

Transformation Tools for Real Linear Spaces

Kazuhisa Nakash[o](https://orcid.org/0000-0003-1110-4342) Yamaguchi University Yamaguchi, Japan

Summary. This paper, using the Mizar system [\[1\]](#page-5-0), [\[2\]](#page-5-1), provides useful tools for working with real linear spaces and real normed spaces. These include the identification of a real number set with a one-dimensional real normed space, the relationships between real linear spaces and real Euclidean spaces, the transformation from a real linear space to a real vector space, and the properties of basis and dimensions of real linear spaces. We referred to $[6]$, $[10]$, $[8]$, $[9]$ in this formalization.

MSC: [46A19](http://zbmath.org/classification/?q=cc:46A19) [46A35](http://zbmath.org/classification/?q=cc:46A35) [68V20](http://zbmath.org/classification/?q=cc:68V20)

Keywords: real linear space; real normed space; real Euclidean space; real vector space

MML identifier: [LOPBAN15](http://fm.mizar.org/miz/lopban15.miz), version: [8.1.12 5.71.1431](http://ftp.mizar.org/)

1. Lipschitz Continuity of Linear Maps from Finite-Dimensional **SPACES**

Let *n* be a natural number. One can check that $\langle \mathcal{E}^n, \|\cdot\|\rangle$ is finite dimensional. Now we state the propositions:

- (1) Let us consider real linear spaces *X*, *Y,* a linear operator *L* from *X* into *Y*, and a finite sequence *F* of elements of *X*. Then $L(\sum F) = \sum (L \cdot F)$. PROOF: Define $S[\text{set}] \equiv \text{for every finite sequence } H$ of elements of *X* such that len $H = \$_1$ holds $L(\sum H) = \sum (L \cdot H)$. *S*[0]. For every natural number *n* such that $S[n]$ holds $S[n+1]$. For every natural number *n*, $S[n]$. \square
- (2) Let us consider a finite dimensional real normed space *X*, a real normed space *Y*, and a linear operator *L* from *X* into *Y*. If $dim(X) \neq 0$, then *L* is Lipschitzian.

PROOF: Set $b =$ the ordered basis of RLSp2RVSp(X). Consider r_1 , r_2 being real numbers such that $0 < r_1$ and $0 < r_2$ and for every point *x* of $X, \|x\| \leq r_1 \cdot (\max \text{norm}(X, b))(x)$ and $(\max \text{norm}(X, b))(x) \leq r_2 \cdot \|x\|$. Reconsider $e = b$ as a finite sequence of elements of X. Define \mathcal{N} (natural number $\vert h \vert = \frac{1}{k}$ $\vert L(e_{\sqrt{s_1}}) \vert \vert (\in \mathbb{R})$. Consider *k* being a finite sequence of elements of R such that len $k = \text{len } b$ and for every natural number *i* such that *i* ∈ dom *k* holds $k(i) = N(i)$. Set $k_1 = \sum k$. For every natural number *i* such that $i \in \text{dom } k$ holds $0 \leq k(i)$. For every point *x* of *X*, $||L(x)|| \leq$ $r_2 \cdot (k_1 + 1) \cdot ||x||$.

(3) Let us consider a finite dimensional real normed space *X*, and a real normed space *Y*. Suppose dim(*X*) \neq 0. Then LinearOperators(*X,Y*) = $BdLinOps(X, Y)$. The theorem is a consequence of (2).

2. Identification of a Real Number Set with a One-Dimensional Real Normed Space

One can check that the real normed space of $\mathbb R$ is non empty, right complementable, Abelian, add-associative, right zeroed, vector distributive, scalar distributive, scalar associative, scalar unital, discernible, reflexive, and real normed space-like. Now we state the propositions:

- (4) Let us consider elements v, w of the real normed space of \mathbb{R} , and elements v_1, w_1 of R. If $v = v_1$ and $w = w_1$, then $v + w = v_1 + w_1$.
- (5) Let us consider an element *v* of the real normed space of \mathbb{R} , an element v_1 of R, and a real number *a*. If $v = v_1$, then $a \cdot v = a \cdot v_1$.
- (6) Let us consider an element *v* of the real normed space of \mathbb{R} , and an element v_1 of R. If $v = v_1$, then $||v|| = |v_1|$.

3. Identification of Real Euclidean Space and Real Normed Space

Now we state the propositions:

- (7) There exists a linear operator f from the real normed space of $\mathbb R$ into $\langle \mathcal{E}^1, \|\cdot\| \rangle$ such that
	- (i) *f* is isomorphism, and
	- (ii) for every element *x* of the real normed space of \mathbb{R} , $f(x) = \langle x \rangle$.

