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Summary. In this paper problems 11, 16, 19-24, 39, 44, 46, 74, 75, 77, 82,
and 176 from [10] are formalized as described in [6], using the Mizar formalism [T,
[2], []. Problems 11 and 16 from the book are formulated as several independent
theorems. Problem 46 is formulated with a given example of required properties.
Problem 77 is not formulated using triangles as in the book is.
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1. PRELIMINARIES

One can verify that every set which is natural is also natural-membered.

From now on a, b, i, k, m, n denote natural numbers, s, z denote non zero
natural numbers, r denotes a real number, ¢ denotes a complex number, and e,
ea, €3, e4, €5 denote extended reals.

Now we state the propositions:

(1) Ife; <ex<eg<ey, then ep <ey.
(2) Ife; <eg <es<ey <es, then eg < e5. The theorem is a consequence
of (1).

210 4+ 1 =1025.

310 + 1 = 5905 - 10.

419 +1 =1048 - 1000 + 577.

510 4 1 = 9765 - 1000 + 626.
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(7) 6941 = 6046 - 10000 + 6177.
(8) 71041 = (2824-10000 + 7525) - 10.
(9) 89 4+1=(1073-100 + 74) - 10000 + 1825.
(10) 90 41 = (3486 - 100 + 78) - 10000 + 4402.
(11) m mod (m+1)=0or ... or n mod (m+1) =m.
(12) Ifn |8, then n € {1,2,4,8}.
(13) If 0 < m, then ged(m,n) < m.
(14) Let us consider integers 4, j. If ¢ and j are relatively prime, then ¢ # j

ori=j=1lori=j=-1.

(15) Let us consider natural numbers i, j. If ¢ and j are relatively prime, then
it#jori=j5=1.

(16) Ifa<mnandb<nandn|a—>b, then a ="b.

(17) Let us consider integers a, b, m. Suppose a < b. Then there exists k such
that

(i) m<(b—a)-k+1—a,and
(i) & =|["g2t + 111
Let i be an integer. Let us observe that (i").en is Z-valued.
Let us consider n. Note that (n").en is N-valued.
Let f be a non-negative yielding, real-valued many sorted set indexed by N.
Let us observe that (3°5_ f(@))xen is non-decreasing.
Now we state the propositions:

(18) Suppose a # 0 or b # 0. Then there exist natural numbers A, B such
that

(i) a = (ged(a,b)) - A, and
(ii) b = (ged(a,b)) - B, and
(iii) A and B are relatively prime.

(19) If n # 0, then for every integers p, m such that p | m holds p |
(") cer) ().
PROOF: Set G = (m"),en. Define P[natural number| = if $; # 0, then
p | G(81). For every non zero natural number k such that P[k]| holds
P[k + 1]. For every non zero natural number k, P[k]. O

(20)  ((r)nen)(a+b) = ((r")xer)(a) - (r*).
PROOF: Set S = (r"),en. Define P[natural number| = S(a + $1) = S(a)
(r$1). P[0]. For every k such that P[k] holds P[k 4 1]. For every k, P[k]
|
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(21) Let us consider integers p, m. Suppose p | m.
Then p [ ((XCa=o((m")ren)(@))ren)(n) — 1.
PROOF: Set G = (m")xen. Set P = (3 r_y G(a))ken. Define P[natural
number| = p | P($;) — 1. For every k such that P[k] holds P[k + 1]. For
every k, Plk]. O

(22) (5 _o((m")wen)(@))ren)(n) and m"*+! are relatively prime. The the-
orem is a consequence of (21).

(23)  ged(((Xa=o((@)wen)(@))wen) (), ((Xa=o((a™)ren) (@) ren) (k + 1)) =
ged(((La=o((a")ren) (@) ren) (F), (Cazo((@")wen) (@))nen) (k + 1) —
(Ca=0((@™)ren)(@))nen) (k).

(24)  ((ZG=0((r")rem)(@))ren)(k + i + 1) — ((Ca=o((r")ren)(@))ren) (k) =
P (Camo () ker) (@) ) en) (0).

PROOF: Set S = (r")xen. Set P = (3 h_yS(a))ken. Define Plnatural
number] = P(k + $; + 1) — P(k) = r*¥*1. P($;). P[0]. For every a such
that P[a] holds P[a + 1]. For every k, P[k]. O

(25) Suppose n+ 1 and m + 1 are relatively prime.

