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Summary. In this article vertex, edge and total colorings of graphs are
formalized in the Mizar system [4] and [1], based on the formalization of graphs
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Introduction

Graph coloring has a long history in mathematics and is introduced in almost
every introductionary book on graph theory (cf. [2], [6], [3]). In this article, the
basic notions of vertex, edge and total colorings of graphs are formalized in
sections 1, 2 and 3 respectively. These sections have the same basic structure.

At first the (not necessarily proper) coloring is defined as a function defined
on the vertices or edges of a graph. The total coloring of a graph is defined as
a pair of the other two.

The next definition is about proper colorings, i.e. that no two adjacent ver-
tices or edges are colored the same. A proper total coloring also requires that
vertices and edges who are incident with each other are not colored the same
as well. In the context of this formalization, the vertex of a loop is considered
adjacent to itself, but the edge of a loop is not considered adjacent to itself.

After that an attribute for proper colorability with a cardinal amount of
colors is provided. It is important to note that the definition expresses how
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many colors are sufficient. Given that cardinalities can be infinite, an attribute
indicating that only finitely many colors are needed is given as well.

In the last part of each section the chromatic number or index is introduced,
indicating how many colors are at least necessary for a proper coloring.

1. Vertex Colorings

From now on E, V denote sets, G, G1, G2 denote graphs, c, c1, c2 denote
cardinal numbers, and n denotes a natural number.

Let us consider G.
A vertex coloring of G is a many sorted set indexed by the vertices of G.

One can check that every vertex coloring of G is non empty.
From now on f denotes a vertex coloring of G.
Now we state the proposition:

(1) Let us consider a function f ′. Suppose rng f ⊆ dom f ′. Then f ′ · f is
a vertex coloring of G.

Let us consider G and f . Let f ′ be a many sorted set indexed by rng f . One
can check that the functor f ′ · f yields a vertex coloring of G. Now we state the
propositions:

(2) Let us consider a vertex v of G, and an object x. Then f+·(v 7−→. x) is
a vertex coloring of G.

(3) Let us consider a subgraph H of G. Then f�(the vertices of H) is a vertex
coloring of H.

(4) Let us consider a supergraph G1 of G2 extended by the vertices from
V , a vertex coloring f of G2, and a function h. Suppose domh = V \
(the vertices of G2). Then f+·h is a vertex coloring of G1.

(5) Let us consider objects v, e, x, a vertex w of G2, a supergraph G1 of
G2 extended by v, w and e between them, and a vertex coloring f of G2.
Suppose e /∈ the edges of G2 and v /∈ the vertices of G2. Then f+·(v 7−→. x)
is a vertex coloring of G1.

(6) Let us consider a vertex v of G2, objects e, w, x, a supergraph G1 of
G2 extended by v, w and e between them, and a vertex coloring f of G2.
Suppose e /∈ the edges of G2 and w /∈ the vertices of G2. Then f+·(w 7−→. x)
is a vertex coloring of G1.

(7) Let us consider objects v, x, a subset V of the vertices of G2, a su-
pergraph G1 of G2 extended by vertex v and edges between v and V of
G2, and a vertex coloring f2 of G2. Suppose v /∈ the vertices of G2. Then
f2+·(v 7−→. x) is a vertex coloring of G1.
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Let us consider a partial graph mapping F from G1 to G. Now we state the
propositions:

(8) If dom(FV) = the vertices of G1, then f · (FV) is a vertex coloring of G1.

(9) If F is total, then f · (FV) is a vertex coloring of G1. The theorem is
a consequence of (8).

Let us consider G and f . We say that f is proper if and only if

(Def. 1) for every vertices v, w of G such that v and w are adjacent holds f(v) 6=
f(w).

Now we state the propositions:

(10) f is proper if and only if for every objects e, v, w such that e joins v and
w in G holds f(v) 6= f(w).

(11) f is proper if and only if for every objects e, v, w such that e joins v to
w in G holds f(v) 6= f(w). The theorem is a consequence of (10).

(12) Let us consider a one-to-one function f ′, and a vertex coloring f2 of G.
Suppose f2 = f ′ ·f and f is proper and rng f ⊆ dom f ′. Then f2 is proper.
The theorem is a consequence of (10).

(13) Let us consider a one-to-one many sorted set f ′ indexed by rng f . If f is
proper, then f ′ · f is proper. The theorem is a consequence of (12).

(14) If there exists f such that f is proper, then G is loopless. The theorem
is a consequence of (10).

Let G be a non loopless graph. Observe that every vertex coloring of G is
non proper.

Let G be a loopless graph. Let us observe that every vertex coloring of G
which is one-to-one is also proper and there exists a vertex coloring of G which
is one-to-one and proper.

Now we state the propositions:

(15) Let us consider a subgraph H of G, and a vertex coloring f ′ of H.
Suppose f ′ = f�(the vertices of H) and f is proper. Then f ′ is proper.
The theorem is a consequence of (10).

(16) Let us consider a vertex coloring f1 of G1, and a vertex coloring f2 of
G2. Suppose G1 ≈ G2 and f1 = f2 and f1 is proper. Then f2 is proper.
The theorem is a consequence of (10).

(17) Let us consider a vertex coloring f1 of G1, a vertex coloring f2 of G2,
a vertex v of G1, and an object x. Suppose G1 ≈ G2 and f2 = f1+·(v 7−→. x)
and x /∈ rng f1 and f1 is proper. Then f2 is proper. The theorem is a con-
sequence of (10).

(18) Let us consider a graph G2 given by reversing directions of the edges E
of G1, a vertex coloring f1 of G1, and a vertex coloring f2 of G2. If f1 = f2,
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then f1 is proper iff f2 is proper.

(19) Let us consider a supergraph G1 of G2 extended by the vertices from
V , a vertex coloring f1 of G1, a vertex coloring f2 of G2, and a function
h. Suppose domh = V \ (the vertices of G2) and f1 = f2+·h and f2 is
proper. Then f1 is proper. The theorem is a consequence of (10).

(20) Let us consider vertices v, w of G2, an object e, a supergraph G1 of G2
extended by e between vertices v and w, a vertex coloring f1 of G1, and
a vertex coloring f2 of G2. Suppose f1 = f2 and v and w are adjacent and
f2 is proper. Then f1 is proper. The theorem is a consequence of (10) and
(16).

(21) Let us consider a vertex v of G2, objects e, w, a supergraph G1 of G2
extended by e between vertices v and w, a vertex coloring f1 of G1, a vertex
coloring f2 of G2, and an object x. Suppose f1 = f2+·(v 7−→. x) and v 6=
w and x /∈ rng f2 and f2 is proper. Then f1 is proper. The theorem is
a consequence of (10) and (17).

(22) Let us consider objects v, e, a vertex w of G2, a supergraph G1 of G2
extended by e between vertices v and w, a vertex coloring f1 of G1, a vertex
coloring f2 of G2, and an object x. Suppose f1 = f2+·(w 7−→. x) and v 6=
w and x /∈ rng f2 and f2 is proper. Then f1 is proper. The theorem is
a consequence of (21), (18), and (17).

Let us consider objects v, e, w, a supergraph G1 of G2 extended by v, w
and e between them, a vertex coloring f1 of G1, a vertex coloring f2 of G2, and
an object x. Now we state the propositions:

(23) Suppose v /∈ the vertices of G2 and f1 = f2+·(v 7−→. x) and x 6= f2(w).
Then if f2 is proper, then f1 is proper. The theorem is a consequence of
(11).

