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Summary. In this paper problems 11, 16, 19–24, 39, 44, 46, 74, 75, 77, 82,
and 176 from [10] are formalized as described in [6], using the Mizar formalism [1],
[2], [4]. Problems 11 and 16 from the book are formulated as several independent
theorems. Problem 46 is formulated with a given example of required properties.
Problem 77 is not formulated using triangles as in the book is.
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1. Preliminaries

One can verify that every set which is natural is also natural-membered.
From now on a, b, i, k, m, n denote natural numbers, s, z denote non zero

natural numbers, r denotes a real number, c denotes a complex number, and e1,
e2, e3, e4, e5 denote extended reals.

Now we state the propositions:

(1) If e1 ¬ e2 ¬ e3 ¬ e4, then e1 ¬ e4.
(2) If e1 ¬ e2 ¬ e3 ¬ e4 ¬ e5, then e1 ¬ e5. The theorem is a consequence

of (1).

(3) 210 + 1 = 1025.

(4) 310 + 1 = 5905 · 10.

(5) 410 + 1 = 1048 · 1000 + 577.

(6) 510 + 1 = 9765 · 1000 + 626.
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(7) 610 + 1 = 6046 · 10000 + 6177.

(8) 710 + 1 = (2824 · 10000 + 7525) · 10.

(9) 810 + 1 = (1073 · 100 + 74) · 10000 + 1825.

(10) 910 + 1 = (3486 · 100 + 78) · 10000 + 4402.

(11) n mod (m+ 1) = 0 or ... or n mod (m+ 1) = m.

(12) If n | 8, then n ∈ {1, 2, 4, 8}.
(13) If 0 < m, then gcd(m,n) ¬ m.

(14) Let us consider integers i, j. If i and j are relatively prime, then i 6= j

or i = j = 1 or i = j = −1.

(15) Let us consider natural numbers i, j. If i and j are relatively prime, then
i 6= j or i = j = 1.

(16) If a < n and b < n and n | a− b, then a = b.

(17) Let us consider integers a, b, m. Suppose a < b. Then there exists k such
that

(i) m < (b− a) · k + 1− a, and

(ii) k = |dm+a−1b−a + 1e|.

Let i be an integer. Let us observe that (iκ)κ∈N is Z-valued.
Let us consider n. Note that (nκ)κ∈N is N-valued.
Let f be a non-negative yielding, real-valued many sorted set indexed by N.

Let us observe that (
∑κ
α=0 f(α))κ∈N is non-decreasing.

Now we state the propositions:

(18) Suppose a 6= 0 or b 6= 0. Then there exist natural numbers A, B such
that

(i) a = (gcd(a, b)) ·A, and

(ii) b = (gcd(a, b)) ·B, and

(iii) A and B are relatively prime.

(19) If n 6= 0, then for every integers p, m such that p | m holds p |
((mκ)κ∈N)(n).
Proof: Set G = (mκ)κ∈N. Define P[natural number] ≡ if $1 6= 0, then
p | G($1). For every non zero natural number k such that P[k] holds
P[k + 1]. For every non zero natural number k, P[k]. �

(20) ((rκ)κ∈N)(a+ b) = ((rκ)κ∈N)(a) · (rb).
Proof: Set S = (rκ)κ∈N. Define P[natural number] ≡ S(a+ $1) = S(a) ·
(r$1). P[0]. For every k such that P[k] holds P[k + 1]. For every k, P[k].
�
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(21) Let us consider integers p, m. Suppose p | m.
Then p | ((

∑κ
α=0((m

κ)κ∈N)(α))κ∈N)(n)− 1.
Proof: Set G = (mκ)κ∈N. Set P = (

∑κ
α=0G(α))κ∈N. Define P[natural

number] ≡ p | P ($1) − 1. For every k such that P[k] holds P[k + 1]. For
every k, P[k]. �

(22) ((
∑κ
α=0((m

κ)κ∈N)(α))κ∈N)(n) and mn+1 are relatively prime. The the-
orem is a consequence of (21).

(23) gcd(((
∑κ
α=0((a

κ)κ∈N)(α))κ∈N)(k), ((
∑κ
α=0((a

κ)κ∈N)(α))κ∈N)(k + i)) =
gcd(((

∑κ
α=0((a

κ)κ∈N)(α))κ∈N)(k), ((
∑κ
α=0((a

κ)κ∈N)(α))κ∈N)(k + i)−
((
∑κ
α=0((a

κ)κ∈N)(α))κ∈N)(k)).

