

Isomorphism between Spaces of Multilinear Maps and Nested Compositions over Real Normed Vector Spaces

Kazuhisa Nakasho^D Yamaguchi University Yamaguchi, Japan Yuichi Futa Tokyo University of Technology Tokyo, Japan

Summary. This paper formalizes in Mizar [1], [2], that the isometric isomorphisms between spaces formed by an (n + 1)-dimensional multilinear map and an *n*-fold composition of linear maps on real normed spaces. This result is used to describe the space of nth-order derivatives of the Frechet derivative as a multilinear space. In Section 1, we discuss the spaces of 1-dimensional multilinear maps and 0-fold compositions as a preparation, and in Section 2, we extend the discussion to the spaces of (n + 1)-dimensional multilinear map and an *n*-fold compositions. We referred to [4], [11], [8], [9] in this formalization.

MSC: 15A69 47A07 68V20

Keywords: Banach space; composition function; multilinear function MML identifier: LOPBAN14, version: 8.1.12 5.71.1431

1. Preliminaries

Let X be a real linear space. The functor IsoCPRLSP(X) yielding a linear operator from X into $\prod \langle X \rangle$ is defined by

(Def. 1) for every point x of X, $it(x) = \langle x \rangle$. Now we state the proposition:

> (1) Let us consider a real linear space X. Then $0_{\prod \langle X \rangle} = (\text{IsoCPRLSP}(X))(0_X).$

Let X be a real linear space. Observe that IsoCPRLSP(X) is one-to-one and onto and there exists a linear operator from X into $\prod \langle X \rangle$ which is one-to-one and onto.

Let f be a bijective linear operator from X into $\prod \langle X \rangle$. Let us note that the functor f^{-1} yields a linear operator from $\prod \langle X \rangle$ into X. Let f be a one-to-one, onto linear operator from X into $\prod \langle X \rangle$. Let us note that f^{-1} is bijective as a linear operator from $\prod \langle X \rangle$ into X and there exists a linear operator from $\prod \langle X \rangle$ into X and there exists a linear operator from $\prod \langle X \rangle$ into X and there exists a linear operator from $\prod \langle X \rangle$ into X which is one-to-one and onto.

Now we state the propositions:

- (2) Let us consider a real linear space X, and a point x of X. Then $((\text{IsoCPRLSP}(X))^{-1})(\langle x \rangle) = x$. PROOF: Set I = IsoCPRLSP(X). Set $J = I^{-1}$. For every point x of X, $J(\langle x \rangle) = x$. \Box
- (3) Let us consider a real linear space X. Then $((\text{IsoCPRLSP}(X))^{-1})(0_{\prod\langle X\rangle}) = 0_X$. The theorem is a consequence of (1).
- (4) Let us consider a real linear space G. Then
 - (i) for every set x, x is a point of $\prod \langle G \rangle$ iff there exists a point x_1 of G such that $x = \langle x_1 \rangle$, and
 - (ii) for every points x, y of $\prod \langle G \rangle$ and for every points x_1, y_1 of G such that $x = \langle x_1 \rangle$ and $y = \langle y_1 \rangle$ holds $x + y = \langle x_1 + y_1 \rangle$, and
 - (iii) $0_{\prod \langle G \rangle} = \langle 0_G \rangle$, and
 - (iv) for every point x of $\prod \langle G \rangle$ and for every point x_1 of G such that $x = \langle x_1 \rangle$ holds $-x = \langle -x_1 \rangle$, and
 - (v) for every point x of $\prod \langle G \rangle$ and for every point x_1 of G and for every real number a such that $x = \langle x_1 \rangle$ holds $a \cdot x = \langle a \cdot x_1 \rangle$.