(24) Suppose w /∈ the vertices of G2 and f1 = f2+·(w 7−→. x) and x 6= f2(v).
Then if f2 is proper, then f1 is proper. The theorem is a consequence of
(23) and (18).

(25) Let us consider objects v, x, a subset V of the vertices ofG2, a supergraph
G1 of G2 extended by vertex v and edges between v and V of G2, a vertex
coloring f1 of G1, and a vertex coloring f2 of G2. Suppose v /∈ the vertices
of G2 and f1 = f2+·(v 7−→. x) and x /∈ rng f2. If f2 is proper, then f1 is
proper. The theorem is a consequence of (10).

(26) Let us consider a partial graph mapping F from G1 to G, and a vertex
coloring f ′ of G1. Suppose F is total and f ′ = f · (FV) and f is proper.
Then f ′ is proper. The theorem is a consequence of (10).

Let us consider c and G. We say that G is c-vertex-colorable if and only if
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(Def. 2) there exists a vertex coloring f of G such that f is proper and rng f ⊆ c.
Now we state the propositions:

(27) If c1 ⊆ c2 and G is c1-vertex-colorable, then G is c2-vertex-colorable.

(28) If there exists c such that G is c-vertex-colorable, then G is loopless.

Let us consider c. Note that every graph which is c-vertex-colorable is also
loopless and every graph which is loopless and c-vertex is also c-vertex-colorable
and every graph is non 0-vertex-colorable.

Now we state the propositions:

(29) If G is loopless, then G is (G.order())-vertex-colorable.

(30) G is edgeless if and only if G is 1-vertex-colorable. The theorem is a con-
sequence of (10).

Let c be a non zero cardinal number. One can verify that there exists a graph
which is c-vertex-colorable.

Now we state the proposition:

(31) Let us consider a subgraph H of G. If G is c-vertex-colorable, then H is
c-vertex-colorable. The theorem is a consequence of (3) and (15).

One can verify that every graph which is edgeless is also 1-vertex-colorable
and every graph which is 1-vertex-colorable is also edgeless.

Let c be a non zero cardinal number and G be a c-vertex-colorable graph.
Let us observe that every subgraph of G is c-vertex-colorable.

Now we state the propositions:

(32) If G1 ≈ G2 and G1 is c-vertex-colorable, then G2 is c-vertex-colorable.
The theorem is a consequence of (16).

(33) Let us consider a graph G2 given by reversing directions of the edges E
of G1. Then G1 is c-vertex-colorable if and only if G2 is c-vertex-colorable.

Let c be a non zero cardinal number and G1 be a c-vertex-colorable graph.
Let us consider E. One can verify that every graph given by reversing directions
of the edges E of G1 is c-vertex-colorable.

Now we state the proposition:

(34) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G1 is c-vertex-colorable if and only if G2 is c-vertex-colorable. The
theorem is a consequence of (31), (4), and (19).

Let c be a non zero cardinal number and G2 be a c-vertex-colorable graph.
Let us consider V . One can verify that every supergraph of G2 extended by the
vertices from V is c-vertex-colorable.

Now we state the propositions:

(35) Let us consider vertices v, w of G2, an object e, and a supergraph G1 of
G2 extended by e between vertices v and w. Suppose v and w are adjacent.
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Then G1 is c-vertex-colorable if and only if G2 is c-vertex-colorable. The
theorem is a consequence of (31) and (20).

(36) Let us consider objects v, e, w, and a supergraph G1 of G2 extended by
e between vertices v and w. Suppose v 6= w and G2 is c-vertex-colorable.
Then G1 is (c+ 1)-vertex-colorable. The theorem is a consequence of (22),
(32), and (27).

(37) Let us consider a non edgeless graph G2, objects v, e, w, and a su-
pergraph G1 of G2 extended by v, w and e between them. Then G1 is
c-vertex-colorable if and only if G2 is c-vertex-colorable. The theorem is
a consequence of (31), (33), and (32).

(38) Let us consider an edgeless graph G2, and objects v, e, w. Then every su-
pergraph of G2 extended by v, w and e between them is 2-vertex-colorable.
The theorem is a consequence of (33), (32), and (27).

(39) Let us consider an object v, and a supergraph G1 of G2 extended by
vertex v and edges between v and V of G2. If G2 is c-vertex-colorable,
then G1 is (c + 1)-vertex-colorable. The theorem is a consequence of (7),
(25), (32), and (27).

(40) Let us consider a subgraph G2 of G1 with parallel edges removed. Then
G1 is c-vertex-colorable if and only if G2 is c-vertex-colorable. The theorem
is a consequence of (31).

Let c be a non zero cardinal number and G1 be a c-vertex-colorable graph.
Note that every subgraph ofG1 with parallel edges removed is c-vertex-colorable.

Now we state the proposition:

(41) Let us consider a subgraph G2 of G1 with directed-parallel edges remo-
ved. Then G1 is c-vertex-colorable if and only if G2 is c-vertex-colorable.
The theorem is a consequence of (31) and (40).

Let c be a non zero cardinal number and G1 be a c-vertex-colorable graph.
One can check that every subgraph of G1 with directed-parallel edges removed
is c-vertex-colorable.

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(42) If F is weak subgraph embedding and G2 is c-vertex-colorable, then G1
is c-vertex-colorable. The theorem is a consequence of (9) and (26).

(43) If F is isomorphism, then G1 is c-vertex-colorable iff G2 is c-vertex-
colorable. The theorem is a consequence of (42).

Let c be a non zero cardinal number and G be a c-vertex-colorable graph.
Let us note that every graph which is G-isomorphic is also c-vertex-colorable.

Let us consider G. We say that G is finitely vertex-colorable if and only if
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(Def. 3) there exists n such that G is n-vertex-colorable.

One can verify that every graph which is finitely vertex-colorable is also
loopless and every graph which is vertex-finite and loopless is also finitely vertex-
colorable and every graph which is edgeless is also finitely vertex-colorable.

Let us consider n. Let us note that every graph which is n-vertex-colorable
is also finitely vertex-colorable and there exists a graph which is finitely vertex-
colorable and there exists a graph which is non finitely vertex-colorable.

Let G be a finitely vertex-colorable graph. Observe that every subgraph of
G is finitely vertex-colorable.

Let G be a non finitely vertex-colorable graph. One can verify that every
supergraph of G is non finitely vertex-colorable.

Now we state the propositions:

(44) If G1 ≈ G2 and G1 is finitely vertex-colorable, then G2 is finitely vertex-
colorable. The theorem is a consequence of (32).

(45) Let us consider a graph G2 given by reversing directions of the edges
E of G1. Then G1 is finitely vertex-colorable if and only if G2 is finitely
vertex-colorable.

Let G1 be a finitely vertex-colorable graph. Let us consider E. Observe that
every graph given by reversing directions of the edges E of G1 is finitely vertex-
colorable.

Let G1 be a non finitely vertex-colorable graph. Note that every graph given
by reversing directions of the edges E of G1 is non finitely vertex-colorable.

Now we state the proposition:

(46) Let us consider a supergraph G1 of G2 extended by the vertices from
V . Then G1 is finitely vertex-colorable if and only if G2 is finitely vertex-
colorable. The theorem is a consequence of (34).

