

Absolutely Integrable Functions

Noboru Endou^D National Institute of Technology, Gifu College 2236-2 Kamimakuwa, Motosu, Gifu, Japan

Summary. The goal of this article is to clarify the relationship between Riemann's improper integrals and Lebesgue integrals. In previous articles [6], [7], we treated Riemann's improper integrals [1], [11] and [4] on arbitrary intervals. Therefore, in this article, we will continue to clarify the relationship between improper integrals and Lebesgue integrals [8], using the Mizar [3], [2] formalism.

 $\mathrm{MSC}{:}\ 26\mathrm{A42}\ 68\mathrm{V20}$

Keywords: absolutely integrable; improper integral

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{MESFUN15}, \ \mathrm{version:} \ \mathtt{8.1.12} \ \mathtt{5.71.1431}$

1. Preliminaries

Let s be a without $-\infty$ sequence of extended reals. One can check that $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is without $-\infty$.

Let s be a without $+\infty$ sequence of extended reals. One can verify that $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is without $+\infty$.

Now we state the propositions:

(1) Let us consider a without $-\infty$ sequence f_1 of extended reals, and a without $+\infty$ sequence f_2 of extended reals. Then

(i)
$$(\sum_{\alpha=0}^{\kappa} (f_1 - f_2)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} f_1(\alpha))_{\kappa \in \mathbb{N}} - (\sum_{\alpha=0}^{\kappa} f_2(\alpha))_{\kappa \in \mathbb{N}}$$
, and
(ii) $(\sum_{\alpha=0}^{\kappa} (f_2 - f_1)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} f_2(\alpha))_{\kappa \in \mathbb{N}} - (\sum_{\alpha=0}^{\kappa} f_1(\alpha))_{\kappa \in \mathbb{N}}$.

PROOF: Set $P_1 = (\sum_{\alpha=0}^{\kappa} f_1(\alpha))_{\kappa \in \mathbb{N}}$. Set $P_2 = (\sum_{\alpha=0}^{\kappa} f_2(\alpha))_{\kappa \in \mathbb{N}}$. Set $P_{12} = (\sum_{\alpha=0}^{\kappa} (f_1 - f_2)(\alpha))_{\kappa \in \mathbb{N}}$. Set $P_{21} = (\sum_{\alpha=0}^{\kappa} (f_2 - f_1)(\alpha))_{\kappa \in \mathbb{N}}$. Define $\mathcal{C}[$ natural number $] \equiv P_{12}(\$_1) = P_1(\$_1) - P_2(\$_1)$. For every natural number k such that $\mathcal{C}[k]$ holds $\mathcal{C}[k+1]$. For every natural number k, $\mathcal{C}[k]$. For every element k of \mathbb{N} , $P_{12}(k) = (P_1 - P_2)(k)$. Define $\mathcal{C}[$ natural number $] \equiv P_{21}(\$_1) = P_2(\$_1) - P_1(\$_1)$. For every natural number k such that $\mathcal{C}[k]$ holds $\mathcal{C}[k+1]$.

For every natural number k, C[k]. For every element k of N, $P_{21}(k) = (P_2 - P_1)(k)$ by [5, (7)]. \Box

- (2) Let us consider sets X, A, and a partial function f from X to \mathbb{R} . If f is non-positive, then $f \upharpoonright A$ is non-positive.
- (3) Let us consider a set X, and a partial function f from X to \mathbb{R} . If f is non-positive, then -f is non-negative.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number a, and a real number x. Now we state the propositions:

- (4) If f is left convergent in a and non-decreasing, then if $x \in \text{dom } f$ and x < a, then $f(x) \leq \lim_{a} f$.
- (5) If f is left convergent in a and non-increasing, then if $x \in \text{dom } f$ and x < a, then $f(x) \ge \lim_{a} f$.
- (6) If f is right convergent in a and non-decreasing, then if $x \in \text{dom } f$ and a < x, then $f(x) \ge \lim_{a^+} f$.
- (7) If f is right convergent in a and non-increasing, then if $x \in \text{dom } f$ and a < x, then $f(x) \leq \lim_{a^+} f$.
- (8) If f is convergent in $-\infty$ and non-increasing, then if $x \in \text{dom } f$, then $f(x) \leq \lim_{x \to \infty} f$.
- (9) If f is convergent in $+\infty$ and non-decreasing, then if $x \in \text{dom } f$, then $f(x) \leq \lim_{+\infty} f$.