PROOF: Consider I being a function from G into $\prod \langle G \rangle$ such that I is one-to-one and onto and for every point x of G, $I(x) = \langle x \rangle$ and for every points v, w of G, I(v+w) = I(v) + I(w) and for every point v of G and for every element r of \mathbb{R} , $I(r \cdot v) = r \cdot I(v)$ and $0_{\prod \langle G \rangle} = I(0_G)$. For every set x, x is a point of $\prod \langle G \rangle$ iff there exists a point x_1 of G such that $x = \langle x_1 \rangle$.

For every points x, y of $\prod \langle G \rangle$ and for every points x_1, y_1 of G such that $x = \langle x_1 \rangle$ and $y = \langle y_1 \rangle$ holds $x + y = \langle x_1 + y_1 \rangle$. For every point x of $\prod \langle G \rangle$ and for every point x_1 of G such that $x = \langle x_1 \rangle$ holds $-x = \langle -x_1 \rangle$. For every point x of $\prod \langle G \rangle$ and for every point x_1 of G and for every real number a such that $x = \langle x_1 \rangle$ holds $a \cdot x = \langle a \cdot x_1 \rangle$. \Box

(5) Let us consider real linear spaces X, Y, and a function f from X into Y. Then f is a linear operator from X into Y if and only if $f \cdot ((\text{IsoCPRLSP}(X))^{-1})$ is a linear operator from $\prod \langle X \rangle$ into Y.

- (6) Let us consider real linear spaces X, Y, and a function f from $\prod \langle X \rangle$ into Y. Then f is a linear operator from $\prod \langle X \rangle$ into Y if and only if $f \cdot (\text{IsoCPRLSP}(X))$ is a linear operator from X into Y. The theorem is a consequence of (5).
- (7) Let us consider a real linear space X, a point s of $\prod \langle X \rangle$, and an element i of dom $\langle X \rangle$. Then reproj(i, s) = IsoCPRLSP(X). PROOF: For every element x of X, (reproj(i, s))(x) = (IsoCPRLSP(X))(x).
- (8) Let us consider real linear spaces X, Y, and an object f. Then f is a linear operator from ∏⟨X⟩ into Y if and only if f is a multilinear operator from ⟨X⟩ into Y. The theorem is a consequence of (6) and (7).
- Let us consider real linear spaces X, Y. Now we state the propositions:
- (9) MultOpers($\langle X \rangle, Y$) = LinearOperators($\prod \langle X \rangle, Y$). The theorem is a consequence of (8).
- (10) VectorSpaceOfMultOpers_{\mathbb{R}}($\langle X \rangle, Y$) = VectorSpaceOfLinearOpers_{\mathbb{R}}($\prod \langle X \rangle, Y$). The theorem is a consequence of (9).
- (11) Let us consider a real normed space G. Then
 - (i) for every set x, x is a point of $\prod \langle G \rangle$ iff there exists a point x_1 of G such that $x = \langle x_1 \rangle$, and
 - (ii) for every points x, y of $\prod \langle G \rangle$ and for every points x_1, y_1 of G such that $x = \langle x_1 \rangle$ and $y = \langle y_1 \rangle$ holds $x + y = \langle x_1 + y_1 \rangle$, and
 - (iii) $0_{\prod \langle G \rangle} = \langle 0_G \rangle$, and
 - (iv) for every point x of $\prod \langle G \rangle$ and for every point x_1 of G such that $x = \langle x_1 \rangle$ holds $-x = \langle -x_1 \rangle$, and
 - (v) for every point x of $\prod \langle G \rangle$ and for every point x_1 of G and for every real number a such that $x = \langle x_1 \rangle$ holds $a \cdot x = \langle a \cdot x_1 \rangle$, and
 - (vi) for every point x of $\prod \langle G \rangle$ and for every point x_1 of G such that $x = \langle x_1 \rangle$ holds $||x|| = ||x_1||$.