Let G2 be a finitely vertex-colorable graph. Let us consider V . One can
verify that every supergraph of G2 extended by the vertices from V is finitely
vertex-colorable.

Now we state the propositions:

(47) Let us consider objects v, e, w, and a supergraph G1 of G2 extended by
e between vertices v and w. Suppose v 6= w. Then G1 is finitely vertex-
colorable if and only if G2 is finitely vertex-colorable. The theorem is
a consequence of (36).

(48) Let us consider objects v, e, w, and a supergraph G1 of G2 extended by
v, w and e between them. Then G1 is finitely vertex-colorable if and only
if G2 is finitely vertex-colorable. The theorem is a consequence of (37) and
(38).
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Let G2 be a finitely vertex-colorable graph and v, e, w be objects. Observe
that every supergraph of G2 extended by v, w and e between them is finitely
vertex-colorable.

Now we state the proposition:

(49) Let us consider an object v, and a supergraph G1 of G2 extended by
vertex v and edges between v and V of G2. Then G1 is finitely vertex-
colorable if and only if G2 is finitely vertex-colorable. The theorem is
a consequence of (39).

LetG2 be a finitely vertex-colorable graph and v be an object. Let us consider
V . Let us note that every supergraph of G2 extended by vertex v and edges
between v and V of G2 is finitely vertex-colorable.

Now we state the proposition:

(50) Let us consider a subgraph G2 of G1 with parallel edges removed. Then
G1 is finitely vertex-colorable if and only if G2 is finitely vertex-colorable.
The theorem is a consequence of (40).

Let G1 be a non finitely vertex-colorable graph. One can verify that every
subgraph of G1 with parallel edges removed is non finitely vertex-colorable.

Now we state the proposition:

(51) Let us consider a subgraph G2 of G1 with directed-parallel edges re-
moved. Then G1 is finitely vertex-colorable if and only if G2 is finitely
vertex-colorable. The theorem is a consequence of (41).

Let G1 be a non finitely vertex-colorable graph. One can verify that eve-
ry subgraph of G1 with directed-parallel edges removed is non finitely vertex-
colorable.

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(52) If F is weak subgraph embedding and G2 is finitely vertex-colorable,
then G1 is finitely vertex-colorable. The theorem is a consequence of (42).

(53) If F is isomorphism, then G1 is finitely vertex-colorable iff G2 is finitely
vertex-colorable. The theorem is a consequence of (52).

Let G be a finitely vertex-colorable graph. Observe that every graph which
is G-isomorphic is also finitely vertex-colorable.

Let G be a graph. The functor χ(G) yielding a cardinal number is defined
by the term

(Def. 4)
⋂
{c, where c is a cardinal subset of G.order() : G is c-vertex-colorable}.

Now we state the propositions:

(54) If G is loopless, then G is χ(G)-vertex-colorable. The theorem is a con-
sequence of (29).
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(55) G is not loopless if and only if χ(G) = 0. The theorem is a consequence
of (29).

Let G be a loopless graph. One can verify that χ(G) is non zero.
Let G be a non loopless graph. Let us observe that χ(G) is zero.
Now we state the propositions:

(56) χ(G) ⊆ G.order(). The theorem is a consequence of (29).

(57) If G is c-vertex-colorable, then χ(G) ⊆ c. The theorem is a consequence
of (56).

(58) If G is c-vertex-colorable and for every cardinal number d such that G
is d-vertex-colorable holds c ⊆ d, then χ(G) = c. The theorem is a conse-
quence of (57) and (29).

Let G be a finitely vertex-colorable graph. Note that χ(G) is natural.
Let us note that the functor χ(G) yields a natural number. Now we state

the propositions:

(59) Let us consider a loopless graph G. Then 1 ⊆ χ(G).

(60) G is edgeless if and only if χ(G) = 1. The theorem is a consequence of
(57), (59), and (54).

(61) Let us consider a loopless, non edgeless graph G. Then 2 ⊆ χ(G). The
theorem is a consequence of (60).

(62) Let us consider a loopless graph G. If G is complete, then χ(G) =
G.order(). The theorem is a consequence of (29) and (56).

(63) Let us consider a loopless graph G, and a subgraph H of G. Then χ(H) ⊆
χ(G). The theorem is a consequence of (54) and (57).

(64) If G1 ≈ G2, then χ(G1) = χ(G2). The theorem is a consequence of (32).

(65) Let us consider a graph G2 given by reversing directions of the edges E
of G1. Then χ(G1) = χ(G2). The theorem is a consequence of (33).

(66) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then χ(G1) = χ(G2). The theorem is a consequence of (54), (34), (57),
and (58).

(67) Let us consider a non edgeless graph G2, objects v, e, w, and a super-
graph G1 of G2 extended by v, w and e between them. Then χ(G1) =
χ(G2). The theorem is a consequence of (54), (37), (57), and (58).

(68) Let us consider an edgeless graph G2, a vertex v of G2, objects e, w, and
a supergraph G1 of G2 extended by v, w and e between them. Suppose
w /∈ the vertices of G2. Then χ(G1) = 2. The theorem is a consequence of
(38) and (58).

(69) Let us consider an edgeless graph G2, objects v, e, a vertex w of G2, and
a supergraph G1 of G2 extended by v, w and e between them. Suppose
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v /∈ the vertices of G2. Then χ(G1) = 2. The theorem is a consequence of
(38) and (58).

(70) Let us consider an object v, and a supergraph G1 of G2 extended by
vertex v and edges between v and V of G2. Then χ(G1) ⊆ χ(G2) + 1. The
theorem is a consequence of (54), (39), and (57).

(71) Let us consider a loopless graph G2, an object v, and a supergraph G1
of G2 extended by vertex v and edges between v and the vertices of G2.
Suppose v /∈ the vertices of G2. Then χ(G1) = χ(G2) + 1. The theorem is
a consequence of (70), (63), (54), (3), (15), and (57).

(72) Let us consider a subgraph G2 of G1 with parallel edges removed. Then
χ(G1) = χ(G2). The theorem is a consequence of (40), (54), (57), and
(58).

(73) Let us consider a subgraph G2 of G1 with directed-parallel edges remo-
ved. Then χ(G1) = χ(G2). The theorem is a consequence of (41), (54),
(57), and (58).

(74) Let us consider a graph G1, a loopless graph G2, and a partial graph
mapping F fromG1 toG2. If F is weak subgraph embedding, then χ(G1) ⊆
χ(G2). The theorem is a consequence of (42), (54), and (57).

(75) Let us consider a partial graph mapping F from G1 to G2. If F is iso-
morphism, then χ(G1) = χ(G2). The theorem is a consequence of (54),
(43), (57), and (58).

(76) Let us consider a G1-isomorphic graph G2. Then χ(G1) = χ(G2). The
theorem is a consequence of (75).

2. Edge Colorings

Let us consider G.
An edge coloring of G is a many sorted set indexed by the edges of G. In

the sequel g denotes an edge coloring of G.
Now we state the proposition:

(77) Let us consider a function g′. Suppose rng g ⊆ dom g′. Then g′ · g is
an edge coloring of G.

Let us consider G and g. Let g′ be a many sorted set indexed by rng g. Note
that the functor g′ ·g yields an edge coloring of G. Now we state the propositions:

(78) Let us consider a subgraph H of G. Then g�(the edges of H) is an edge
coloring of H.

