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Summary. This paper formalizes in Mizar [1], [2], that the isometric iso-
morphisms between spaces formed by an (n + 1)-dimensional multilinear map
and an n-fold composition of linear maps on real normed spaces. This result is
used to describe the space of nth-order derivatives of the Frechet derivative as a
multilinear space. In Section 1, we discuss the spaces of 1-dimensional multilinear
maps and 0-fold compositions as a preparation, and in Section 2, we extend the
discussion to the spaces of (n + 1)-dimensional multilinear map and an n-fold
compositions. We referred to [4], [11], [8], [9] in this formalization.
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1. Preliminaries

Let X be a real linear space. The functor IsoCPRLSP(X) yielding a linear
operator from X into

∏
〈X〉 is defined by

(Def. 1) for every point x of X, it(x) = 〈x〉.
Now we state the proposition:

(1) Let us consider a real linear space X.
Then 0∏〈X〉 = (IsoCPRLSP(X))(0X).
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Let X be a real linear space. Observe that IsoCPRLSP(X) is one-to-one and
onto and there exists a linear operator from X into

∏
〈X〉 which is one-to-one

and onto.
Let f be a bijective linear operator from X into

∏
〈X〉. Let us note that the

functor f−1 yields a linear operator from
∏
〈X〉 into X. Let f be a one-to-one,

onto linear operator from X into
∏
〈X〉. Let us note that f−1 is bijective as

a linear operator from
∏
〈X〉 into X and there exists a linear operator from∏

〈X〉 into X which is one-to-one and onto.
Now we state the propositions:

(2) Let us consider a real linear space X, and a point x of X.
Then ((IsoCPRLSP(X))−1)(〈x〉) = x.
Proof: Set I = IsoCPRLSP(X). Set J = I−1. For every point x of X,
J(〈x〉) = x. �

(3) Let us consider a real linear space X.
Then ((IsoCPRLSP(X))−1)(0∏〈X〉) = 0X . The theorem is a consequence
of (1).

(4) Let us consider a real linear space G. Then

(i) for every set x, x is a point of
∏
〈G〉 iff there exists a point x1 of G

such that x = 〈x1〉, and

(ii) for every points x, y of
∏
〈G〉 and for every points x1, y1 of G such

that x = 〈x1〉 and y = 〈y1〉 holds x+ y = 〈x1 + y1〉, and

(iii) 0∏〈G〉 = 〈0G〉, and

(iv) for every point x of
∏
〈G〉 and for every point x1 of G such that

x = 〈x1〉 holds −x = 〈−x1〉, and

(v) for every point x of
∏
〈G〉 and for every point x1 of G and for every

real number a such that x = 〈x1〉 holds a · x = 〈a · x1〉.
Proof: Consider I being a function from G into

∏
〈G〉 such that I is

one-to-one and onto and for every point x of G, I(x) = 〈x〉 and for every
points v, w of G, I(v+w) = I(v)+I(w) and for every point v of G and for
every element r of R, I(r · v) = r · I(v) and 0∏〈G〉 = I(0G). For every set
x, x is a point of

∏
〈G〉 iff there exists a point x1 of G such that x = 〈x1〉.

For every points x, y of
∏
〈G〉 and for every points x1, y1 of G such

that x = 〈x1〉 and y = 〈y1〉 holds x + y = 〈x1 + y1〉. For every point x of∏
〈G〉 and for every point x1 of G such that x = 〈x1〉 holds −x = 〈−x1〉.

For every point x of
∏
〈G〉 and for every point x1 of G and for every real

number a such that x = 〈x1〉 holds a · x = 〈a · x1〉. �

(5) Let us consider real linear spaces X, Y, and a function f from X into Y.
Then f is a linear operator from X into Y if and only if
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f · ((IsoCPRLSP(X))−1) is a linear operator from
∏
〈X〉 into Y.

(6) Let us consider real linear spaces X, Y, and a function f from
∏
〈X〉

into Y. Then f is a linear operator from
∏
〈X〉 into Y if and only if

f · (IsoCPRLSP(X)) is a linear operator from X into Y. The theorem
is a consequence of (5).