PROOF: Consider I being a function from G into $\prod \langle G \rangle$ such that I is one-to-one and onto and for every point x of G, $I(x) = \langle x \rangle$ and for every points v, w of G, I(v+w) = I(v) + I(w) and for every point v of G and for every element r of \mathbb{R} , $I(r \cdot v) = r \cdot I(v)$ and $0_{\prod \langle G \rangle} = I(0_G)$ and for every point v of G, ||I(v)|| = ||v||. For every set x, x is a point of $\prod \langle G \rangle$ iff there exists a point x_1 of G such that $x = \langle x_1 \rangle$. For every points x, y of $\prod \langle G \rangle$ and for every points x_1, y_1 of G such that $x = \langle x_1 \rangle$ and $y = \langle y_1 \rangle$ holds $x + y = \langle x_1 + y_1 \rangle$. For every point x of $\prod \langle G \rangle$ and for every point x_1 of G such that $x = \langle x_1 \rangle$ holds $-x = \langle -x_1 \rangle$. For every point x of $\prod \langle G \rangle$ and for every point x_1 of G and for every real number a such that $x = \langle x_1 \rangle$ holds $a \cdot x = \langle a \cdot x_1 \rangle$. For every point x of $\prod \langle G \rangle$ and for every point x_1 of G such that $x = \langle x_1 \rangle$ holds $\|x\| = \|x_1\|$. \Box Let X be a real normed space. The functor IsoCPNrSP(X) yielding a linear operator from X into $\prod \langle X \rangle$ is defined by

(Def. 2) for every point x of X, $it(x) = \langle x \rangle$.

Now we state the proposition:

(12) Let us consider a real normed space X. Then $0_{\prod \langle X \rangle} = (\text{IsoCPNrSP}(X))(0_X).$

Let X be a real normed space. Let us note that IsoCPNrSP(X) is one-toone, onto, and isometric and there exists a linear operator from X into $\prod \langle X \rangle$ which is one-to-one, onto, and isometric.

Let I be a one-to-one, onto, isometric linear operator from X into $\prod \langle X \rangle$. Let us observe that the functor I^{-1} yields a linear operator from $\prod \langle X \rangle$ into X. One can check that I^{-1} is one-to-one, onto, and isometric as a linear operator from $\prod \langle X \rangle$ into X and there exists a linear operator from $\prod \langle X \rangle$ into X which is one-to-one, onto, and isometric. Let us consider real normed spaces X, Y and a function f from X into Y. Now we state the propositions:

- (13) f is a linear operator from X into Y if and only if $f \cdot ((\text{IsoCPNrSP}(X))^{-1})$ is a linear operator from $\prod \langle X \rangle$ into Y.
- (14) f is a Lipschitzian linear operator from X into Y if and only if $f \cdot ((\text{IsoCPNrSP}(X))^{-1})$ is a Lipschitzian linear operator from $\prod \langle X \rangle$ into Y.

Let us consider real normed spaces X, Y and a function f from $\prod \langle X \rangle$ into Y. Now we state the propositions:

- (15) f is a linear operator from $\prod \langle X \rangle$ into Y if and only if $f \cdot (\text{IsoCPNrSP}(X))$ is a linear operator from X into Y. The theorem is a consequence of (13).
- (16) f is a Lipschitzian linear operator from $\prod \langle X \rangle$ into Y if and only if $f \cdot (\text{IsoCPNrSP}(X))$ is a Lipschitzian linear operator from X into Y. The theorem is a consequence of (14).
- (17) Let us consider a real normed space X, a point s of $\prod \langle X \rangle$, and an element i of dom $\langle X \rangle$. Then reproj(i, s) = IsoCPNrSP(X). PROOF: For every element x of X, (reproj(i, s))(x) = (IsoCPNrSP(X))(x).
- (18) Let us consider a real normed space X, and a point x of $\prod \langle X \rangle$. Then NrProduct x = ||x||. The theorem is a consequence of (11).

