Isomorphism between Spaces of Multilinear Maps and Nested Compositions over Real Normed Vector Spaces

Kazuhisa Nakashc
Yamaguchi University
Yamaguchi, Japan

Yuichi Futa
Tokyo University of Technology
Tokyo, Japan

Abstract

Summary. This paper formalizes in Mizar [1], [2], that the isometric isomorphisms between spaces formed by an $(n+1)$-dimensional multilinear map and an n-fold composition of linear maps on real normed spaces. This result is used to describe the space of nth-order derivatives of the Frechet derivative as a multilinear space. In Section 1, we discuss the spaces of 1-dimensional multilinear maps and 0 -fold compositions as a preparation, and in Section 2, we extend the discussion to the spaces of ($n+1$)-dimensional multilinear map and an n-fold compositions. We referred to [4, [11, [8, 9 in this formalization.

MSC: 15A69 47A07 68V20
Keywords: Banach space; composition function; multilinear function
MML identifier: LOPBAN14, version: 8.1.12 5.71.1431

1. Preliminaries

Let X be a real linear space. The functor $\operatorname{IsoCPRLSP}(X)$ yielding a linear operator from X into $\Pi\langle X\rangle$ is defined by
(Def. 1) for every point x of X, it $(x)=\langle x\rangle$.
Now we state the proposition:
(1) Let us consider a real linear space X.

Then $0_{\prod\langle X\rangle}=(\operatorname{IsoCPRLSP}(X))\left(0_{X}\right)$.

Let X be a real linear space. Observe that $\operatorname{IsoCPRLSP}(X)$ is one-to-one and onto and there exists a linear operator from X into $\Pi\langle X\rangle$ which is one-to-one and onto.

Let f be a bijective linear operator from X into $\Pi\langle X\rangle$. Let us note that the functor f^{-1} yields a linear operator from $\Pi\langle X\rangle$ into X. Let f be a one-to-one, onto linear operator from X into $\Pi\langle X\rangle$. Let us note that f^{-1} is bijective as a linear operator from $\Pi\langle X\rangle$ into X and there exists a linear operator from $\Pi\langle X\rangle$ into X which is one-to-one and onto.

Now we state the propositions:
(2) Let us consider a real linear space X, and a point x of X.

Then $\left((\operatorname{IsoCPRLSP}(X))^{-1}\right)(\langle x\rangle)=x$.
Proof: Set $I=\operatorname{IsoCPRLSP}(X)$. Set $J=I^{-1}$. For every point x of X, $J(\langle x\rangle)=x$.
(3) Let us consider a real linear space X.

Then $\left((\operatorname{IsoCPRLSP}(X))^{-1}\right)\left(0 \Pi_{\langle X\rangle}^{\langle X}\right)=0_{X}$. The theorem is a consequence of (1).
(4) Let us consider a real linear space G. Then
(i) for every set x, x is a point of $\Pi\langle G\rangle$ iff there exists a point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$, and
(ii) for every points x, y of $\Pi\langle G\rangle$ and for every points x_{1}, y_{1} of G such that $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right\rangle$, and
(iii) ${ }^{0} \prod_{\langle G\rangle}=\left\langle 0_{G}\right\rangle$, and
(iv) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $-x=\left\langle-x_{1}\right\rangle$, and
(v) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G and for every real number a such that $x=\left\langle x_{1}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}\right\rangle$.
Proof: Consider I being a function from G into $\Pi\langle G\rangle$ such that I is one-to-one and onto and for every point x of $G, I(x)=\langle x\rangle$ and for every points v, w of $G, I(v+w)=I(v)+I(w)$ and for every point v of G and for every element r of $\mathbb{R}, I(r \cdot v)=r \cdot I(v)$ and ${ }_{\prod_{\langle G\rangle}}=I\left(0_{G}\right)$. For every set x, x is a point of $\Pi\langle G\rangle$ iff there exists a point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$.

