

Transformation Tools for Real Linear Spaces

Kazuhisa Nakasho^b Yamaguchi University Yamaguchi, Japan

Summary. This paper, using the Mizar system [1], [2], provides useful tools for working with real linear spaces and real normed spaces. These include the identification of a real number set with a one-dimensional real normed space, the relationships between real linear spaces and real Euclidean spaces, the transformation from a real linear space to a real vector space, and the properties of basis and dimensions of real linear spaces. We referred to [6], [10], [8], [9] in this formalization.

MSC: 46A19 46A35 68V20

Keywords: real linear space; real normed space; real Euclidean space; real vector space

MML identifier: LOPBAN15, version: 8.1.12 5.71.1431

1. LIPSCHITZ CONTINUITY OF LINEAR MAPS FROM FINITE-DIMENSIONAL SPACES

Let *n* be a natural number. One can check that $\langle \mathcal{E}^n, \|\cdot\| \rangle$ is finite dimensional. Now we state the propositions:

- (1) Let us consider real linear spaces X, Y, a linear operator L from X into Y, and a finite sequence F of elements of X. Then $L(\sum F) = \sum (L \cdot F)$. PROOF: Define $S[set] \equiv$ for every finite sequence H of elements of X such that len $H = \$_1$ holds $L(\sum H) = \sum (L \cdot H)$. S[0]. For every natural number n such that S[n] holds S[n + 1]. For every natural number n, S[n]. \Box
- (2) Let us consider a finite dimensional real normed space X, a real normed space Y, and a linear operator L from X into Y. If $\dim(X) \neq 0$, then L is Lipschitzian.

PROOF: Set b = the ordered basis of RLSp2RVSp(X). Consider r_1, r_2 being real numbers such that $0 < r_1$ and $0 < r_2$ and for every point x of X, $||x|| \leq r_1 \cdot (\max\operatorname{-norm}(X, b))(x)$ and $(\max\operatorname{-norm}(X, b))(x) \leq r_2 \cdot ||x||$. Reconsider e = b as a finite sequence of elements of X. Define $\mathcal{N}(\operatorname{natural}$ number) = $||L(e_{|\$_1})|| (\in \mathbb{R})$. Consider k being a finite sequence of elements of \mathbb{R} such that len k = len b and for every natural number i such that $i \in \operatorname{dom} k$ holds $k(i) = \mathcal{N}(i)$. Set $k_1 = \sum k$. For every natural number isuch that $i \in \operatorname{dom} k$ holds $0 \leq k(i)$. For every point x of X, $||L(x)|| \leq$ $r_2 \cdot (k_1 + 1) \cdot ||x||$. \Box

(3) Let us consider a finite dimensional real normed space X, and a real normed space Y. Suppose $\dim(X) \neq 0$. Then $\operatorname{LinearOperators}(X,Y) = \operatorname{BdLinOps}(X,Y)$. The theorem is a consequence of (2).

2. Identification of a Real Number Set with a One-Dimensional Real Normed Space

One can check that the real normed space of \mathbb{R} is non empty, right complementable, Abelian, add-associative, right zeroed, vector distributive, scalar distributive, scalar associative, scalar unital, discernible, reflexive, and real normed space-like. Now we state the propositions:

- (4) Let us consider elements v, w of the real normed space of \mathbb{R} , and elements v_1, w_1 of \mathbb{R} . If $v = v_1$ and $w = w_1$, then $v + w = v_1 + w_1$.
- (5) Let us consider an element v of the real normed space of \mathbb{R} , an element v_1 of \mathbb{R} , and a real number a. If $v = v_1$, then $a \cdot v = a \cdot v_1$.
- (6) Let us consider an element v of the real normed space of \mathbb{R} , and an element v_1 of \mathbb{R} . If $v = v_1$, then $||v|| = |v_1|$.