(7) Let us consider a real linear space X, a point s of
∏
〈X〉, and an element

i of dom〈X〉. Then reproj(i, s) = IsoCPRLSP(X).
Proof: For every element x ofX, (reproj(i, s))(x) = (IsoCPRLSP(X))(x).
�

(8) Let us consider real linear spacesX, Y, and an object f . Then f is a linear
operator from

∏
〈X〉 into Y if and only if f is a multilinear operator from

〈X〉 into Y. The theorem is a consequence of (6) and (7).

Let us consider real linear spaces X, Y. Now we state the propositions:

(9) MultOpers(〈X〉, Y ) = LinearOperators(
∏
〈X〉, Y ). The theorem is a con-

sequence of (8).

(10) VectorSpaceOfMultOpersR(〈X〉, Y ) =
VectorSpaceOfLinearOpersR(

∏
〈X〉, Y ). The theorem is a consequence of

(9).

(11) Let us consider a real normed space G. Then

(i) for every set x, x is a point of
∏
〈G〉 iff there exists a point x1 of G

such that x = 〈x1〉, and

(ii) for every points x, y of
∏
〈G〉 and for every points x1, y1 of G such

that x = 〈x1〉 and y = 〈y1〉 holds x+ y = 〈x1 + y1〉, and

(iii) 0∏〈G〉 = 〈0G〉, and

(iv) for every point x of
∏
〈G〉 and for every point x1 of G such that

x = 〈x1〉 holds −x = 〈−x1〉, and

(v) for every point x of
∏
〈G〉 and for every point x1 of G and for every

real number a such that x = 〈x1〉 holds a · x = 〈a · x1〉, and

(vi) for every point x of
∏
〈G〉 and for every point x1 of G such that

x = 〈x1〉 holds ‖x‖ = ‖x1‖.

Proof: Consider I being a function from G into
∏
〈G〉 such that I is

one-to-one and onto and for every point x of G, I(x) = 〈x〉 and for every
points v, w of G, I(v + w) = I(v) + I(w) and for every point v of G and
for every element r of R, I(r · v) = r · I(v) and 0∏〈G〉 = I(0G) and for
every point v of G, ‖I(v)‖ = ‖v‖. For every set x, x is a point of

∏
〈G〉 iff

there exists a point x1 of G such that x = 〈x1〉.
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For every points x, y of
∏
〈G〉 and for every points x1, y1 of G such

that x = 〈x1〉 and y = 〈y1〉 holds x + y = 〈x1 + y1〉. For every point x of∏
〈G〉 and for every point x1 of G such that x = 〈x1〉 holds −x = 〈−x1〉.

For every point x of
∏
〈G〉 and for every point x1 of G and for every real

number a such that x = 〈x1〉 holds a · x = 〈a · x1〉. For every point x of∏
〈G〉 and for every point x1 of G such that x = 〈x1〉 holds ‖x‖ = ‖x1‖. �

Let X be a real normed space. The functor IsoCPNrSP(X) yielding a linear
operator from X into

∏
〈X〉 is defined by

(Def. 2) for every point x of X, it(x) = 〈x〉.
Now we state the proposition:

(12) Let us consider a real normed space X.
Then 0∏〈X〉 = (IsoCPNrSP(X))(0X).

Let X be a real normed space. Let us note that IsoCPNrSP(X) is one-to-
one, onto, and isometric and there exists a linear operator from X into

∏
〈X〉

which is one-to-one, onto, and isometric.
Let I be a one-to-one, onto, isometric linear operator from X into

∏
〈X〉.

Let us observe that the functor I−1 yields a linear operator from
∏
〈X〉 into X.

One can check that I−1 is one-to-one, onto, and isometric as a linear operator
from

∏
〈X〉 into X and there exists a linear operator from

∏
〈X〉 into X which

is one-to-one, onto, and isometric. Let us consider real normed spaces X, Y and
a function f from X into Y. Now we state the propositions:

(13) f is a linear operator fromX into Y if and only if f ·((IsoCPNrSP(X))−1)
is a linear operator from

∏
〈X〉 into Y.

(14) f is a Lipschitzian linear operator from X into Y if and only if f ·
((IsoCPNrSP(X))−1) is a Lipschitzian linear operator from

∏
〈X〉 into Y.

Let us consider real normed spaces X, Y and a function f from
∏
〈X〉 into

Y. Now we state the propositions:

(15) f is a linear operator from
∏
〈X〉 into Y if and only if f ·(IsoCPNrSP(X))

is a linear operator from X into Y. The theorem is a consequence of (13).

