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Transformation Tools for Real Linear Spaces
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Summary. This paper, using the Mizar system [1], [2], provides useful
tools for working with real linear spaces and real normed spaces. These include
the identification of a real number set with a one-dimensional real normed space,
the relationships between real linear spaces and real Euclidean spaces, the trans-
formation from a real linear space to a real vector space, and the properties of
basis and dimensions of real linear spaces. We referred to [6], [10], [8], [9] in this
formalization.
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1. Lipschitz Continuity of Linear Maps from Finite-Dimensional
Spaces

Let n be a natural number. One can check that 〈En, ‖·‖〉 is finite dimensional.
Now we state the propositions:

(1) Let us consider real linear spaces X, Y, a linear operator L from X into
Y, and a finite sequence F of elements of X. Then L(

∑
F ) =

∑
(L · F ).

Proof: Define S[set] ≡ for every finite sequence H of elements of X such
that lenH = $1 holds L(

∑
H) =

∑
(L ·H). S[0]. For every natural number

n such that S[n] holds S[n+ 1]. For every natural number n, S[n]. �

(2) Let us consider a finite dimensional real normed space X, a real normed
space Y, and a linear operator L from X into Y. If dim(X) 6= 0, then L is
Lipschitzian.
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Proof: Set b = the ordered basis of RLSp2RVSp(X). Consider r1, r2
being real numbers such that 0 < r1 and 0 < r2 and for every point x of
X, ‖x‖ ¬ r1 · (max-norm(X, b))(x) and (max-norm(X, b))(x) ¬ r2 · ‖x‖.
Reconsider e = b as a finite sequence of elements of X. Define N (natural
number) = ‖L(e/$1)‖(∈ R). Consider k being a finite sequence of elements
of R such that len k = len b and for every natural number i such that
i ∈ dom k holds k(i) = N (i). Set k1 =

∑
k. For every natural number i

such that i ∈ dom k holds 0 ¬ k(i). For every point x of X, ‖L(x)‖ ¬
r2 · (k1 + 1) · ‖x‖. �

(3) Let us consider a finite dimensional real normed space X, and a real
normed space Y. Suppose dim(X) 6= 0. Then LinearOperators(X,Y ) =
BdLinOps(X,Y ). The theorem is a consequence of (2).

2. Identification of a Real Number Set with a One-Dimensional
Real Normed Space

One can check that the real normed space of R is non empty, right com-
plementable, Abelian, add-associative, right zeroed, vector distributive, scalar
distributive, scalar associative, scalar unital, discernible, reflexive, and real nor-
med space-like. Now we state the propositions:

(4) Let us consider elements v, w of the real normed space of R, and elements
v1, w1 of R. If v = v1 and w = w1, then v + w = v1 + w1.

(5) Let us consider an element v of the real normed space of R, an element
v1 of R, and a real number a. If v = v1, then a · v = a · v1.

(6) Let us consider an element v of the real normed space of R, and an ele-
ment v1 of R. If v = v1, then ‖v‖ = |v1|.

3. Identification of Real Euclidean Space and Real Normed Space

Now we state the propositions:

(7) There exists a linear operator f from the real normed space of R into
〈E1, ‖ · ‖〉 such that

(i) f is isomorphism, and

(ii) for every element x of the real normed space of R, f(x) = 〈x〉.
Proof: Define H(real number) = 〈$1〉(∈ R1). Consider f being a function
from R into R1 such that for every element x of R, f(x) = H(x). For every
element x of the real normed space of R, f(x) = 〈x〉. For every elements v,
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w of the real normed space of R, f(v+w) = f(v)+f(w). For every vector x
of the real normed space of R and for every real number r, f(r·x) = r·f(x).
For every point x of the real normed space of R, ‖x‖ = ‖f(x)‖ by [3, (1)],
[5, (2)]. �

(8) (i) the real normed space of R is finite dimensional, and

(ii) dim(the real normed space of R) = 1.
The theorem is a consequence of (7).