3. Identification of Real Euclidean Space and Real Normed Space

Now we state the propositions:

- (7) There exists a linear operator f from the real normed space of \mathbb{R} into $\langle \mathcal{E}^1, \| \cdot \| \rangle$ such that
 - (i) f is isomorphism, and
 - (ii) for every element x of the real normed space of \mathbb{R} , $f(x) = \langle x \rangle$.

PROOF: Define $\mathcal{H}(\text{real number}) = \langle \$_1 \rangle (\in \mathcal{R}^1)$. Consider f being a function from \mathbb{R} into \mathcal{R}^1 such that for every element x of \mathbb{R} , $f(x) = \mathcal{H}(x)$. For every element x of the real normed space of \mathbb{R} , $f(x) = \langle x \rangle$. For every elements v, w of the real normed space of \mathbb{R} , f(v+w) = f(v)+f(w). For every vector x of the real normed space of \mathbb{R} and for every real number r, $f(r \cdot x) = r \cdot f(x)$. For every point x of the real normed space of \mathbb{R} , ||x|| = ||f(x)|| by [3, (1)], [5, (2)]. \Box

- (8) (i) the real normed space of \mathbb{R} is finite dimensional, and
 - (ii) dim(the real normed space of \mathbb{R}) = 1.

The theorem is a consequence of (7).

- (9) Let us consider a real linear space sequence X, elements v, w of $\prod \overline{X}$, and an element i of dom \overline{X} . Then
 - (i) $(\prod^{\circ} \langle +_{X_i} \rangle_i)(v, w)(i) = (\text{the addition of } X(i))(v(i), w(i)), \text{ and}$
 - (ii) for every vectors v_2 , w_2 of X(i) such that $v_2 = v(i)$ and $w_2 = w(i)$ holds $(\prod^{\circ} \langle +X_i \rangle_i)(v, w)(i) = v_2 + w_2$.
- (10) Let us consider a real linear space sequence X, an element r of \mathbb{R} , an element v of $\prod \overline{X}$, and an element i of dom \overline{X} . Then
 - (i) $(\prod^{\circ} \text{ multop } X)(r, v)(i) = (\text{the external multiplication of } X(i))(r, v(i)),$ and
 - (ii) for every vector v_2 of X(i) such that $v_2 = v(i)$ holds $(\prod^{\circ} \text{multop } X)(r, v)(i) = r \cdot v_2.$

Let us consider a natural number n and a real norm space sequence X. Now we state the propositions:

- (11) If $X = n \mapsto$ (the real normed space of \mathbb{R}), then $\prod X = \langle \mathcal{E}^n, \| \cdot \| \rangle$. PROOF: Set $P_1 = \prod X$. For every natural number *i* such that $i \in \text{Seg } n$ holds $\overline{X}(i) = \mathbb{R}$. For every object $x, x \in \prod \overline{X}$ iff $x \in \mathcal{R}^n$. For every element *j* of dom \overline{X} , $\langle \underbrace{0, \ldots, 0} \rangle(j) = 0_{X(j)}$. For every elements *a*, *b* of \mathcal{R}^n , (the addition of $P_1)(a, b) = a + b$. For every real number *r* and for every element *a* of \mathcal{R}^n , (the external multiplication of $P_1)(r, a) = r \cdot a$. For every element *a* of \mathcal{R}^n , (the norm of $P_1)(a) = |a|$ by [4, (7)]. \Box
- (12) Suppose $X = n \mapsto$ (the real normed space of \mathbb{R}). Then
 - (i) $\prod X$ is finite dimensional, and
 - (ii) $\dim(\prod X) = n$.

The theorem is a consequence of (11).

4. TRANSFORMATION TO REAL VECTOR SPACE

Let X be a real linear space and Y be a subspace of X. One can verify that the functor RLSp2RVSp(Y) yields a subspace of RLSp2RVSp(X). Now we state the proposition:

(13) Let us consider a real linear space X, and a subspace Y of X. Then RLSp2RVSp(Y) is a subspace of RLSp2RVSp(X).