Let us consider real numbers a, b and a partial function f from \mathbb{R} to \mathbb{R} . Now we state the propositions:

- (10) Suppose $a \leq b$ and $[a,b] \subseteq \text{dom } f$ and $f \upharpoonright [a,b]$ is bounded and non-negative. Then $\int_{a}^{b} f(x) dx \ge 0$.
- (11) Suppose $a \leq b$ and $[a,b] \subseteq \text{dom } f$ and $f \upharpoonright [a,b]$ is bounded and f is integrable on [a,b] and $f \upharpoonright [a,b]$ is non-positive. Then $\int_{a}^{b} f(x) dx \leq 0$. The theorem is a consequence of (3) and (10).

Let us consider real numbers a, b, c, d and a partial function f from \mathbb{R} to \mathbb{R} . Now we state the propositions:

(12) Suppose $c \leq d$ and $[c,d] \subseteq [a,b] \subseteq \text{dom } f$ and $f \upharpoonright [a,b]$ is bounded and f is integrable on [a,b] and $f \upharpoonright [a,b]$ is non-negative. Then $\int_{-\infty}^{d} f(x) dx \leq f$

$$\int_{a}^{b} f(x)dx.$$
 The theorem is a consequence of (10).
(13) Suppose $c \leq d$ and $[c,d] \subseteq [a,b] \subseteq \text{dom } f$ and $f \upharpoonright [a,b]$ is bounded and f is integrable on $[a,b]$ and $f \upharpoonright [a,b]$ is non-positive. Then $\int_{c}^{d} f(x)dx \ge \int_{a}^{b} f(x)dx.$ The theorem is a consequence of (2) and (11).
2. FUNDAMENTAL PROPERTIES OF MEASURE AND INTEGRAL

Now we state the propositions:

- (14) Let us consider a non empty set X, a partial function f from X to \mathbb{R} , and a set E. Then $\overline{\mathbb{R}}(f) \upharpoonright E = \overline{\mathbb{R}}(f \upharpoonright E)$.
- (15) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, an element A of S, and a sequence E of subsets of S. Suppose f is A-measurable and $A = \operatorname{dom} f$ and E is disjoint valued and $A = \bigcup E$ and $(\int^+ \max_+(f) dM < +\infty)$ or $\int^+ \max_-(f) dM < +\infty)$. Then there exists a sequence I of extended reals such that
 - (i) for every natural number n, $I(n) = \int f \upharpoonright E(n) \, dM$, and
 - (ii) I is summable, and
 - (iii) $\int f \, \mathrm{d}M = \sum I.$

PROOF: Consider I_1 being a non-negative sequence of extended reals such that for every natural number n, $I_1(n) = \int \max_+(f) \upharpoonright E(n) \, dM$ and I_1 is summable and $\int \max_+(f) \, dM = \sum I_1$. Consider I_2 being a non-negative sequence of extended reals such that for every natural number n, $I_2(n) =$ $\int \max_-(f) \upharpoonright E(n) \, dM$ and I_2 is summable and $\int \max_-(f) \, dM = \sum I_2$. For every natural number n, E(n) is an element of S and $E(n) \subseteq \text{dom } f$. For every natural number n, $I_1(n) = \int^+ \max_+(f) \upharpoonright E(n) \, dM$. For every natural number n, $I_2(n) = \int^+ \max_-(f) \upharpoonright E(n) \, dM$. \Box

- (16) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R} , and elements A, B of S. Suppose $A \cup B \subseteq \text{dom } f$ and f is $(A \cup B)$ -measurable and A misses B and $(\int^+ \max_+(f \upharpoonright (A \cup B)) dM < +\infty \text{ or } \int^+ \max_-(f \upharpoonright (A \cup B)) dM < +\infty)$. Then $\int f \upharpoonright (A \cup B) dM = \int f \upharpoonright A dM + \int f \upharpoonright B dM$.
- (17) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, an element A of S, and

a sequence E of subsets of S. Suppose f is A-measurable and A = dom fand E is non descending and $\lim E \subseteq A$ and $M(A \setminus (\lim E)) = 0$ and $(\int^+ \max_+(f) dM < +\infty \text{ or } \int^+ \max_-(f) dM < +\infty)$. Then there exists a sequence I of extended reals such that