Let us consider real normed spaces X, Y and an object f. Now we state the propositions:

- (19) f is a linear operator from $\prod \langle X \rangle$ into Y if and only if f is a multilinear operator from $\langle X \rangle$ into Y. The theorem is a consequence of (15) and (17).
- (20) f is a Lipschitzian linear operator from $\prod \langle X \rangle$ into Y if and only if f is a Lipschitzian multilinear operator from $\langle X \rangle$ into Y. The theorem is a consequence of (16), (18), (17), and (11).

Let us consider real normed spaces X, Y. Now we state the propositions:

- (21) MultOpers($\langle X \rangle, Y$) = LinearOperators($\prod \langle X \rangle, Y$). The theorem is a consequence of (19).
- (22) BoundedMultOpers($\langle X \rangle, Y$) = BdLinOps($\prod \langle X \rangle, Y$). The theorem is a consequence of (20).
- (23) BoundedMultOpersNorm($\langle X \rangle, Y$) = BdLinOpsNorm($\prod \langle X \rangle, Y$). PROOF: Set n_1 = BoundedMultOpersNorm($\langle X \rangle, Y$). Set n_2 = BdLinOpsNorm($\prod \langle X \rangle, Y$). BoundedMultOpers($\langle X \rangle, Y$) = BdLinOps($\prod \langle X \rangle, Y$). For every object f such that $f \in$ BoundedMultOpers($\langle X \rangle, Y$) holds $n_1(f) = n_2(f)$. \Box
- (24) VectorSpaceOfMultOpers_{\mathbb{R}}($\langle X \rangle, Y$) = VectorSpaceOfLinearOpers_{\mathbb{R}}($\prod \langle X \rangle, Y$). The theorem is a consequence of (21).
- (25) NormSpaceOfBoundedMultOpers_{\mathbb{R}}($\langle X \rangle, Y$) = the real norm space of bounded linear operators from $\prod \langle X \rangle$ into Y. The theorem is a consequence of (24) and (23).
- (26) Let us consider a real normed space X. If X is complete, then $\prod \langle X \rangle$ is complete.

2. Spaces of Multilinear Maps and Nested Compositions over Real Normed Vector Spaces

Now we state the propositions:

- (27) Let us consider real norm space sequences X, Y, a real normed space Z, and a Lipschitzian bilinear operator f from $\prod X \times \prod Y$ into Z. Then $f \cdot ((\text{IsoCPNrSP}(\prod X, \prod Y))^{-1})$ is a Lipschitzian multilinear operator from $\langle \prod X, \prod Y \rangle$ into Z.
- (28) Let us consider real norm space sequences X, Y, a real normed space Z, and a point f of NormSpaceOfBoundedBilinOpers_R($\prod X, \prod Y, Z$). Then $f \cdot ((\text{IsoCPNrSP}(\prod X, \prod Y))^{-1})$ is a point of NormSpaceOfBoundedMult-Opers_R($\langle \prod X, \prod Y \rangle, Z$).

- (29) Let us consider real linear space sequences X, Y. Then $\overline{X \cap Y} = \overline{X} \cap \overline{Y}$. PROOF: Reconsider $C_1 = \overline{X}, C_2 = \overline{Y}$ as a finite sequence. For every natural number i such that $i \in \text{dom } \overline{X \cap Y}$ holds $\overline{X \cap Y}(i) = (C_1 \cap C_2)(i)$. \Box
- (30) Let us consider a real linear space X. Then
 - (i) $\operatorname{len} \overline{\langle X \rangle} = \operatorname{len} \langle X \rangle$, and
 - (ii) $\operatorname{len}\overline{\langle X\rangle} = 1$, and
 - (iii) $\langle X \rangle = \langle \text{the carrier of } X \rangle.$
- (31) Let us consider a real norm space sequence X, an element x of $\prod X$, a real normed space Y, an element z of $\prod (X \cap \langle Y \rangle)$, an element i of dom X, an element j of dom $(X \cap \langle Y \rangle)$, an element x_i of X(i), and a point y of Y. Suppose i = j and $z = x \cap \langle y \rangle$. Then $(\operatorname{reproj}(j, z))(x_i) = (\operatorname{reproj}(i, x))(x_i) \cap \langle y \rangle$.