(16) f is a Lipschitzian linear operator from
∏
〈X〉 into Y if and only if

f · (IsoCPNrSP(X)) is a Lipschitzian linear operator from X into Y. The
theorem is a consequence of (14).

(17) Let us consider a real normed spaceX, a point s of
∏
〈X〉, and an element

i of dom〈X〉. Then reproj(i, s) = IsoCPNrSP(X).
Proof: For every element x ofX, (reproj(i, s))(x) = (IsoCPNrSP(X))(x).
�

(18) Let us consider a real normed space X, and a point x of
∏
〈X〉. Then

NrProductx = ‖x‖. The theorem is a consequence of (11).
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Let us consider real normed spaces X, Y and an object f . Now we state the
propositions:

(19) f is a linear operator from
∏
〈X〉 into Y if and only if f is a multilinear

operator from 〈X〉 into Y. The theorem is a consequence of (15) and (17).

(20) f is a Lipschitzian linear operator from
∏
〈X〉 into Y if and only if f

is a Lipschitzian multilinear operator from 〈X〉 into Y. The theorem is
a consequence of (16), (18), (17), and (11).

Let us consider real normed spaces X, Y. Now we state the propositions:

(21) MultOpers(〈X〉, Y ) = LinearOperators(
∏
〈X〉, Y ). The theorem is a con-

sequence of (19).

(22) BoundedMultOpers(〈X〉, Y ) = BdLinOps(
∏
〈X〉, Y ). The theorem is a con-

sequence of (20).

(23) BoundedMultOpersNorm(〈X〉, Y ) = BdLinOpsNorm(
∏
〈X〉, Y ).

Proof: Set n1 = BoundedMultOpersNorm(〈X〉, Y ). Set n2 =
BdLinOpsNorm(

∏
〈X〉, Y ). BoundedMultOpers(〈X〉, Y ) =

BdLinOps(
∏
〈X〉, Y ). For every object f such that

f ∈ BoundedMultOpers(〈X〉, Y ) holds n1(f) = n2(f). �

(24) VectorSpaceOfMultOpersR(〈X〉, Y ) =
VectorSpaceOfLinearOpersR(

∏
〈X〉, Y ). The theorem is a consequence of

(21).

(25) NormSpaceOfBoundedMultOpersR(〈X〉, Y ) = the real norm space of
bounded linear operators from

∏
〈X〉 into Y. The theorem is a consequence

of (24) and (23).

(26) Let us consider a real normed space X. If X is complete, then
∏
〈X〉 is

complete.

2. Spaces of Multilinear Maps and Nested Compositions over Real
Normed Vector Spaces

Now we state the propositions:

(27) Let us consider real norm space sequences X, Y, a real normed space
Z, and a Lipschitzian bilinear operator f from

∏
X ×

∏
Y into Z. Then

f ·((IsoCPNrSP(
∏
X,
∏
Y ))−1) is a Lipschitzian multilinear operator from

〈
∏
X,
∏
Y 〉 into Z.

(28) Let us consider real norm space sequences X, Y, a real normed space Z,
and a point f of NormSpaceOfBoundedBilinOpersR(

∏
X,
∏
Y,Z). Then

f · ((IsoCPNrSP(
∏
X,
∏
Y ))−1) is a point of NormSpaceOfBoundedMult-

OpersR(〈
∏
X,
∏
Y 〉, Z).
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(29) Let us consider real linear space sequences X, Y. Then X a Y = X a Y .
Proof: Reconsider C1 = X, C2 = Y as a finite sequence. For every
natural number i such that i ∈ domX a Y holds X a Y (i) = (C1 aC2)(i).
�

(30) Let us consider a real linear space X. Then

(i) len 〈X〉 = len〈X〉, and

(ii) len 〈X〉 = 1, and

(iii) 〈X〉 = 〈the carrier of X〉.
(31) Let us consider a real norm space sequence X, an element x of

∏
X,

a real normed space Y, an element z of
∏

(Xa 〈Y 〉), an element i of domX,
an element j of dom(X a 〈Y 〉), an element xi of X(i), and a point y of Y.
Suppose i = j and z = xa〈y〉. Then (reproj(j, z))(xi) = (reproj(i, x))(xi)a

〈y〉.
Proof: Reconsider xj = xi as an element of (Xa〈Y 〉)(j). For every object
k such that k ∈ dom((reproj(i, x))(xi) a 〈y〉) holds ((reproj(i, x))(xi) a