(i) for every natural number n, I(n) =

 $\int f \upharpoonright (\text{the partial unions of } E)(n) \, \mathrm{d}M, \text{ and }$

- (ii) I is convergent, and
- (iii) $\int f \, \mathrm{d}M = \lim I.$

PROOF: Reconsider $L_2 = \lim E$ as an element of S. Reconsider F = the partial diff-unions of E as a sequence of subsets of S. Set $g = f \upharpoonright L_2$. Consider J being a sequence of extended reals such that for every natural number $n, J(n) = \int g \upharpoonright F(n) dM$ and J is summable and $\int g dM = \sum J$. Reconsider $I = (\sum_{\alpha=0}^{\kappa} J(\alpha))_{\kappa \in \mathbb{N}}$ as a sequence of extended reals.

For every natural number $n, g \upharpoonright (\text{the partial unions of } F)(n) = f \upharpoonright (\text{the partial unions of } E)(n)$. For every natural number n, (the partial unions of $E)(n) \subseteq \bigcup E$. Define $\mathcal{P}[\text{natural number}] \equiv I(\$_1) = \int g \upharpoonright (\text{the partial partial unions of } E)(n) \subseteq \bigcup E$.

ial unions of F)($\$_1$) dM. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number n, $\mathcal{P}[n]$. For every natural number n, $I(n) = \int f \upharpoonright$ (the partial unions of E)(n) dM. \Box

- (18) Let us consider non empty sets X, Y, a set A, a sequence F of X, and a sequence G of Y. Suppose for every element n of \mathbb{N} , $G(n) = A \cap F(n)$. Then $\bigcup \operatorname{rng} G = A \cap \bigcup \operatorname{rng} F$.
- (19) Let us consider a non empty set X, a σ -field S of subsets of X, a sequence E of S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose for every natural number n, f is (E(n))-measurable. Then f is $(\bigcup E)$ -measurable. PROOF: For every real number r, $\bigcup E \cap \text{LE-dom}(f,r) \in S$. \Box
- (20) Let us consider real numbers a, b, and a natural number n. If a < b, then $a \leq b \frac{b-a}{n+1} < b$ and $a < a + \frac{b-a}{n+1} \leq b$.

Let us consider real numbers a, b. Now we state the propositions:

- (21) Suppose a < b. Then there exists a sequence E of subsets of L-Field such that
 - (i) for every natural number n, $E(n) = [a, b \frac{b-a}{n+1}]$ and $E(n) \subseteq [a, b[$ and E(n) is a non empty, closed interval subset of \mathbb{R} , and
 - (ii) E is non descending and convergent, and
 - (iii) $\bigcup E = [a, b[.$

PROOF: Define $\mathcal{F}(\text{element of }\mathbb{N}) = [a, b - \frac{b-a}{\$_1+1}]$. Consider *E* being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element *n* of \mathbb{N} , $E(n) = \mathcal{F}(n)$. For

every natural number n, $E(n) = [a, b - \frac{b-a}{n+1}]$. For every natural number n, $E(n) = [a, b - \frac{b-a}{n+1}]$ and $E(n) \subseteq [a, b[$ and E(n) is a non empty, closed interval subset of \mathbb{R} . \Box

- (22) Suppose a < b. Then there exists a sequence E of subsets of L-Field such that
 - (i) for every natural number n, $E(n) = [a + \frac{b-a}{n+1}, b]$ and $E(n) \subseteq [a, b]$ and E(n) is a non empty, closed interval subset of \mathbb{R} , and
 - (ii) E is non descending and convergent, and
 - (iii) $\bigcup E =]a, b].$

PROOF: Define $\mathcal{F}(\text{element of }\mathbb{N}) = [a + \frac{b-a}{\$_1+1}, b]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of \mathbb{N} , $E(n) = \mathcal{F}(n)$. For every natural number n, $E(n) = [a + \frac{b-a}{n+1}, b]$ and $E(n) \subseteq [a, b]$ and E(n) is a non empty, closed interval subset of \mathbb{R} . \Box

Let us consider a real number a. Now we state the propositions:

- (23) There exists a sequence E of subsets of L-Field such that
 - (i) for every natural number n, E(n) = [a, a + n], and
 - (ii) E is non descending and convergent, and
 - (iii) $\bigcup E = [a, +\infty[.$