PROOF: Reconsider $x_j = x_i$ as an element of $(X^{\langle Y \rangle})(j)$. For every object k such that $k \in \text{dom}((\text{reproj}(i, x))(x_i) \cap \langle y \rangle)$ holds $((\text{reproj}(i, x))(x_i) \cap \langle y \rangle)(k) = (\text{reproj}(j, z))(x_j)(k)$. \Box

- (32) Let us consider a real norm space sequence X, an element x of $\prod X$, a real normed space Y, an element z of $\prod (X \cap \langle Y \rangle)$, an element j of dom $(X \cap \langle Y \rangle)$, an element y of Y, and a point y_0 of Y. Suppose $z = x \cap \langle y_0 \rangle$ and j = len x + 1. Then $(\text{reproj}(j, z))(y) = x \cap \langle y \rangle$. PROOF: Reconsider $y_1 = y$ as an element of $(X \cap \langle Y \rangle)(j)$. For every object k such that $k \in \text{dom}((\text{reproj}(j, z))(y_1))$ holds $(\text{reproj}(j, z))(y_1)(k) = (x \cap \langle y \rangle)(k)$. \Box
- (33) Let us consider a real norm space sequence X, an element x of $\prod X$, a real normed space Y, and a point y of Y. Then $x \cap \langle y \rangle$ is a point of $\prod (X \cap \langle Y \rangle)$. PROOF: Set $C_1 = \overline{X}$. Set C_2 = the carrier of Y. The carrier of $\prod (X \cap \langle Y \rangle) = \prod (\overline{X} \cap \overline{\langle Y \rangle})$. For every object i such that $i \in \operatorname{dom}(C_1 \cap \langle C_2 \rangle)$ holds $(x \cap \langle y \rangle)(i) \in (C_1 \cap \langle C_2 \rangle)(i)$. \Box
- (34) Let us consider a real norm space sequence X, an element x of $\prod X$, a real normed space Y, an element z of $\prod (X \cap \langle Y \rangle)$, and a point y of Y. Suppose $z = x \cap \langle y \rangle$. Then NrProduct $z = ||y|| \cdot (\text{NrProduct } x)$. PROOF: Consider n_4 being a finite sequence of elements of \mathbb{R} such that dom $n_4 = \text{dom}(X \cap \langle Y \rangle)$ and for every element i of dom $(X \cap \langle Y \rangle)$, $n_4(i) =$ ||z(i)|| and NrProduct $z = \prod n_4$. Set $n_3 = n_4 \upharpoonright \text{len } x$. Set $C_1 = \overline{X}$. Consider x_1 being a function such that $x = x_1$ and dom $x_1 = \text{dom } C_1$ and for every object i such that $i \in \text{dom } C_1$ holds $x_1(i) \in C_1(i)$. For every element i of dom X, $n_3(i) = ||x(i)||$. $0 \leq \prod n_3$ by [7, (42)]. For every object i such that $i \in \text{dom}(n_3 \cap \langle ||y|| \rangle)$ holds $(n_3 \cap \langle ||y|| \rangle)(i) = n_4(i)$. \Box

- (35) Let us consider real normed spaces X, Z, and a real norm space sequence Y. Then there exists a Lipschitzian linear operator I from the real norm space of bounded linear operators from X into NormSpaceOfBoundedMult-Opers_R(Y, Z) into NormSpaceOfBoundedMultOpers_R $(Y \cap \langle X \rangle, Z)$ such that
 - (i) I is one-to-one, onto, and isometric, and
 - (ii) for every point u of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers_R(Y, Z), ||u|| = ||I(u)||and for every point y of $\prod Y$ and for every point x of X, $I(u)(y \cap \langle x \rangle) = u(x)(y)$.

