
FORMALIZED MATHEMATICS

Vol. 30, No. 2, Pages 125–134, 2022
ISSN: 1426–2630, e-ISSN: 1898–9934

DOI: 10.2478/forma-2022-0010 sciendo.com/journal/forma

Definition of Centroid Method as
Defuzzification

Takashi Mitsuishi
Faculty of Business and Informatics
Nagano University, Japan

Summary. In this study, using the Mizar system [1], [2], we reuse formali-
zation efforts in fuzzy sets described in [5] and [6]. This time the centroid method
which is one of the fuzzy inference processes is formulated [10]. It is the most
popular of all defuzzied methods ([11], [13], [7]) – here, defuzzified crisp value is
obtained from domain of membership function as weighted average [8]. Since the
integral is used in centroid method, the integrability and bounded properties of
membership functions are also mentioned to fill the formalization gaps present in
the Mizar Mathematical Library, as in the case of another fuzzy operators [4]. In
this paper, the properties of piecewise linear functions consisting of two straight
lines are mainly described.
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From now on A denotes a non empty, closed interval subset of R.
Let A be a non empty, closed interval subset of R and f be a function from

R into R. The functor centroid(f,A) yielding a real number is defined by the
term

(Def. 1)

∫
A

(idR · f)(x)dx∫
A

f(x)dx
.

Now we state the propositions:

(1) Let us consider real numbers a, b, c. Suppose a < b and c > 0. Then
centroid(AffineMap(0, c), [a, b]) = a+b

2 .
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Proof: Set F = c
2 · (�2). For every element x of R such that x ∈

dom(F ′�ΩR
) holds (F ′�ΩR

)(x) = (idR · (AffineMap(0, c)))(x) by [12, (2)].
For every element x of R such that x ∈ dom((AffineMap(c, 0))′�ΩR

) holds
((AffineMap(c, 0))′�ΩR

)(x) = (AffineMap(0, c))(x). �

(2) Let us consider real numbers a, b. Then

(i) idR is integrable on [a, b], and

(ii) idR�[a, b] is bounded.

(3) (i) idR is integrable on A, and

(ii) idR�A is bounded.

(4) Let us consider a real number e, and a partial function f from R to R.
Suppose A ⊆ dom f and for every real number x such that x ∈ A holds
f(x) = e. Then

(i) f is integrable on A, and

(ii) f�A is bounded, and

(iii)

supA∫
inf A

f(x)dx = e · (supA− inf A).

Let us consider a function f from R into R. Now we state the propositions:

(5) If for every real number x such that x ∈ A holds f(x) = 0, then∫
A

f(x)dx = 0. The theorem is a consequence of (4).

(6) Suppose f is integrable on A and f�A is bounded. Then

(i) idR · f is integrable on A, and

(ii) (idR · f)�A is bounded.

The theorem is a consequence of (3).

(7) Let us consider real numbers a, b, c. Suppose a < b. Then

(i) [a, b] ⊆ ΩR, and

(ii) inf[a, b] = a, and

(iii) sup[a, b] = b.

Let us consider real numbers a, b, c and a function f from R into R. Now
we state the propositions:

(8) Suppose a < b ¬ c and f is integrable on [a, c] and f�[a, c] is bounded
and for every real number x such that x ∈ [b, c] holds f(x) = 0. Then
centroid(f, [a, c]) = centroid(f, [a, b]). The theorem is a consequence of
(3).
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(9) Suppose a ¬ b < c and f is integrable on [a, c] and f�[a, c] is bounded
and for every real number x such that x ∈ [a, b] holds f(x) = 0. Then
centroid(f, [a, c]) = centroid(f, [b, c]). The theorem is a consequence of
(3).

(10) Let us consider a function f from R into R. Suppose f is integrable on A

and f�A is bounded and
∫
A

f(x)dx > 0. Then there exists a real number

c such that

(i) c ∈ A, and

(ii) f(c) > 0.

Proof: Set g = (−1) · f . There exists a real number r such that for every
set y such that y ∈ dom(g�A) holds |(g�A)(y)| < r. For every real number
x such that x ∈ A holds 0 ¬ (g�A)(x). �

(11) Let us consider a real number r, a fuzzy set f of R, and a function F
from R into R. Suppose r > 0 and f is integrable on A and f�A is bounded

and for every real number x, F (x) = min(r, f(x)). Then
∫
A

F (x)dx  0.

