}\left(b, r_{2}\right)$ and g is continuous on $\operatorname{Ball}\left(a, r_{1}\right)$ and $g(a)=b$ and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ holds $f(x, g(x))=c$ and g is differentiable on $\operatorname{Ball}\left(a, r_{1}\right)$ and $g_{\left\lceil\operatorname{Ball}\left(a, r_{1}\right)\right.}^{\prime}$ is continuous on $\operatorname{Ball}\left(a, r_{1}\right)$ and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ and for every point z of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times$ $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ and $z=\langle x, g(x)\rangle$ holds $g^{\prime}(x)=$ $-(\operatorname{Inv} \operatorname{partdiff}(f, z)$ w.r.t. 2) $\operatorname{(partdiff}(f, z)$ w.r.t. 1) and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ and for every point z of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle \times\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ and $z=\langle x, g(x)\rangle$ holds partdiff (f, z) w.r.t. 2 is invertible, and
(vii) for every partial functions g_{1}, g_{2} from $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $\operatorname{dom} g_{1}=\operatorname{Ball}\left(a, r_{1}\right)$ and $\operatorname{rng} g_{1} \subseteq \operatorname{Ball}\left(b, r_{2}\right)$ and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ holds $f\left(x, g_{1}(x)\right)=c$ and $\operatorname{dom} g_{2}=\operatorname{Ball}\left(a, r_{1}\right)$ and $\operatorname{rng} g_{2} \subseteq \operatorname{Ball}\left(b, r_{2}\right)$ and for every point x of $\left\langle\mathcal{E}^{l},\|\cdot\|\right\rangle$ such that $x \in \operatorname{Ball}\left(a, r_{1}\right)$ holds $f\left(x, g_{2}(x)\right)=c$ holds $g_{1}=g_{2}$.
The theorem is a consequence of (31).
(34) Let us consider a non zero element m of \mathbb{N}, a subset Z of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, a partial function f from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, a point a of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and a point b of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose Z is open and $\operatorname{dom} f=Z$ and f is differentiable on Z and $f_{\mid Z}^{\prime}$ is continuous on Z and $a \in Z$ and $f(a)=b$ and $\operatorname{Det} \operatorname{Jacobian}(f, a) \neq 0_{\mathbb{R}_{\mathrm{F}}}$.

Then there exists a subset A of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ and there exists a subset B of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ and there exists a partial function g from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that A is open and B is open and $A \subseteq \operatorname{dom} f$ and $a \in A$ and $b \in B$ and $f^{\circ} A=B$ and $\operatorname{dom} g=B$ and $\operatorname{rng} g=A$ and $\operatorname{dom}(f \upharpoonright A)=A$ and $\operatorname{rng}(f \upharpoonright A)=B$ and $f \upharpoonright A$ is one-to-one and g is one-to-one and $g=(f \upharpoonright A)^{-1}$
and $f\left\lceil A=g^{-1}\right.$ and $g(b)=a$ and g is continuous on B and differentiable on B and $g_{\uparrow B}^{\prime}$ is continuous on B and for every point y of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $y \in B$ holds $f^{\prime}\left(g_{/ y}\right)$ is invertible and for every point y of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $y \in B$ holds $g^{\prime}(y)=\operatorname{Inv} f^{\prime}\left(g_{/ y}\right)$. The theorem is a consequence of (31).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pazk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. dol $10.1007 /$ sivel7-017-9440-6
[3] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007. doi $10.2478 / \mathrm{v} 10037-$ 007-0008-5
[4] Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.
[5] Kazuhisa Nakasho and Yuichi Futa. Inverse function theorem. Part I. Formalized Mathematics, 29(1):9-19, 2021. doi 10.2478/forma-2021-0002.
[6] Kazuhisa Nakasho and Yasunari Shidama. Implicit function theorem. Part II. Formalized Mathematics, 27(2):117-131, 2019. doi 10.2478/forma-2019-0013
[7] Kazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Implicit function theorem. Part I. Formalized Mathematics, 25(4):269-281, 2017. doi 10.1515/forma-2017-0026.
[8] Kazuhisa Nakasho, Hiroyuki Okazaki, and Yasunari Shidama. Real vector space and related notions. Formalized Mathematics, 29(3):117-127, 2021. doi 10.2478/forma-20210012.
[9] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51-59, 2011. doi $10.2478 / \mathrm{v} 10037-$ 011-0009-2.
[10] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
[11] Laurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.
[12] Kôsaku Yosida. Functional Analysis. Springer, 1980.

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI Grant Number JP20K19863.