Then ((Xa=o((a")ren)(@))ren)(n) and ((Xa=o((a")sen)(a))ren)(m) are
relatively prime. The theorem is a consequence of (14).

(26) Ifa#0and b0 andi# 0, then ged(i® — 1,3" — 1) = 78°d(@b) _ 1 The
theorem is a consequence of (18) and (25).

Let us consider integers a, b, k. Now we state the propositions:

(27) Suppose a+b > 0 and (@ mod k)4 (b mod k) > 0. Then (a+b)" mod k =
((a mod k) + (b mod k))™ mod k.
PROOF: Set a1 = a mod k. Set by = b mod k. Define P[natural number| =
(a4 b)% mod k = (a1 + b))% mod k. P[0]. For every natural number
such that P[z] holds Plz + 1]. For every natural number z, P[z]. O

(28) (a+b)" mod k= ((a mod k) + (b mod k))" mod k.
PROOF: Set a1 = a mod k. Set by = b mod k. Define P[natural number| =
(a+ b)$1 mod k = (a1 + b1)*" mod k. P[0]. For every natural number x
such that P[z] holds Plz + 1]. For every natural number z, P[z]. O

(29) If 1 <m, then m | a® + 1 iff m | (@ mod m)® + 1.
PROOF: Set r = @ mod m. If m | a® + 1, then m | r® + 1 by [8, (7)], (28).
O

(30) 10 | @'+ 1 if and only if there exist natural numbers r, k such that
a=10-k+rand 10 |r®+1and r=0or .. or r = 9.
PrOOF: If 10 | a'® + 1, then there exist natural numbers r, k such that
a=10-k+rand 10 |74+ 1and r =0 or ... or 7 = 9 by (29), [3, (8)]. O
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(31) Let us consider odd natural numbers a, b. If a — b = 2, then a and b are
relatively prime.

(32) Let us consider odd natural numbers a, b, c. If c—b=2and b —a = 2,
then 3| aor3|bor3|ec.

(33) Let us consider odd prime numbers a, b, c¢. If c—=b =2 and b —a = 2,
then a = 3 and b =5 and ¢ = 7. The theorem is a consequence of (32).

(34) If a™ is prime, then n = 1.

(35) If 1 < a, then there exists k such that 1 < k and n < a*.

(36) (i) 2" mod 3 =1, or

(ii) 2™ mod 3 = 2.

PROOF: Define P[natural number] = 2% mod 3 = 1 or 2% mod 3 = 2. For
every k such that P[k] holds P[k + 1]. For every k, P[k]. O

(37) 3m |23 +1.
PROOF: Define P[natural number] = 3% | 23" 1 1. P[0]. For every m such
that P[m] holds P[m + 1] by [7, (2),(1)]. For every m, P[m]. O

(38) Euler0 = 0.

Let us note that Euler 0 is zero.
Let n be a positive natural number. One can check that Euler n is positive.

2. MAIN PROBLEMS

Now we state the propositions:

(39) 5227+t — 27+l 4 1 if and only if » mod 4 =1 or n mod 4 = 2.
PROOF: Define F(natural number) = 22%1+1 — 2%1+1 1 1 Consider k such
thatn=4-korn=4-k+lorn=4-k+2orn=4-k+3.If 5| F(n),
then n» mod 4 =1 or n mod 4 = 2. [

(40) 5 |2%7+1 427+l 4 1 if and only if n mod 4 =0 or n mod 4 = 3.
PROOF: Define G(natural number) = 22%1+1 4 98141 4 1 Consider k such
that n=4-korn=4-k+lorn=4-k+2orn=4-k+3.1f 5| G(n),
then » mod 4 =0 or n mod 4 = 3.

(41) 5227+l — 27+l 4 1if and only if 51 227! + 27+ 4 1. The theorem is
a consequence of (11), (39), and (40).

(42) {n, where n is a natural number : n | 2" 4 1} is infinite.
PROOF: Set S = {n, where n is a natural number : n | 2" + 1}. Define
F(natural number) = 3%1. Consider f being a many sorted set indexed by
N such that for every element ¢ of N, f(i) = F(i). Set R=rmgf. RCS.
For every natural number m, there exists a natural number N such that
N>mand N € Rby [9, (1)]. O
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(43) {n, where n is a natural number : n | 2" + 1 and n is prime} = {3}.
PROOF: Set S = {n, where n is a natural number : n | 2" + 1 and n is
prime}. 5 C {3}. 3! 23 +1. O

(44) 10 | a'® + 1 if and only if there exists k such that a = 10 - k + 3 or
a=10-k+7.