Proof: There exists a real number r such that for every set y such that
y ∈ dom(F �A) holds |(F �A)(y)| < r. For every real number x such that
x ∈ A holds 0 ¬ (F �A)(x). �

Let us consider functions f , g from R into R. Now we state the propositions:

(12) min(f, g) = 1
2 · (f + g − |f − g|).

Proof: For every object x such that x ∈ dom(min(f, g)) holds
(min(f, g))(x) = (1

2 · (f + g − |f − g|))(x). �

(13) Suppose f is integrable on A and f�A is bounded and g is integrable on
A and g�A is bounded. Then

(i) min(f, g) is integrable on A, and

(ii) min(f, g)�A is bounded, and

(iii)
∫
A

(min(f, g))(x)dx =
1
2
· (
∫
A

f(x)dx+
∫
A

g(x)dx−
∫
A

|f − g|(x)dx).

The theorem is a consequence of (12).

(14) max(f, g) = 1
2 · (f + g + |f − g|).

Proof: For every object x such that x ∈ dom(max(f, g)) holds
(max(f, g))(x) = (1

2 · (f + g + |f − g|))(x). �

(15) Suppose f is integrable on A and f�A is bounded and g is integrable on
A and g�A is bounded. Then

(i) max(f, g) is integrable on A, and
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(ii) max(f, g)�A is bounded, and

(iii)
∫
A

(max(f, g))(x)dx =
1
2
· (
∫
A

f(x)dx+
∫
A

g(x)dx+
∫
A

|f − g|(x)dx).

The theorem is a consequence of (14).

(16) Let us consider real numbers r1, r2, and a function f from R into R.
Suppose f is integrable on A and f�A is bounded. Then

(i) min(AffineMap(0, r1), r2 · f) is integrable on A, and

(ii) min(AffineMap(0, r1), r2 · f)�A is bounded.

The theorem is a consequence of (13).

(17) Let us consider real numbers r1, r2, and functions f , F from R into
R. Suppose f is integrable on A and f�A is bounded and for every real
number x, F (x) = min(r1, r2 · f(x)). Then

(i) F is integrable on A, and

(ii) F �A is bounded.

The theorem is a consequence of (16).

(18) Let us consider a real number s, and functions f , g from R into R. Then
f�]−∞, s[+·g�[s,+∞[ is a function from R into R.

Let us consider real numbers a, b, c and functions f , g, F from R into R.

(19) If a ¬ b ¬ c and F = f�[a, b]+·g�[b, c], then F is a function from [a, c]
into R.

(20) If a ¬ b ¬ c and F = f�[a, b]+·g�[b, c], then F = F �[a, c].

Let us consider real numbers a, b, c and functions f , g, h from R into R.

(21) Suppose a ¬ b ¬ c and f�[a, c] is bounded and g�[a, c] is bounded and
h = f�[a, b]+·g�[b, c] and f(b) = g(b). Then h�[a, c] is bounded.
Proof: f�[a, b] tolerates g�[b, c]. There exists a real number r such that
for every set y such that y ∈ dom(h�[a, c]) holds |(h�[a, c])(y)| < r. �

(22) Suppose a ¬ b ¬ c and f�[a, c] is bounded and g�[a, c] is bounded and
h�[a, c] = f�[a, b]+·g�[b, c] and f(b) = g(b). Then h�[a, c] is bounded.
Proof: f�[a, b] tolerates g�[b, c]. There exists a real number r such that
for every set y such that y ∈ dom(h�[a, c]) holds |(h�[a, c])(y)| < r. �

Now we state the propositions:

(23) Let us consider a real number c, and functions f , g from R into R. Sup-
pose f�A is bounded and g�A is bounded. Then (f�]−∞, c[+·g�[c,+∞[)�A
is bounded.
Proof: Set F = f�]−∞, c[+·g�[c,+∞[. There exists a real number r such
that for every set y such that y ∈ dom(F �A) holds |(F �A)(y)| < r. �
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(24) Let us consider real numbers a, b, c, and functions f , g, h, F from R
into R. Suppose a ¬ b ¬ c and f is continuous and g is continuous and
h�[a, c] = f�[a, b]+·g�[b, c] and f(b) = g(b) and F = h�[a, c]. Then F is
continuous.
Proof: For every real numbers x0, r such that x0 ∈ [a, c] and 0 < r there
exists a real number s such that 0 < s and for every real number x1 such
that x1 ∈ [a, c] and |x1 − x0| < s holds |h(x1)− h(x0)| < r. �

(25) Let us consider a non empty, closed interval subset A of R, and a function
f from R into R. Suppose f is continuous. Then

(i) f is integrable on A, and

(ii) f�A is bounded.

(26) Let us consider a real number c, and functions f , g, F from R into
R. Suppose f is Lipschitzian and g is Lipschitzian and f(c) = g(c) and
F = f�]−∞, c[+·g�[c,+∞[. Then F is Lipschitzian.
Proof: Consider r3 being a real number such that 0 < r3 and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)− f(x2)| ¬ r3 · |x1−
x2|. Consider r4 being a real number such that 0 < r4 and for every real
numbers x1, x2 such that x1, x2 ∈ dom g holds |g(x1)−g(x2)| ¬ r4·|x1−x2|.
There exists a real number r such that 0 < r and for every real numbers
x1, x2 such that x1, x2 ∈ domF holds |F (x1)− F (x2)| ¬ r · |x1 − x2|. �

(27) Let us consider real numbers a, b. Then AffineMap(a, b) is Lipschitzian.
Proof: Set f = AffineMap(a, b). There exists a real number r such that
0 < r and for every real numbers x1, x2 such that x1, x2 ∈ dom f holds
|f(x1)− f(x2)| ¬ r · |x1 − x2|. �

Let us consider real numbers a, b, p, q and a function f from R into R. Now
we state the propositions:

(28) Suppose a 6= p and f = (AffineMap(a, b))�]−∞, q−ba−p [+·(AffineMap(p, q))

�[ q−ba−p ,+∞[. Then f is Lipschitzian. The theorem is a consequence of (27)
and (26).

(29) Suppose a 6= p and f = (AffineMap(a, b))�]−∞, q−ba−p [+·(AffineMap(p, q))

�[ q−ba−p ,+∞[. Then

(i) f is integrable on A, and

(ii) f�A is bounded.

The theorem is a consequence of (28).

(30) Let us consider real numbers a, b, p, q. Suppose a 6= p.
Then (AffineMap(a, b))( q−ba−p) = (AffineMap(p, q))( q−ba−p).



130 takashi mitsuishi

(31) Every membership function of R is bounded.
Proof: There exists a real number r such that for every set x such that
x ∈ dom f holds |f(x)| < r by [9, (1)]. �

(32) Let us consider a real number r, and a function f from R into R. Suppose
r 6= 0 and f is integrable on A and f�A is bounded. Then centroid(r ·
f,A) = centroid(f,A). The theorem is a consequence of (6).

Let us consider real numbers a, b, c and functions f , g, h from R into R.

(33) Suppose a ¬ b ¬ c and f is integrable on [a, c] and f�[a, c] is boun-
ded and g is integrable on [a, c] and g�[a, c] is bounded and h�[a, c] =
f�[a, b]+·g�[b, c] and h is integrable on [a, c] and f(b) = g(b).

Then
∫

[a,c]

h(x)dx =
∫

[a,b]

f(x)dx+
∫

[b,c]

g(x)dx.

Proof: f�[a, b] tolerates g�[b, c]. Reconsider h1 = h�[a, b] as a partial func-
tion from [a, b] to R. Reconsider f1 = f�[a, b] as a partial function from
[a, b] to R. Reconsider H = upper sum seth1 as a function from divs[a, b]
into R. Reconsider F = upper sum set f1 as a function from divs[a, b] into
R. H = F .