PROOF: Define $\mathcal{F}(\text{element of } \mathbb{N}) = [a, a + \$_1]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of \mathbb{N} , $E(n) = \mathcal{F}(n)$. For every natural number n, E(n) = [a, a + n]. \Box

- (24) There exists a sequence E of subsets of L-Field such that
 - (i) for every natural number n, E(n) = [a n, a], and
 - (ii) E is non descending and convergent, and
 - (iii) $\bigcup E =]-\infty, a].$

PROOF: Define $\mathcal{F}(\text{element of } \mathbb{N}) = [a - \$_1, a]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of \mathbb{N} , $E(n) = \mathcal{F}(n)$. For every natural number n, E(n) = [a - n, a]. \Box

- (25) Let us consider a set X, a σ -field S of subsets of X, a σ -measure M on S, and a set A with measure zero w.r.t. M. Then $A \in \text{COM}(S, M)$.
- (26) Let us consider a real number r. Then $\{r\} \in$ L-Field. The theorem is a consequence of (25).
- (27) Let us consider a non empty set X, a σ -field S of subsets of X, an element E of S, and a partial function f from X to $\overline{\mathbb{R}}$. If $E = \emptyset$, then f is E-measurable.

- (28) Let us consider a non empty set X, a σ -field S of subsets of X, an element E of S, and a partial function f from X to \mathbb{R} . If $E = \emptyset$, then f is E-measurable. The theorem is a consequence of (27).
- (29) Let us consider a real number r, an element E of L-Field, and a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. If $E = \{r\}$, then f is E-measurable. PROOF: For every real number $a, E \cap \text{LE-dom}(f, a) \in \text{L-Field}$. \Box
- (30) Let us consider a real number r, an element E of L-Field, and a partial function f from \mathbb{R} to \mathbb{R} . If $E = \{r\}$, then f is E-measurable. The theorem is a consequence of (29).

Let us consider real numbers a, b, a partial function f from \mathbb{R} to \mathbb{R} , and an element E of L-Field. Now we state the propositions:

- (31) Suppose $[a, b] \subseteq \text{dom } f$ and f is right improper integrable on a and b. Then if $E \subseteq [a, b]$, then f is E-measurable. The theorem is a consequence of (21), (19), and (28).
- (32) Suppose $]a,b] \subseteq \text{dom } f$ and f is left improper integrable on a and b. Then if $E \subseteq]a,b]$, then f is E-measurable. The theorem is a consequence of (22), (20), (19), and (28).
- (33) Suppose $]a, b[\subseteq \text{dom } f \text{ and } f \text{ is improper integrable on } a \text{ and } b$. Then if $E \subseteq]a, b[$, then f is E-measurable. The theorem is a consequence of (32) and (31).

Let us consider a real number a, a partial function f from \mathbb{R} to \mathbb{R} , and an element E of L-Field. Now we state the propositions:

- (34) Suppose $[a, +\infty] \subseteq \text{dom } f$ and f is improper integrable on $[a, +\infty]$. Then if $E \subseteq [a, +\infty]$, then f is E-measurable. PROOF: Set $A = [a, +\infty]$. Consider K being a sequence of subsets of L-Field such that for every natural number n, K(n) = [a, a + n] and K is non descending and convergent and $\bigcup K = [a, +\infty]$. Reconsider $K_1 = K$ as a sequence of L-Field. For every natural number $n, \overline{\mathbb{R}}(f)$ is $(K_1(n))$ measurable by [8, (49)]. $\overline{\mathbb{R}}(f)$ is A-measurable. \Box
- (35) Suppose]-∞, a] ⊆ dom f and f is improper integrable on]-∞, a]. Then if E ⊆]-∞, a], then f is E-measurable.
 PROOF: Consider K being a sequence of subsets of L-Field such that for every natural number n, K(n) = [a n, a] and K is non descending and convergent and ∪K =]-∞, a]. For every element n of N, K(n) is a non empty, closed interval subset of R. Reconsider K₁ = K as a sequence of L-Field. For every natural number n, R(f) is (K₁(n))-measurable by [8, (49)]. R(f) is (∪K₁)-measurable. □
- (36) Let us consider a partial function f from \mathbb{R} to \mathbb{R} . Suppose dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} . Let us consider an element E of L-Field.

Then f is E-measurable. The theorem is a consequence of (34) and (35).