(9) Let us consider a real linear space sequence X, elements v, w of
∏
X,

and an element i of domX. Then

(i) (
∏◦〈+Xi〉i)(v, w)(i) = (the addition of X(i))(v(i), w(i)), and

(ii) for every vectors v2, w2 of X(i) such that v2 = v(i) and w2 = w(i)
holds (

∏◦〈+Xi〉i)(v, w)(i) = v2 + w2.

(10) Let us consider a real linear space sequence X, an element r of R, an ele-
ment v of

∏
X, and an element i of domX. Then

(i) (
∏◦multopX)(r, v)(i) = (the external multiplication ofX(i))(r, v(i)),

and

(ii) for every vector v2 of X(i) such that v2 = v(i) holds

(
∏◦multopX)(r, v)(i) = r · v2.

Let us consider a natural number n and a real norm space sequence X. Now
we state the propositions:

(11) If X = n 7→ (the real normed space of R), then
∏
X = 〈En, ‖ · ‖〉.

Proof: Set P1 =
∏
X. For every natural number i such that i ∈ Seg n

holds X(i) = R. For every object x, x ∈
∏
X iff x ∈ Rn. For every

element j of domX, 〈0, . . . , 0︸ ︷︷ ︸
n

〉(j) = 0X(j). For every elements a, b of Rn,

(the addition of P1)(a, b) = a + b. For every real number r and for every
element a of Rn, (the external multiplication of P1)(r, a) = r ·a. For every
element a of Rn, (the norm of P1)(a) = |a| by [4, (7)]. �

(12) Suppose X = n 7→ (the real normed space of R). Then

(i)
∏
X is finite dimensional, and

(ii) dim(
∏
X) = n.

The theorem is a consequence of (11).
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4. Transformation to Real Vector Space

Let X be a real linear space and Y be a subspace of X. One can verify that
the functor RLSp2RVSp(Y ) yields a subspace of RLSp2RVSp(X). Now we state
the proposition:

(13) Let us consider a real linear space X, and a subspace Y of X. Then
RLSp2RVSp(Y ) is a subspace of RLSp2RVSp(X).

Let us consider a real linear space X and subspaces Y1, Y2 of X. Now we
state the propositions:

(14) RLSp2RVSp(Y1 + Y2) = RLSp2RVSp(Y1) + RLSp2RVSp(Y2).

(15) RLSp2RVSp(Y1 ∩ Y2) = RLSp2RVSp(Y1) ∩ RLSp2RVSp(Y2).

(16) Let us consider a real linear space X.
Then RLSp2RVSp(0X) = 0RLSp2RVSp(X).

5. Basis and Dimension Properties of Real Linear Spaces

Now we state the propositions:

(17) Let us consider a real linear space X, and subspaces Y1, Y2 of X. Suppose
Y1 ∩ Y2 = 0X . Let us consider a linearly independent subset B1 of Y1,
and a linearly independent subset B2 of Y2. Then B1 ∪ B2 is a linearly
independent subset of Y1+Y2. The theorem is a consequence of (15), (16),
and (14).

(18) Let us consider a real linear space X, and subspaces Y1, Y2 of X. Suppose
Y1∩Y2 = 0X . Let us consider a basis B1 of Y1, and a basis B2 of Y2. Then
B1 ∪B2 is a basis of Y1 + Y2. The theorem is a consequence of (15), (16),
and (14).

(19) Let us consider real linear spaces X, Y, a subspace X1 of X, and a sub-
space Y1 of Y. Then X1 × Y1 is a subspace of X × Y.
Proof: Set V = X × Y. Set X2 = X1 × Y1. Set f = the addition of X2.
Set g = (the addition of V ) � (the carrier of X2). For every object z such
that z ∈ dom f holds f(z) = g(z). Set f = the external multiplication of
X2. Set g = (the external multiplication of V )�(R × (the carrier of X2)).
For every object z such that z ∈ dom f holds f(z) = g(z). �

(20) Let us consider real linear spaces X, Y, and subspaces X1, Y1 of X × Y.
Suppose X1 = X × 0Y and Y1 = 0X × Y. Then

