

Elementary Number Theory Problems. Part III

Artur Korniłowic[z](https://orcid.org/0000-0002-4565-9082) Institute of Computer Science University of Białystok Poland

Summary. In this paper problems 11, 16, 19–24, 39, 44, 46, 74, 75, 77, 82, and 176 from [\[10\]](#page-23-0) are formalized as described in [\[6\]](#page-23-1), using the Mizar formalism [\[1\]](#page-23-2), [\[2\]](#page-23-3), [\[4\]](#page-23-4). Problems 11 and 16 from the book are formulated as several independent theorems. Problem 46 is formulated with a given example of required properties. Problem 77 is not formulated using triangles as in the book is.

MSC: [11A41](http://zbmath.org/classification/?q=cc:11A41) [03B35](http://zbmath.org/classification/?q=cc:03B35) [68V20](http://zbmath.org/classification/?q=cc:68V20)

Keywords: number theory; divisibility; primes MML identifier: [NUMBER03](http://fm.mizar.org/miz/number03.miz), version: [8.1.12 5.71.1431](http://ftp.mizar.org/)

1. Preliminaries

One can verify that every set which is natural is also natural-membered.

From now on *a*, *b*, *i*, *k*, *m*, *n* denote natural numbers, *s*, *z* denote non zero natural numbers, *r* denotes a real number, *c* denotes a complex number, and *e*1, *e*2, *e*3, *e*4, *e*⁵ denote extended reals.

Now we state the propositions:

- (1) If $e_1 \leq e_2 \leq e_3 \leq e_4$, then $e_1 \leq e_4$.
- (2) If $e_1 \leqslant e_2 \leqslant e_3 \leqslant e_4 \leqslant e_5$, then $e_1 \leqslant e_5$. The theorem is a consequence of (1).
- (3) $2^{10} + 1 = 1025$.
- (4) $3^{10} + 1 = 5905 \cdot 10.$
- (5) $4^{10} + 1 = 1048 \cdot 1000 + 577$.
- (6) $5^{10} + 1 = 9765 \cdot 1000 + 626.$
- (7) $6^{10} + 1 = 6046 \cdot 10000 + 6177.$
- (8) $7^{10} + 1 = (2824 \cdot 10000 + 7525) \cdot 10.$
- (9) $8^{10} + 1 = (1073 \cdot 100 + 74) \cdot 10000 + 1825.$
- (10) $9^{10} + 1 = (3486 \cdot 100 + 78) \cdot 10000 + 4402.$
- (11) *n* mod $(m+1) = 0$ or ... or *n* mod $(m+1) = m$.
- (12) If $n \mid 8$, then $n \in \{1, 2, 4, 8\}$.
- (13) If $0 < m$, then $gcd(m, n) \leq m$.
- (14) Let us consider integers *i*, *j*. If *i* and *j* are relatively prime, then $i \neq j$ or $i = j = 1$ or $i = j = -1$.
- (15) Let us consider natural numbers *i*, *j*. If *i* and *j* are relatively prime, then $i \neq j$ or $i = j = 1$.
- (16) If $a < n$ and $b < n$ and $n | a b$, then $a = b$.
- (17) Let us consider integers a, b, m. Suppose $a < b$. Then there exists k such that
	- (i) $m < (b a) \cdot k + 1 a$, and

(ii)
$$
k = |\lceil \frac{m+a-1}{b-a} + 1 \rceil|
$$
.

Let *i* be an integer. Let us observe that $(i^{\kappa})_{\kappa \in \mathbb{N}}$ is Z-valued.

Let us consider *n*. Note that $(n^{\kappa})_{\kappa \in \mathbb{N}}$ is N-valued.

Let *f* be a non-negative yielding, real-valued many sorted set indexed by N. Let us observe that $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$ is non-decreasing.

Now we state the propositions:

- (18) Suppose $a \neq 0$ or $b \neq 0$. Then there exist natural numbers A, B such that
	- (i) $a = (\gcd(a, b)) \cdot A$, and
	- (ii) $b = (gcd(a, b)) \cdot B$, and
	- (iii) *A* and *B* are relatively prime.
- (19) If $n \neq 0$, then for every integers p, m such that $p \mid m$ holds p $((m^{\kappa})_{\kappa \in \mathbb{N}})(n).$

PROOF: Set $G = (m^{\kappa})_{\kappa \in \mathbb{N}}$. Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_{1} \neq 0, \text{ then}$ $p \mid G(\$_1)$. For every non zero natural number *k* such that $\mathcal{P}[k]$ holds $P[k+1]$. For every non zero natural number *k*, $P[k]$. \Box

(20) $((r^{\kappa})_{\kappa \in \mathbb{N}})(a+b) = ((r^{\kappa})_{\kappa \in \mathbb{N}})(a) \cdot (r^{b}).$ PROOF: Set $S = (r^{\kappa})_{\kappa \in \mathbb{N}}$. Define $\mathcal{P}[\text{natural number}] \equiv S(a + \S_1) = S(a)$. (r^{s_1}) . *P*[0]. For every *k* such that *P*[*k*] holds *P*[*k* + 1]. For every *k*, *P*[*k*]. \Box