(24) ((
∑κ
α=0((r

κ)κ∈N)(α))κ∈N)(k + i + 1) − ((
∑κ
α=0((r

κ)κ∈N)(α))κ∈N)(k) =
rk+1 · ((

∑κ
α=0((r

κ)κ∈N)(α))κ∈N)(i).
Proof: Set S = (rκ)κ∈N. Set P = (

∑κ
α=0 S(α))κ∈N. Define P[natural

number] ≡ P (k + $1 + 1) − P (k) = rk+1 · P ($1). P[0]. For every a such
that P[a] holds P[a+ 1]. For every k, P[k]. �

(25) Suppose n+ 1 and m+ 1 are relatively prime.
Then ((

∑κ
α=0((a

κ)κ∈N)(α))κ∈N)(n) and ((
∑κ
α=0((a

κ)κ∈N)(α))κ∈N)(m) are
relatively prime. The theorem is a consequence of (14).

(26) If a 6= 0 and b 6= 0 and i 6= 0, then gcd(ia − 1, ib − 1) = igcd(a,b) − 1. The
theorem is a consequence of (18) and (25).

Let us consider integers a, b, k. Now we state the propositions:

(27) Suppose a+b > 0 and (a mod k)+(b mod k) > 0. Then (a+b)n mod k =
((a mod k) + (b mod k))n mod k.
Proof: Set a1 = a mod k. Set b1 = b mod k. Define P[natural number] ≡
(a + b)$1 mod k = (a1 + b1)$1 mod k. P[0]. For every natural number x
such that P[x] holds P[x+ 1]. For every natural number x, P[x]. �

(28) (a+ b)n mod k = ((a mod k) + (b mod k))n mod k.
Proof: Set a1 = a mod k. Set b1 = b mod k. Define P[natural number] ≡
(a+ b)$1 mod k = (a1 + b1)

$1 mod k. P[0]. For every natural number x
such that P[x] holds P[x+ 1]. For every natural number x, P[x]. �

(29) If 1 < m, then m | ab + 1 iff m | (a mod m)b + 1.
Proof: Set r = a mod m. If m | ab + 1, then m | rb + 1 by [8, (7)], (28).
�

(30) 10 | a10 + 1 if and only if there exist natural numbers r, k such that
a = 10 · k + r and 10 | r10 + 1 and r = 0 or ... or r = 9.
Proof: If 10 | a10 + 1, then there exist natural numbers r, k such that
a = 10 · k + r and 10 | r10 + 1 and r = 0 or ... or r = 9 by (29), [3, (8)]. �
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(31) Let us consider odd natural numbers a, b. If a− b = 2, then a and b are
relatively prime.

(32) Let us consider odd natural numbers a, b, c. If c− b = 2 and b− a = 2,
then 3 | a or 3 | b or 3 | c.

(33) Let us consider odd prime numbers a, b, c. If c − b = 2 and b − a = 2,
then a = 3 and b = 5 and c = 7. The theorem is a consequence of (32).

(34) If an is prime, then n = 1.

(35) If 1 < a, then there exists k such that 1 < k and n < ak.

(36) (i) 2n mod 3 = 1, or

(ii) 2n mod 3 = 2.
Proof: Define P[natural number] ≡ 2$1 mod 3 = 1 or 2$1 mod 3 = 2. For
every k such that P[k] holds P[k + 1]. For every k, P[k]. �

(37) 3m | 23m + 1.
Proof: Define P[natural number] ≡ 3$1 | 23$1 + 1. P[0]. For every m such
that P[m] holds P[m+ 1] by [7, (2),(1)]. For every m, P[m]. �

(38) Euler 0 = 0.

Let us note that Euler 0 is zero.
Let n be a positive natural number. One can check that Eulern is positive.

2. Main Problems

Now we state the propositions:

(39) 5 | 22·n+1 − 2n+1 + 1 if and only if n mod 4 = 1 or n mod 4 = 2.
Proof: Define F(natural number) = 22·$1+1− 2$1+1+ 1. Consider k such
that n = 4 · k or n = 4 · k + 1 or n = 4 · k + 2 or n = 4 · k + 3. If 5 | F(n),
then n mod 4 = 1 or n mod 4 = 2. �

(40) 5 | 22·n+1 + 2n+1 + 1 if and only if n mod 4 = 0 or n mod 4 = 3.
Proof: Define G(natural number) = 22·$1+1 + 2$1+1 + 1. Consider k such
that n = 4 · k or n = 4 · k + 1 or n = 4 · k + 2 or n = 4 · k + 3. If 5 | G(n),
then n mod 4 = 0 or n mod 4 = 3. �

(41) 5 | 22·n+1 − 2n+1 + 1 if and only if 5 - 22·n+1 + 2n+1 + 1. The theorem is
a consequence of (11), (39), and (40).