3. Relation between Improper Integral and Lebesgue Integral

Now we state the propositions:

- (37) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, a partial function f from X to \mathbb{R} , and an element A of S. Suppose A = dom f and f is A-measurable. Then $\int -f \, dM = -\int f \, dM$.
- (38) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R} , and elements A, B, E of S. Suppose $E = \operatorname{dom} f$ and f is E-measurable and non-positive and $A \subseteq B$. Then $\int f \upharpoonright A \, \mathrm{d}M \ge \int f \upharpoonright B \, \mathrm{d}M$. PROOF: For every set x such that $x \in \operatorname{dom}(\overline{\mathbb{R}}(f))$ holds $(\overline{\mathbb{R}}(f))(x) \le 0$. $\int \overline{\mathbb{R}}(f \upharpoonright A) \, \mathrm{d}M \ge \int \overline{\mathbb{R}}(f) \upharpoonright B \, \mathrm{d}M$. $\int \overline{\mathbb{R}}(f \upharpoonright A) \, \mathrm{d}M \ge \int \overline{\mathbb{R}}(f \upharpoonright B) \, \mathrm{d}M$. \Box

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , real numbers a, b, and a non empty subset A of \mathbb{R} . Now we state the propositions:

- (39) Suppose $[a, b] \subseteq \text{dom } f$ and A = [a, b] and f is right improper integrable on a and b and $f \upharpoonright A$ is non-negative. Then
 - (i) right-improper-integral $(f, a, b) = \int f \uparrow A \, d L$ -Meas, and
 - (ii) if f is right extended Riemann integrable on a, b, then $f \upharpoonright A$ is integrable on L-Meas, and
 - (iii) if f is not right extended Riemann integrable on a, b, then $\int f \uparrow A \, d L$ -Meas = $+\infty$.

The theorem is a consequence of (12), (21), (31), (14), (17), (20), and (4).

- (40) Suppose $[a, b] \subseteq \text{dom } f$ and A = [a, b] and f is right improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
 - (i) right-improper-integral $(f, a, b) = \int f \, d \, \mathbf{L}$ -Meas, and
 - (ii) if f is right extended Riemann integrable on a, b, then $f \upharpoonright A$ is integrable on L-Meas, and
 - (iii) if f is not right extended Riemann integrable on a, b, then $\int f \uparrow A \, \mathrm{d} L$ -Meas = $-\infty$.

The theorem is a consequence of (3), (39), and (31).

- (41) Suppose $]a,b] \subseteq \text{dom } f$ and A =]a,b] and f is left improper integrable on a and b and $f \upharpoonright A$ is non-negative. Then
 - (i) left-improper-integral $(f, a, b) = \int f \uparrow A \, d$ L-Meas, and
 - (ii) if f is left extended Riemann integrable on a, b, then $f \upharpoonright A$ is integrable on L-Meas, and

(iii) if f is not left extended Riemann integrable on a, b, then $\int f \uparrow A \, d L$ -Meas = $+\infty$.

The theorem is a consequence of (12), (22), (32), (14), (17), (20), and (7).

- (42) Suppose $]a,b] \subseteq \text{dom } f$ and A =]a,b] and f is left improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
 - (i) left-improper-integral $(f, a, b) = \int f \uparrow A \, d$ L-Meas, and
 - (ii) if f is left extended Riemann integrable on a, b, then $f \upharpoonright A$ is integrable on L-Meas, and
 - (iii) if f is not left extended Riemann integrable on a, b, then $\int f \uparrow A \, \mathrm{d} L$ -Meas = $-\infty$.

The theorem is a consequence of (3), (41), and (32).

- (43) Suppose $]a, b[\subseteq \text{dom } f \text{ and } A =]a, b[$ and f is improper integrable on a and b and $f \upharpoonright A$ is non-negative. Then
 - (i) improper-integral $(f, a, b) = \int f \upharpoonright A \, d L$ -Meas, and
 - (ii) if there exists a real number c such that a < c < b and f is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b, then $f \upharpoonright A$ is integrable on L-Meas, and
 - (iii) if for every real number c such that a < c < b holds f is not left extended Riemann integrable on a, c or f is not right extended Riemann integrable on c, b, then $\int f \upharpoonright A \, d \operatorname{L-Meas} = +\infty$.