(79) Let us consider an object e, vertices v, w of G2, a supergraph G1 of G2
extended by e between vertices v and w, an edge coloring g of G2, and
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an object x. Suppose e /∈ the edges of G2. Then g+·(e 7−→. x) is an edge
coloring of G1.

(80) Let us consider objects v, e, a vertex w of G2, a supergraph G1 of G2
extended by v, w and e between them, an edge coloring g of G2, and
an object x. Suppose e /∈ the edges of G2 and v /∈ the vertices of G2. Then
g+·(e7−→. x) is an edge coloring of G1.

(81) Let us consider a vertex v of G2, objects e, w, a supergraph G1 of G2
extended by v, w and e between them, an edge coloring g of G2, and
an object x. Suppose e /∈ the edges of G2 and w /∈ the vertices of G2.
Then g+·(e 7−→. x) is an edge coloring of G1.

(82) Let us consider an object v, a subset V of the vertices of G2, a supergraph
G1 of G2 extended by vertex v and edges between v and V of G2, an edge
coloring g2 of G2, and a function h. Suppose v /∈ the vertices of G2 and
domh = G1.edgesBetween(V, {v}). Then g2+·h is an edge coloring of G1.

Let us consider a partial graph mapping F from G1 to G. Now we state the
propositions:

(83) If dom(FE) = the edges of G1, then g · (FE) is an edge coloring of G1.

(84) If F is total, then g · (FE) is an edge coloring of G1. The theorem is
a consequence of (83).

Let us consider G and g. We say that g is proper if and only if

(Def. 5) for every vertex v of G, g�v.edgesInOut() is one-to-one.

Now we state the propositions:

(85) g is proper if and only if for every vertex v of G and for every objects
e1, e2 such that e1, e2 ∈ v.edgesInOut() and g(e1) = g(e2) holds e1 = e2.

(86) g is proper if and only if for every objects e1, e2, v, w1, w2 such that e1
joins v and w1 in G and e2 joins v and w2 in G and g(e1) = g(e2) holds
e1 = e2. The theorem is a consequence of (85).

(87) Let us consider a one-to-one function g′, and an edge coloring g2 of G.
If g2 = g′ · g and g is proper, then g2 is proper.

(88) Let us consider a one-to-one many sorted set g′ indexed by rng g. If g is
proper, then g′ · g is proper.

Let us consider G. One can verify that every edge coloring of G which is one-
to-one is also proper and there exists an edge coloring of G which is one-to-one
and proper.

Now we state the propositions:

(89) Let us consider a subgraph H of G, and an edge coloring g′ of H. Suppose
g′ = g�(the edges of H) and g is proper. Then g′ is proper. The theorem
is a consequence of (85).
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(90) Let us consider an edge coloring g1 of G1, and an edge coloring g2 of G2.
Suppose G1 ≈ G2 and g1 = g2 and g1 is proper. Then g2 is proper.

(91) Let us consider a graph G2 given by reversing directions of the edges E
of G1, an edge coloring g1 of G1, and an edge coloring g2 of G2. If g1 = g2,
then g1 is proper iff g2 is proper.

(92) Let us consider a supergraph G1 of G2 extended by the vertices from V ,
an edge coloring g1 of G1, and an edge coloring g2 of G2. If g1 = g2, then
if g2 is proper, then g1 is proper.

(93) Let us consider objects v, e, w, a supergraph G1 of G2 extended by e

between vertices v and w, an edge coloring g1 of G1, an edge coloring g2
of G2, and an object x. Suppose g1 = g2+·(e7−→. x) and e /∈ the edges of
G2 and x /∈ rng g2. If g2 is proper, then g1 is proper.

(94) Let us consider objects v, e, a vertex w of G2, a supergraph G1 of G2
extended by v, w and e between them, an edge coloring g1 of G1, an edge
coloring g2 of G2, and an object x. Suppose g1 = g2+·(e 7−→. x) and x /∈
rng g2 and e /∈ the edges of G2 and v /∈ the vertices of G2. If g2 is proper,
then g1 is proper. The theorem is a consequence of (92) and (93).

(95) Let us consider a vertex v of G2, objects e, w, a supergraph G1 of G2
extended by v, w and e between them, an edge coloring g1 of G1, an edge
coloring g2 of G2, and an object x. Suppose g1 = g2+·(e 7−→. x) and x /∈
rng g2 and e /∈ the edges of G2 and w /∈ the vertices of G2. If g2 is proper,
then g1 is proper. The theorem is a consequence of (92) and (93).

(96) Let us consider an object v, a subset V of the vertices of G2, a supergraph
G1 of G2 extended by vertex v and edges between v and V of G2, an edge
coloring g2 of G2, an edge coloring g1 of G1, and sets X, E. Suppose E =
G1.edgesBetween(V, {v}) and rng g2 ⊆ X and g1 = g2+·〈E 7−→ X, idE〉
and v /∈ the vertices ofG2 and g2 is proper. Then g1 is proper. The theorem
is a consequence of (85) and (86).

Let us consider a partial graph mapping F from G1 to G and an edge coloring
g′ of G1. Now we state the propositions:

(97) Suppose dom(FE) = the edges of G1 and FE is one-to-one and g′ =
g · (FE) and g is proper. Then g′ is proper. The theorem is a consequence
of (85).

(98) If F is weak subgraph embedding and g′ = g · (FE) and g is proper, then
g′ is proper. The theorem is a consequence of (97).

Let us consider c and G. We say that G is c-edge-colorable if and only if

(Def. 6) there exists a proper edge coloring g of G such that rng g ⊆ c.
Now we state the propositions:
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(99) If c1 ⊆ c2 and G is c1-edge-colorable, then G is c2-edge-colorable.

(100) G is (G.size())-edge-colorable.

(101) G is edgeless if and only if G is 0-edge-colorable. The theorem is a con-
sequence of (100).

Let us observe that every graph which is edgeless is also 0-edge-colorable
and every graph which is 0-edge-colorable is also edgeless.

Let us consider c. Note that every graph which is c-edge is also c-edge-
colorable and there exists a graph which is c-edge-colorable.

Now we state the proposition:

(102) Let us consider a subgraph H of G. If G is c-edge-colorable, then H is
c-edge-colorable. The theorem is a consequence of (78) and (89).

Let us consider c. Let G be a c-edge-colorable graph. Note that every sub-
graph of G is c-edge-colorable.

Now we state the propositions:

(103) If G1 ≈ G2 and G1 is c-edge-colorable, then G2 is c-edge-colorable. The
theorem is a consequence of (90).

(104) Let us consider a graph G2 given by reversing directions of the edges E
of G1. Then G1 is c-edge-colorable if and only if G2 is c-edge-colorable.

Let us consider c. Let G1 be a c-edge-colorable graph. Let us consider E.
Let us note that every graph given by reversing directions of the edges E of G1
is c-edge-colorable.

Now we state the proposition:

(105) Let us consider a supergraph G1 of G2 extended by the vertices from
V . Then G1 is c-edge-colorable if and only if G2 is c-edge-colorable. The
theorem is a consequence of (92).

Let us consider c. Let G2 be a c-edge-colorable graph. Let us consider V .
Let us note that every supergraph of G2 extended by the vertices from V is
c-edge-colorable.