Reconsider h2 = h�[b, c] as a partial function from [b, c] to R. Re-
consider g1 = g�[b, c] as a partial function from [b, c] to R. Reconsider
H1 = upper sum seth2 as a function from divs[b, c] into R. Reconsider
G = upper sum set g1 as a function from divs[b, c] into R. H1 = G. h�[a, c]
is bounded. �

(34) Suppose a ¬ b ¬ c and f is continuous and g is continuous and h =
f�[a, b]+·g�[b, c] and f(b) = g(b).

Then
∫

[a,c]

(idR · h)(x)dx =
∫

[a,b]

(idR · f)(x)dx+
∫

[b,c]

(idR · g)(x)dx.

Proof: idR · f is integrable on [a, c] and (idR · f)�[a, c] is bounded and
idR · g is integrable on [a, c] and (idR · g)�[a, c] is bounded. Set G = (idR ·
f)�[a, b]+·(idR · g)�[b, c]. For every object x such that x ∈ domG holds
G(x) = (idR · h)(x). idR · h is integrable on [a, c]. �

Let us consider a real number c and functions f , g from R into R. Now we
state the propositions:

(35) f�]−∞, c[+·g�[c,+∞[ = f�]−∞, c]+·g�[c,+∞[.
Proof: Set f1 = f�]−∞, c[+·g�[c,+∞[. Set f2 = f�]−∞, c]+·g�[c,+∞[.
For every object x such that x ∈ dom f1 holds f1(x) = f2(x). �

(36) Suppose f�A is bounded and g�A is bounded.
Then (f�]−∞, c]+·g�[c,+∞[)�A is bounded. The theorem is a consequence
of (23) and (35).
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(37) Let us consider real numbers a, b, c, and functions f , g from R into R.
Suppose a ¬ c ¬ b. Then f�[a, c[+·g�[c, b] = f�[a, c]+·g�[c, b].
Proof: Set f1 = f�[a, c[+·g�[c, b]. Set f2 = f�[a, c]+·g�[c, b]. For every
object x such that x ∈ dom f1 holds f1(x) = f2(x). �

(38) Let us consider real numbers a, b, c, and functions f , g, h from R into
R. Suppose a ¬ c and h�[a, c] = f�[a, b]+·g�[b, c] and f(b) = g(b). Then

(i) if b ¬ a, then h�[a, c] = g�[a, c], and

(ii) if c ¬ b, then h�[a, c] = f�[a, c].

Proof: If b ¬ a, then h�[a, c] = g�[a, c]. If c ¬ b, then h�[a, c] = f�[a, c].
�

(39) Let us consider a real number b, and functions f , g, h from R into R.
Suppose h = f�]−∞, b[+·g�[b,+∞[ and f(b) = g(b). Then

(i) if b ¬ inf A, then h�A = g�A, and

(ii) if supA ¬ b, then h�A = f�A.

Proof: If b ¬ inf A, then h�A = g�A by [3, (4)]. If supA ¬ b, then
h�A = f�A by [3, (4)]. �

(40) Let us consider real numbers a, b, p, q, and a function f from R into R.
Suppose f = (AffineMap(a, b))�]−∞, q−ba−p [+·(AffineMap(p, q))�[ q−ba−p ,+∞[

and q−ba−p ∈ A.

Then f�A = (AffineMap(a, b))�[inf A, q−ba−p ]+·(AffineMap(p, q))�[ q−ba−p , supA].

Proof: Set F = (AffineMap(a, b))�[inf A, q−ba−p ]+·(AffineMap(p, q))�[ q−ba−p ,
supA]. For every object x such that x ∈ domF holds F (x) = (f�A)(x). �

(41) Let us consider real numbers a, b. Then

(i) (AffineMap(a, b))�A is bounded, and

(ii) AffineMap(a, b) is integrable on A.

Let us consider real numbers a, b, p, q and a function f from R into R. Now
we state the propositions:

(42) Suppose a 6= p and f = (AffineMap(a, b))�]−∞, q−ba−p [+·(AffineMap(p, q))

�[ q−ba−p ,+∞[. Then

(i) if q−ba−p ∈ A, then
∫
A

f(x)dx =
∫

[inf A, q−b
a−p ]

(AffineMap(a, b))(x)dx +

∫
[ q−b
a−p ,supA]

(AffineMap(p, q))(x)dx, and
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(ii) if q−ba−p ¬ inf A, then
∫
A

f(x)dx =
∫
A

(AffineMap(p, q))(x)dx, and

(iii) if q−ba−p  supA, then
∫
A

f(x)dx =
∫
A

(AffineMap(a, b))(x)dx.