PRrOOF: If 10 | a'® + 1, then there exists k such that a = 10 -k + 3 or
a=10-k+7.0

(45) If (a#0orb#0) and n >0 and a | b" — 1, then a and b are relatively
prime.

(46) There exists no natural number n such that 1 < n and n | 2" — 1.
PROOF: Define P[natural number] = 1 < $; and $; | 2% — 1. Consider N
being a natural number such that P[N] and for every natural number n
such that P[n] holds N < n. Set E = Euler N. Set d = gcd(N, E). 2 and
N are relatively prime. ged(2V —1,2F —1) =29 - 1.d< E. O

(47) {n, where n is an odd natural number : n | 3" + 1} = {1}.

PRrROOF: Set A = {n, where n is an odd natural number : n | 3" 4+ 1}.
AC{1}. 0

(48) {n, where n is a positive natural number : 3 | n-(2")+1} = the set of all 6-
k+1 where k is a natural numberUthe set of all 6-k+2 where k is a natural
number.

PROOF: Set A = {n, where n is a positive natural number : 3 | n-(2")+1}.
Set B = the set of all 6 - k 4+ 1 where k is a natural number. Set C' =
the set of all 6-k+2 where k is a natural number. A C BUC by [5, (26)].
O

Let us consider an odd prime number p. Now we state the propositions:

(49) Ifn=(p—1)-(k-p+1), then 2" mod p = 1.

(50) Ifn=(p—1)-(k-p+1), then p | the Cullen number of n. The theorem
is a consequence of (49).

(51) {n, where n is a natural number : p | the Cullen number of n} is infinite.
PROOF: Set S = {n, where n is a natural number : p | the Cullen number
of n}. Define F(natural number) = (p — 1) - ($1 - p+ 1). Consider f being
a many sorted set indexed by N such that for every element i of N, f(i) =
F(i). Set R = rng f. R C S. For every natural number m, there exists
a natural number N such that N > m and N € R. [J

(52) There exist natural numbers x, y such that
(i) * > n, and
(ii) «ty, and

(iii) = | yY.
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The theorem is a consequence of (35) and (34).
(53) Let us consider integers a, b, ¢, n. Suppose 3 < n. Then there exists
an integer k such that
(i) ntk+a, and
(ii) ntk+b, and
(iii) ntk+c.
(54) Let us consider integers a, b. Suppose a # b. Then {n, where n is a natural
number : a + n and b+ n are relatively prime} is infinite.

Let a, b, ¢ be integers. We say that a, b, ¢ are mutually coprime if and only
if

(Def. 1) a and b are relatively prime and a and ¢ are relatively prime and b and

c are relatively prime.

Let d be an integer. We say that a, b, ¢, d are mutually coprime if and only if

(Def. 2) a and b are relatively prime and a and c are relatively prime and a and

d are relatively prime and b and c are relatively prime and b and d are
relatively prime and ¢ and d are relatively prime.

Now we state the propositions:

(55) Let us consider prime numbers a, b, c. If a, b, ¢ are mutually different,
then a, b, ¢ are mutually coprime.

(56) Let us consider prime numbers a, b, ¢, d. If a, b, ¢, d are mutually
different, then a, b, ¢, d are mutually coprime.

(57) (i) 1,2, 3, 4 are mutually different, and
(ii) there exists no positive natural number n such that 1+n, 24+n, 3+n,
4 4+ n are mutually coprime.
(58) Let us consider an even natural number n. Suppose n > 6. Then there
exist prime numbers p, ¢ such that
(i) n —p and n — q are relatively prime, and
(ii) p=3, and
(iii) ¢ = 5.
The theorem is a consequence of (31).