PROOF: Define $\mathcal{H}(\text{real number}) = \langle \$_1 \rangle (\in \mathcal{R}^1)$. Consider f being a function from $\mathbb R$ into $\mathcal R^1$ such that for every element *x* of $\mathbb R$, $f(x) = \mathcal H(x)$. For every element *x* of the real normed space of \mathbb{R} , $f(x) = \langle x \rangle$. For every elements *v*, *w* of the real normed space of \mathbb{R} , $f(v+w) = f(v) + f(w)$. For every vector *x* of the real normed space of \mathbb{R} and for every real number r , $f(r \cdot x) = r \cdot f(x)$. For every point *x* of the real normed space of R, $||x|| = ||f(x)||$ by [\[3,](#page-5-6) (1)], $[5, (2)]$ $[5, (2)]$. \square

- (8) (i) the real normed space of R is finite dimensional, and
	- (ii) dim(the real normed space of \mathbb{R}) = 1.

The theorem is a consequence of (7).

- (9) Let us consider a real linear space sequence X, elements v, w of $\prod X$, and an element *i* of dom \overline{X} . Then
	- (i) $(\prod^{\circ} \langle +X_i \rangle_i)(v, w)(i) =$ (the addition of $X(i))(v(i), w(i))$, and
	- (ii) for every vectors v_2 , w_2 of $X(i)$ such that $v_2 = v(i)$ and $w_2 = w(i)$ holds $(\prod^{\circ} \langle +x_i \rangle_i)(v, w)(i) = v_2 + w_2.$
- (10) Let us consider a real linear space sequence X, an element r of R, an element v of $\prod X$, and an element i of dom X . Then
	- (i) $(\prod^{\circ} \text{multop } X)(r, v)(i) = (\text{the external multiplication of } X(i))(r, v(i)),$ and
	- (ii) for every vector v_2 of $X(i)$ such that $v_2 = v(i)$ holds $(\prod^{\circ} \text{multop } X)(r, v)(i) = r \cdot v_2.$

Let us consider a natural number n and a real norm space sequence X . Now we state the propositions:

- (11) If $X = n \mapsto$ (the real normed space of R), then $\prod X = \langle \mathcal{E}^n, \|\cdot\|\rangle$. PROOF: Set $P_1 = \prod X$. For every natural number *i* such that $i \in \text{Seg } n$ holds $\overline{X}(i) = \mathbb{R}$. For every object $x, x \in \prod \overline{X}$ iff $x \in \mathcal{R}^n$. For every element *j* of dom *X*, $\langle 0, \ldots, 0 \rangle$ \overline{n} (the addition of P_1)(a, b) = $a + b$. For every real number r and for every χ (*j*) = 0_{*X*(*j*)}. For every elements *a*, *b* of \mathcal{R}^n , element *a* of \mathcal{R}^n , (the external multiplication of $P_1(r, a) = r \cdot a$. For every element *a* of \mathcal{R}^n , (the norm of P_1)(*a*) = |*a*| by [\[4,](#page-5-8) (7)]. \Box
- (12) Suppose $X = n \mapsto$ (the real normed space of R). Then
	- (i) $\prod X$ is finite dimensional, and
	- (i) dim $(\prod X) = n$.

The theorem is a consequence of (11) .

4. Transformation to Real Vector Space

Let *X* be a real linear space and *Y* be a subspace of *X*. One can verify that the functor $RLSp2RVSp(Y)$ yields a subspace of $RLSp2RVSp(X)$. Now we state the proposition:

(13) Let us consider a real linear space *X*, and a subspace *Y* of *X*. Then $RLSp2RVSp(Y)$ is a subspace of $RLSp2RVSp(X)$.

Let us consider a real linear space X and subspaces Y_1 , Y_2 of X . Now we state the propositions:

- (14) $RLSp2RVSp(Y_1 + Y_2) = RLSp2RVSp(Y_1) + RLSp2RVSp(Y_2).$
- (15) RLSp2RVSp $(Y_1 \cap Y_2)$ = RLSp2RVSp $(Y_1) \cap R$ LSp2RVSp (Y_2) .
- (16) Let us consider a real linear space *X*. Then $RLSp2RVSp(\mathbf{0}_X) = \mathbf{0}_{RLSp2RVSp(X)}$.