For every points x, y of $\Pi\langle G\rangle$ and for every points x_{1}, y_{1} of G such that $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $-x=\left\langle-x_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G and for every real number a such that $x=\left\langle x_{1}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}\right\rangle$.
(5) Let us consider real linear spaces X, Y, and a function f from X into Y. Then f is a linear operator from X into Y if and only if
$f \cdot\left((\operatorname{IsoCPRLSP}(X))^{-1}\right)$ is a linear operator from $\Pi\langle X\rangle$ into Y.
(6) Let us consider real linear spaces X, Y, and a function f from $\Pi\langle X\rangle$ into Y. Then f is a linear operator from $\Pi\langle X\rangle$ into Y if and only if $f \cdot(\operatorname{IsoCPRLSP}(X))$ is a linear operator from X into Y. The theorem is a consequence of (5).
(7) Let us consider a real linear space X, a point s of $\Pi\langle X\rangle$, and an element i of $\operatorname{dom}\langle X\rangle$. Then $\operatorname{reproj}(i, s)=\operatorname{IsoCPRLSP}(X)$.
Proof: For every element x of $X,(\operatorname{reproj}(i, s))(x)=(\operatorname{IsoCPRLSP}(X))(x)$.
(8) Let us consider real linear spaces X, Y, and an object f. Then f is a linear operator from $\Pi\langle X\rangle$ into Y if and only if f is a multilinear operator from $\langle X\rangle$ into Y. The theorem is a consequence of (6) and (7).
Let us consider real linear spaces X, Y. Now we state the propositions:
(9) $\operatorname{MultOpers}(\langle X\rangle, Y)=$ LinearOperators $(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (8).
(10) VectorSpaceOfMultOpers $\mathbb{R}_{\mathbb{R}}(\langle X\rangle, Y)=$

VectorSpaceOfLinearOpers ${ }_{\mathbb{R}}(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (9).
(11) Let us consider a real normed space G. Then
(i) for every set x, x is a point of $\Pi\langle G\rangle$ iff there exists a point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$, and
(ii) for every points x, y of $\Pi\langle G\rangle$ and for every points x_{1}, y_{1} of G such that $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right\rangle$, and
(iii) ${ }^{0} \prod_{\langle G\rangle}=\left\langle 0_{G}\right\rangle$, and
(iv) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $-x=\left\langle-x_{1}\right\rangle$, and
(v) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G and for every real number a such that $x=\left\langle x_{1}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}\right\rangle$, and
(vi) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $\|x\|=\left\|x_{1}\right\|$.

Proof: Consider I being a function from G into $\Pi\langle G\rangle$ such that I is one-to-one and onto and for every point x of $G, I(x)=\langle x\rangle$ and for every points v, w of $G, I(v+w)=I(v)+I(w)$ and for every point v of G and for every element r of $\mathbb{R}, I(r \cdot v)=r \cdot I(v)$ and $0_{\prod\langle G\rangle}=I\left(0_{G}\right)$ and for every point v of $G,\|I(v)\|=\|v\|$. For every set x, x is a point of $\Pi\langle G\rangle$ iff there exists a point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$.

For every points x, y of $\Pi\langle G\rangle$ and for every points x_{1}, y_{1} of G such that $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $-x=\left\langle-x_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G and for every real number a such that $x=\left\langle x_{1}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $\|x\|=\left\|x_{1}\right\| . \square$
Let X be a real normed space. The functor $\operatorname{IsoCPNrSP}(X)$ yielding a linear operator from X into $\Pi\langle X\rangle$ is defined by
(Def. 2) for every point x of X, it $(x)=\langle x\rangle$.
Now we state the proposition:
(12) Let us consider a real normed space X.

Then ${ }^{0} \prod_{\langle X\rangle}=(\operatorname{IsoCPNrSP}(X))\left(0_{X}\right)$.
Let X be a real normed space. Let us note that $\operatorname{IsoCPNrSP}(X)$ is one-toone, onto, and isometric and there exists a linear operator from X into $\Pi\langle X\rangle$ which is one-to-one, onto, and isometric.