PROOF: Set C_1 = the carrier of X. Set $C_2 = \overline{Y}$. Set C_3 = the carrier of Z. Consider J being a function from $(C_3 \prod^{C_2})^{C_1}$ into $C_3 \prod^{(C_2 \cap \langle C_1 \rangle)}$ such that J is bijective and for every function f from C_1 into $C_3 \prod^{C_2}$ and for every finite sequence y and for every object x such that $y \in \prod C_2$ and $x \in C_1$ holds $J(f)(y \cap \langle x \rangle) = f(x)(y)$. Set L_1 = the carrier of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers_R(Y $\cap \langle X \rangle, Z)$. Set L_2 = the carrier of NormSpaceOfBoundedMultOpers_R(Y, Z). The carrier of $\prod \langle X \rangle = \prod \langle \text{the carrier of } X \rangle$. The carrier of $\prod (Y \cap \langle X \rangle) = \prod (\overline{Y} \cap \overline{\langle X \rangle})$. $L_2^{C_1} \subseteq (C_3 \prod^{C_2})^{C_1}$. Reconsider $I = J \upharpoonright L_1$ as a function from L_1 into $C_3 \prod^{(C_2 \cap \langle C_1 \rangle)}$.

For every element f of L_1 , for every point x of X, there exists a Lipschitzian multilinear operator g from Y into Z such that g = f(x) and for every point y of $\prod Y$, $I(f)(y \cap \langle x \rangle) = g(y)$ and I(f) is a Lipschitzian multilinear operator from $Y \cap \langle X \rangle$ into Z and $I(f) \in B_1$ and there exists a point I_f of NormSpaceOfBoundedMultOpers_R $(Y \cap \langle X \rangle, Z)$ such that $I_f = I(f)$ and $||f|| = ||I_f||$. For every elements f_1, f_2 of L_1 , $I(f_1 + f_2) = I(f_1) + I(f_2)$. For every element f_1 of L_1 and for every real number $a, I(a \cdot f_1) = a \cdot I(f_1)$ by [6, (2)], (11), [5, (49)]. For every point u of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers_R(Y, Z), ||u|| = ||I(u)|| and for every point y of $\prod Y$ and for every point x of $X, I(u)(y \cap \langle x \rangle) = u(x)(y)$. For every object I_f such that $I_f \in B_1$ there exists an object f such that $f \in L_1$ and $I_f = I(f)$. \Box

Let Y be a real normed space and X be a real norm space sequence. The functor NestingLB(X, Y) yielding a real normed space is defined by

(Def. 3) there exists a function f such that dom $f = \mathbb{N}$ and $it = f(\ln X)$ and f(0) = Y and for every natural number i such that $i < \ln X$ there exists a real normed space f_i and there exists an element j of dom X such that

 $f_i = f(i)$ and i + 1 = j and f(i + 1) = the real norm space of bounded linear operators from X(j) into f_i .

Let us consider real normed spaces X, Y, Z and a Lipschitzian linear operator I from Y into Z. Now we state the propositions:

- (36) Suppose I is one-to-one, onto, and isometric. Then there exists a Lipschitzian linear operator L from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from X into Z such that
 - (i) L is one-to-one, onto, and isometric, and
 - (ii) for every point f of the real norm space of bounded linear operators from X into Y, $L(f) = I \cdot f$.

PROOF: Consider J being a linear operator from Z into Y such that $J = I^{-1}$ and J is one-to-one and onto and J is isometric. Set F = the carrier of the real norm space of bounded linear operators from X into Y. Set G = the carrier of the real norm space of bounded linear operators from X into Z. Define $\mathcal{P}[\text{function, function}] \equiv \$_2 = I \cdot \$_1$. For every element f of F, there exists an element g of G such that $\mathcal{P}[f,g]$. Consider L being a function from F into G such that for every element f of F, $\mathcal{P}[f, L(f)]$.