〈y〉)(k) = (reproj(j, z))(xj)(k). �

(32) Let us consider a real norm space sequence X, an element x of
∏
X,

a real normed space Y, an element z of
∏

(X a 〈Y 〉), an element j of
dom(Xa 〈Y 〉), an element y of Y, and a point y0 of Y. Suppose z = xa 〈y0〉
and j = lenx+ 1. Then (reproj(j, z))(y) = x a 〈y〉.
Proof: Reconsider y1 = y as an element of (X a 〈Y 〉)(j). For every object
k such that k ∈ dom((reproj(j, z))(y1)) holds (reproj(j, z))(y1)(k) = (x a

〈y〉)(k). �

(33) Let us consider a real norm space sequence X, an element x of
∏
X,

a real normed space Y, and a point y of Y. Then x a 〈y〉 is a point of∏
(X a 〈Y 〉).
Proof: Set C1 = X. Set C2 = the carrier of Y. The carrier of

∏
(X a

〈Y 〉) =
∏

(X a 〈Y 〉). For every object i such that i ∈ dom(C1a 〈C2〉) holds
(x a 〈y〉)(i) ∈ (C1 a 〈C2〉)(i). �

(34) Let us consider a real norm space sequence X, an element x of
∏
X,

a real normed space Y, an element z of
∏

(X a 〈Y 〉), and a point y of Y.
Suppose z = x a 〈y〉. Then NrProduct z = ‖y‖ · (NrProductx).
Proof: Consider n4 being a finite sequence of elements of R such that
domn4 = dom(X a 〈Y 〉) and for every element i of dom(X a 〈Y 〉), n4(i) =
‖z(i)‖ and NrProduct z =

∏
n4. Set n3 = n4� lenx. Set C1 = X. Consider

x1 being a function such that x = x1 and domx1 = domC1 and for every
object i such that i ∈ domC1 holds x1(i) ∈ C1(i). For every element i of
domX, n3(i) = ‖x(i)‖. 0 ¬

∏
n3 by [7, (42)]. For every object i such that

i ∈ dom(n3 a 〈‖y‖〉) holds (n3 a 〈‖y‖〉)(i) = n4(i). �
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(35) Let us consider real normed spaces X, Z, and a real norm space sequen-
ce Y. Then there exists a Lipschitzian linear operator I from the real norm
space of bounded linear operators fromX into NormSpaceOfBoundedMult-
OpersR(Y, Z) into NormSpaceOfBoundedMultOpersR(Y a 〈X〉, Z) such
that

(i) I is one-to-one, onto, and isometric, and

(ii) for every point u of the real norm space of bounded linear operators
from X into NormSpaceOfBoundedMultOpersR(Y,Z), ‖u‖ = ‖I(u)‖
and for every point y of

∏
Y and for every point x of X, I(u)(y a

〈x〉) = u(x)(y).

Proof: Set C1 = the carrier of X. Set C2 = Y . Set C3 = the carrier of Z.
Consider J being a function from (C3

∏
C2)C1 into C3

∏
(C2a〈C1〉) such that

J is bijective and for every function f from C1 into C3
∏
C2 and for every fi-

nite sequence y and for every object x such that y ∈
∏
C2 and x ∈ C1 holds

J(f)(y a 〈x〉) = f(x)(y). Set L1 = the carrier of the real norm space of
bounded linear operators from X into NormSpaceOfBoundedMultOpersR
(Y, Z). Set B1 = the carrier of NormSpaceOfBoundedMultOpersR(Y a

〈X〉, Z). Set L2 = the carrier of NormSpaceOfBoundedMultOpersR(Y,Z).
The carrier of

∏
〈X〉 =

∏
〈the carrier of X〉. The carrier of

∏
(Y a 〈X〉) =∏

(Y a 〈X〉). L2C1 ⊆ (C3
∏
C2)C1 . Reconsider I = J�L1 as a function from

L1 into C3
∏
(C2a〈C1〉).