Let us consider a c-edge-colorable graph G2 and objects v, e, w. Now we
state the propositions:

(106) Every supergraph of G2 extended by e between vertices v and w is (c+1)-
edge-colorable. The theorem is a consequence of (79), (93), (103), and (99).

(107) Every supergraph of G2 extended by v, w and e between them is (c+1)-
edge-colorable. The theorem is a consequence of (106), (103), and (99).

Now we state the proposition:

(108) Let us consider an edgeless graph G2, and objects v, e, w. Then every
supergraph of G2 extended by v, w and e between them is 1-edge-colorable.
The theorem is a consequence of (104) and (99).
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Let us consider c. Let G2 be a c-edge-colorable graph and v, e, w be objects.
Note that every supergraph of G2 extended by e between vertices v and w

is (c + 1)-edge-colorable and every supergraph of G2 extended by v, w and e

between them is (c+ 1)-edge-colorable.
Now we state the proposition:

(109) Let us consider a c-edge-colorable graph G2, and an object v. Then every
supergraph of G2 extended by vertex v and edges between v and V of G2 is
(c+ V )-edge-colorable. The theorem is a consequence of (82), (96), (103),
and (99).

Let us consider c. Let G2 be a c-edge-colorable graph and v be an object. Let
us consider V . One can verify that every supergraph of G2 extended by vertex
v and edges between v and V of G2 is (c+ V )-edge-colorable.

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(110) If F is weak subgraph embedding and G2 is c-edge-colorable, then G1 is
c-edge-colorable. The theorem is a consequence of (84) and (98).

(111) If F is isomorphism, then G1 is c-edge-colorable iff G2 is c-edge-colorable.
The theorem is a consequence of (110).

Let us consider c. Let G be a c-edge-colorable graph. Note that every graph
which is G-isomorphic is also c-edge-colorable.

Let us consider G. We say that G is finitely edge-colorable if and only if

(Def. 7) there exists n such that G is n-edge-colorable.

Let us observe that every graph which is edge-finite is also finitely edge-
colorable and every graph which is edgeless is also finitely edge-colorable and
every graph which is finitely edge-colorable is also locally-finite.

Let us consider n. One can check that every graph which is n-edge-colorable
is also finitely edge-colorable and there exists a graph which is finitely edge-
colorable and there exists a graph which is non finitely edge-colorable.

Let G be a finitely edge-colorable graph. Note that every subgraph of G is
finitely edge-colorable.

Now we state the propositions:

(112) If G1 ≈ G2 and G1 is finitely edge-colorable, then G2 is finitely edge-
colorable. The theorem is a consequence of (103).

(113) Let us consider a graph G2 given by reversing directions of the edges
E of G1. Then G1 is finitely edge-colorable if and only if G2 is finitely
edge-colorable.

Let G1 be a finitely edge-colorable graph. Let us consider E. One can verify
that every graph given by reversing directions of the edges E of G1 is finitely
edge-colorable.
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Let G1 be a non finitely edge-colorable graph. Observe that every graph
given by reversing directions of the edges E of G1 is non finitely edge-colorable.

Now we state the proposition:

(114) Let us consider a supergraph G1 of G2 extended by the vertices from
V . Then G1 is finitely edge-colorable if and only if G2 is finitely edge-
colorable. The theorem is a consequence of (105).

Let G2 be a finitely edge-colorable graph. Let us consider V . One can verify
that every supergraph of G2 extended by the vertices from V is finitely edge-
colorable.

Let G2 be a non finitely edge-colorable graph. Observe that every supergraph
of G2 extended by the vertices from V is non finitely edge-colorable.

Now we state the proposition:

(115) Let us consider objects v, e, w, and a supergraph G1 of G2 extended by
e between vertices v and w. Then G1 is finitely edge-colorable if and only
if G2 is finitely edge-colorable. The theorem is a consequence of (107).

Let G2 be a finitely edge-colorable graph and v, e, w be objects. Note that
every supergraph of G2 extended by e between vertices v and w is finitely edge-
colorable.

Let G2 be a non finitely edge-colorable graph. One can verify that every
supergraph of G2 extended by e between vertices v and w is non finitely edge-
colorable.

Now we state the proposition:

(116) Let us consider objects v, e, w, and a supergraph G1 of G2 extended by
v, w and e between them. Then G1 is finitely edge-colorable if and only if
G2 is finitely edge-colorable.

Let G2 be a finitely edge-colorable graph and v, e, w be objects. Observe
that every supergraph of G2 extended by v, w and e between them is finitely
edge-colorable.

Let G2 be a non finitely edge-colorable graph. Note that every supergraph
of G2 extended by v, w and e between them is non finitely edge-colorable.

Now we state the proposition:

(117) Let us consider an object v, a finite set V , and a supergraph G1 of G2
extended by vertex v and edges between v and V of G2. Then G1 is finitely
edge-colorable if and only if G2 is finitely edge-colorable.

Let G2 be a finitely edge-colorable graph, v be an object, and V be a finite
set. Let us observe that every supergraph of G2 extended by vertex v and edges
between v and V of G2 is finitely edge-colorable.

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:
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(118) If F is weak subgraph embedding and G2 is finitely edge-colorable, then
G1 is finitely edge-colorable. The theorem is a consequence of (110).

(119) If F is isomorphism, then G1 is finitely edge-colorable iff G2 is finitely
edge-colorable. The theorem is a consequence of (118).

Let G be a finitely edge-colorable graph. One can verify that every graph
which is G-isomorphic is also finitely edge-colorable.

Let us consider G. The functor χ′(G) yielding a cardinal number is defined
by the term

(Def. 8)
⋂
{c, where c is a cardinal subset of G.size() : G is c-edge-colorable}.

Now we state the propositions:

(120) χ′(G) ⊆ G.size(). The theorem is a consequence of (100).

(121) G is edgeless if and only if χ′(G) = 0. The theorem is a consequence of
(120).

Let G be an edgeless graph. One can check that χ′(G) is zero.
Let G be a non edgeless graph. One can check that χ′(G) is non zero.
Now we state the proposition:

(122) G is c-edge-colorable and for every cardinal number d such that G is
d-edge-colorable holds c ⊆ d if and only if χ′(G) = c. The theorem is
a consequence of (100).

Let G be a finitely edge-colorable graph. Let us observe that χ′(G) is natural.
Let us observe that the functor χ′(G) yields a natural number. Now we state

the propositions:

(123) Let us consider a loopless graph G. Then ∆̄(G) ⊆ χ′(G).

(124) If G1 ≈ G2, then χ′(G1) = χ′(G2). The theorem is a consequence of
(103) and (122).

(125) Let us consider a graph G2 given by reversing directions of the edges E
of G1. Then χ′(G1) = χ′(G2). The theorem is a consequence of (104) and
(122).

(126) Let us consider a subgraph H of G. Then χ′(H) ⊆ χ′(G).

(127) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then χ′(G1) = χ′(G2). The theorem is a consequence of (105) and (122).

(128) Let us consider objects v, e, w, and a supergraph G1 of G2 extended by
e between vertices v and w. Then χ′(G1) ⊆ χ′(G2) + 1. The theorem is
a consequence of (106).