- (21) Let us consider integers p, m . Suppose $p \mid m$. Then $p \mid ((\sum_{\alpha=0}^{\kappa} ((m^{\kappa})_{\kappa \in \mathbb{N}})(\alpha))_{\kappa \in \mathbb{N}})(n) - 1.$ PROOF: Set $G = (m^{\kappa})_{\kappa \in \mathbb{N}}$. Set $P = (\sum_{\alpha=0}^{\kappa} G(\alpha))_{\kappa \in \mathbb{N}}$. Define P [natural number] $\equiv p \mid P(\$_{1})-1$. For every *k* such that $P[k]$ holds $P[k+1]$. For every k , $P[k]$. \Box
- (22) $((\sum_{\alpha=0}^{\kappa}((m^{\kappa})_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}})(n)$ and m^{n+1} are relatively prime. The theorem is a consequence of (21).
- (23) $\gcd((\sum_{\alpha=0}^{\kappa}((a^{\kappa})_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}})(k), ((\sum_{\alpha=0}^{\kappa}((a^{\kappa})_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}})(k+i))=$ $\gcd(((\sum_{\alpha=0}^{\kappa}((a^{\kappa})_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}})(k),((\sum_{\alpha=0}^{\kappa}((a^{\kappa})_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}})(k+i) ((\sum_{\alpha=0}^{\kappa}((a^{\kappa})_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}})(k)).$
- $(24) \left((\sum_{\alpha=0}^{\kappa} ((r^{\kappa})_{\kappa \in \mathbb{N}})(\alpha))_{\kappa \in \mathbb{N}})(k+i+1) ((\sum_{\alpha=0}^{\kappa} ((r^{\kappa})_{\kappa \in \mathbb{N}})(\alpha))_{\kappa \in \mathbb{N}})(k) =$ $r^{k+1} \cdot ((\sum_{\alpha=0}^{\kappa} ((r^{\kappa})_{\kappa \in \mathbb{N}})(\alpha))_{\kappa \in \mathbb{N}})(i).$ PROOF: Set $S = (r^{\kappa})_{\kappa \in \mathbb{N}}$. Set $P = (\sum_{\alpha=0}^{\kappa} S(\alpha))_{\kappa \in \mathbb{N}}$. Define P [natural ${\rm number}$ $\equiv P(k + \text{\$}_1 + 1) - P(k) = r^{k+1} \cdot P(\text{\$}_1)$. $P[0]$. For every *a* such that $\mathcal{P}[a]$ holds $\mathcal{P}[a+1]$. For every $k, \mathcal{P}[k]$. \square
- (25) Suppose $n+1$ and $m+1$ are relatively prime. Then $((\sum_{\alpha=0}^{\kappa} ((a^{\kappa})_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}})(n)$ and $((\sum_{\alpha=0}^{\kappa} ((a^{\kappa})_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}})(m)$ are relatively prime. The theorem is a consequence of (14).
- (26) If $a \neq 0$ and $b \neq 0$ and $i \neq 0$, then $gcd(i^a 1, i^b 1) = i^{gcd(a, b)} 1$. The theorem is a consequence of (18) and (25).

Let us consider integers *a*, *b*, *k*. Now we state the propositions:

- (27) Suppose $a+b>0$ and $(a \mod k)+(b \mod k)>0$. Then $(a+b)^n \mod k=0$ $((a \mod k) + (b \mod k))^n \mod k$. PROOF: Set $a_1 = a \mod k$. Set $b_1 = b \mod k$. Define $P[\text{natural number}] \equiv$ $(a + b)^{\$1}$ mod $k = (a_1 + b_1)^{\$1}$ mod *k*. $P[0]$. For every natural number *x* such that $\mathcal{P}[x]$ holds $\mathcal{P}[x+1]$. For every natural number *x*, $\mathcal{P}[x]$. \Box
- (28) $(a + b)^n \mod k = ((a \mod k) + (b \mod k))^n \mod k$. PROOF: Set $a_1 = a \mod k$. Set $b_1 = b \mod k$. Define $P[\text{natural number}] \equiv$ $(a + b)^{\$_1}$ mod $k = (a_1 + b_1)^{\$_1}$ mod *k*. $\mathcal{P}[0]$. For every natural number *x* such that $\mathcal{P}[x]$ holds $\mathcal{P}[x+1]$. For every natural number *x*, $\mathcal{P}[x]$. \Box
- (29) If $1 < m$, then $m | a^b + 1$ iff $m | (a \mod m)^b + 1$. PROOF: Set $r = a \mod m$. If $m | a^b + 1$, then $m | r^b + 1$ by [\[8,](#page-23-5) (7)], (28). \Box
- (30) 10 | $a^{10} + 1$ if and only if there exist natural numbers *r*, *k* such that $a = 10 \cdot k + r$ and $10 \mid r^{10} + 1$ and $r = 0$ or ... or $r = 9$. PROOF: If 10 | $a^{10} + 1$, then there exist natural numbers *r*, *k* such that $a = 10 \cdot k + r$ and $10 \mid r^{10} + 1$ and $r = 0$ or ... or $r = 9$ by (29), [\[3,](#page-23-6) (8)]. \Box
- (31) Let us consider odd natural numbers *a*, *b*. If $a b = 2$, then *a* and *b* are relatively prime.
- (32) Let us consider odd natural numbers *a*, *b*, *c*. If $c b = 2$ and $b a = 2$, then $3 | a$ or $3 | b$ or $3 | c$.
- (33) Let us consider odd prime numbers *a*, *b*, *c*. If $c b = 2$ and $b a = 2$, then $a = 3$ and $b = 5$ and $c = 7$. The theorem is a consequence of (32).
- (34) If a^n is prime, then $n = 1$.
- (35) If $1 < a$, then there exists *k* such that $1 < k$ and $n < a^k$.
- (36) (i) $2^n \mod 3 = 1$, or
	- (ii) $2^n \mod 3 = 2$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv 2^{\$_1} \text{ mod } 3 = 1 \text{ or } 2^{\$_1} \text{ mod } 3 = 2.$ For every *k* such that $P[k]$ holds $P[k+1]$. For every *k*, $P[k]$. \Box