Let I be a one-to-one, onto, isometric linear operator from X into $\Pi\langle X\rangle$. Let us observe that the functor I^{-1} yields a linear operator from $\Pi\langle X\rangle$ into X. One can check that I^{-1} is one-to-one, onto, and isometric as a linear operator from $\Pi\langle X\rangle$ into X and there exists a linear operator from $\Pi\langle X\rangle$ into X which is one-to-one, onto, and isometric. Let us consider real normed spaces X, Y and a function f from X into Y. Now we state the propositions:
(13) f is a linear operator from X into Y if and only if $f \cdot\left((\operatorname{IsoCPNrSP}(X))^{-1}\right)$ is a linear operator from $\Pi\langle X\rangle$ into Y.
(14) f is a Lipschitzian linear operator from X into Y if and only if f. $\left((\operatorname{IsoCPNrSP}(X))^{-1}\right)$ is a Lipschitzian linear operator from $\Pi\langle X\rangle$ into Y.
Let us consider real normed spaces X, Y and a function f from $\Pi\langle X\rangle$ into Y. Now we state the propositions:
(15) f is a linear operator from $\Pi\langle X\rangle$ into Y if and only if $f \cdot(\operatorname{IsoCPNrSP}(X))$ is a linear operator from X into Y. The theorem is a consequence of (13).
(16) f is a Lipschitzian linear operator from $\Pi\langle X\rangle$ into Y if and only if $f \cdot(\operatorname{IsoCPNrSP}(X))$ is a Lipschitzian linear operator from X into Y. The theorem is a consequence of (14).
(17) Let us consider a real normed space X, a point s of $\Pi\langle X\rangle$, and an element i of $\operatorname{dom}\langle X\rangle$. Then $\operatorname{reproj}(i, s)=\operatorname{IsoCPNrSP}(X)$.
Proof: For every element x of $X,(\operatorname{reproj}(i, s))(x)=(\operatorname{IsoCPNrSP}(X))(x)$.
(18) Let us consider a real normed space X, and a point x of $\Pi\langle X\rangle$. Then $\operatorname{NrProduct} x=\|x\|$. The theorem is a consequence of (11).

Let us consider real normed spaces X, Y and an object f. Now we state the propositions:
(19) f is a linear operator from $\Pi\langle X\rangle$ into Y if and only if f is a multilinear operator from $\langle X\rangle$ into Y. The theorem is a consequence of (15) and (17).
(20) f is a Lipschitzian linear operator from $\Pi\langle X\rangle$ into Y if and only if f is a Lipschitzian multilinear operator from $\langle X\rangle$ into Y. The theorem is a consequence of (16), (18), (17), and (11).
Let us consider real normed spaces X, Y. Now we state the propositions:
(21) MultOpers $(\langle X\rangle, Y)=$ LinearOperators $(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (19).
(22) BoundedMultOpers $(\langle X\rangle, Y)=\operatorname{BdLinOps}(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (20).
(23) BoundedMultOpersNorm $(\langle X\rangle, Y)=\mathrm{BdLinOpsNorm}(\Pi\langle X\rangle, Y)$.

Proof: Set $n_{1}=$ BoundedMultOpersNorm $(\langle X\rangle, Y)$. Set $n_{2}=$ BdLinOpsNorm $(\Pi\langle X\rangle, Y)$. BoundedMultOpers $(\langle X\rangle, Y)=$ $\operatorname{BdLinOps}(\Pi\langle X\rangle, Y)$. For every object f such that $f \in$ BoundedMultOpers $(\langle X\rangle, Y)$ holds $n_{1}(f)=n_{2}(f)$.
(24) VectorSpaceOfMultOpers $\mathbb{R}_{\mathbb{R}}(\langle X\rangle, Y)=$

VectorSpaceOfLinearOpers $\mathbb{R}_{\mathbb{R}}(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (21).
(25) NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}(\langle X\rangle, Y)=$ the real norm space of bounded linear operators from $\Pi\langle X\rangle$ into Y. The theorem is a consequence of (24) and (23).
(26) Let us consider a real normed space X. If X is complete, then $\Pi\langle X\rangle$ is complete.