For every objects f_1 , f_2 such that f_1 , $f_2 \in F$ and $L(f_1) = L(f_2)$ holds $f_1 = f_2$. For every object g such that $g \in G$ there exists an object f such that $f \in F$ and g = L(f) by [10, (2)]. For every points f_1 , f_2 of the real norm space of bounded linear operators from X into Y, $L(f_1 + f_2) =$ $L(f_1) + L(f_2)$. For every point f of the real norm space of bounded linear operators from X into Y and for every real number a, $L(a \cdot f) = a \cdot L(f)$. For every element f of the real norm space of bounded linear operators from X into Y, ||L(f)|| = ||f|| by [3, (7)]. \Box

- (37) Suppose I is one-to-one, onto, and isometric. Then there exists a Lipschitzian linear operator L from the real norm space of bounded linear operators from Y into X into the real norm space of bounded linear operators from Z into X such that
 - (i) L is one-to-one, onto, and isometric, and
 - (ii) for every point f of the real norm space of bounded linear operators from Y into X, $L(f) = f \cdot (I^{-1})$.

PROOF: Consider J being a linear operator from Z into Y such that $J = I^{-1}$ and J is one-to-one and onto and J is isometric. Set F = the carrier of the real norm space of bounded linear operators from Y into X. Set G = the carrier of the real norm space of bounded linear operators from Z into X. Define $\mathcal{P}[$ function, function $] \equiv \$_2 = \$_1 \cdot J$. For every element f

of F, there exists an element g of G such that $\mathcal{P}[f,g]$. Consider L being a function from F into G such that for every element f of F, $\mathcal{P}[f, L(f)]$.

For every objects f_1 , f_2 such that f_1 , $f_2 \in F$ and $L(f_1) = L(f_2)$ holds $f_1 = f_2$. For every object g such that $g \in G$ there exists an object f such that $f \in F$ and g = L(f). For every points f_1 , f_2 of the real norm space of bounded linear operators from Y into X, $L(f_1 + f_2) = L(f_1) + L(f_2)$. For every point f of the real norm space of bounded linear operators from Y into X and for every real number a, $L(a \cdot f) = a \cdot L(f)$. For every element f of the real norm space of bounded linear operators from Y into X, ||L(f)|| = ||f||. \Box

- (38) Let us consider real normed spaces X, Y. Then there exists a Lipschitzian linear operator I from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from $\prod \langle X \rangle$ into Y such that
 - (i) I is one-to-one, onto, and isometric, and
 - (ii) for every point u of the real norm space of bounded linear operators from X into Y and for every point x of X, $I(u)(\langle x \rangle) = u(x)$, and
 - (iii) for every point u of the real norm space of bounded linear operators from X into Y, ||u|| = ||I(u)||.

PROOF: Set J = IsoCPNrSP(X). Consider I being a Lipschitzian linear operator from the real norm space of bounded linear operators from Xinto Y into the real norm space of bounded linear operators from $\prod \langle X \rangle$ into Y such that I is one-to-one, onto, and isometric and for every point x of the real norm space of bounded linear operators from X into Y, $I(x) = x \cdot (J^{-1})$. For every point u of the real norm space of bounded linear operators from X into Y and for every point x of X, $I(u)(\langle x \rangle) = u(x)$. \Box

(39) Let us consider real normed spaces X, Y, Z, W, a Lipschitzian linear operator I from X into Z, and a Lipschitzian linear operator J from Y into W. Suppose I is one-to-one, onto, and isometric and J is one-to-one, onto, and isometric.

Then there exists a Lipschitzian linear operator K from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from Z into W such that

- (i) K is one-to-one, onto, and isometric, and
- (ii) for every point x of the real norm space of bounded linear operators from X into Y, $K(x) = J \cdot (x \cdot (I^{-1}))$.