$$
(37) \quad 3^m \mid 2^{3^m} + 1.
$$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv 3^{\$_1} \mid 2^{3^{\$_1}} + 1$. $\mathcal{P}[0]$. For every *m* such that $\mathcal{P}[m]$ holds $\mathcal{P}[m+1]$ by [\[7,](#page-23-7) (2),(1)]. For every $m, \mathcal{P}[m]$. \square

(38) Euler $0 = 0$.

Let us note that Euler 0 is zero.

Let *n* be a positive natural number. One can check that Euler *n* is positive.

2. Main Problems

Now we state the propositions:

- (39) 5 | $2^{2n+1} 2^{n+1} + 1$ if and only if *n* mod 4 = 1 or *n* mod 4 = 2. PROOF: Define $\mathcal{F}(\text{natural number}) = 2^{2 \cdot 3} + 1 - 2^{3 \cdot 1} + 1$. Consider *k* such that $n = 4 \cdot k$ or $n = 4 \cdot k + 1$ or $n = 4 \cdot k + 2$ or $n = 4 \cdot k + 3$. If $5 \mid \mathcal{F}(n)$, then *n* mod $4 = 1$ or *n* mod $4 = 2$. \Box
- (40) $5 \mid 2^{2\cdot n+1} + 2^{n+1} + 1$ if and only if *n* mod $4 = 0$ or *n* mod $4 = 3$. PROOF: Define $\mathcal{G}(\text{natural number}) = 2^{2 \cdot 3} + 1 + 2^{3} + 1 + 1$. Consider *k* such that $n = 4 \cdot k$ or $n = 4 \cdot k + 1$ or $n = 4 \cdot k + 2$ or $n = 4 \cdot k + 3$. If 5 | $\mathcal{G}(n)$, then *n* mod $4 = 0$ or *n* mod $4 = 3$. \Box
- (41) 5 $|2^{2n+1} 2^{n+1} + 1$ if and only if $5 \nmid 2^{2n+1} + 2^{n+1} + 1$. The theorem is a consequence of (11), (39), and (40).
- (42) $\{n, \text{ where } n \text{ is a natural number} : n \mid 2^n + 1\} \text{ is infinite.}$ PROOF: Set $S = \{n, \text{ where } n \text{ is a natural number : } n \mid 2^n + 1\}.$ Define $\mathcal{F}(\text{natural number}) = 3^{\$1}$. Consider *f* being a many sorted set indexed by N such that for every element *i* of N, $f(i) = \mathcal{F}(i)$. Set $R = \text{rng } f$. $R \subseteq S$. For every natural number *m*, there exists a natural number *N* such that *N* \geq *m* and *N* ∈ *R* by [\[9,](#page-23-8) (1)]. □
- (43) $\{n, \text{ where } n \text{ is a natural number : } n \mid 2^n + 1 \text{ and } n \text{ is prime}\} = \{3\}.$ PROOF: Set $S = \{n$, where *n* is a natural number : $n \mid 2^n + 1$ and *n* is prime}. $S \subseteq \{3\}$. $3^1 | 2^{3^1} + 1$. \Box
- (44) 10 | $a^{10} + 1$ if and only if there exists *k* such that $a = 10 \cdot k + 3$ or $a = 10 \cdot k + 7$. PROOF: If 10 | $a^{10} + 1$, then there exists *k* such that $a = 10 \cdot k + 3$ or $a = 10 \cdot k + 7$.
- (45) If $(a \neq 0 \text{ or } b \neq 0)$ and $n > 0$ and $a \mid b^n 1$, then a and b are relatively prime.
- (46) There exists no natural number *n* such that $1 < n$ and $n \mid 2^n 1$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv 1 < \$_1 \text{ and } \$_1 \mid 2^{\$_1} - 1. \text{ Consider } N$ being a natural number such that $P[N]$ and for every natural number *n* such that $\mathcal{P}[n]$ holds $N \leq n$. Set $E =$ Euler *N*. Set $d = \gcd(N, E)$. 2 and *N* are relatively prime. $gcd(2^N - 1, 2^E - 1) = 2^d - 1$. *d* ≤ *E*. □
- (47) {*n*, where *n* is an odd natural number : $n | 3^n + 1$ } = {1}. PROOF: Set $A = \{n, \text{ where } n \text{ is an odd natural number } : n \mid 3^n + 1\}.$ *A* \subseteq {1}. □
- (48) $\{n, \text{ where } n \text{ is a positive natural number : } 3 \mid n \cdot (2^n) + 1\} = \text{the set of all } 6$ *· k*+1 where *k* is a natural number*∪*the set of all 6*·k*+2 where *k* is a natural number.