(129) Let us consider objects v, e, w, and a supergraph G1 of G2 extended
by v, w and e between them. Then χ′(G1) ⊆ χ′(G2) + 1. The theorem is
a consequence of (107).
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(130) Let us consider an edgeless graph G2, a vertex v of G2, objects e, w, and
a supergraph G1 of G2 extended by v, w and e between them. Suppose
w /∈ the vertices of G2. Then χ′(G1) = 1. The theorem is a consequence
of (122).

(131) Let us consider an edgeless graph G2, objects v, e, a vertex w of G2, and
a supergraph G1 of G2 extended by v, w and e between them. Suppose
v /∈ the vertices of G2. Then χ′(G1) = 1. The theorem is a consequence of
(130) and (125).

(132) Let us consider an object v, and a supergraph G1 of G2 extended by
vertex v and edges between v and V of G2. Then χ′(G1) ⊆ χ′(G2) + V .

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(133) If F is weak subgraph embedding, then χ′(G1) ⊆ χ′(G2). The theorem
is a consequence of (110).

(134) If F is isomorphism, then χ′(G1) = χ′(G2). The theorem is a consequence
of (133).

(135) Let us consider a G1-isomorphic graph G2. Then χ′(G1) = χ′(G2). The
theorem is a consequence of (134).

(136) If G is trivial, then χ′(G) = G.size(). The theorem is a consequence of
(100) and (122).

3. Total Colorings

Let us consider G.
A total coloring of G is an object defined by

(Def. 9) there exists a vertex coloring f of G and there exists an edge coloring g
of G such that it = 〈〈f, g〉〉.

Note that every total coloring of G is pair.
From now on t denotes a total coloring of G.
Let us consider G and t. We introduce the notation tV as a synonym of (t)1

and tE as a synonym of (t)2.
One can check that 〈〈tV, tE〉〉 reduces to t.
One can verify that the functor tV yields a vertex coloring of G. Let us

observe that the functor tE yields an edge coloring of G. Let us consider f and
g. Note that the functor 〈〈f, g〉〉 yields a total coloring of G. Now we state the
propositions:

(137) If G is edgeless, then 〈〈f, ∅〉〉 is a total coloring of G.
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(138) Let us consider a subgraph H of G. Then 〈〈tV�(the vertices of H), tE�(the
edges of H)〉〉 is a total coloring of H. The theorem is a consequence of (3)
and (78).

(139) Let us consider a supergraph G1 of G2 extended by the vertices from
V , a total coloring t of G2, and a function h. Suppose domh = V \
(the vertices of G2). Then 〈〈tV+·h, tE〉〉 is a total coloring of G1. The the-
orem is a consequence of (4).

(140) Let us consider objects v, x, a supergraph G1 of G2 extended by v, and
a total coloring t of G2. Then 〈〈tV+·(v 7−→. x), tE〉〉 is a total coloring of G1.

(141) Let us consider an object e, vertices v, w of G2, a supergraph G1 of
G2 extended by e between vertices v and w, a total coloring t of G2,
and an object y. Suppose e /∈ the edges of G2. Then 〈〈tV, tE+·(e7−→. y)〉〉 is
a total coloring of G1.

(142) Let us consider an object e, vertices v, w, u of G2, a supergraph G1 of G2
extended by e between vertices v and w, a total coloring t of G2, and ob-
jects x, y. Suppose e /∈ the edges of G2. Then 〈〈tV+·(u7−→. x), tE+·(e7−→. y)〉〉
is a total coloring of G1. The theorem is a consequence of (141).

(143) Let us consider objects v, e, a vertex w of G2, a supergraph G1 of G2
extended by v, w and e between them, a total coloring t of G2, and ob-
jects x, y. Suppose e /∈ the edges of G2 and v /∈ the vertices of G2. Then
〈〈tV+·(v 7−→. x), tE+·(e 7−→. y)〉〉 is a total coloring ofG1. The theorem is a con-
sequence of (140) and (141).

(144) Let us consider a vertex v of G2, objects e, w, a supergraph G1 of G2
extended by v, w and e between them, a total coloring t of G2, and
objects x, y. Suppose e /∈ the edges of G2 and w /∈ the vertices of G2.
Then 〈〈tV+·(w 7−→. x), tE+·(e7−→. y)〉〉 is a total coloring of G1. The theorem
is a consequence of (140) and (141).

(145) Let us consider a partial graph mapping F from G1 to G. Suppose F is
total. Then 〈〈(tV) · (FV), (tE) · (FE)〉〉 is a total coloring of G1. The theorem
is a consequence of (9) and (84).

Let us consider G and t. We say that t is proper if and only if

(Def. 10) tV is proper and tE is proper and for every vertex v of G, (tV)(v) /∈
(tE)◦(v.edgesInOut()).

Now we state the propositions:

(146) t is proper if and only if tV is proper and tE is proper and for every
objects e, v, w such that e joins v and w in G holds (tV)(v) 6= (tE)(e).

(147) If tV is proper and tE is proper and rng tV misses rng tE, then t is proper.
The theorem is a consequence of (146).
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(148) t is proper if and only if for every objects e1, e2, v, w1, w2 such that e1
joins v and w1 in G and e2 joins v and w2 in G holds (tV)(v) 6= (tV)(w1) and
(tV)(v) 6= (tE)(e1) and if e1 6= e2, then (tE)(e1) 6= (tE)(e2). The theorem is
a consequence of (10), (86), and (146).

(149) Suppose g is proper. Then there exists a proper edge coloring g′ of G
such that

(i) rng f misses rng g′, and

(ii) rng g = rng g′ .

The theorem is a consequence of (77) and (87).

(150) Suppose f is proper. Then there exists a vertex coloring f ′ of G such
that

(i) f ′ is proper, and

(ii) rng f ′ misses rng g, and

(iii) rng f = rng f ′ .

The theorem is a consequence of (1) and (12).

Let G be a loopless graph. Observe that there exists a total coloring of G
which is proper.

Let t be a proper total coloring of G. One can verify that tV is proper as
a vertex coloring of G and tE is proper as an edge coloring of G.

Now we state the propositions:

(151) Let us consider a subgraph H of G, and a total coloring t′ of H. Suppose
t′ = 〈〈tV�(the vertices of H), tE�(the edges of H)〉〉 and t is proper. Then t′

is proper. The theorem is a consequence of (15), (89), and (146).

(152) Let us consider a total coloring t1 of G1, and a total coloring t2 of G2.
Suppose G1 ≈ G2 and t1 = t2 and t1 is proper. Then t2 is proper. The
theorem is a consequence of (16), (90), and (146).

(153) Let us consider a graph G2 given by reversing directions of the edges E
of G1, a total coloring t1 of G1, and a total coloring t2 of G2. If t1 = t2,
then t1 is proper iff t2 is proper.

(154) Let us consider a supergraph G1 of G2 extended by the vertices from
V , a total coloring t1 of G1, a total coloring t2 of G2, and a function h.
Suppose domh = V \ (the vertices of G2) and t1V = t2V+·h and t1E = t2E
and t2 is proper. Then t1 is proper. The theorem is a consequence of (19)
and (92).

(155) Let us consider objects y, e, vertices v, w of G2, a supergraph G1 of G2
extended by e between vertices v and w, a total coloring t1 of G1, and
a total coloring t2 of G2. Suppose e /∈ the edges of G2 and v and w are
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adjacent and t1V = t2V and t1E = t2E+·(e 7−→. y) and y /∈ rng t2V ∪ rng t2E
and t2 is proper. Then t1 is proper. The theorem is a consequence of (20),
(93), and (146).