2. Spaces of Multilinear Maps and Nested Compositions over Real Normed Vector Spaces

Now we state the propositions:
(27) Let us consider real norm space sequences X, Y, a real normed space Z, and a Lipschitzian bilinear operator f from $\Pi X \times \Pi Y$ into Z. Then $f \cdot\left((\operatorname{IsoCPNrSP}(\Pi X, \Pi Y))^{-1}\right)$ is a Lipschitzian multilinear operator from $\langle\Pi X, \Pi Y\rangle$ into Z.
(28) Let us consider real norm space sequences X, Y, a real normed space Z, and a point f of NormSpaceOfBoundedBilinOpers $\mathbb{R}_{\mathbb{R}}(\Pi X, \Pi Y, Z)$. Then $f \cdot\left((\operatorname{IsoCPNrSP}(\Pi X, \Pi Y))^{-1}\right)$ is a point of NormSpaceOfBoundedMultOpers $\left.\mathbb{R}^{(}\langle\Pi X, \Pi Y\rangle, Z\right)$.
(29) Let us consider real linear space sequences X, Y. Then $\overline{X \sim Y}=\bar{X} \frown \bar{Y}$. Proof: Reconsider $C_{1}=\bar{X}, C_{2}=\bar{Y}$ as a finite sequence. For every natural number i such that $i \in \operatorname{dom} \overline{X^{\wedge} Y}$ holds $\overline{X \frown Y}(i)=\left(C_{1}{ }^{\wedge} C_{2}\right)(i)$.
(30) Let us consider a real linear space X. Then
(i) len $\overline{\langle X\rangle}=\operatorname{len}\langle X\rangle$, and
(ii) len $\overline{\langle X\rangle}=1$, and
(iii) $\overline{\langle X\rangle}=\langle$ the carrier of $X\rangle$.
(31) Let us consider a real norm space sequence X, an element x of ΠX, a real normed space Y, an element z of $\Pi\left(X^{\wedge}\langle Y\rangle\right)$, an element i of dom X, an element j of $\operatorname{dom}\left(X^{\wedge}\langle Y\rangle\right)$, an element x_{i} of $X(i)$, and a point y of Y. Suppose $i=j$ and $z=x^{\curvearrowleft}\langle y\rangle$. Then $(\operatorname{reproj}(j, z))\left(x_{i}\right)=(\operatorname{reproj}(i, x))\left(x_{i}\right)^{\wedge}$ $\langle y\rangle$.
Proof: Reconsider $x_{j}=x_{i}$ as an element of $\left(X^{\wedge}\langle Y\rangle\right)(j)$. For every object k such that $k \in \operatorname{dom}\left((\operatorname{reproj}(i, x))\left(x_{i}\right)^{\wedge}\langle y\rangle\right)$ holds $\left((\operatorname{reproj}(i, x))\left(x_{i}\right)^{\wedge}\right.$ $\langle y\rangle)(k)=(\operatorname{reproj}(j, z))\left(x_{j}\right)(k)$.
(32) Let us consider a real norm space sequence X, an element x of ΠX, a real normed space Y, an element z of $\Pi\left(X^{\wedge}\langle Y\rangle\right)$, an element j of $\operatorname{dom}\left(X^{\frown}\langle Y\rangle\right)$, an element y of Y, and a point y_{0} of Y. Suppose $z=x^{\frown}\left\langle y_{0}\right\rangle$ and $j=\operatorname{len} x+1$. Then $(\operatorname{reproj}(j, z))(y)=x^{\frown}\langle y\rangle$.
Proof: Reconsider $y_{1}=y$ as an element of $\left(X^{\wedge}\langle Y\rangle\right)(j)$. For every object k such that $k \in \operatorname{dom}\left((\operatorname{reproj}(j, z))\left(y_{1}\right)\right)$ holds $(\operatorname{reproj}(j, z))\left(y_{1}\right)(k)=\left(x^{\frown}\right.$ $\langle y\rangle)(k)$.
(33) Let us consider a real norm space sequence X, an element x of ΠX, a real normed space Y, and a point y of Y. Then $x^{\wedge}\langle y\rangle$ is a point of $\Pi\left(X^{\frown}\langle Y\rangle\right)$.