PROOF: Set $A = \{n$, where *n* is a positive natural number : 3 | $n \cdot (2^n) + 1\}$. Set $B =$ the set of all $6 \cdot k + 1$ where k is a natural number. Set $C =$ the set of all $6 \cdot k + 2$ where *k* is a natural number. $A \subseteq B \cup C$ by [\[5,](#page-23-9) (26)]. \Box

Let us consider an odd prime number p. Now we state the propositions:

- (49) If $n = (p-1) \cdot (k \cdot p + 1)$, then $2^n \mod p = 1$.
- (50) If $n = (p-1) \cdot (k \cdot p + 1)$, then $p \mid$ the Cullen number of *n*. The theorem is a consequence of (49).
- (51) {*n*, where *n* is a natural number : *p* | the Cullen number of *n*} is infinite. PROOF: Set $S = \{n$, where *n* is a natural number : *p* | the Cullen number of *n*}. Define $\mathcal{F}(\text{natural number}) = (p-1) \cdot (\$_{1} \cdot p+1)$. Consider f being a many sorted set indexed by N such that for every element *i* of N, $f(i)$ = $\mathcal{F}(i)$. Set $R = \text{rng } f$. $R \subseteq S$. For every natural number *m*, there exists a natural number *N* such that $N \geq m$ and $N \in R$. \Box
- (52) There exist natural numbers *x*, *y* such that
	- (i) $x > n$, and
	- (ii) $x \nmid y$, and
	- (iii) $x^x | y^y$.

The theorem is a consequence of (35) and (34).

- (53) Let us consider integers a, b, c, n . Suppose $3 < n$. Then there exists an integer *k* such that
	- (i) $n \nmid k + a$, and
	- (ii) $n \nmid k + b$, and
	- (iii) $n \nmid k + c$.
- (54) Let us consider integers a, b. Suppose $a \neq b$. Then $\{n$, where n is a natural number : $a + n$ and $b + n$ are relatively prime} is infinite.

Let *a*, *b*, *c* be integers. We say that *a*, *b*, *c* are mutually coprime if and only

- (Def. 1) *a* and *b* are relatively prime and *a* and *c* are relatively prime and *b* and *c* are relatively prime.
	- Let *d* be an integer. We say that *a*, *b*, *c*, *d* are mutually coprime if and only if
- (Def. 2) *a* and *b* are relatively prime and *a* and *c* are relatively prime and *a* and *d* are relatively prime and *b* and *c* are relatively prime and *b* and *d* are relatively prime and *c* and *d* are relatively prime.

Now we state the propositions:

- (55) Let us consider prime numbers *a*, *b*, *c*. If *a*, *b*, *c* are mutually different, then *a*, *b*, *c* are mutually coprime.
- (56) Let us consider prime numbers *a*, *b*, *c*, *d*. If *a*, *b*, *c*, *d* are mutually different, then *a*, *b*, *c*, *d* are mutually coprime.
- (57) (i) 1, 2, 3, 4 are mutually different, and
	- (ii) there exists no positive natural number *n* such that $1+n$, $2+n$, $3+n$, $4 + n$ are mutually coprime.
- (58) Let us consider an even natural number *n*. Suppose $n > 6$. Then there exist prime numbers *p*, *q* such that
	- (i) $n p$ and $n q$ are relatively prime, and
	- (ii) $p=3$, and
	- (iii) $q=5$.

The theorem is a consequence of (31).

(59) *{p*, where *p* is a prime number : there exist prime numbers *a, b* such that $p = a + b$ and there exist prime numbers *c, d* such that $p = c - d$ {5}. **PROOF:** Set $A = \{p, \text{where } p \text{ is a prime number } : \text{ there exist prime} \}$ numbers *a, b* such that $p = a + b$ and there exist prime numbers *c, d* such that $p = c - d$. $A \subseteq \{5\}$. \square

Let us consider a prime number *p*. Now we state the propositions:

if

- (60) A corollary from the Fermat Theorem: If $p = 4 \cdot k + 1$, then there exist positive natural numbers a, b such that $a > b$ and $p = a^2 + b^2$.
- (61) If $p = 4 \cdot k + 1$, then there exist positive natural numbers a, b such that $p^2 = a^2 + b^2$. The theorem is a consequence of (60).
- (62) (i) $5 | n + 1$, or
	- (ii) $5 | n + 7$, or
	- (iii) $5 | n + 9$, or
	- (iv) $5 \mid n+13$, or
	- (v) $5 \mid n+15$.
- (63) $\{n, \text{ where } n \text{ is a natural number} : n+1 \text{ is prime and } n+3 \text{ is prime and } n+4 \}$ $n+7$ is prime and $n+9$ is prime and $n+13$ is prime and $n+15$ is prime} *{*4*}*.