(156) Let us consider objects v, e, a vertex w of G2, a supergraph G1 of G2
extended by e between vertices v and w, a total coloring t1 of G1, a total
coloring t2 of G2, and objects x, y. Suppose e /∈ the edges of G2 and
v 6= w and t1V = t2V+·(v 7−→. x) and t1E = t2E+·(e 7−→. y) and {x, y} misses
rng t2V∪rng t2E and x 6= y and t2 is proper. Then t1 is proper. The theorem
is a consequence of (21), (93), and (146).

(157) Let us consider a vertex v of G2, objects e, w, a supergraph G1 of G2
extended by e between vertices v and w, a total coloring t1 of G1, a total
coloring t2 of G2, and objects x, y. Suppose e /∈ the edges of G2 and
v 6= w and t1V = t2V+·(w 7−→. x) and t1E = t2E+·(e7−→. y) and {x, y} misses
rng t2V∪rng t2E and x 6= y and t2 is proper. Then t1 is proper. The theorem
is a consequence of (156) and (153).

(158) Let us consider objects v, e, a vertex w of G2, a supergraph G1 of G2
extended by v, w and e between them, a total coloring t1 of G1, a total
coloring t2 of G2, and objects x, y. Suppose e /∈ the edges of G2 and
v /∈ the vertices of G2 and t1V = t2V+·(v 7−→. x) and t1E = t2E+·(e 7−→. y)
and y /∈ rng t2V ∪ rng t2E and x 6= y and x 6= (t2V)(w) and t2 is proper.
Then t1 is proper. The theorem is a consequence of (23), (94), and (146).

(159) Let us consider a vertex v of G2, objects e, w, a supergraph G1 of G2
extended by v, w and e between them, a total coloring t1 of G1, a total
coloring t2 of G2, and objects x, y. Suppose e /∈ the edges of G2 and
w /∈ the vertices of G2 and t1V = t2V+·(w 7−→. x) and t1E = t2E+·(e 7−→. y)
and y /∈ rng t2V ∪ rng t2E and x 6= y and x 6= (t2V)(v) and t2 is proper.
Then t1 is proper. The theorem is a consequence of (158) and (153).

(160) Let us consider a partial graph mapping F fromG1 toG, and a total colo-
ring t′ of G1. Suppose F is weak subgraph embedding and t′ = 〈〈(tV) ·(FV),
(tE)·(FE)〉〉 and t is proper. Then t′ is proper. The theorem is a consequence
of (26), (98), and (146).

Let us consider c and G. We say that G is c-total-colorable if and only if

(Def. 11) there exists a total coloring t of G such that t is proper and
rng tV ∪ rng tE ⊆ c.

Now we state the propositions:

(161) If c1 ⊆ c2 and G is c1-total-colorable, then G is c2-total-colorable.

(162) IfG is c-total-colorable, thenG is c-vertex-colorable and c-edge-colorable.

(163) If G is c1-vertex-colorable and c2-edge-colorable, then G is (c1+c2)-total-
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colorable. The theorem is a consequence of (150) and (147).

(164) If G is edgeless and f is proper and t = 〈〈f, ∅〉〉, then t is proper.

(165) G is edgeless if and only if G is 1-total-colorable. The theorem is a con-
sequence of (137) and (162).

Let c be a non zero cardinal number. One can check that there exists a graph
which is c-total-colorable.

Now we state the proposition:

(166) Let us consider a subgraph H of G. If G is c-total-colorable, then H is
c-total-colorable. The theorem is a consequence of (138) and (151).

Let us note that every graph is non 0-total-colorable and every graph which
is edgeless is also 1-total-colorable and every graph which is 1-total-colorable is
also edgeless.

Let c be a non zero cardinal number and G be a c-total-colorable graph.
Note that every subgraph of G is c-total-colorable.

Let us consider c. Observe that every graph which is c-total-colorable is also
loopless.

Now we state the propositions:

(167) If G1 ≈ G2 and G1 is c-total-colorable, then G2 is c-total-colorable. The
theorem is a consequence of (152).

(168) Let us consider a graph G2 given by reversing directions of the edges E
of G1. Then G1 is c-total-colorable if and only if G2 is c-total-colorable.

Let c be a non zero cardinal number and G1 be a c-total-colorable graph.
Let us consider E. One can check that every graph given by reversing directions
of the edges E of G1 is c-total-colorable.

Now we state the proposition:

(169) Let us consider a supergraph G1 of G2 extended by the vertices from
V . Then G1 is c-total-colorable if and only if G2 is c-total-colorable. The
theorem is a consequence of (166), (139), and (154).

Let c be a non zero cardinal number and G2 be a c-total-colorable graph.
Let us consider V . Let us observe that every supergraph of G2 extended by the
vertices from V is c-total-colorable.

Now we state the propositions:

(170) Let us consider an object e, vertices v, w of G2, and a supergraph G1 of
G2 extended by e between vertices v and w. Suppose v and w are adjacent
and G2 is c-total-colorable. Then G1 is (c+1)-total-colorable. The theorem
is a consequence of (141), (155), (167), and (161).

(171) Let us consider objects v, e, w, and a supergraph G1 of G2 extended by
e between vertices v and w. Suppose v 6= w and G2 is c-total-colorable.
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Then G1 is (c+ 2)-total-colorable. The theorem is a consequence of (142),
(156), (167), and (161).

(172) Let us consider a non edgeless graph G2, objects v, e, w, and a super-
graph G1 of G2 extended by v, w and e between them. If G2 is c-total-
colorable, then G1 is (c+1)-total-colorable. The theorem is a consequence
of (168), (167), and (161).

(173) Let us consider a vertex v of G2, objects e, w, and a supergraph G1 of
G2 extended by v, w and e between them. Suppose e /∈ the edges of G2
and w /∈ the vertices of G2 and v is endvertex. If G2 is c-total-colorable,
then G1 is c-total-colorable. The theorem is a consequence of (144) and
(148).

(174) Let us consider an edgeless graph G2, and objects v, e, w. Then every
supergraph ofG2 extended by v, w and e between them is 3-total-colorable.
The theorem is a consequence of (38) and (163).

(175) Let us consider an object v, and a supergraph G1 of G2 extended by
vertex v and edges between v and V of G2. Suppose G2 is c-total-colorable.
Then G1 is ((c+ 1) + V )-total-colorable. The theorem is a consequence of
(82), (7), (96), (25), (146), (167), and (161).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(176) If F is weak subgraph embedding and G2 is c-total-colorable, then G1 is
c-total-colorable. The theorem is a consequence of (145) and (160).

(177) If F is isomorphism, thenG1 is c-total-colorable iffG2 is c-total-colorable.
The theorem is a consequence of (176).

Let c be a non zero cardinal number and G be a c-total-colorable graph. One
can verify that every graph which is G-isomorphic is also c-total-colorable.

Let us consider G. We say that G is finitely total-colorable if and only if

(Def. 12) there exists n such that G is n-total-colorable.

Let us note that every graph which is finitely total-colorable is also loopless
and every graph which is edgeless is also finitely total-colorable.

Let us consider n. One can verify that every graph which is n-total-colorable
is also finitely total-colorable and there exists a graph which is finitely total-
colorable and there exists a graph which is non finitely total-colorable.