(42) {n, where n is a natural number : n | 2n + 1} is infinite.
Proof: Set S = {n, where n is a natural number : n | 2n + 1}. Define
F(natural number) = 3$1 . Consider f being a many sorted set indexed by
N such that for every element i of N, f(i) = F(i). Set R = rng f . R ⊆ S.
For every natural number m, there exists a natural number N such that
N ­ m and N ∈ R by [9, (1)]. �
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(43) {n, where n is a natural number : n | 2n + 1 and n is prime} = {3}.
Proof: Set S = {n, where n is a natural number : n | 2n + 1 and n is
prime}. S ⊆ {3}. 31 | 231 + 1. �

(44) 10 | a10 + 1 if and only if there exists k such that a = 10 · k + 3 or
a = 10 · k + 7.
Proof: If 10 | a10 + 1, then there exists k such that a = 10 · k + 3 or
a = 10 · k + 7. �

(45) If (a 6= 0 or b 6= 0) and n > 0 and a | bn − 1, then a and b are relatively
prime.

(46) There exists no natural number n such that 1 < n and n | 2n − 1.
Proof: Define P[natural number] ≡ 1 < $1 and $1 | 2$1 − 1. Consider N
being a natural number such that P[N ] and for every natural number n
such that P[n] holds N ¬ n. Set E = EulerN . Set d = gcd(N,E). 2 and
N are relatively prime. gcd(2N − 1, 2E − 1) = 2d − 1. d ¬ E. �

(47) {n, where n is an odd natural number : n | 3n + 1} = {1}.
Proof: Set A = {n, where n is an odd natural number : n | 3n + 1}.
A ⊆ {1}. �

(48) {n, where n is a positive natural number : 3 | n·(2n)+1} = the set of all 6·
k+1 where k is a natural number∪the set of all 6·k+2 where k is a natural
number.
Proof: Set A = {n, where n is a positive natural number : 3 | n·(2n)+1}.
Set B = the set of all 6 · k + 1 where k is a natural number. Set C =
the set of all 6 ·k+2 where k is a natural number. A ⊆ B∪C by [5, (26)].
�

Let us consider an odd prime number p. Now we state the propositions:

(49) If n = (p− 1) · (k · p+ 1), then 2n mod p = 1.

(50) If n = (p− 1) · (k · p+ 1), then p | the Cullen number of n. The theorem
is a consequence of (49).

(51) {n, where n is a natural number : p | the Cullen number of n} is infinite.
Proof: Set S = {n, where n is a natural number : p | the Cullen number
of n}. Define F(natural number) = (p− 1) · ($1 · p+ 1). Consider f being
a many sorted set indexed by N such that for every element i of N, f(i) =
F(i). Set R = rng f . R ⊆ S. For every natural number m, there exists
a natural number N such that N ­ m and N ∈ R. �

(52) There exist natural numbers x, y such that

(i) x > n, and

(ii) x - y, and

(iii) xx | yy.
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The theorem is a consequence of (35) and (34).

(53) Let us consider integers a, b, c, n. Suppose 3 < n. Then there exists
an integer k such that

(i) n - k + a, and

(ii) n - k + b, and

(iii) n - k + c.

(54) Let us consider integers a, b. Suppose a 6= b. Then {n, where n is a natural
number : a+ n and b+ n are relatively prime} is infinite.

Let a, b, c be integers. We say that a, b, c are mutually coprime if and only
if

(Def. 1) a and b are relatively prime and a and c are relatively prime and b and
c are relatively prime.

Let d be an integer. We say that a, b, c, d are mutually coprime if and only if

(Def. 2) a and b are relatively prime and a and c are relatively prime and a and
d are relatively prime and b and c are relatively prime and b and d are
relatively prime and c and d are relatively prime.

Now we state the propositions:

(55) Let us consider prime numbers a, b, c. If a, b, c are mutually different,
then a, b, c are mutually coprime.