The theorem is a consequence of (31), (32), (41), (39), (26), and (33).

- (44) Suppose $]a, b[\subseteq \text{dom } f \text{ and } A =]a, b[$ and f is improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
 - (i) improper-integral $(f, a, b) = \int f \uparrow A \, d$ L-Meas, and
 - (ii) if there exists a real number c such that a < c < b and f is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b, then $f \upharpoonright A$ is integrable on L-Meas, and
 - (iii) if for every real number c such that a < c < b holds f is not left extended Riemann integrable on a, c or f is not right extended Riemann integrable on c, b, then $\int f \upharpoonright A \, \mathrm{dL}$ -Meas $= -\infty$.

The theorem is a consequence of (3), (43), (33), and (37).

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number b, and a non empty subset A of \mathbb{R} . Now we state the propositions:

(45) Suppose $]-\infty, b] \subseteq \text{dom } f$ and $A =]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and f is non-negative. Then

(i)
$$\int_{-\infty}^{b} f(x) dx = \int f \upharpoonright A \, \mathrm{d} \, \mathrm{L}$$
-Meas, and

- (ii) if f is extended Riemann integrable on $-\infty$, b, then $f \upharpoonright A$ is integrable on L-Meas, and
- (iii) if f is not extended Riemann integrable on $-\infty$, b, then $\int f \upharpoonright A \, d$ L-Meas $= +\infty$.

The theorem is a consequence of (12), (24), (35), (14), (17), and (8).

(46) Suppose $]-\infty, b] \subseteq \text{dom } f$ and $A =]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and f is non-positive. Then

(i)
$$\int_{-\infty}^{b} f(x) dx = \int f \upharpoonright A \, \mathrm{d} \, \mathrm{L}\text{-Meas}$$
, and

- (ii) if f is extended Riemann integrable on $-\infty$, b, then $f \upharpoonright A$ is integrable on L-Meas, and
- (iii) if f is not extended Riemann integrable on $-\infty$, b, then $\int f \upharpoonright A \, d$ L-Meas $= -\infty$.

PROOF: Reconsider $A_1 = A$ as an element of L-Field. For every object x

such that
$$x \in \operatorname{dom}(-f)$$
 holds $0 \leq (-f)(x)$. $\int_{-\infty}^{b} (-f)(x) dx = \int (-f) \operatorname{d} A \operatorname{d} L$ -

Meas. $f \upharpoonright A$ is A_1 -measurable. $\int -f \upharpoonright A \, d \operatorname{L-Meas} = -\int f \upharpoonright A \, d \operatorname{L-Meas}$. \Box

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number a, and a non empty subset A of \mathbb{R} . Now we state the propositions:

(47) Suppose $[a, +\infty] \subseteq \text{dom } f$ and $A = [a, +\infty]$ and f is improper integrable on $[a, +\infty]$ and f is non-negative. Then

(i)
$$\int_{a}^{+\infty} f(x)dx = \int f \upharpoonright A \, \mathrm{d} \, \mathrm{L}\text{-Meas}$$
, and

- (ii) if f is extended Riemann integrable on $a, +\infty$, then $f \upharpoonright A$ is integrable on L-Meas, and
- (iii) if f is not extended Riemann integrable on $a, +\infty$, then $\int f \upharpoonright A \, \mathrm{d} \operatorname{L-Meas} = +\infty$.

The theorem is a consequence of (12), (23), (34), (14), (17), and (9).

(48) Suppose $[a, +\infty] \subseteq \text{dom } f$ and $A = [a, +\infty]$ and f is improper integrable on $[a, +\infty]$ and f is non-positive. Then

(i)
$$\int_{a}^{+\infty} f(x)dx = \int f \uparrow A \,\mathrm{d} \,\mathrm{L}$$
-Meas, and

- (ii) if f is extended Riemann integrable on $a, +\infty$, then $f \upharpoonright A$ is integrable on L-Meas, and
- (iii) if f is not extended Riemann integrable on $a, +\infty$, then $\int f \upharpoonright A \, d$ L-Meas $= -\infty$.