PROOF: Set $A = \{n, \text{ where } n \text{ is a natural number : } n+1 \text{ is prime and } n+\}$ 3 is prime and $n+7$ is prime and $n+9$ is prime and $n+13$ is prime and *n* + 15 is prime}. $A \subseteq \{4\}$. □

(64) $r^3 + (r+1)^3 + (r+2)^3 = (r+3)^3$ if and only if $r = 3$. PROOF: If $r^3 + (r+1)^3 + (r+2)^3 = (r+3)^3$, then $r = 3$. \Box

3. Tools for Computing Prime Numbers

In the sequel *p* denotes a prime number. Now we state the propositions:

- (65) If $p < 3$, then $p = 2$.
- (66) If $k < 9$ and $p \cdot p \leq k$, then $p = 2$. The theorem is a consequence of (65).
- (67) If $p < 5$, then $p = 2$ or $p = 3$. The theorem is a consequence of (65).
- (68) If $k < 25$ and $p \cdot p \leq k$, then $p = 2$ or $p = 3$. The theorem is a consequence of (67).
- (69) If $p < 7$, then $p = 2$ or $p = 3$ or $p = 5$. The theorem is a consequence of (67).
- (70) If $k < 49$ and $p \cdot p \leq k$, then $p = 2$ or $p = 3$ or $p = 5$. The theorem is a consequence of (69).
- (71) If $p < 11$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$. The theorem is a consequence of (69).
- (72) If $k < 121$ and $p \cdot p \le k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$. The theorem is a consequence of (71).
- (73) If $p < 13$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$. The theorem is a consequence of (71).
- (74) If $k < 169$ and $p \cdot p \le k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$. The theorem is a consequence of (73).
- (75) If $p < 17$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$. The theorem is a consequence of (73).
- (76) If $k < 289$ and $p \cdot p \le k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$. The theorem is a consequence of (75) .
- (77) If $p < 19$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$. The theorem is a consequence of (75) .
- (78) If $k < 361$ and $p \cdot p \le k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$. The theorem is a consequence of (77).
- (79) If *p <* 23, then *p* = 2 or *p* = 3 or *p* = 5 or *p* = 7 or *p* = 11 or *p* = 13 or $p = 17$ or $p = 19$. The theorem is a consequence of (77).
- (80) If $k < 529$ and $p \cdot p \leq k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$. The theorem is a consequence of (79).
- (81) If $p < 29$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$ or $p = 23$. The theorem is a consequence of (79).
- (82) If $k < 841$ and $p \cdot p \le k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$ or $p = 23$. The theorem is a consequence of (81).
- (83) If $p < 31$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$ or $p = 23$ or $p = 29$. The theorem is a consequence of (81).
- (84) If $k < 961$ and $p \cdot p \leq k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$ or $p = 23$ or $p = 29$. The theorem is a consequence of (83).
- (85) If $p < 37$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$ or $p = 23$ or $p = 29$ or $p = 31$. The theorem is a consequence of (83).
- (86) If $k < 1369$ and $p \cdot p \le k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$ or $p = 23$ or $p = 29$ or $p = 31$. The theorem is a consequence of (85).
- (87) If *p <* 41, then *p* = 2 or *p* = 3 or *p* = 5 or *p* = 7 or *p* = 11 or *p* = 13 or $p = 17$ or $p = 19$ or $p = 23$ or $p = 29$ or $p = 31$ or $p = 37$. The theorem is a consequence of (85).
- (88) If $k < 1681$ and $p \cdot p \le k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$ or $p = 23$ or $p = 29$ or $p = 31$ or $p = 37$. The theorem is a consequence of (87).
- (89) If *p <* 43, then *p* = 2 or *p* = 3 or *p* = 5 or *p* = 7 or *p* = 11 or *p* = 13 or

 $p = 17$ or $p = 19$ or $p = 23$ or $p = 29$ or $p = 31$ or $p = 37$ or $p = 41$. The theorem is a consequence of (87).

- (90) If $k < 1849$ and $p \cdot p \le k$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or $p = 17$ or $p = 19$ or $p = 23$ or $p = 29$ or $p = 31$ or $p = 37$ or $p = 41$. The theorem is a consequence of (89) .
- (91) If $p < 47$, then $p = 2$ or $p = 3$ or $p = 5$ or $p = 7$ or $p = 11$ or $p = 13$ or *p* = 17 or *p* = 19 or *p* = 23 or *p* = 29 or *p* = 31 or *p* = 37 or *p* = 41 or $p = 43$. The theorem is a consequence of (89) .
- (92) Suppose $k < 2209$ and $p \cdot p \leq k$. Then
	- (i) $p=2$, or
	- (ii) $p=3$, or
	- (iii) $p=5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
	- (vii) $p = 17$, or
	- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
	- (xi) $p = 31$, or
	- (xii) $p = 37$, or
	- (xiii) $p = 41$, or
	- (xiv) $p = 43$.

The theorem is a consequence of (91).

- (93) If *p <* 53, then *p* = 2 or *p* = 3 or *p* = 5 or *p* = 7 or *p* = 11 or *p* = 13 or *p* = 17 or *p* = 19 or *p* = 23 or *p* = 29 or *p* = 31 or *p* = 37 or *p* = 41 or $p = 43$ or $p = 47$. The theorem is a consequence of (91).
- (94) Suppose $k < 2809$ and $p \cdot p \leq k$. Then
	- (i) $p=2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
- (vii) $p = 17$, or (viii) $p = 19$, or (ix) $p = 23$, or (x) $p = 29$, or (xi) $p = 31$, or (xii) $p = 37$, or (xiii) $p = 41$, or (xiv) $p = 43$, or (xv) $p = 47$. The theorem is a consequence of (93).
-
- (95) Suppose *p <* 59. Then
	- (i) $p=2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
	- (vii) $p = 17$, or
	- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
	- (xi) $p = 31$, or
	- (xii) $p = 37$, or
	- (xiii) $p = 41$, or
	- (xiv) $p = 43$, or
	- (xv) $p = 47$, or
	- (xvi) $p = 53$.

The theorem is a consequence of (93).