(59) {p, where p is a prime number : there exist prime numbers a, b such that
p=a+band there exist prime numbers ¢, d such that p = ¢ —d} = {5}.
PROOF: Set A = {p, where p is a prime number : there exist prime
numbers a, b such that p = a+b and there exist prime numbers ¢, d such
that p=c—d}. AC {5}. O

Let us consider a prime number p. Now we state the propositions:
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(60) A COROLLARY FROM THE FERMAT THEOREM:
If p=4-k+ 1, then there exist positive natural numbers a, b such that
a>band p=a?+ b2
(61) If p=4-k+1, then there exist positive natural numbers a, b such that
p? = a2 + b2. The theorem is a consequence of (60).
(62) (i) 5|n+1,or
(i) 5|n+7,or
(iii) 5| n+9, or
(iv) 5| n+ 13, or
(v) 5| n+15.
(63) {n, where n is a natural number : n+1 is prime and n+3 is prime and
n+7 is prime and n+9 is prime and n+13 is prime and n+15 is prime} =

{4}.
PROOF: Set A = {n, where n is a natural number : n+1 is prime and n+
3 is prime and n+ 7 is prime and n+9 is prime and n+ 13 is prime and
n + 15 is prime}. A C {4}. O

(64) 7+ (r+1)° + (r +2)° = (r + 3)° if and only if 7 = 3.
PROOF: If 7% + (r +1)° + (r + 2)> = (r + 3)°, then r = 3. O

3. TooLs FOR COMPUTING PRIME NUMBERS

In the sequel p denotes a prime number. Now we state the propositions:
(65) If p <3, then p=2.
(66)
(67) If p <5, then p =2 or p=3. The theorem is a consequence of (65).
(68)

If k <9and p-p <k, then p = 2. The theorem is a consequence of (65).

If £k <25and p-p < k, then p = 2 or p = 3. The theorem is a consequence

of (67).

(69) If p <7, then p=2orp=3orp=>5. The theorem is a consequence of
(67).

(70) If k <49 and p-p < k, then p =2 or p = 3 or p = 5. The theorem is
a consequence of (69).

(71) If p < 11, then p = 2 or p = 3 or p = 5 or p = 7. The theorem is
a consequence of (69).

(72) If k<12l and p-p < k,thenp=2orp=3orp=>5orp=7. The
theorem is a consequence of (71).

(73) Ifp<13,thenp=2orp=3orp=>5or p=7or p=11. The theorem

is a consequence of (71).
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(74) Ifk<169andp-p<k,thenp=2orp=3orp=5orp="Torp=11.
The theorem is a consequence of (73).

(75) If p< 17, thenp=2orp=3orp=5orp="Tor p=11or p = 13.
The theorem is a consequence of (73).

(76) If k<289 andp-p<k,thenp=2orp=3orp=5orp=Torp=11
or p = 13. The theorem is a consequence of (75).

(77) Ifp<19,thenp=2orp=3orp=5orp=Torp=11orp=13 or

= 17. The theorem is a consequence of (75).

(78) Ifk<36landp-p<k,thenp=2orp=3orp=5orp=Torp=11
or p =13 or p = 17. The theorem is a consequence of (77).

(79) Ifp<23,thenp=2orp=3orp=5orp=Torp=11lorp=13 or
p =17 or p = 19. The theorem is a consequence of (77).

(80) Ifk<529andp-p<k,thenp=2orp=3orp=5orp=Torp=11
or p=13 or p =17 or p = 19. The theorem is a consequence of (79).
(81) Ifp<29, thenp=2orp=3orp=5orp=T7orp=11or p=13or
=17 or p = 19 or p = 23. The theorem is a consequence of (79).

(82) Ifk<8landp-p<k,thenp=2orp=3orp=5bborp=Torp=11
orp=13 or p=17 or p =19 or p = 23. The theorem is a consequence of
(81).

(83) If p<3l,thenp=2orp=3orp=5orp=Torp=11lorp=13or
p=170or p =19 or p = 23 or p = 29. The theorem is a consequence of
(81).

(84) If k <96l and p-p < k,thenp=2orp=3orp=5orp=7or

p=1lorp=13orp=170or p =19 or p = 23 or p = 29. The theorem is
a consequence of (83).

(85) If p<37,thenp=2orp=3orp=5orp=Torp=11orp =13
orp=170orp =19 0or p = 23 or p = 29 or p = 31. The theorem is
a consequence of (83).

(86) Ifk<1369andp-p<k,thenp=2orp=3orp=5orp=Torp=11
orp=13orp=170rp=19 or p =23 or p = 29 or p = 31. The theorem
is a consequence of (85).

(87) If p<d4l,thenp=2orp=3orp=5orp=T7orp=11lorp=13or
p=17orp=19or p=23 or p =29 or p = 31 or p = 37. The theorem is
a consequence of (85).