5. Basis and Dimension Properties of Real Linear Spaces

Now we state the propositions:

- (17) Let us consider a real linear space X, and subspaces Y_1, Y_2 of X. Suppose $Y_1 \cap Y_2 = \mathbf{0}_X$. Let us consider a linearly independent subset B_1 of Y_1 , and a linearly independent subset B_2 of Y_2 . Then $B_1 \cup B_2$ is a linearly independent subset of $Y_1 + Y_2$. The theorem is a consequence of (15), (16), and (14).
- (18) Let us consider a real linear space X, and subspaces Y_1, Y_2 of X. Suppose $Y_1 \cap Y_2 = \mathbf{0}_X$. Let us consider a basis B_1 of Y_1 , and a basis B_2 of Y_2 . Then $B_1 \cup B_2$ is a basis of $Y_1 + Y_2$. The theorem is a consequence of (15), (16), and (14).
- (19) Let us consider real linear spaces X, Y , a subspace X_1 of X , and a subspace Y_1 of Y . Then $X_1 \times Y_1$ is a subspace of $X \times Y$. PROOF: Set $V = X \times Y$. Set $X_2 = X_1 \times Y_1$. Set $f =$ the addition of X_2 . Set $g =$ (the addition of V) \upharpoonright (the carrier of X_2). For every object *z* such that $z \in \text{dom } f$ holds $f(z) = g(z)$. Set $f =$ the external multiplication of *X*₂. Set *g* = (the external multiplication of *V*) $(\mathbb{R} \times$ (the carrier of *X*₂)). For every object *z* such that $z \in \text{dom } f$ holds $f(z) = g(z)$.
- (20) Let us consider real linear spaces *X*, *Y*, and subspaces X_1 , Y_1 of $X \times Y$. Suppose $X_1 = X \times \mathbf{0}_Y$ and $Y_1 = \mathbf{0}_X \times Y$. Then
	- (i) $X_1 + Y_1 = X \times Y$, and
	- (iii) $X_1 \cap Y_1 = \mathbf{0}_{X \times Y}$.

PROOF: For every object $x, x \in \text{the carrier of } X_1 + Y_1 \text{ iff } x \in \text{the carrier}$ of *X* × *Y*. For every object *x*, *x* \in (the carrier of *X* × **0***Y*) \cap (the carrier of $\mathbf{0}_X \times Y$ iff $x \in \{0_X, 0_Y\}$ by [\[7,](#page-5-9) (9)]. \square

Let us consider real linear spaces *X*, *Y.* Now we state the propositions:

- (21) There exists a linear operator f from X into $X \times \mathbf{0}_Y$ such that
	- (i) *f* is bijective, and
	- (ii) for every element *x* of *X*, $f(x) = \langle x, 0_Y \rangle$.

PROOF: Set $A =$ the carrier of *X*. Set $B =$ the carrier of $X \times 0_Y$. Define \mathcal{H} (element of *A*) = $\langle \$_{1}, \ 0_{Y} \rangle (\in B)$. Consider *f* being a function from *A* into *B* such that for every element *x* of *A*, $f(x) = H(x)$. For every element *x* of *X*, $f(x) = \langle x, 0 \rangle$. For every elements x_1, x_2 of *X*, $f(x_1 + x_2) =$ $f(x_1) + f(x_2)$. For every vector *x* of *X* and for every real number $r, f(r \cdot x) =$ $r \cdot f(x)$. \square

- (22) There exists a linear operator f from Y into $\mathbf{0}_X \times Y$ such that
	- (i) *f* is bijective, and
	- (ii) for every element *y* of *Y*, $f(y) = \langle 0_X, y \rangle$.

PROOF: Set $A =$ the carrier of *Y*. Set $B =$ the carrier of $\mathbf{0}_X \times Y$. Define \mathcal{H} (element of *A*) = $\langle 0_X, \vartheta_1 \rangle (\in B)$. Consider *f* being a function from *A* into *B* such that for every element *y* of *A*, $f(y) = H(y)$. For every element *y* of *Y*, $f(y) = \langle 0_X, y \rangle$. For every elements y_1, y_2 of *Y*, $f(y_1 + y_2) = f(y_1) +$ $f(y_2)$. For every vector *y* of *Y* and for every real number *r*, $f(r \cdot y) = r \cdot f(y)$. \Box

(23) Let us consider real linear spaces X, Y , a basis B_6 of X , and a basis B_7 of *Y*. Then $B_6 \times \{0\} \cup \{0_X\} \times B_7$ is a basis of $X \times Y$. PROOF: Reconsider $B_4 = B_6 \times \{0\}$ as a subset of the carrier of $X \times Y$. Reconsider $B_5 = \{0_X\} \times B_7$ as a subset of the carrier of $X \times Y$. Consider *T*₁ being a linear operator from *X* into $X \times 0_Y$ such that *T*₁ is bijective and for every element *x* of *X*, $T_1(x) = \langle x, 0_Y \rangle$. For every object $y, y \in T_1^{\circ}B_6$ iff $y \in B_4$.