Let us consider a real linear space X and subspaces Y_1 , Y_2 of X. Now we state the propositions:

- (14) $\operatorname{RLSp2RVSp}(Y_1 + Y_2) = \operatorname{RLSp2RVSp}(Y_1) + \operatorname{RLSp2RVSp}(Y_2).$
- (15) $\operatorname{RLSp2RVSp}(Y_1 \cap Y_2) = \operatorname{RLSp2RVSp}(Y_1) \cap \operatorname{RLSp2RVSp}(Y_2).$
- (16) Let us consider a real linear space X. Then $\text{RLSp2RVSp}(\mathbf{0}_X) = \mathbf{0}_{\text{RLSp2RVSp}(X)}$.

5. Basis and Dimension Properties of Real Linear Spaces

Now we state the propositions:

- (17) Let us consider a real linear space X, and subspaces Y_1, Y_2 of X. Suppose $Y_1 \cap Y_2 = \mathbf{0}_X$. Let us consider a linearly independent subset B_1 of Y_1 , and a linearly independent subset B_2 of Y_2 . Then $B_1 \cup B_2$ is a linearly independent subset of $Y_1 + Y_2$. The theorem is a consequence of (15), (16), and (14).
- (18) Let us consider a real linear space X, and subspaces Y_1, Y_2 of X. Suppose $Y_1 \cap Y_2 = \mathbf{0}_X$. Let us consider a basis B_1 of Y_1 , and a basis B_2 of Y_2 . Then $B_1 \cup B_2$ is a basis of $Y_1 + Y_2$. The theorem is a consequence of (15), (16), and (14).
- (19) Let us consider real linear spaces X, Y, a subspace X_1 of X, and a subspace Y_1 of Y. Then $X_1 \times Y_1$ is a subspace of $X \times Y$. PROOF: Set $V = X \times Y$. Set $X_2 = X_1 \times Y_1$. Set f = the addition of X_2 . Set g = (the addition of V) \upharpoonright (the carrier of X_2). For every object z such that $z \in \text{dom } f$ holds f(z) = g(z). Set f = the external multiplication of X_2 .) For every object z such that $z \in \text{dom } f$ holds f(z) = g(z). \Box
- (20) Let us consider real linear spaces X, Y, and subspaces X_1, Y_1 of $X \times Y$. Suppose $X_1 = X \times \mathbf{0}_Y$ and $Y_1 = \mathbf{0}_X \times Y$. Then
 - (i) $X_1 + Y_1 = X \times Y$, and
 - (ii) $X_1 \cap Y_1 = \mathbf{0}_{X \times Y}$.

PROOF: For every object $x, x \in$ the carrier of $X_1 + Y_1$ iff $x \in$ the carrier of $X \times Y$. For every object $x, x \in$ (the carrier of $X \times \mathbf{0}_Y$) \cap (the carrier of $\mathbf{0}_X \times Y$) iff $x \in \{\langle \mathbf{0}_X, \mathbf{0}_Y \rangle\}$ by [7, (9)]. \Box

Let us consider real linear spaces X, Y. Now we state the propositions:

- (21) There exists a linear operator f from X into $X \times \mathbf{0}_Y$ such that
 - (i) f is bijective, and
 - (ii) for every element x of X, $f(x) = \langle x, 0_Y \rangle$.

PROOF: Set A = the carrier of X. Set B = the carrier of $X \times \mathbf{0}_Y$. Define $\mathcal{H}(\text{element of } A) = \langle \$_1, 0_Y \rangle (\in B)$. Consider f being a function from A into B such that for every element x of A, $f(x) = \mathcal{H}(x)$. For every element x of X, $f(x) = \langle x, 0_Y \rangle$. For every elements x_1, x_2 of X, $f(x_1 + x_2) = f(x_1) + f(x_2)$. For every vector x of X and for every real number r, $f(r \cdot x) = r \cdot f(x)$. \Box

- (22) There exists a linear operator f from Y into $\mathbf{0}_X \times Y$ such that
 - (i) f is bijective, and
 - (ii) for every element y of Y, $f(y) = \langle 0_X, y \rangle$.