For every element f of L1, for every point x of X, there exists a Lip-
schitzian multilinear operator g from Y into Z such that g = f(x) and
for every point y of

∏
Y, I(f)(y a 〈x〉) = g(y) and I(f) is a Lipschit-

zian multilinear operator from Y a 〈X〉 into Z and I(f) ∈ B1 and the-
re exists a point If of NormSpaceOfBoundedMultOpersR(Y a 〈X〉, Z)
such that If = I(f) and ‖f‖ = ‖If‖. For every elements f1, f2 of L1,
I(f1 + f2) = I(f1) + I(f2). For every element f1 of L1 and for every re-
al number a, I(a · f1) = a · I(f1) by [6, (2)], (11), [5, (49)]. For every
point u of the real norm space of bounded linear operators from X into
NormSpaceOfBoundedMultOpersR(Y, Z), ‖u‖ = ‖I(u)‖ and for every po-
int y of

∏
Y and for every point x of X, I(u)(ya 〈x〉) = u(x)(y). For every

object If such that If ∈ B1 there exists an object f such that f ∈ L1 and
If = I(f). �

Let Y be a real normed space and X be a real norm space sequence. The
functor NestingLB(X,Y ) yielding a real normed space is defined by

(Def. 3) there exists a function f such that dom f = N and it = f(lenX) and
f(0) = Y and for every natural number i such that i < lenX there exists
a real normed space fi and there exists an element j of domX such that
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fi = f(i) and i + 1 = j and f(i + 1) = the real norm space of bounded
linear operators from X(j) into fi.

Let us consider real normed spacesX, Y, Z and a Lipschitzian linear operator
I from Y into Z. Now we state the propositions:

(36) Suppose I is one-to-one, onto, and isometric. Then there exists a Lip-
schitzian linear operator L from the real norm space of bounded linear
operators from X into Y into the real norm space of bounded linear ope-
rators from X into Z such that

(i) L is one-to-one, onto, and isometric, and

(ii) for every point f of the real norm space of bounded linear operators
from X into Y, L(f) = I · f .

Proof: Consider J being a linear operator from Z into Y such that J =
I−1 and J is one-to-one and onto and J is isometric. Set F = the carrier
of the real norm space of bounded linear operators from X into Y. Set
G = the carrier of the real norm space of bounded linear operators from
X into Z. Define P[function, function] ≡ $2 = I · $1. For every element f
of F , there exists an element g of G such that P[f, g]. Consider L being
a function from F into G such that for every element f of F , P[f, L(f)].

For every objects f1, f2 such that f1, f2 ∈ F and L(f1) = L(f2) holds
f1 = f2. For every object g such that g ∈ G there exists an object f such
that f ∈ F and g = L(f) by [10, (2)]. For every points f1, f2 of the real
norm space of bounded linear operators from X into Y, L(f1 + f2) =
L(f1) +L(f2). For every point f of the real norm space of bounded linear
operators from X into Y and for every real number a, L(a · f) = a ·L(f).
For every element f of the real norm space of bounded linear operators
from X into Y, ‖L(f)‖ = ‖f‖ by [3, (7)]. �

(37) Suppose I is one-to-one, onto, and isometric. Then there exists a Lip-
schitzian linear operator L from the real norm space of bounded linear
operators from Y into X into the real norm space of bounded linear ope-
rators from Z into X such that

(i) L is one-to-one, onto, and isometric, and

(ii) for every point f of the real norm space of bounded linear operators
from Y into X, L(f) = f · (I−1).

Proof: Consider J being a linear operator from Z into Y such that J =
I−1 and J is one-to-one and onto and J is isometric. Set F = the carrier
of the real norm space of bounded linear operators from Y into X. Set
G = the carrier of the real norm space of bounded linear operators from
Z into X. Define P[function, function] ≡ $2 = $1 · J . For every element f
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of F , there exists an element g of G such that P[f, g]. Consider L being
a function from F into G such that for every element f of F , P[f, L(f)].

For every objects f1, f2 such that f1, f2 ∈ F and L(f1) = L(f2) holds
f1 = f2. For every object g such that g ∈ G there exists an object f such
that f ∈ F and g = L(f). For every points f1, f2 of the real norm space
of bounded linear operators from Y into X, L(f1 + f2) = L(f1) + L(f2).
For every point f of the real norm space of bounded linear operators from
Y into X and for every real number a, L(a · f) = a · L(f). For every
element f of the real norm space of bounded linear operators from Y into
X, ‖L(f)‖ = ‖f‖. �

(38) Let us consider real normed spacesX, Y. Then there exists a Lipschitzian
linear operator I from the real norm space of bounded linear operators
from X into Y into the real norm space of bounded linear operators from∏
〈X〉 into Y such that

(i) I is one-to-one, onto, and isometric, and

(ii) for every point u of the real norm space of bounded linear operators
from X into Y and for every point x of X, I(u)(〈x〉) = u(x), and

(iii) for every point u of the real norm space of bounded linear operators
from X into Y, ‖u‖ = ‖I(u)‖.