- (96) Suppose $k < 3481$ and $p \cdot p \leq k$. Then
	- (i) $p = 2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
- (iv) $p = 7$, or
- (v) $p = 11$, or
- (vi) $p = 13$, or
- (vii) $p = 17$, or
- (viii) $p = 19$, or
- (ix) $p = 23$, or
- (x) $p = 29$, or
- (xi) $p = 31$, or
- (xii) $p = 37$, or
- (xiii) $p = 41$, or
- (xiv) $p = 43$, or
- (xv) $p = 47$, or
- (xvi) $p = 53$.

The theorem is a consequence of (95).

- (97) Suppose *p <* 61. Then
	- (i) $p = 2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
	- (iv) $p = 7$, or

(v)
$$
p = 11
$$
, or

- (vi) $p = 13$, or
- (vii) $p = 17$, or
- (viii) $p = 19$, or
- (ix) $p = 23$, or
- (x) $p = 29$, or
- (xi) $p = 31$, or
- (xii) $p = 37$, or
- (xiii) $p = 41$, or
- (xiv) $p = 43$, or
- (xv) $p = 47$, or
- (xvi) $p = 53$, or
- $(xvii)$ $p = 59$.

The theorem is a consequence of (95).

- (98) Suppose $k < 3721$ and $p \cdot p \leq k$. Then
	- (i) $p = 2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
	- (vii) $p = 17$, or
	- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
	- (xi) $p = 31$, or
	- (xii) $p = 37$, or
	- (xiii) $p = 41$, or
	- (xiv) $p = 43$, or
	- (xv) $p = 47$, or
	- (xvi) $p = 53$, or

(xvii)
$$
p = 59
$$
.

The theorem is a consequence of (97).

- (99) Suppose *p <* 67. Then
	- (i) $p = 2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
	- (vii) $p = 17$, or
	- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
	- (xi) $p = 31$, or
- (xii) $p = 37$, or (xiii) $p = 41$, or (xiv) $p = 43$, or (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or $(xviii)$ $p = 61$. The theorem is a consequence of (97). (100) Suppose $k < 4489$ and $p \cdot p \leq k$. Then (i) $p = 2$, or (ii) $p=3$, or (iii) $p = 5$, or (iv) $p = 7$, or (v) $p = 11$, or (vi) $p = 13$, or (vii) $p = 17$, or (viii) $p = 19$, or (ix) $p = 23$, or
	- (x) $p = 29$, or

$$
(xi) p = 31, or
$$

- (xii) $p = 37$, or
- (xiii) $p = 41$, or
- (xiv) $p = 43$, or
- (xv) $p = 47$, or
- (xvi) $p = 53$, or
- (xvii) $p = 59$, or
- $(xviii)$ $p = 61$.

The theorem is a consequence of (99).

- (101) Suppose *p <* 71. Then
	- (i) $p = 2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or

 (iv) $p = 7$, or (v) $p = 11$, or (vi) $p = 13$, or (vii) $p = 17$, or (viii) $p = 19$, or (ix) $p = 23$, or (x) $p = 29$, or (xi) $p = 31$, or (xii) $p = 37$, or (xiii) $p = 41$, or (xiv) $p = 43$, or (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or (xviii) $p = 61$, or (xix) $p = 67$. The theorem is a consequence of (99).

(102) Suppose $k < 5041$ and $p \cdot p \leq k$. Then

- (i) $p=2$, or (ii) $p=3$, or (iii) $p = 5$, or (iv) $p = 7$, or (v) $p = 11$, or (vi) $p = 13$, or (vii) $p = 17$, or (viii) $p = 19$, or (ix) $p = 23$, or (x) $p = 29$, or (xi) $p = 31$, or
- (xii) $p = 37$, or
- (xiii) $p = 41$, or
- (xiv) $p = 43$, or

(xv)
$$
p = 47
$$
, or

- (xvi) $p = 53$, or
- (xvii) $p = 59$, or
- (xviii) $p = 61$, or
- (xix) $p = 67$.

The theorem is a consequence of (101).

- (103) Suppose *p <* 73. Then
	- (i) $p=2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
	- (vii) $p = 17$, or
	- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
	- (xi) $p = 31$, or
	- (xii) $p = 37$, or

(xiii)
$$
p = 41
$$
, or

- (xiv) $p = 43$, or
- (xv) $p = 47$, or
- (xvi) $p = 53$, or
- (xvii) $p = 59$, or
- (xviii) $p = 61$, or
	- (xix) $p = 67$, or
	- (xx) $p = 71$.

The theorem is a consequence of (101).

- (104) Suppose $k < 5329$ and $p \cdot p \leq k$. Then
	- (i) $p = 2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or

 (iv) $p = 7$, or (v) $p = 11$, or (vi) $p = 13$, or (vii) $p = 17$, or (viii) $p = 19$, or (ix) $p = 23$, or (x) $p = 29$, or (xi) $p = 31$, or (xii) $p = 37$, or (xiii) $p = 41$, or (xiv) $p = 43$, or (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or (xviii) $p = 61$, or (xix) $p = 67$, or (xx) $p = 71$. The theorem is a consequence of (103).