PROOF: Set A = the carrier of Y. Set B = the carrier of $\mathbf{0}_X \times Y$. Define $\mathcal{H}(\text{element of } A) = \langle \mathbf{0}_X, \$_1 \rangle (\in B)$. Consider f being a function from A into B such that for every element y of A, $f(y) = \mathcal{H}(y)$. For every element y of Y, $f(y) = \langle \mathbf{0}_X, y \rangle$. For every elements y_1, y_2 of Y, $f(y_1 + y_2) = f(y_1) + f(y_2)$. For every vector y of Y and for every real number $r, f(r \cdot y) = r \cdot f(y)$. \Box

(23) Let us consider real linear spaces X, Y, a basis B_6 of X, and a basis B_7 of Y. Then $B_6 \times \{0_Y\} \cup \{0_X\} \times B_7$ is a basis of $X \times Y$. PROOF: Reconsider $B_4 = B_6 \times \{0_Y\}$ as a subset of the carrier of $X \times Y$. Reconsider $B_5 = \{0_X\} \times B_7$ as a subset of the carrier of $X \times Y$. Consider T_1 being a linear operator from X into $X \times \mathbf{0}_Y$ such that T_1 is bijective and for every element x of $X, T_1(x) = \langle x, 0_Y \rangle$. For every object $y, y \in T_1^{\circ}B_6$ iff $y \in B_4$.

Consider T_2 being a linear operator from Y into $\mathbf{0}_X \times Y$ such that T_2 is bijective and for every element y of Y, $T_2(y) = \langle \mathbf{0}_X, y \rangle$. For every object $y, y \in T_2^{\circ}B_7$ iff $y \in B_5$. Reconsider $W_1 = X \times \mathbf{0}_Y$ as a subspace of $X \times Y$. Y. Reconsider $W_2 = \mathbf{0}_X \times Y$ as a subspace of $X \times Y$. $W_1 + W_2 = X \times Y$ and $W_1 \cap W_2 = \mathbf{0}_{X \times Y}$. \Box

- (24) Let us consider finite dimensional real linear spaces X, Y. Then
 - (i) $X \times Y$ is finite dimensional, and
 - (ii) $\dim(X \times Y) = \dim(X) + \dim(Y)$.

The theorem is a consequence of (23).

- (25) Let us consider a finite dimensional real linear space X. Then
 - (i) $\prod \langle X \rangle$ is finite dimensional, and
 - (ii) $\dim(\prod \langle X \rangle) = \dim(X).$
- (26) Let us consider a real linear space sequence X, and a finite sequence d of elements of N. Suppose len d = len X and for every element i of dom X, X(i) is finite dimensional and $d(i) = \dim(X(i))$. Then
 - (i) $\prod X$ is finite dimensional, and
 - (ii) $\dim(\prod X) = \sum d$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every real linear space sequence}$ X for every finite sequence d of elements of N such that len $X = \$_1$ and len d = len X and for every element i of dom X, X(i) is finite dimensional and $d(i) = \dim(X(i))$ holds $\prod X$ is finite dimensional and $\dim(\prod X) =$ $\sum d$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number n, $\mathcal{P}[n]$. \Box

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.
- [4] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. *Formalized Mathematics*, 15(3):81–85, 2007. doi:10.2478/v10037-007-0010-y.
- [5] Takao Inoué, Adam Naumowicz, Noboru Endou, and Yasunari Shidama. Partial differentiation, differentiation and continuity on n-dimensional real normed linear spaces. *Formalized Mathematics*, 19(2):65–68, 2011. doi:10.2478/v10037-011-0011-8.
- [6] Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.
- [7] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. *Formalized Mathematics*, 19(1):51–59, 2011. doi:10.2478/v10037-011-0009-2.
- [8] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
- [9] Laurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.
- [10] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted July 23, 2022