Proof: Set J = IsoCPNrSP(X). Consider I being a Lipschitzian linear
operator from the real norm space of bounded linear operators from X
into Y into the real norm space of bounded linear operators from

∏
〈X〉

into Y such that I is one-to-one, onto, and isometric and for every point
x of the real norm space of bounded linear operators from X into Y,
I(x) = x·(J−1). For every point u of the real norm space of bounded linear
operators from X into Y and for every point x of X, I(u)(〈x〉) = u(x). �

(39) Let us consider real normed spaces X, Y, Z, W , a Lipschitzian linear
operator I from X into Z, and a Lipschitzian linear operator J from Y
into W . Suppose I is one-to-one, onto, and isometric and J is one-to-one,
onto, and isometric.

Then there exists a Lipschitzian linear operator K from the real norm
space of bounded linear operators from X into Y into the real norm space
of bounded linear operators from Z into W such that

(i) K is one-to-one, onto, and isometric, and

(ii) for every point x of the real norm space of bounded linear operators
from X into Y, K(x) = J · (x · (I−1)).

Proof: Consider H being a Lipschitzian linear operator from the real
norm space of bounded linear operators from X into Y into the real norm
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space of bounded linear operators from Z into Y such that H is one-to-
one, onto, and isometric and for every point x of the real norm space of
bounded linear operators from X into Y, H(x) = x · (I−1). Consider L
being a Lipschitzian linear operator from the real norm space of bounded
linear operators from Z into Y into the real norm space of bounded linear
operators from Z into W such that L is one-to-one, onto, and isometric
and for every point x of the real norm space of bounded linear operators
from Z into Y, L(x) = J · x.

Reconsider K = L ·H as a Lipschitzian linear operator from the real
norm space of bounded linear operators from X into Y into the real norm
space of bounded linear operators from Z into W . For every point x of
the real norm space of bounded linear operators from X into Y, ‖K(x)‖ =
‖x‖. �

(40) Let us consider a natural number n, real norm space sequences A, B,
and real normed spaces X, Y. Suppose lenA = n + 1 and A�n = B and
X = A(n+ 1). Then NestingLB(A, Y ) = the real norm space of bounded
linear operators from X into NestingLB(B, Y ).
Proof: Consider f being a function such that dom f = N and NestingLB
(A, Y ) = f(lenA) and f(0) = Y and for every natural number j such that
j < lenA there exists a real normed space V and there exists an element
k of domA such that V = f(j) and j + 1 = k and f(j + 1) = the real
norm space of bounded linear operators from A(k) into V .

Consider V being a real normed space, k being an element of domA
such that V = f(lenB) and lenB+1 = k and f(lenB+1) = the real norm
space of bounded linear operators from A(k) into V . For every natural
number j such that j < lenB there exists a real normed space V and
there exists an element k of domB such that V = f(j) and j + 1 = k and
f(j + 1) = the real norm space of bounded linear operators from B(k)
into V . �

Let Y be a real normed space and X be a real norm space sequence. Let us
observe that NestingLB(X,Y ) is constituted functions.

The functor NestMult(X,Y ) yielding a Lipschitzian linear operator from
NestingLB(X,Y ) into NormSpaceOfBoundedMultOpersR(X,Y ) is defined by

(Def. 4) it is one-to-one, onto, and isometric and for every element u of NestingLB
(X,Y ), ‖it(u)‖ = ‖u‖ and for every point u of NestingLB(X,Y ) and for
every point x of

∏
X, there exists a finite sequence g such that len g =

lenX and g(1) = u and for every element i of N such that 1 ¬ i < lenX
there exists a real norm space sequence X2.

There exists a point h of NestingLB(X2, Y ) such thatX2 = X�(lenX−′
i+1) and h = g(i) and g(i+1) = h(x(lenX−′ i+1)) and there exists a real
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norm space sequence X1 and there exists a point h of NestingLB(X1, Y )
such that X1 = 〈X(1)〉 and h = g(lenX) and (it(u))(x) = h(x(1)).
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