(88) Ifk <168l andp-p<k,thenp=2orp=3orp=5orp="Torp=11
orp=13orp=17Torp=19o0orp =23 or p =29 or p = 31 or p = 37.
The theorem is a consequence of (87).

(89) Ifp<43,thenp=2orp=3orp=5orp=Torp=11orp=13 or
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p=1Torp=19orp=23orp=29or p =31 or p=37 or p =41. The
theorem is a consequence of (87).

(90) Ifk <1849 andp-p < k,thenp=2orp=3orp=5orp=Torp=11
orp=13orp=17Torp=19orp=23orp=29orp=3lorp=37or
p = 41. The theorem is a consequence of (89).

(91) Ifp<47,thenp=2orp=3orp=5orp=T7orp=11lorp=13or
p=17Torp=19orp=23orp=290orp=3lorp=37o0r p=41or
p = 43. The theorem is a consequence of (89).

(92) Suppose k < 2209 and p-p < k. Then
(i) p=2,or
(ii) p=3, or
(iii) p=>5, or
(iv) p=T1,or
(v) p=11, or
(vi) p=13, or
(vii)
(viii) p=19, or
) p=23, or
) p=29, or
) p=31, or
) p=237, or
(xiii) p =41, or
(xiv) p = 43.

The theorem is a consequence of (91).

P
P
P
P
P
p=17, or
P

(ix) p

(x) p

(xi) p

P

(xii

(93) If p< 53, thenp=2orp=3orp=5orp=T7orp=1lorp=13or
p=17Torp=19orp=23orp=290orp=3lorp=370r p=41or
p =43 or p = 47. The theorem is a consequence of (91).

(94) Suppose k < 2809 and p-p < k. Then

(i) p=2,or
(ii) p=3, or
(iii) p="5, or
(iv) p=1, or
(v) p=11, or

i)
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The theorem is a consequence of (93).
(95) Suppose p < 59. Then

(i) p=2, or
(ii) p=3, or
(iii) p =5, or
(iv) p=T7,or

The theorem is a consequence of (93).
(96) Suppose k < 3481 and p-p < k. Then

(i) p=2, or
(ii) p=3, or
(iii) p="5, or
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(iv) p=T1,or
(v) p=11, or
(vi) p=13, or
(vii) p=17, or
(viii) p =19, or
(ix) p=23, or
(x) p=29, or
(xi) p=31, or
(xii) p =37, or
(xiii) p =41, or
(xiv) p =43, or
(xv) p=47, or
(xvi) p=53.

The theorem is a consequence of (95).
(97) Suppose p < 61. Then

(i) p=2, or
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The theorem is a consequence of (95).
(98) Suppose k < 3721 and p-p < k. Then

(i) p=2, 0or
(ii) p=3, or
(iii) p="5, or
(iv) p=T7,or
(v) p=11, or
(vi) p=13, or
(vii) p=17, or
(viii) p=19, or
(ix) p=23, or
(x) p=29, or
(xi) p=31, or
(xii) p =37, or
iv)

(xv) p=47, or
(xvi) p =53, or
(xvii) p = 59.

The theorem is a consequence of (97).
(99) Suppose p < 67. Then

(i) p=2,or
(ii) p=3, or
(iii) p =5, or
(iv) p=7,or

(v) p=11, or
(vi) p=13, or
(vii) p=17, or
(viii) p =19, or
(ix) p=23, or
(x) p=29, or

i)
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(xii) p =37, or
(xiii) p =41, or
(xiv) p =43, or
(xv) p=47, or
(xvi) p =53, or
(xvil) p =159, or

(xviii) p = 61.
The theorem is a consequence of (97).
(100) Suppose k < 4489 and p-p < k. Then

(i) p=2, or
(ii) p=3, or
(iii) p="5, or
(iv) p=T1,or
(v) p=11, or
(vi) p=13, or
(vii) p =17, or
(viii) p =19, or
(ix) p=23, or
(x) p=29, or
(xi) p=31, or
(xii) p =37, or
iv)

(xv) p=47, or
(xvi) p =53, or
(xvii) p =159, or

(xviii) p =61.
The theorem is a consequence of (99).
(101) Suppose p < 71. Then
(i) p=2, 0or
(ii) p=3, or
(iii) p="5, or
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(iv) p=1, or
(v) p=11, or
(vi) p=13, or
(vii) p=17, or
(viii)) p=19, or
(ix) p=23, or

(xix) p = 67.