PROOF: Reconsider $A_1 = A$ as an element of L-Field. For every object x such that $x \in \operatorname{dom}(-f)$ holds $0 \leq (-f)(x)$. $\int_{a}^{+\infty} (-f)(x) dx = \int (-f) \uparrow A \, \mathrm{d} \, \mathrm{L}$

Meas. $f \upharpoonright A$ is A_1 -measurable. $\int -f \upharpoonright A \, d \operatorname{L-Meas} = -\int f \upharpoonright A \, d \operatorname{L-Meas}$. \Box

- (49) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and elements A, B of S. Suppose there exists an element E of S such that $E = \operatorname{dom} f$ and f is E-measurable and f is non-negative. Then $\int^+ f \upharpoonright (A \cup B) \, \mathrm{d}M \leq \int^+ f \upharpoonright A \, \mathrm{d}M + \int^+ f \upharpoonright B \, \mathrm{d}M$.
- (50) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and sets A, B. Suppose $A \subseteq \text{dom } f$ and $B \subseteq \text{dom } f$ and $f \upharpoonright A$ is integrable on M and $f \upharpoonright B$ is integrable on M. Then $f \upharpoonright (A \cup B)$ is integrable on M. The theorem is a consequence of (49).
- (51) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, a partial function f from X to \mathbb{R} , and sets A, B. Suppose $A \subseteq \text{dom } f$ and $B \subseteq \text{dom } f$ and $f \upharpoonright A$ is integrable on M and $f \upharpoonright B$ is integrable on M. Then $f \upharpoonright (A \cup B)$ is integrable on M. The theorem is a consequence of (14) and (50).

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number a, and a non empty subset A of \mathbb{R} . Now we state the propositions:

(52) Suppose dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} and f is non-negative. Then

(i)
$$\int_{-\infty}^{+\infty} f(x) dx = \int f \, \mathrm{d} \, \mathrm{L}$$
-Meas, and

- (ii) if f is ∞ -extended Riemann integrable, then f is integrable on L-Meas, and
- (iii) if f is not ∞ -extended Riemann integrable, then $\int f \, d L$ -Meas = $+\infty$.

The theorem is a consequence of (45), (36), (26), (47), and (51).

(53) Suppose dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} and f is non-positive. Then

(i)
$$\int_{-\infty}^{+\infty} f(x) dx = \int f \, \mathrm{d} \, \mathrm{L}$$
-Meas, and

- (ii) if f is ∞ -extended Riemann integrable, then f is integrable on L-Meas, and
- (iii) if f is not ∞ -extended Riemann integrable, then $\int f \, d \, L$ -Meas = $-\infty$. PROOF: For every object x such that $x \in \operatorname{dom}(-f)$ holds $0 \leq (-f)(x)$. Re-

consider $E = \mathbb{R}$ as an element of L-Field. f is E-measurable. $-\int_{-\infty}^{+\infty} f(x)dx = -\infty$

$$\int -f \,\mathrm{d} \operatorname{L-Meas.} - \int_{-\infty}^{+\infty} f(x) dx = -\int f \,\mathrm{d} \operatorname{L-Meas.} \Box$$

4. Absolutely Integrable Function

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:

- (54) Suppose [a, b] = dom f. Then there exists a sequence F of partial functions from \mathbb{R} into \mathbb{R} such that
 - (i) for every natural number n, dom(F(n)) = dom f and for every real number x such that $x \in [a, b \frac{1}{n+1}]$ holds F(n)(x) = f(x) and for every real number x such that $x \notin [a, b \frac{1}{n+1}]$ holds F(n)(x) = 0, and
 - (ii) $\lim \overline{\mathbb{R}}(F) = f$.

PROOF: For every element n of \mathbb{N} , $[a, b - \frac{1}{n+1}] \subseteq \text{dom } f$. Define $\mathcal{P}[\text{element}$ of \mathbb{N} , object] $\equiv \$_2 = \chi_{[a,b-\frac{1}{\$_1+1}],\text{dom } f}$. For every element n of \mathbb{N} , there exists an element \langle of $\mathbb{R} \to \mathbb{R}$ such that $P[n, \langle]$. Consider C_2 being a sequence of $\mathbb{R} \to \mathbb{R}$ such that for every element n of \mathbb{N} , $P[n, C_2(n)]$. Define $\mathcal{Q}[\text{element}$ of \mathbb{N} , object] $\equiv \$_2 = f \cdot C_2(\$_1)$. For every element n of \mathbb{N} , there exists an element F of $\mathbb{R} \to \mathbb{R}$ such that Q[n, F]. Consider F being a sequence of $\mathbb{R} \to \mathbb{R}$ such that for every element n of \mathbb{N} , Q[n, F(n)]. For every natural number n, dom(F(n)) = dom f and for every real number x such that $x \in [a, b - \frac{1}{n+1}]$ holds F(n)(x) = f(x) and for every real number x such that $x \notin [a, b - \frac{1}{n+1}]$ holds F(n)(x) = 0. For every element x of \mathbb{R} such that $x \in \text{dom}(\lim \mathbb{R}(F))$ holds $(\lim \mathbb{R}(F))(x) = (\mathbb{R}(f))(x)$ by [9, (16)]. \Box