Proof: Set $C_{1}=\bar{X}$. Set $C_{2}=$ the carrier of Y. The carrier of $\Pi\left(X^{\wedge}\right.$ $\langle Y\rangle)=\Pi(\bar{X} \frown \overline{\langle Y\rangle})$. For every object i such that $i \in \operatorname{dom}\left(C_{1} \frown\left\langle C_{2}\right\rangle\right)$ holds $\left(x^{\frown}\langle y\rangle\right)(i) \in\left(C_{1} \frown\left\langle C_{2}\right\rangle\right)(i)$.
(34) Let us consider a real norm space sequence X, an element x of ΠX, a real normed space Y, an element z of $\Pi\left(X^{\wedge}\langle Y\rangle\right)$, and a point y of Y. Suppose $z=x^{\frown}\langle y\rangle$. Then NrProduct $z=\|y\| \cdot(\operatorname{NrProduct} x)$.
Proof: Consider n_{4} being a finite sequence of elements of \mathbb{R} such that $\operatorname{dom} n_{4}=\operatorname{dom}\left(X^{\frown}\langle Y\rangle\right)$ and for every element i of $\operatorname{dom}\left(X^{\frown}\langle Y\rangle\right), n_{4}(i)=$ $\|z(i)\|$ and NrProduct $z=\prod n_{4}$. Set $n_{3}=n_{4} \upharpoonright$ len x. Set $C_{1}=\bar{X}$. Consider x_{1} being a function such that $x=x_{1}$ and $\operatorname{dom} x_{1}=\operatorname{dom} C_{1}$ and for every object i such that $i \in \operatorname{dom} C_{1}$ holds $x_{1}(i) \in C_{1}(i)$. For every element i of dom $X, n_{3}(i)=\|x(i)\| .0 \leqslant \prod n_{3}$ by [7, (42)]. For every object i such that $i \in \operatorname{dom}\left(n_{3} \frown\langle\|y\|\rangle\right)$ holds $\left(n_{3} \frown\langle\|y\|\rangle\right)(i)=n_{4}(i)$.
(35) Let us consider real normed spaces X, Z, and a real norm space sequence Y. Then there exists a Lipschitzian linear operator I from the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers $_{\mathbb{R}}(Y, Z)$ into NormSpaceOfBoundedMultOpers $\left.\mathbb{R}^{(} Y^{\wedge}\langle X\rangle, Z\right)$ such that
(i) I is one-to-one, onto, and isometric, and
(ii) for every point u of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}(Y, Z),\|u\|=\|I(u)\|$ and for every point y of ΠY and for every point x of $X, I(u)\left(y^{\wedge}\right.$ $\langle x\rangle)=u(x)(y)$.
Proof: Set $C_{1}=$ the carrier of X. Set $C_{2}=\bar{Y}$. Set $C_{3}=$ the carrier of Z. Consider J being a function from $\left(C_{3} \Pi^{C_{2}}\right)^{C_{1}}$ into $C_{3} \prod^{\left(C_{2} \sim\left\langle C_{1}\right\rangle\right)}$ such that J is bijective and for every function f from C_{1} into $C_{3} \Pi C_{2}$ and for every finite sequence y and for every object x such that $y \in \prod C_{2}$ and $x \in C_{1}$ holds $J(f)\left(y^{\frown}\langle x\rangle\right)=f(x)(y)$. Set $L_{1}=$ the carrier of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}$ (Y, Z). Set $B_{1}=$ the carrier of NormSpaceOfBoundedMultOpers $\mathbb{R}^{(}\left(Y^{\frown}\right.$ $\langle X\rangle, Z)$. Set $L_{2}=$ the carrier of NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}(Y, Z)$. The carrier of $\Pi\langle X\rangle=\Pi\langle$ the carrier of $X\rangle$. The carrier of $\Pi\left(Y^{\wedge}\langle X\rangle\right)=$ $\Pi(\bar{Y} \frown \overline{\langle X\rangle}) . L_{2}{ }^{C_{1}} \subseteq\left(C_{3} \Pi C_{2}\right)^{C_{1}}$. Reconsider $I=J \upharpoonright L_{1}$ as a function from L_{1} into $C_{3} \prod\left(C_{2} \sim\left\langle C_{1}\right\rangle\right)$.