Consider T_2 being a linear operator from *Y* into $\mathbf{0}_X \times Y$ such that T_2 is bijective and for every element *y* of *Y*, $T_2(y) = \langle 0_X, y \rangle$. For every object *y*, *y* ∈ *T*₂[°]*B*₇ iff *y* ∈ *B*₅. Reconsider *W*₁ = *X* × **0***Y* as a subspace of *X* × *Y*. Reconsider $W_2 = \mathbf{0}_X \times Y$ as a subspace of $X \times Y$. $W_1 + W_2 = X \times Y$ and $W_1 \cap W_2 = \mathbf{0}_{X \times Y}$. \square

- (24) Let us consider finite dimensional real linear spaces *X*, *Y.* Then
	- (i) $X \times Y$ is finite dimensional, and
	- (ii) dim $(X \times Y) = \dim(X) + \dim(Y)$.

The theorem is a consequence of (23).

- (25) Let us consider a finite dimensional real linear space *X*. Then
	- (i) $\Pi \langle X \rangle$ is finite dimensional, and
	- (i) dim $(\prod \langle X \rangle) = \dim(X)$.
- (26) Let us consider a real linear space sequence *X*, and a finite sequence *d* of elements of N. Suppose len $d = \text{len } X$ and for every element *i* of dom X, $X(i)$ is finite dimensional and $d(i) = \dim(X(i))$. Then
	- (i) $\prod X$ is finite dimensional, and
	- (iii) dim $(\prod X) = \sum d$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every real linear space sequence}$ X for every finite sequence *d* of elements of N such that len $X = \$_1$ and len $d = \text{len } X$ and for every element *i* of dom $X, X(i)$ is finite dimensional and $d(i) = \dim(X(i))$ holds $\prod X$ is finite dimensional and $\dim(\prod X) =$ $\sum d$. For every natural number *n* such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number *n*, $\mathcal{P}[n]$. \Box

REFERENCES

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. [Mizar: State-of-the-art and](http://dx.doi.org/10.1007/978-3-319-20615-8_17) [beyond.](http://dx.doi.org/10.1007/978-3-319-20615-8_17) In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi[:10.1007/978-3-319-20615-8](http://dx.doi.org/10.1007/978-3-319-20615-8_17) 17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. [The role of the Mizar Mathematical Library](https://doi.org/10.1007/s10817-017-9440-6) [for interactive proof development in Mizar.](https://doi.org/10.1007/s10817-017-9440-6) *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi[:10.1007/s10817-017-9440-6.](http://dx.doi.org/10.1007/s10817-017-9440-6)
- [3] Noboru Endou and Yasunari Shidama. [Completeness of the real Euclidean space.](http://fm.mizar.org/2005-13/pdf13-4/real_ns1.pdf) *Formalized Mathematics*, 13(**4**):577–580, 2005.
- [4] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. *Formalized Mathematics*, 15(**3**):81–85, 2007. doi[:10.2478/v10037-007-0010-y.](http://dx.doi.org/10.2478/v10037-007-0010-y)
- [5] Takao Inoué, Adam Naumowicz, Noboru Endou, and Yasunari Shidama. Partial differentiation, differentiation and continuity on *n*-dimensional real normed linear spaces. *Formalized Mathematics*, 19(**2**):65–68, 2011. doi[:10.2478/v10037-011-0011-8.](http://dx.doi.org/10.2478/v10037-011-0011-8)
- [6] Miyadera Isao. *Functional Analysis*. Riko-Gaku-Sya, 1972.
- [7] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. *Formalized Mathematics*, 19(**1**):51–59, 2011. doi[:10.2478/v10037-](http://dx.doi.org/10.2478/v10037-011-0009-2) [011-0009-2.](http://dx.doi.org/10.2478/v10037-011-0009-2)
- [8] Laurent Schwartz. *Théorie des ensembles et topologie, tome 1. Analyse*. Hermann, 1997.
- [9] Laurent Schwartz. *Calcul diff´erentiel, tome 2. Analyse*. Hermann, 1997.
- [10] Kˆosaku Yosida. *Functional Analysis*. Springer, 1980.

Accepted July 23, 2022