(56) Let us consider prime numbers a, b, c, d. If a, b, c, d are mutually
different, then a, b, c, d are mutually coprime.

(57) (i) 1, 2, 3, 4 are mutually different, and

(ii) there exists no positive natural number n such that 1+n, 2+n, 3+n,
4 + n are mutually coprime.

(58) Let us consider an even natural number n. Suppose n > 6. Then there
exist prime numbers p, q such that

(i) n− p and n− q are relatively prime, and

(ii) p = 3, and

(iii) q = 5.

The theorem is a consequence of (31).

(59) {p, where p is a prime number : there exist prime numbers a, b such that
p = a+ b and there exist prime numbers c, d such that p = c− d} = {5}.
Proof: Set A = {p, where p is a prime number : there exist prime
numbers a, b such that p = a+ b and there exist prime numbers c, d such
that p = c− d}. A ⊆ {5}. �

Let us consider a prime number p. Now we state the propositions:
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(60) A corollary from the Fermat Theorem:
If p = 4 · k + 1, then there exist positive natural numbers a, b such that
a > b and p = a2 + b2.

(61) If p = 4 · k + 1, then there exist positive natural numbers a, b such that
p2 = a2 + b2. The theorem is a consequence of (60).

(62) (i) 5 | n+ 1, or

(ii) 5 | n+ 7, or

(iii) 5 | n+ 9, or

(iv) 5 | n+ 13, or

(v) 5 | n+ 15.

(63) {n, where n is a natural number : n+1 is prime and n+3 is prime and
n+7 is prime and n+9 is prime and n+13 is prime and n+15 is prime} =
{4}.
Proof: Set A = {n, where n is a natural number : n+1 is prime and n+
3 is prime and n+ 7 is prime and n+ 9 is prime and n+ 13 is prime and
n+ 15 is prime}. A ⊆ {4}. �

(64) r3 + (r + 1)3 + (r + 2)3 = (r + 3)3 if and only if r = 3.
Proof: If r3 + (r + 1)3 + (r + 2)3 = (r + 3)3, then r = 3. �

3. Tools for Computing Prime Numbers

In the sequel p denotes a prime number. Now we state the propositions:

(65) If p < 3, then p = 2.

(66) If k < 9 and p · p ¬ k, then p = 2. The theorem is a consequence of (65).

(67) If p < 5, then p = 2 or p = 3. The theorem is a consequence of (65).

(68) If k < 25 and p·p ¬ k, then p = 2 or p = 3. The theorem is a consequence
of (67).

(69) If p < 7, then p = 2 or p = 3 or p = 5. The theorem is a consequence of
(67).

(70) If k < 49 and p · p ¬ k, then p = 2 or p = 3 or p = 5. The theorem is
a consequence of (69).

(71) If p < 11, then p = 2 or p = 3 or p = 5 or p = 7. The theorem is
a consequence of (69).

(72) If k < 121 and p · p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7. The
theorem is a consequence of (71).

(73) If p < 13, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11. The theorem
is a consequence of (71).
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(74) If k < 169 and p · p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11.
The theorem is a consequence of (73).

(75) If p < 17, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13.
The theorem is a consequence of (73).

(76) If k < 289 and p · p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11
or p = 13. The theorem is a consequence of (75).

(77) If p < 19, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13 or
p = 17. The theorem is a consequence of (75).

(78) If k < 361 and p · p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11
or p = 13 or p = 17. The theorem is a consequence of (77).

(79) If p < 23, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13 or
p = 17 or p = 19. The theorem is a consequence of (77).

(80) If k < 529 and p · p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11
or p = 13 or p = 17 or p = 19. The theorem is a consequence of (79).

(81) If p < 29, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13 or
p = 17 or p = 19 or p = 23. The theorem is a consequence of (79).

(82) If k < 841 and p · p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11
or p = 13 or p = 17 or p = 19 or p = 23. The theorem is a consequence of
(81).

(83) If p < 31, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13 or
p = 17 or p = 19 or p = 23 or p = 29. The theorem is a consequence of
(81).

(84) If k < 961 and p · p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or
p = 11 or p = 13 or p = 17 or p = 19 or p = 23 or p = 29. The theorem is
a consequence of (83).

(85) If p < 37, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13
or p = 17 or p = 19 or p = 23 or p = 29 or p = 31. The theorem is
a consequence of (83).

(86) If k < 1369 and p ·p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11
or p = 13 or p = 17 or p = 19 or p = 23 or p = 29 or p = 31. The theorem
is a consequence of (85).