(105) Suppose $p < 79$. Then

$$
(05) \quad \text{suppose } p < 79. \text{ Then}
$$

(i)
$$
p = 2
$$
, or
(ii) $p = 3$, or

$$
(n) p = 3, o
$$

- (iii) $p = 5$, or
- (iv) $p = 7$, or
- (v) $p = 11$, or
- (vi) $p = 13$, or
- (vii) $p = 17$, or
- (viii) $p = 19$, or
- (ix) $p = 23$, or
- (x) $p = 29$, or
- (xi) $p = 31$, or
- (xii) $p = 37$, or
- (xiii) $p = 41$, or

(xiv) $p = 43$, or (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or (xviii) $p = 61$, or (xix) $p = 67$, or (xx) $p = 71$, or (xxi) $p = 73$.

The theorem is a consequence of (103).

- (106) Suppose $k < 6241$ and $p \cdot p \leq k$. Then
- (i) $p = 2$, or (ii) $p=3$, or (iii) $p=5$, or (iv) $p = 7$, or (v) $p = 11$, or (vi) $p = 13$, or (vii) $p = 17$, or (viii) $p = 19$, or (ix) $p = 23$, or (x) $p = 29$, or (xi) $p = 31$, or (xii) $p = 37$, or (xiii) $p = 41$, or (xiv) $p = 43$, or (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or (xviii) $p = 61$, or (xix) $p = 67$, or (xx) $p = 71$, or (xxi) $p = 73$.

The theorem is a consequence of (105).

- (107) Suppose *p <* 83. Then
	- (i) $p = 2$, or (ii) $p=3$, or
	- (iii) $p=5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
	- (vii) $p = 17$, or
	- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
	- (xi) $p = 31$, or
	- (xii) $p = 37$, or
	- (xiii) $p = 41$, or
	- (xiv) $p = 43$, or
	- (xv) $p = 47$, or
	- (xvi) $p = 53$, or
	- (xvii) $p = 59$, or
	- (xviii) $p = 61$, or
		- (xix) $p = 67$, or
		- (xx) $p = 71$, or
		- (xxi) $p = 73$, or
	- $(xxii)$ $p = 79$.

The theorem is a consequence of (105).

(108) Suppose $k < 6889$ and $p \cdot p \leq k$. Then

- (i) $p=2$, or
- (ii) $p=3$, or
- (iii) $p = 5$, or
- (iv) $p = 7$, or
- (v) $p = 11$, or
- (vi) $p = 13$, or
- (vii) $p = 17$, or

(viii) $p = 19$, or (ix) $p = 23$, or (x) $p = 29$, or (xi) $p = 31$, or (xii) $p = 37$, or (xiii) $p = 41$, or (xiv) $p = 43$, or (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or (xviii) $p = 61$, or (xix) $p = 67$, or (xx) $p = 71$, or

(xxi)
$$
p = 73
$$
, or

 $(xxii)$ $p = 79$.

The theorem is a consequence of (107).

- (109) Suppose *p <* 89. Then
	- (i) $p = 2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
	- (vii) $p = 17$, or
	- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
	- (xi) $p = 31$, or
	- (xii) $p = 37$, or
	- (xiii) $p = 41$, or
	- (xiv) $p = 43$, or
	- (xv) $p = 47$, or
- (xvi) $p = 53$, or (xvii) $p = 59$, or (xviii) $p = 61$, or (xix) $p = 67$, or (xx) $p = 71$, or (xxi) $p = 73$, or $(xxii)$ $p = 79$, or
- $(xxiii)$ $p = 83$.

The theorem is a consequence of (107).

- (110) Suppose $k < 7921$ and $p \cdot p \leq k$. Then
	- (i) $p = 2$, or (ii) $p=3$, or (iii) $p = 5$, or (iv) $p = 7$, or (v) $p = 11$, or (vi) $p = 13$, or (vii) $p = 17$, or (viii) $p = 19$, or (ix) $p = 23$, or (x) $p = 29$, or (xi) $p = 31$, or (xii) $p = 37$, or (xiii) $p = 41$, or (xiv) $p = 43$, or (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or (xviii) $p = 61$, or (xix) $p = 67$, or (xx) $p = 71$, or (xxi) $p = 73$, or $(xxii)$ $p = 79$, or

 $(xxiii)$ $p = 83$.

The theorem is a consequence of (109).

- (111) Suppose *p <* 97. Then
	- (i) $p=2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or
	- (iv) $p = 7$, or
	- (v) $p = 11$, or
	- (vi) $p = 13$, or
	- (vii) $p = 17$, or
	- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
	- (xi) $p = 31$, or
	- (xii) $p = 37$, or
	- (xiii) $p = 41$, or
	- (xiv) $p = 43$, or
	- (xv) $p = 47$, or
	- (xvi) $p = 53$, or
	- (xvii) $p = 59$, or
	- (xviii) $p = 61$, or
	- (xix) $p = 67$, or
	- (xx) $p = 71$, or
	- (xxi) $p = 73$, or
	- $(xxii)$ $p = 79$, or
	- $(xxiii)$ $p = 83$, or
	- $(xxiv)$ $p = 89$.

The theorem is a consequence of (109).