For every element f of L_{1}, for every point x of X, there exists a Lipschitzian multilinear operator g from Y into Z such that $g=f(x)$ and for every point y of $\Pi Y, I(f)\left(y^{\wedge}\langle x\rangle\right)=g(y)$ and $I(f)$ is a Lipschitzian multilinear operator from $Y^{\frown}\langle X\rangle$ into Z and $I(f) \in B_{1}$ and there exists a point I_{f} of NormSpaceOfBoundedMultOpers $\mathbb{R}^{(}\left(Y^{\wedge}\langle X\rangle, Z\right)$ such that $I_{f}=I(f)$ and $\|f\|=\left\|I_{f}\right\|$. For every elements f_{1}, f_{2} of L_{1}, $I\left(f_{1}+f_{2}\right)=I\left(f_{1}\right)+I\left(f_{2}\right)$. For every element f_{1} of L_{1} and for every real number $a, I\left(a \cdot f_{1}\right)=a \cdot I\left(f_{1}\right)$ by [6, (2)], (11), [5, (49)]. For every point u of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}(Y, Z),\|u\|=\|I(u)\|$ and for every point y of ΠY and for every point x of $X, I(u)\left(y^{\wedge}\langle x\rangle\right)=u(x)(y)$. For every object I_{f} such that $I_{f} \in B_{1}$ there exists an object f such that $f \in L_{1}$ and $I_{f}=I(f)$.
Let Y be a real normed space and X be a real norm space sequence. The functor NestingLB (X, Y) yielding a real normed space is defined by
(Def. 3) there exists a function f such that $\operatorname{dom} f=\mathbb{N}$ and it $=f(\operatorname{len} X)$ and $f(0)=Y$ and for every natural number i such that $i<\operatorname{len} X$ there exists a real normed space f_{i} and there exists an element j of $\operatorname{dom} X$ such that
$f_{i}=f(i)$ and $i+1=j$ and $f(i+1)=$ the real norm space of bounded linear operators from $X(j)$ into f_{i}.
Let us consider real normed spaces X, Y, Z and a Lipschitzian linear operator I from Y into Z. Now we state the propositions:
(36) Suppose I is one-to-one, onto, and isometric. Then there exists a Lipschitzian linear operator L from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from X into Z such that
(i) L is one-to-one, onto, and isometric, and
(ii) for every point f of the real norm space of bounded linear operators from X into $Y, L(f)=I \cdot f$.
Proof: Consider J being a linear operator from Z into Y such that $J=$ I^{-1} and J is one-to-one and onto and J is isometric. Set $F=$ the carrier of the real norm space of bounded linear operators from X into Y. Set $G=$ the carrier of the real norm space of bounded linear operators from X into Z. Define \mathcal{P} [function, function] $\equiv \$_{2}=I \cdot \$_{1}$. For every element f of F, there exists an element g of G such that $\mathcal{P}[f, g]$. Consider L being a function from F into G such that for every element f of $F, \mathcal{P}[f, L(f)]$.