(87) If p < 41, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13 or
p = 17 or p = 19 or p = 23 or p = 29 or p = 31 or p = 37. The theorem is
a consequence of (85).

(88) If k < 1681 and p ·p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11
or p = 13 or p = 17 or p = 19 or p = 23 or p = 29 or p = 31 or p = 37.
The theorem is a consequence of (87).

(89) If p < 43, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13 or
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p = 17 or p = 19 or p = 23 or p = 29 or p = 31 or p = 37 or p = 41. The
theorem is a consequence of (87).

(90) If k < 1849 and p ·p ¬ k, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11
or p = 13 or p = 17 or p = 19 or p = 23 or p = 29 or p = 31 or p = 37 or
p = 41. The theorem is a consequence of (89).

(91) If p < 47, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13 or
p = 17 or p = 19 or p = 23 or p = 29 or p = 31 or p = 37 or p = 41 or
p = 43. The theorem is a consequence of (89).

(92) Suppose k < 2209 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43.

The theorem is a consequence of (91).

(93) If p < 53, then p = 2 or p = 3 or p = 5 or p = 7 or p = 11 or p = 13 or
p = 17 or p = 19 or p = 23 or p = 29 or p = 31 or p = 37 or p = 41 or
p = 43 or p = 47. The theorem is a consequence of (91).

(94) Suppose k < 2809 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or
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(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47.

The theorem is a consequence of (93).

(95) Suppose p < 59. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53.

The theorem is a consequence of (93).

(96) Suppose k < 3481 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or
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(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53.

The theorem is a consequence of (95).

(97) Suppose p < 61. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59.
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The theorem is a consequence of (95).

(98) Suppose k < 3721 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59.

The theorem is a consequence of (97).

(99) Suppose p < 67. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or
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(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61.

The theorem is a consequence of (97).

(100) Suppose k < 4489 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61.

The theorem is a consequence of (99).

(101) Suppose p < 71. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or
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(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67.

The theorem is a consequence of (99).

(102) Suppose k < 5041 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or
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(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67.

The theorem is a consequence of (101).

(103) Suppose p < 73. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71.

The theorem is a consequence of (101).

(104) Suppose k < 5329 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or



150 artur korniłowicz

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71.

The theorem is a consequence of (103).

(105) Suppose p < 79. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or
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(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73.

The theorem is a consequence of (103).

(106) Suppose k < 6241 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73.

The theorem is a consequence of (105).
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(107) Suppose p < 83. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73, or

(xxii) p = 79.

The theorem is a consequence of (105).

(108) Suppose k < 6889 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or
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(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73, or

(xxii) p = 79.

The theorem is a consequence of (107).

(109) Suppose p < 89. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or
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(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73, or

(xxii) p = 79, or

(xxiii) p = 83.

The theorem is a consequence of (107).

(110) Suppose k < 7921 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73, or

(xxii) p = 79, or
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(xxiii) p = 83.

The theorem is a consequence of (109).

(111) Suppose p < 97. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73, or

(xxii) p = 79, or

(xxiii) p = 83, or

(xxiv) p = 89.

The theorem is a consequence of (109).

(112) Suppose k < 9409 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or
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(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73, or

(xxii) p = 79, or

(xxiii) p = 83, or

(xxiv) p = 89.

The theorem is a consequence of (111).

(113) Suppose p < 101. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or
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(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or

(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73, or

(xxii) p = 79, or

(xxiii) p = 83, or

(xxiv) p = 89, or

(xxv) p = 97.

The theorem is a consequence of (111).

(114) Suppose k < 10201 and p · p ¬ k. Then

(i) p = 2, or

(ii) p = 3, or

(iii) p = 5, or

(iv) p = 7, or

(v) p = 11, or

(vi) p = 13, or

(vii) p = 17, or

(viii) p = 19, or

(ix) p = 23, or

(x) p = 29, or

(xi) p = 31, or

(xii) p = 37, or

(xiii) p = 41, or

(xiv) p = 43, or
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(xv) p = 47, or

(xvi) p = 53, or

(xvii) p = 59, or

(xviii) p = 61, or

(xix) p = 67, or

(xx) p = 71, or

(xxi) p = 73, or

(xxii) p = 79, or

(xxiii) p = 83, or

(xxiv) p = 89, or

(xxv) p = 97.

The theorem is a consequence of (113).
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