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Transformation Tools for Real Linear Spaces
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Summary. This paper, using the Mizar system [I], [2], provides useful
tools for working with real linear spaces and real normed spaces. These include
the identification of a real number set with a one-dimensional real normed space,
the relationships between real linear spaces and real Euclidean spaces, the trans-
formation from a real linear space to a real vector space, and the properties of
basis and dimensions of real linear spaces. We referred to [6], [10], [8], [9] in this
formalization.
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1. LipscHITZ CONTINUITY OF LINEAR MAPS FROM FINITE-DIMENSIONAL
SPACES

Let n be a natural number. One can check that (€™, ||-||) is finite dimensional.
Now we state the propositions:

(1) Let us consider real linear spaces X, Y, a linear operator L from X into
Y, and a finite sequence F' of elements of X. Then L(}- F) = > (L - F).
PROOF: Define S[set] = for every finite sequence H of elements of X such
that len H = $; holds L(>~ H) = Y (L-H). S[0]. For every natural number
n such that S[n] holds S[n + 1]. For every natural number n, S[n]. O

(2) Let us consider a finite dimensional real normed space X, a real normed
space Y, and a linear operator L from X into Y. If dim(X) # 0, then L is

Lipschitzian.
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PROOF: Set b = the ordered basis of RLSp2RVSp(X). Consider 71, ro
being real numbers such that 0 < r; and 0 < 79 and for every point = of
X, ||z|| < r1 - (max-norm(X,b))(z) and (max-norm(X,b))(z) < r2 - ||z.
Reconsider e = b as a finite sequence of elements of X. Define A (natural
number) = ||L(e/g, )||(€ R). Consider k being a finite sequence of elements
of R such that lenk = lenb and for every natural number ¢ such that
i € domk holds k(i) = N (7). Set k1 = > k. For every natural number ¢
such that ¢ € domk holds 0 < k(i). For every point = of X, ||L(x)| <
ra- (k1 +1)- |z O

(3) Let us consider a finite dimensional real normed space X, and a real
normed space Y. Suppose dim(X) # 0. Then LinearOperators(X,Y) =
BdLinOps(X,Y'). The theorem is a consequence of (2).

2. IDENTIFICATION OF A REAL NUMBER SET WITH A ONE-DIMENSIONAL
REAL NORMED SPACE

One can check that the real normed space of R is non empty, right com-
plementable, Abelian, add-associative, right zeroed, vector distributive, scalar
distributive, scalar associative, scalar unital, discernible, reflexive, and real nor-
med space-like. Now we state the propositions:

(4) Let us consider elements v, w of the real normed space of R, and elements
v1, wyp of R. If v = v1 and w = wq, then v +w = v + ws.

(5) Let us consider an element v of the real normed space of R, an element
v1 of R, and a real number a. If v = v, thena-v =a - v;.

(6) Let us consider an element v of the real normed space of R, and an ele-
ment v; of R. If v = vy, then [[v| = |v1].

3. IDENTIFICATION OF REAL EUCLIDEAN SPACE AND REAL NORMED SPACE

Now we state the propositions:

(7) There exists a linear operator f from the real normed space of R into
(EY ]| - |I) such that

(i) f is isomorphism, and
(ii) for every element x of the real normed space of R, f(x) = (z).

PROOF: Define H(real number) = ($;)(€ R'). Consider f being a function
from R into R! such that for every element z of R, f(z) = H(z). For every
element z of the real normed space of R, f(x) = (). For every elements v,
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w of the real normed space of R, f(v+w) = f(v)+ f(w). For every vector x
of the real normed space of R and for every real number r, f(r-z) = r- f(x).
For every point x of the real normed space of R, ||z|| = || f(z)|| by [3 (1)],
5, (2)]. O

(8) (i) the real normed space of R is finite dimensional, and
(ii) dim(the real normed space of R) = 1.
The theorem is a consequence of (7).

(9) Let us consider a real linear space sequence X, elements v, w of [[ X,
and an element i of dom X. Then

(i) (IT°(+x,)i)(v,w) (i) = (the addition of X (7))(v(i),w(i)), and
(ii) for every vectors vg, wy of X (i) such that ve = v(i) and wy = w(7)

holds (TT°(+x,):) (v, w)(i) = va + wa.

(10) Let us consider a real linear space sequence X, an element r of R, an ele-
ment v of [[ X, and an element 4 of dom X. Then

(i) (TT° multop X)(r,v)(i) = (the external multiplication of X (¢))(r, v(4)),
and

(ii) for every vector vy of X (i) such that vy = v(i) holds
(TT° multop X)(r,v)(i) = 7 - va.

Let us consider a natural number n and a real norm space sequence X. Now
we state the propositions:

(11) If X = n — (the real normed space of R), then [T X = (", - ).

ProOF: Set P; = [[ X. For every natural number ¢ such that ¢ € Segn

holds X (i) = R. For every object z, z € [[X iff z € R". For every

element j of dom X, (0,...,0)(j) = Ox(;). For every elements a, b of R",
——

n
(the addition of P;)(a,b) = a + b. For every real number r and for every
element a of R", (the external multiplication of P;)(r,a) = r-a. For every
element a of R™, (the norm of P;)(a) = |a| by [4, (7)]. O

(12) Suppose X = n — (the real normed space of R). Then
(i) [IX is finite dimensional, and
(ii) dim(][TX) = n.

The theorem is a consequence of (11).
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4. TRANSFORMATION TO REAL VECTOR SPACE

Let X be a real linear space and Y be a subspace of X. One can verify that
the functor RLSp2RVSp(Y') yields a subspace of RLSp2RVSp(X). Now we state
the proposition:

(13) Let us consider a real linear space X, and a subspace Y of X. Then
RLSp2RVSp(Y) is a subspace of RLSp2RVSp(X).