For every objects f_{1}, f_{2} such that $f_{1}, f_{2} \in F$ and $L\left(f_{1}\right)=L\left(f_{2}\right)$ holds $f_{1}=f_{2}$. For every object g such that $g \in G$ there exists an object f such that $f \in F$ and $g=L(f)$ by [10, (2)]. For every points f_{1}, f_{2} of the real norm space of bounded linear operators from X into $Y, L\left(f_{1}+f_{2}\right)=$ $L\left(f_{1}\right)+L\left(f_{2}\right)$. For every point f of the real norm space of bounded linear operators from X into Y and for every real number $a, L(a \cdot f)=a \cdot L(f)$. For every element f of the real norm space of bounded linear operators from X into $Y,\|L(f)\|=\|f\|$ by [3, (7)].
(37) Suppose I is one-to-one, onto, and isometric. Then there exists a Lipschitzian linear operator L from the real norm space of bounded linear operators from Y into X into the real norm space of bounded linear operators from Z into X such that
(i) L is one-to-one, onto, and isometric, and
(ii) for every point f of the real norm space of bounded linear operators from Y into $X, L(f)=f \cdot\left(I^{-1}\right)$.
Proof: Consider J being a linear operator from Z into Y such that $J=$ I^{-1} and J is one-to-one and onto and J is isometric. Set $F=$ the carrier of the real norm space of bounded linear operators from Y into X. Set $G=$ the carrier of the real norm space of bounded linear operators from Z into X. Define \mathcal{P} [function, function] $\equiv \$_{2}=\$_{1} \cdot J$. For every element f
of F, there exists an element g of G such that $\mathcal{P}[f, g]$. Consider L being a function from F into G such that for every element f of $F, \mathcal{P}[f, L(f)]$.

For every objects f_{1}, f_{2} such that $f_{1}, f_{2} \in F$ and $L\left(f_{1}\right)=L\left(f_{2}\right)$ holds $f_{1}=f_{2}$. For every object g such that $g \in G$ there exists an object f such that $f \in F$ and $g=L(f)$. For every points f_{1}, f_{2} of the real norm space of bounded linear operators from Y into $X, L\left(f_{1}+f_{2}\right)=L\left(f_{1}\right)+L\left(f_{2}\right)$. For every point f of the real norm space of bounded linear operators from Y into X and for every real number $a, L(a \cdot f)=a \cdot L(f)$. For every element f of the real norm space of bounded linear operators from Y into $X,\|L(f)\|=\|f\|$.
(38) Let us consider real normed spaces X, Y. Then there exists a Lipschitzian linear operator I from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from $\Pi\langle X\rangle$ into Y such that
(i) I is one-to-one, onto, and isometric, and
(ii) for every point u of the real norm space of bounded linear operators from X into Y and for every point x of $X, I(u)(\langle x\rangle)=u(x)$, and
(iii) for every point u of the real norm space of bounded linear operators from X into $Y,\|u\|=\|I(u)\|$.
Proof: Set $J=\operatorname{IsoCPNrSP}(X)$. Consider I being a Lipschitzian linear operator from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from $\Pi\langle X\rangle$ into Y such that I is one-to-one, onto, and isometric and for every point x of the real norm space of bounded linear operators from X into Y, $I(x)=x \cdot\left(J^{-1}\right)$. For every point u of the real norm space of bounded linear operators from X into Y and for every point x of $X, I(u)(\langle x\rangle)=u(x)$.
(39) Let us consider real normed spaces X, Y, Z, W, a Lipschitzian linear operator I from X into Z, and a Lipschitzian linear operator J from Y into W. Suppose I is one-to-one, onto, and isometric and J is one-to-one, onto, and isometric.

Then there exists a Lipschitzian linear operator K from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from Z into W such that
(i) K is one-to-one, onto, and isometric, and
(ii) for every point x of the real norm space of bounded linear operators from X into $Y, K(x)=J \cdot\left(x \cdot\left(I^{-1}\right)\right)$.

Proof: Consider H being a Lipschitzian linear operator from the real norm space of bounded linear operators from X into Y into the real norm
space of bounded linear operators from Z into Y such that H is one-toone, onto, and isometric and for every point x of the real norm space of bounded linear operators from X into $Y, H(x)=x \cdot\left(I^{-1}\right)$. Consider L being a Lipschitzian linear operator from the real norm space of bounded linear operators from Z into Y into the real norm space of bounded linear operators from Z into W such that L is one-to-one, onto, and isometric and for every point x of the real norm space of bounded linear operators from Z into $Y, L(x)=J \cdot x$.