ARTUR KORNILOWICZ

The theorem is a consequence of (99).
(102) Suppose k < 5041 and p - p < k. Then

(i) p=2, or
(ii) p=3, or
(iii) p="5, or
(iv) p=17, or
(v) p=11, or
(vi) p=13, or

(vii) p=17, or
(viii) p =19, or
(ix) p=23, or

(x) p=29, or

(xi) p=31, or
(xii) p =37, or
(xiii) p =41, or
(xiv) p =43, or
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(xv) p=47, or
(xvi) p =53, or
(xvii) p =59, or

(xviii) p =61, or

(xix) p = 67.

The theorem is a consequence of (101).
(103) Suppose p < 73. Then

(i) p=2, or
(ii) p=3, or
(iii) p="5, or
(iv) p=T17,or
(v) p=11, or
(vi) p=13, or

(vii) p =17, or
(viii) p=19, or
(ix) p=23, or

(x) p=29, or

(xi) p=31, or

(xii) p
(xiii) p =41, or
(xiv) p =43, or

(xv) p=47, or
(xvi) p =53, or
(xvii) p =159, or

(xviii) p =61, or

(xix) p =67, or

(xx) p=T1.

The theorem is a consequence of (101).
(104) Suppose k < 5329 and p-p < k. Then

(i) p=2, or
(ii) p=3, or
(iii) p="5, or
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(iv) p=1, or
(v) p=11, or
(vi) p=13, or
(vii) p=17, or
(viii)) p=19, or
(ix) p=23, or

(xx) p=T1.

ARTUR KORNILOWICZ

The theorem is a consequence of (103).
(105) Suppose p < 79. Then

(i) p=2, or
(ii) p=3, or
(iii) p
(iv) p=1,or
(v) p=11, or
(vi) p=13, or
(vil) p=17, or
(viii) p=19, or
(ix) p=23, or
(x) p=29, or
(xi) p=31, or
(xii) p =37, or
(xiii) p =41, or
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(xiv) p =43, or

(xv) p =47, or
(xvi) p =53, or
(xvii) p =159, or

(xviil) p =61, or
(xix) p =67, or
(xx) p=T1, or
(xxi) p=T73.

The theorem is a consequence of (103).
(106) Suppose k < 6241 and p - p < k. Then

(i) p=2, or
(ii) p=3, or
(iii) p =5, or
(iv) p=17,or
(v) p=11, or
(vi) p=13, or

(ix) p=23, or
(x) p=29, or
(xii) p =37, or

(xxi) p=T73.

The theorem is a consequence of (105).
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(107) Suppose p < 83. Then

(i) p=2, or
(ii) p=3, or
(iii) p=>5, or
(iv) p=717,or
(v) p=11, or
(vi) p=13, or

(vii) p=17, or
(viii)) p=19, or
(ix) p=23, or

(x) p=29, or

(xi) p=31, or
(xii) p =37, or
(xiii)) p =41, or
(xiv) p =43, or
(xv) p=47, or
(xvi) p =53, or

(xvil) p =159, or
(xviil) p =61, or
(xix) p =67, or

(xx) p="T1, or

(xxi) p =173, or
(xxii) p = T79.

The theorem is a consequence of (105).
(108) Suppose k < 6889 and p - p < k. Then

(i) p=2, or
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(ix) p=23, or

(x) p=29, or
(xi) p=31, or
(xii) p =37, or

(xx) p="T71, or
(xxi) p= 173, or
(xxii) p = T79.

The theorem is a consequence of (107).
(109) Suppose p < 89. Then

(i) p=2,or
(ii) p=3, or
(iii) p="5, or
(iv) p=71,or
(v) p=11, or
(vi) p=13, or

(x) p=29, or
(xi) p=31, or
(xii) p =37, or
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p="179, or
(xxiii) p = 83.