- (112) Suppose $k < 9409$ and $p \cdot p \leq k$. Then
	- (i) $p = 2$, or
	- (ii) $p=3$, or
	- (iii) $p = 5$, or

(iv)
$$
p = 7
$$
, or
\n(v) $p = 11$, or
\n(vi) $p = 13$, or
\n(vii) $p = 17$, or
\n(viii) $p = 23$, or
\n(ix) $p = 29$, or
\n(xi) $p = 31$, or
\n(xii) $p = 37$, or
\n(xiii) $p = 41$, or
\n(xiv) $p = 43$, or
\n(xv) $p = 47$, or
\n(xv) $p = 53$, or
\n(xvii) $p = 59$, or
\n(xviii) $p = 61$, or
\n(xx) $p = 67$, or
\n(xx) $p = 73$, or
\n(xxii) $p = 73$, or
\n(xxiii) $p = 83$, or
\n(xxiii) $p = 83$, or
\n(xxiv) $p = 89$.

The theorem is a consequence of (111).

(113) Suppose *p <* 101. Then

(i)
$$
p = 2
$$
, or
\n(ii) $p = 3$, or
\n(iii) $p = 5$, or
\n(iv) $p = 7$, or
\n(v) $p = 11$, or
\n(vi) $p = 13$, or
\n(vii) $p = 17$, or
\n(viii) $p = 19$, or
\n(ix) $p = 23$, or

- (x) $p = 29$, or (xi) $p = 31$, or (xii) $p = 37$, or (xiii) $p = 41$, or (xiv) $p = 43$, or (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or (xviii) $p = 61$, or (xix) $p = 67$, or (xx) $p = 71$, or (xxi) $p = 73$, or
- $(xxii)$ $p = 79$, or
- $(xxiii)$ $p = 83$, or
- $(xxiv)$ $p = 89$, or
- (xxy) $p = 97$.

The theorem is a consequence of (111).

(114) Suppose $k < 10201$ and $p \cdot p \leq k$. Then

- (i) $p = 2$, or (ii) $p=3$, or
- (iii) $p = 5$, or
- (iv) $p = 7$, or
- (v) $p = 11$, or
- (vi) $p = 13$, or
- (vii) $p = 17$, or
- (viii) $p = 19$, or
	- (ix) $p = 23$, or
	- (x) $p = 29$, or
- (xi) $p = 31$, or
- (xii) $p = 37$, or
- (xiii) $p = 41$, or
- (xiv) $p = 43$, or

 (xv) $p = 47$, or (xvi) $p = 53$, or (xvii) $p = 59$, or $(xviii)$ $p = 61$, or (xix) $p = 67$, or (xx) $p = 71$, or (xxi) $p = 73$, or $(xxii)$ $p = 79$, or $(xxiii)$ $p = 83$, or $(xxiv)$ $p = 89$, or (xxy) $p = 97$.

The theorem is a consequence of (113).

REFERENCES

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. [Mizar: State-of-the-art and](http://dx.doi.org/10.1007/978-3-319-20615-8_17) [beyond.](http://dx.doi.org/10.1007/978-3-319-20615-8_17) In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi[:10.1007/978-3-319-20615-8](http://dx.doi.org/10.1007/978-3-319-20615-8_17) 17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. [The role of the Mizar Mathematical Library](https://doi.org/10.1007/s10817-017-9440-6) [for interactive proof development in Mizar.](https://doi.org/10.1007/s10817-017-9440-6) *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi[:10.1007/s10817-017-9440-6.](http://dx.doi.org/10.1007/s10817-017-9440-6)
- [3] Adam Grabowski. Polygonal numbers. *Formalized Mathematics*, 21(**2**):103–113, 2013. doi[:10.2478/forma-2013-0012.](http://dx.doi.org/10.2478/forma-2013-0012)
- [4] Artur Korniłowicz. [Flexary connectives in Mizar.](http://dx.doi.org/10.1016/j.cl.2015.07.002) *Computer Languages, Systems & Structures*, 44:238–250, December 2015. doi[:10.1016/j.cl.2015.07.002.](http://dx.doi.org/10.1016/j.cl.2015.07.002)
- [5] Artur Korniłowicz and Dariusz Surowik. Elementary number theory problems. Part II. *Formalized Mathematics*, 29(**1**):63–68, 2021. doi[:10.2478/forma-2021-0006.](http://dx.doi.org/10.2478/forma-2021-0006)
- [6] Adam Naumowicz. [Dataset description: Formalization of elementary number theory in](https://doi.org/10.1007/978-3-030-53518-6_22) [Mizar.](https://doi.org/10.1007/978-3-030-53518-6_22) In Christoph Benzmüller and Bruce R. Miller, editors, *Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings*, volume 12236 of *Lecture Notes in Computer Science*, pages 303–308. Springer, 2020. doi[:10.1007/978-3-030-53518-6](http://dx.doi.org/10.1007/978-3-030-53518-6_22) 22.
- [7] Marco Riccardi. Solution of cubic and quartic equations. *Formalized Mathematics*, 17(**2**): 117–122, 2009. doi[:10.2478/v10037-009-0012-z.](http://dx.doi.org/10.2478/v10037-009-0012-z)
- [8] Christoph Schwarzweller. Modular integer arithmetic. *Formalized Mathematics*, 16(**3**): 247–252, 2008. doi[:10.2478/v10037-008-0029-8.](http://dx.doi.org/10.2478/v10037-008-0029-8)
- [9] Christoph Schwarzweller. Proth numbers. *Formalized Mathematics*, 22(**2**):111–118, 2014. doi[:10.2478/forma-2014-0013.](http://dx.doi.org/10.2478/forma-2014-0013)
- [10] Wacław Sierpiński. *250 Problems in Elementary Number Theory*. Elsevier, 1970.

Accepted July 23, 2022