Let us consider a real linear space X and subspaces Y7, Y2 of X. Now we

state the propositions:

(14) RLSp2RVSp(Y; + Y3) = RLSp2RVSp(Y7) + RLSp2RVSp(Ys).
(15) RLSp2RVSp(Y; NY3) = RLSp2RVSp(Y:1) N RLSp2RVSp(Ys).
(16) Let us consider a real linear space X.

Then RLSp2RVSp(0x) = ORLSp2RVSp(X)-

5. BASIS AND DIMENSION PROPERTIES OF REAL LINEAR SPACES

Now we state the propositions:

(17) Let us consider a real linear space X, and subspaces Y7, Y2 of X. Suppose
Y1 NYy = 0x. Let us consider a linearly independent subset B; of Y,
and a linearly independent subset By of Ys. Then By U B is a linearly
independent subset of Y7 + Y. The theorem is a consequence of (15), (16),
and (14).

(18) Let us consider a real linear space X, and subspaces Y7, Y2 of X. Suppose
Y1NYs = 0x. Let us consider a basis B; of Y7, and a basis By of Y5. Then
B; U By is a basis of Y7 + Y. The theorem is a consequence of (15), (16),
and (14).

(19) Let us consider real linear spaces X, Y, a subspace X7 of X, and a sub-

space Y7 of Y. Then X; x Y7 is a subspace of X x Y.
PROOF: Set V = X x Y. Set Xo = X; xY;. Set f = the addition of X5.
Set g = (the addition of V') | (the carrier of X5). For every object z such
that z € dom f holds f(z) = g(z). Set f = the external multiplication of
Xs. Set g = (the external multiplication of V')[(R x (the carrier of X»)).
For every object z such that z € dom f holds f(z) = g(z). O

(20) Let us consider real linear spaces X, Y, and subspaces X1, Y7 of X x Y.
Suppose X1 = X X 0y and Y7 =0x x Y. Then

(i) X1 +Yi =X x Y, and
(ii) Xi1NY, =0x«y.
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PROOF: For every object z, x € the carrier of X; + Y7 iff x € the carrier
of X x Y. For every object x, x € (the carrier of X x 0y) N (the carrier
of Ox X Y) ifz e {(Ox, Oy)} by [7, (9)] O

Let us consider real linear spaces X, Y. Now we state the propositions:

(21)

(22)

(23)

(24)

There exists a linear operator f from X into X x Oy such that
(i) f is bijective, and
(ii) for every element x of X, f(x) = (x, Oy).

PROOF: Set A = the carrier of X. Set B = the carrier of X x 0y. Define
H(element of A) = ($;, 0y )(€ B). Consider f being a function from A into
B such that for every element x of A, f(x) = H(z). For every element z
of X, f(z) = (z, Oy). For every elements x;, z2 of X, f(z1 + x2) =
f(x1)+f(z2). For every vector x of X and for every real number r, f(r-z) =
r- f(x). O

There exists a linear operator f from Y into Ox x Y such that

(i) f is bijective, and

(ii) for every element y of Y, f(y) = (Ox, y).

PROOF: Set A = the carrier of Y. Set B = the carrier of 0x x Y. Define
H(element of A) = (0Ox, $1)(€ B). Consider f being a function from A
into B such that for every element y of A, f(y) = H(y). For every element
yolfY, f(y) = (0Ox, y). For every elements y1, y2 of Y, f(y1+y2) = f(y1)+
f(y2). For every vector y of Y and for every real number r, f(r-y) = r-f(y).
]

Let us consider real linear spaces X, Y, a basis Bg of X, and a basis By
of Y. Then Bg x {0y} U{0x} x By is a basis of X x Y.
PROOF: Reconsider By = Bg x {0y} as a subset of the carrier of X x Y.
Reconsider Bs = {0x} x By as a subset of the carrier of X x Y. Consider
T1 being a linear operator from X into X x 0y such that 77 is bijective and
for every element x of X, T1(x) = (z, Oy). For every object y, y € T1°Bg
if Yy < By.

Consider T5 being a linear operator from Y into Ox X Y such that 75
is bijective and for every element y of Y, T5(y) = (Ox, y). For every object
y, y € Ty°Bz iff y € Bs. Reconsider Wi = X x Oy as a subspace of X X
Y. Reconsider Wo = 0x X Y as a subspace of X X Y. W1 + W =X XY
and Wi N Wy =0xyxy. O

Let us consider finite dimensional real linear spaces X, Y. Then
(i) X xY is finite dimensional, and

(ii) dim(X x Y) = dim(X) + dim(Y).
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The theorem is a consequence of (23).

(25) Let us consider a finite dimensional real linear space X. Then

(i) TI{X) is finite dimensional, and
(i) dim([[(X)) = dim(X).

(26) Let us consider a real linear space sequence X, and a finite sequence d

1]

2]

of elements of N. Suppose lend = len X and for every element ¢ of dom X,
X (4) is finite dimensional and d(7) = dim(X (¢)). Then

(i) TIX is finite dimensional, and

(i) dim(JTX) = > d.
PROOF: Define P[natural number] = for every real linear space sequence
X for every finite sequence d of elements of N such that len X = $; and
lend = len X and for every element i of dom X, X (7) is finite dimensional
and d(i) = dim(X (7)) holds [T X is finite dimensional and dim([[ X) =
>~ d. For every natural number n such that P[n] holds P[n + 1]. For every
natural number n, Pln|. O
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