Let G be a finitely total-colorable graph. One can check that every subgraph
of G is finitely total-colorable.

Now we state the propositions:

(178) If G1 ≈ G2 and G1 is finitely total-colorable, then G2 is finitely total-
colorable. The theorem is a consequence of (167).
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(179) Let us consider a graph G2 given by reversing directions of the edges
E of G1. Then G1 is finitely total-colorable if and only if G2 is finitely
total-colorable. The theorem is a consequence of (168).

Let G1 be a finitely total-colorable graph. Let us consider E. Observe that
every graph given by reversing directions of the edges E of G1 is finitely total-
colorable.

Let G1 be a non finitely total-colorable graph. Note that every graph given
by reversing directions of the edges E of G1 is non finitely total-colorable.

Now we state the proposition:

(180) Let us consider a supergraph G1 of G2 extended by the vertices from
V . Then G1 is finitely total-colorable if and only if G2 is finitely total-
colorable. The theorem is a consequence of (169).

Let G2 be a finitely total-colorable graph. Let us consider V . One can verify
that every supergraph of G2 extended by the vertices from V is finitely total-
colorable.

LetG2 be a non finitely total-colorable graph. Observe that every supergraph
of G2 extended by the vertices from V is non finitely total-colorable.

Now we state the propositions:

(181) Let us consider objects v, e, w, and a supergraph G1 of G2 extended
by e between vertices v and w. Suppose v 6= w. Then G1 is finitely total-
colorable if and only if G2 is finitely total-colorable. The theorem is a con-
sequence of (171).

(182) Let us consider objects v, e, w, and a supergraph G1 of G2 extended by
v, w and e between them. Then G1 is finitely total-colorable if and only if
G2 is finitely total-colorable. The theorem is a consequence of (172) and
(174).

Let G2 be a finitely total-colorable graph and v, e, w be objects. One can
check that every supergraph of G2 extended by v, w and e between them is
finitely total-colorable.

Let G2 be a non finitely total-colorable graph. Let us observe that every
supergraph of G2 extended by v, w and e between them is non finitely total-
colorable.

Now we state the proposition:

(183) Let us consider an object v, a finite set V , and a supergraph G1 of G2
extended by vertex v and edges between v and V of G2. Then G1 is finitely
total-colorable if and only if G2 is finitely total-colorable. The theorem is
a consequence of (175).

Let G2 be a finitely total-colorable graph, v be an object, and V be a finite
set. Note that every supergraph of G2 extended by vertex v and edges between
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v and V of G2 is finitely total-colorable.
Let us consider a partial graph mapping F from G1 to G2. Now we state the

propositions:

(184) If F is weak subgraph embedding and G2 is finitely total-colorable, then
G1 is finitely total-colorable. The theorem is a consequence of (176).

(185) If F is isomorphism, then G1 is finitely total-colorable iff G2 is finitely
total-colorable. The theorem is a consequence of (184).

Let G be a finitely total-colorable graph. Let us note that every graph which
is G-isomorphic is also finitely total-colorable.

Let G be a graph. The functor χ′′(G) yielding a cardinal number is defined
by the term

(Def. 13)
⋂
{c, where c is a cardinal subset of G.order() +G.size() : G is c-total-

colorable}.
Now we state the propositions:

(186) If G is loopless, then G is χ′′(G)-total-colorable. The theorem is a con-
sequence of (29), (100), and (163).

(187) G is not loopless if and only if χ′′(G) = 0. The theorem is a consequence
of (29), (100), and (163).

Let G be a loopless graph. Let us observe that χ′′(G) is non zero.
Let G be a non loopless graph. Observe that χ′′(G) is zero.
Now we state the propositions:

(188) χ′′(G) ⊆ G.order() + G.size(). The theorem is a consequence of (29),
(100), and (163).

(189) If G is c-total-colorable, then χ′′(G) ⊆ c. The theorem is a consequence
of (188).

(190) If G is c-total-colorable and for every cardinal number d such that G is d-
total-colorable holds c ⊆ d, then χ′′(G) = c. The theorem is a consequence
of (189), (29), (100), and (163).

Let G be a finitely total-colorable graph. One can check that χ′′(G) is natu-
ral.

Note that the functor χ′′(G) yields a natural number. Now we state the
propositions:

(191) χ(G) ⊆ χ′′(G). The theorem is a consequence of (186), (57), and (162).

(192) Let us consider a loopless graph G. Then χ′(G) ⊆ χ′′(G). The theorem
is a consequence of (186) and (162).

(193) χ′′(G) ⊆ χ(G) + χ′(G). The theorem is a consequence of (54), (122),
(163), and (189).



Introduction to graph colorings 123

(194) Let us consider a loopless graphG. Then ∆̄(G)+1 ⊆ χ′′(G). The theorem
is a consequence of (186), (123), and (192).

(195) G is edgeless if and only if χ′′(G) = 1. The theorem is a consequence of
(190), (186), and (187).

(196) Let us consider a loopless, non edgeless graph G. Then 3 ⊆ χ′′(G). The
theorem is a consequence of (195), (186), and (148).

(197) Let us consider a loopless graph G, and a subgraph H of G. Then
χ′′(H) ⊆ χ′′(G). The theorem is a consequence of (186) and (189).

(198) If G1 ≈ G2, then χ′′(G1) = χ′′(G2). The theorem is a consequence of
(167), (186), (189), and (190).

(199) Let us consider a graph G2 given by reversing directions of the edges E
of G1. Then χ′′(G1) = χ′′(G2). The theorem is a consequence of (168),
(186), (189), and (190).

(200) Let us consider a supergraph G1 of G2 extended by the vertices from
V . Then χ′′(G1) = χ′′(G2). The theorem is a consequence of (169), (186),
(189), and (190).

(201) Let us consider a non edgeless graph G2, objects v, e, w, and a super-
graph G1 of G2 extended by v, w and e between them. Then χ′′(G1) ⊆
χ′′(G2) + 1. The theorem is a consequence of (186), (172), and (189).

(202) Let us consider an edgeless graph G2, a vertex v of G2, objects e, w, and
a supergraph G1 of G2 extended by v, w and e between them. Suppose
w /∈ the vertices of G2. Then χ′′(G1) = 3. The theorem is a consequence
of (196), (174), and (189).

(203) Let us consider an edgeless graph G2, objects v, e, a vertex w of G2, and
a supergraph G1 of G2 extended by v, w and e between them. Suppose
v /∈ the vertices of G2. Then χ′′(G1) = 3. The theorem is a consequence
of (196), (174), and (189).

(204) Let us consider an object v, and a supergraph G1 of G2 extended by
vertex v and edges between v and V of G2. Then χ′′(G1) ⊆ (χ′′(G2)+1)+
V . The theorem is a consequence of (186), (175), and (189).

(205) Let us consider a graphG1, a loopless graphG2, and a partial graph map-
ping F from G1 to G2. If F is weak subgraph embedding, then χ′′(G1) ⊆
χ′′(G2). The theorem is a consequence of (186), (176), and (189).

(206) Let us consider a partial graph mapping F from G1 to G2. If F is iso-
morphism, then χ′′(G1) = χ′′(G2). The theorem is a consequence of (186),
(177), (189), and (190).

(207) Let us consider a G1-isomorphic graph G2. Then χ′′(G1) = χ′′(G2). The
theorem is a consequence of (206).
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