Proof: (AffineMap(a, b))( q−ba−p) = (AffineMap(p, q))( q−ba−p). AffineMap(a, b)
is integrable on [inf A, supA] and (AffineMap(a, b))�[inf A, supA] is boun-
ded. AffineMap(p, q) is integrable on [inf A, supA]. AffineMap(p, q)�[inf A,
supA] is bounded. f is integrable on [inf A, supA]. If q−ba−p ∈ A, then∫
A

f(x)dx =
∫

[inf A, q−b
a−p ]

(AffineMap(a, b))(x)dx +
∫

[ q−b
a−p ,supA]

(AffineMap(p, q))

(x)dx. If q−ba−p ¬ inf A, then
∫
A

f(x)dx =
∫
A

(AffineMap(p, q))(x)dx. If q−ba−p 

supA, then
∫
A

f(x)dx =
∫
A

(AffineMap(a, b))(x)dx. �

(43) Suppose a 6= p and f�A = AffineMap(a, b)�[inf A, q−ba−p ]+·AffineMap(p, q)

�[ q−ba−p , supA] and q−ba−p ∈ A. Then
∫
A

(idR · f)(x)dx =∫
[inf A, q−b

a−p ]

(idR · (AffineMap(a, b)))(x)dx +

∫
[ q−b
a−p ,supA]

(idR · (AffineMap(p, q)))(x)dx.

Proof: (idR·f)�[inf A, supA] = (idR·(AffineMap(a, b)))�[inf A, q−ba−p ]+·(idR·
(AffineMap(p, q)))�[ q−ba−p , supA]. Set F = (AffineMap(a, b))�]−∞, q−ba−p [+·
AffineMap(p, q)�[ q−ba−p ,+∞[. F �[inf A, supA] is integrable. F �[inf A, supA]
= f�A. f is integrable on [inf A, supA] and f�[inf A, supA] is bounded.
idR · f is integrable on [inf A, supA]. �

(44) Let us consider real numbers a, b. Then idR ·AffineMap(a, b) = a ·�2 +
b ·�1.
Proof: For every object x such that x ∈ R holds idR·AffineMap(a, b)(x) =
a · (�2 + b ·�1)(x). �

(45) Let us consider real numbers a, b, c, d. Suppose c ¬ d.

Then
d∫
c

(idR · (AffineMap(a, b)))(x)dx =
1
3
·a·(d·d·d−c·c·c)+1

2
·b·(d·d−c·c).

The theorem is a consequence of (44).
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(46) Let us consider real numbers a, b. Then AffineMap(a, b) = a ·�1 + b ·�0.
Proof: For every object x such that x ∈ R holds AffineMap(a, b)(x) =
(a ·�1 + b ·�0)(x). �

(47) Let us consider real numbers a, b, c, d. Suppose c ¬ d.

Then
d∫
c

(AffineMap(a, b))(x)dx =
1
2
· a · (d · d − c · c) + b · (d − c). The

theorem is a consequence of (46).

(48) Let us consider real numbers a, b, p, q, c, d, e, and a function f from R in-
to R. Suppose a 6= p and f�A = AffineMap(a, b)�[inf A, q−ba−p ]+·AffineMap

(p, q)�[ q−ba−p , supA] and q−ba−p ∈ A. Then centroid(f,A) =
1
3 ·a·((

q−b
a−p )3−(inf A)3)+ 12 ·b·((

q−b
a−p )2−(inf A)2)+ 13 ·p·((supA)3−( q−b

a−p )3)+ 12 ·q·((supA)2−( q−b
a−p )2)

1
2 ·a·((

q−b
a−p )2−(inf A)2)+b·( q−b

a−p−inf A)+ 12 ·p·((supA)2−( q−b
a−p )2)+q·(supA− q−b

a−p )
.

The theorem is a consequence of (18), (40), (42), (43), (45), and (47).

(49) Let us consider a function f from R into R.
Then max+(f) = max(AffineMap(0, 0), f).
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