(i) X1 + Y1 = X × Y, and

(ii) X1 ∩ Y1 = 0X×Y .
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Proof: For every object x, x ∈ the carrier of X1 + Y1 iff x ∈ the carrier
of X × Y. For every object x, x ∈ (the carrier of X × 0Y ) ∩ (the carrier
of 0X × Y ) iff x ∈ {〈〈0X , 0Y 〉〉} by [7, (9)]. �

Let us consider real linear spaces X, Y. Now we state the propositions:

(21) There exists a linear operator f from X into X × 0Y such that

(i) f is bijective, and

(ii) for every element x of X, f(x) = 〈〈x, 0Y 〉〉.
Proof: Set A = the carrier of X. Set B = the carrier of X × 0Y . Define
H(element of A) = 〈〈$1, 0Y 〉〉(∈ B). Consider f being a function from A into
B such that for every element x of A, f(x) = H(x). For every element x
of X, f(x) = 〈〈x, 0Y 〉〉. For every elements x1, x2 of X, f(x1 + x2) =
f(x1)+f(x2). For every vector x ofX and for every real number r, f(r·x) =
r · f(x). �

(22) There exists a linear operator f from Y into 0X × Y such that

(i) f is bijective, and

(ii) for every element y of Y, f(y) = 〈〈0X , y〉〉.
Proof: Set A = the carrier of Y. Set B = the carrier of 0X × Y. Define
H(element of A) = 〈〈0X , $1〉〉(∈ B). Consider f being a function from A
into B such that for every element y of A, f(y) = H(y). For every element
y of Y, f(y) = 〈〈0X , y〉〉. For every elements y1, y2 of Y, f(y1+y2) = f(y1)+
f(y2). For every vector y of Y and for every real number r, f(r·y) = r·f(y).
�

(23) Let us consider real linear spaces X, Y, a basis B6 of X, and a basis B7
of Y. Then B6 × {0Y } ∪ {0X} ×B7 is a basis of X × Y.
Proof: Reconsider B4 = B6 × {0Y } as a subset of the carrier of X × Y.
Reconsider B5 = {0X} ×B7 as a subset of the carrier of X × Y. Consider
T1 being a linear operator from X into X×0Y such that T1 is bijective and
for every element x of X, T1(x) = 〈〈x, 0Y 〉〉. For every object y, y ∈ T1◦B6
iff y ∈ B4.

Consider T2 being a linear operator from Y into 0X × Y such that T2
is bijective and for every element y of Y, T2(y) = 〈〈0X , y〉〉. For every object
y, y ∈ T2◦B7 iff y ∈ B5. Reconsider W1 = X × 0Y as a subspace of X ×
Y. Reconsider W2 = 0X × Y as a subspace of X × Y. W1 +W2 = X × Y
and W1 ∩W2 = 0X×Y . �

(24) Let us consider finite dimensional real linear spaces X, Y. Then

(i) X × Y is finite dimensional, and

(ii) dim(X × Y ) = dim(X) + dim(Y ).



98 kazuhisa nakasho

The theorem is a consequence of (23).

(25) Let us consider a finite dimensional real linear space X. Then

(i)
∏
〈X〉 is finite dimensional, and

(ii) dim(
∏
〈X〉) = dim(X).

(26) Let us consider a real linear space sequence X, and a finite sequence d
of elements of N. Suppose len d = lenX and for every element i of domX,
X(i) is finite dimensional and d(i) = dim(X(i)). Then

(i)
∏
X is finite dimensional, and

(ii) dim(
∏
X) =

∑
d.

Proof: Define P[natural number] ≡ for every real linear space sequence
X for every finite sequence d of elements of N such that lenX = $1 and
len d = lenX and for every element i of domX, X(i) is finite dimensional
and d(i) = dim(X(i)) holds

∏
X is finite dimensional and dim(

∏
X) =∑

d. For every natural number n such that P[n] holds P[n+ 1]. For every
natural number n, P[n]. �
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