Reconsider $K=L \cdot H$ as a Lipschitzian linear operator from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from Z into W. For every point x of the real norm space of bounded linear operators from X into $Y,\|K(x)\|=$ $\|x\|$.
(40) Let us consider a natural number n, real norm space sequences A, B, and real normed spaces X, Y. Suppose len $A=n+1$ and $A \upharpoonright n=B$ and $X=A(n+1)$. Then NestingLB $(A, Y)=$ the real norm space of bounded linear operators from X into NestingLB (B, Y).
Proof: Consider f being a function such that $\operatorname{dom} f=\mathbb{N}$ and NestingLB $(A, Y)=f(\operatorname{len} A)$ and $f(0)=Y$ and for every natural number j such that $j<\operatorname{len} A$ there exists a real normed space V and there exists an element k of $\operatorname{dom} A$ such that $V=f(j)$ and $j+1=k$ and $f(j+1)=$ the real norm space of bounded linear operators from $A(k)$ into V.

Consider V being a real normed space, k being an element of $\operatorname{dom} A$ such that $V=f(\operatorname{len} B)$ and len $B+1=k$ and $f(\operatorname{len} B+1)=$ the real norm space of bounded linear operators from $A(k)$ into V. For every natural number j such that $j<$ len B there exists a real normed space V and there exists an element k of $\operatorname{dom} B$ such that $V=f(j)$ and $j+1=k$ and $f(j+1)=$ the real norm space of bounded linear operators from $B(k)$ into V.
Let Y be a real normed space and X be a real norm space sequence. Let us observe that NestingLB (X, Y) is constituted functions.

The functor NestMult (X, Y) yielding a Lipschitzian linear operator from NestingLB (X, Y) into NormSpaceOfBoundedMultOpers ${ }_{\mathbb{R}}(X, Y)$ is defined by
(Def. 4) $i t$ is one-to-one, onto, and isometric and for every element u of NestingLB $(X, Y),\|i t(u)\|=\|u\|$ and for every point u of $\operatorname{NestingLB}(X, Y)$ and for every point x of ΠX, there exists a finite sequence g such that len $g=$ len X and $g(1)=u$ and for every element i of \mathbb{N} such that $1 \leqslant i<\operatorname{len} X$ there exists a real norm space sequence X_{2}.

There exists a point h of $\operatorname{NestingLB}\left(X_{2}, Y\right)$ such that $X_{2}=X \upharpoonright\left(\operatorname{len} X-^{\prime}\right.$ $i+1)$ and $h=g(i)$ and $g(i+1)=h\left(x\left(\operatorname{len} X-^{\prime} i+1\right)\right)$ and there exists a real
norm space sequence X_{1} and there exists a point h of $\left.\operatorname{NestingLB(~} X_{1}, Y\right)$ such that $X_{1}=\langle X(1)\rangle$ and $h=g(\operatorname{len} X)$ and $(i t(u))(x)=h(x(1))$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ s10817-017-9440-6
[3] Yuichi Futa, Noboru Endou, and Yasunari Shidama. Isometric differentiable functions on real normed space. Formalized Mathematics, 21(4):249-260, 2013. doi 10.2478/forma-2013-0027.
[4] Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.
[5] Kazuhisa Nakasho. Multilinear operator and its basic properties. Formalized Mathematics, 27(1):35-45, 2019. doi 10.2478/forma-2019-0004
[6] Karol Pąk. Continuity of barycentric coordinates in Euclidean topological spaces. Formalized Mathematics, 19(3):139-144, 2011. doi 10.2478/v10037-011-0022-5
[7] Marco Riccardi. Pocklington's theorem and Bertrand's postulate. Formalized Mathematics, 14(2):47-52, 2006. doi 10.2478/v10037-006-0007-y
[8] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
[9] Laurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.
[10] Yasunari Shidama. The Banach algebra of bounded linear operators Formalized Mathematics, 12(2):103-108, 2004.
[11] Kôsaku Yosida. Functional Analysis. Springer, 1980.
Accepted April 30, 2022