ARTUR KORNILOWICZ

The theorem is a consequence of (107).
(110) Suppose k < 7921 and p - p < k. Then

(i) p=2, or
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(xxiii) p = 83.
The theorem is a consequence of (109).
(111) Suppose p < 97. Then

(i) p=2, or
(ii) p=3, or
(iii) p="5, or
(iv) p=1, or
(v) p=11, or
(vi) p=13, or
(vii) p=17, or
(viii) p=19, or
(ix) p=23, or
(x) p=29, or
(xi) p=31, or
(xii) p =37, or

(xxiv) p = 89.
The theorem is a consequence of (109).
(112) Suppose k < 9409 and p - p < k. Then
(i) p=2, 0or
(ii) p=3, or
(iii) p="5, or



156

(xxiv) p = 89.

ARTUR KORNILOWICZ

The theorem is a consequence of (111).
(113) Suppose p < 101. Then

(i) p=2, or



(x) p
(xi) p
(xii) p
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=29, or
=31, or
=37, or

(xiii) p =41, or
(xiv) p =43, or
(xv) p=47, or

(xvi) p
(xvii) p
(xviil) p
(xix) p
(xx) p
(xxi) p
(xxii) p
(xxiii) p

iv) p

(xx

(xxv)

(114)
(i) p

—~
e
—
—-

(vi
(vii

(ix
(x
(xi

(xii

= 53, or
=959, or
=61, or
= 67, or
=171, or
=173, or
=179, or
=83, or
=89, or

p=9T7.
The theorem is a consequence of (111).
Suppose k < 10201 and p - p < k. Then

=2, or
=3, or
=9, or
=7, or
=11, or
=13, or
=17, or
=19, or
=23, or
=29, or
=31, or
=37, or

(xiii) p =41, or

i) p
iii) p
iv) p
) p
) p
) p
(viii) p
) p
) p
) p
) p
)
)

(xiv) p =43, or
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1

[2

4]

(5]

8

[9

(10]

ARTUR KORNILOWICZ

(xv) p=47, or
(xvi) p =53, or
(xvii) p =159, or

(xviii) p =61, or

(xix) p =67, or

(xx) p="T1, or
(xxi) p =73, or
(xxii) p =179, or

(xxiii) p = 83, or
(xxiv) p =89, or
(xxv) p=97.

The theorem is a consequence of (113).

REFERENCES

Grzegorz Bancerek, Czestaw Bylinski, Adam Grabowski, Artur Kornitowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8_17.

Grzegorz Bancerek, Czestaw Byliniski, Adam Grabowski, Artur Kornitlowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32,
2018. doii10.1007/s10817-017-9440-6.

Adam Grabowski. Polygonal numbers. Formalized Mathematics, 21(2):103-113, 2013.
doi;10.2478 /forma-2013-0012.

Artur Kornitowicz. Flexary connectives in Mizar. Computer Languages, Systems & Struc-
tures, 44:238-250, December 2015. doi;10.1016/j.c1.2015.07.002.

Artur Kornitowicz and Dariusz Surowik. Elementary number theory problems. Part II.
Formalized Mathematics, 29(1):63-68, 2021. doii10.2478/forma-2021-0006.

Adam Naumowicz. Dataset description: Formalization of elementary number theory in
Mizar. In Christoph Benzmiiller and Bruce R. Miller, editors, Intelligent Computer Ma-
thematics — 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31,
2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303—308.
Springer, 2020. doii10.1007/978-3-030-53518-6_22!

Marco Riccardi. Solution of cubic and quartic equations. Formalized Mathematics, 17(2):
117-122, 2009. doi:10.2478/v10037-009-0012-z.

Christoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3):
247-252; 2008. doii10.2478/v10037-008-0029-8.

Christoph Schwarzweller. Proth numbers. Formalized Mathematics, 22(2):111-118, 2014.
doi;10.2478 /forma-2014-0013.

Wactaw Sierpinski. 250 Problems in Elementary Number Theory. Elsevier, 1970.

Accepted July 23, 2022


http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.2478/forma-2013-0012
http://dx.doi.org/10.1016/j.cl.2015.07.002
http://dx.doi.org/10.1016/j.cl.2015.07.002
http://dx.doi.org/10.2478/forma-2021-0006
https://doi.org/10.1007/978-3-030-53518-6_22
https://doi.org/10.1007/978-3-030-53518-6_22
http://dx.doi.org/10.1007/978-3-030-53518-6_22
http://dx.doi.org/10.2478/v10037-009-0012-z
http://dx.doi.org/10.2478/v10037-008-0029-8
http://dx.doi.org/10.2478/forma-2014-0013

	=0pt Elementary Number Theory Problems. Part III  By Artur Korniłowicz  