PROOF: Consider H being a Lipschitzian linear operator from the real norm space of bounded linear operators from X into Y into the real norm

space of bounded linear operators from Z into Y such that H is one-toone, onto, and isometric and for every point x of the real norm space of bounded linear operators from X into Y, $H(x) = x \cdot (I^{-1})$. Consider L being a Lipschitzian linear operator from the real norm space of bounded linear operators from Z into Y into the real norm space of bounded linear operators from Z into W such that L is one-to-one, onto, and isometric and for every point x of the real norm space of bounded linear operators from Z into Y, $L(x) = J \cdot x$.

Reconsider $K = L \cdot H$ as a Lipschitzian linear operator from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from Z into W. For every point x of the real norm space of bounded linear operators from X into Y, ||K(x)|| =||x||. \Box

(40) Let us consider a natural number n, real norm space sequences A, B, and real normed spaces X, Y. Suppose len A = n + 1 and $A \upharpoonright n = B$ and X = A(n+1). Then NestingLB(A, Y) = the real norm space of bounded linear operators from X into NestingLB(B, Y).

PROOF: Consider f being a function such that dom $f = \mathbb{N}$ and NestingLB $(A, Y) = f(\operatorname{len} A)$ and f(0) = Y and for every natural number j such that $j < \operatorname{len} A$ there exists a real normed space V and there exists an element k of dom A such that V = f(j) and j + 1 = k and $f(j + 1) = \operatorname{the real}$ norm space of bounded linear operators from A(k) into V.

Consider V being a real normed space, k being an element of dom A such that $V = f(\operatorname{len} B)$ and $\operatorname{len} B+1 = k$ and $f(\operatorname{len} B+1) =$ the real norm space of bounded linear operators from A(k) into V. For every natural number j such that $j < \operatorname{len} B$ there exists a real normed space V and there exists an element k of dom B such that V = f(j) and j+1 = k and f(j+1) = the real norm space of bounded linear operators from B(k) into V. \Box

Let Y be a real normed space and X be a real norm space sequence. Let us observe that NestingLB(X, Y) is constituted functions.

The functor NestMult(X, Y) yielding a Lipschitzian linear operator from NestingLB(X, Y) into NormSpaceOfBoundedMultOpers_R(X, Y) is defined by

(Def. 4) it is one-to-one, onto, and isometric and for every element u of NestingLB (X, Y), ||it(u)|| = ||u|| and for every point u of NestingLB(X, Y) and for every point x of $\prod X$, there exists a finite sequence g such that $\operatorname{len} g = \operatorname{len} X$ and g(1) = u and for every element i of \mathbb{N} such that $1 \leq i < \operatorname{len} X$ there exists a real norm space sequence X_2 .

There exists a point h of NestingLB (X_2, Y) such that $X_2 = X \upharpoonright (\ln X - i + 1)$ and h = g(i) and $g(i+1) = h(x(\ln X - i + 1))$ and there exists a real

norm space sequence X_1 and there exists a point h of NestingLB (X_1, Y) such that $X_1 = \langle X(1) \rangle$ and $h = g(\ln X)$ and (it(u))(x) = h(x(1)).

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Yuichi Futa, Noboru Endou, and Yasunari Shidama. Isometric differentiable functions on real normed space. *Formalized Mathematics*, 21(4):249–260, 2013. doi:10.2478/forma-2013-0027.
- [4] Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.
- [5] Kazuhisa Nakasho. Multilinear operator and its basic properties. Formalized Mathematics, 27(1):35–45, 2019. doi:10.2478/forma-2019-0004.
- Karol Pak. Continuity of barycentric coordinates in Euclidean topological spaces. Formalized Mathematics, 19(3):139–144, 2011. doi:10.2478/v10037-011-0022-5.
- [7] Marco Riccardi. Pocklington's theorem and Bertrand's postulate. Formalized Mathematics, 14(2):47–52, 2006. doi:10.2478/v10037-006-0007-y.
- [8] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
- [9] Laurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.
- [10] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103–108, 2004.
- [11] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted April 30, 2022