- (55) Suppose a < b and $[a, b] \subseteq \text{dom } f$ and f is right improper integrable on a and b and |f| is right extended Riemann integrable on a, b. Then
 - (i) f is right extended Riemann integrable on a, b, and
 - (ii) right-improper-integral $(f, a, b) \leq$ right-improper-integral $(|f|, a, b) < +\infty$.

PROOF: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom I = [a, b] and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{a}^{x} f(x) dx$ and I is left convergent in b or left divergent to $+\infty$ in b or left divergent to $-\infty$ in b. Consider A_I being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_I = [a, b]$ and for every real number x such that $x \in \text{dom } A_I$ holds $A_I(x) = \int_{a}^{x} |f|(x) dx$ and A_I is left convergent in b. For every real numbers r_1, r_2 such that $r_1, r_2 \in \text{dom } A_I$ and $r_1 < r_2$ holds $A_I(r_1) \leq A_I(r_2)$. Consider r being a real number such that 0 < r < b - a. For every real number g such that $g \in \text{dom } I \cap]b - r, b[$ holds $I(g) \leq A_I(g)$ by [10, (8)]. \Box

- (56) Suppose a < b and $]a, b] \subseteq \text{dom } f$ and f is left improper integrable on a and b and |f| is left extended Riemann integrable on a, b. Then
 - (i) f is left extended Riemann integrable on a, b, and
 - (ii) left-improper-integral $(f, a, b) \leq$ left-improper-integral $(|f|, a, b) < +\infty$.

PROOF: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom I = [a, b] and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{x}^{b} f(x)dx$ and I is right convergent in a or right divergent to $+\infty$ in a or right divergent to $-\infty$ in a. Consider A_I being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_I = [a, b]$ and for every real number x such that $x \in \text{dom } A_I$ holds $A_I(x) = \int_{x}^{b} |f|(x)dx$ and A_I is right convergent in a. For every real numbers r_1, r_2 such that $r_1, r_2 \in \text{dom } A_I$ and $r_1 < r_2$ holds $A_I(r_1) \ge A_I(r_2)$. Consider r being a real number such that 0 < r < b - a. For every real number g such that $g \in \text{dom } I \cap [a, a+r[$ holds $I(g) \le A_I(g)$. \Box

(57) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a non empty, closed interval subset A of \mathbb{R} . Suppose $A \subseteq \text{dom } f$. Then

(i) $\max_{+}(f \upharpoonright A) = \max_{+}(f \upharpoonright A)$, and

(ii) $\max_{-}(f \upharpoonright A) = \max_{-}(f \upharpoonright A)$.

- (58) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose $]-\infty, b] \subseteq \text{dom } f$ and f is improper integrable on $]-\infty, b]$ and |f| is extended Riemann integrable on $-\infty, b$. Then
 - (i) f is extended Riemann integrable on $-\infty$, b, and

(ii)
$$\int_{-\infty}^{b} f(x)dx \leq \int_{-\infty}^{b} |f|(x)dx < +\infty.$$

PROOF: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I =]-\infty, b]$ and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{x}^{b} f(x)dx$ and I is convergent in $-\infty$ or divergent in $-\infty$ to $+\infty$ or divergent in $-\infty$ to $-\infty$. Consider A_I being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_I =]-\infty, b]$ and for every real number x such that $x \in \text{dom } A_I$ holds $A_I(x) = \int_{x}^{b} |f|(x)dx$ and A_I is convergent in $-\infty$. For every real numbers r_1, r_2 such that $r_1, r_2 \in \text{dom } A_I$ and $r_1 < r_2$ holds $A_I(r_1) \ge A_I(r_2)$. For every real number g such that $g \in \text{dom } I \cap]-\infty, 1[$ holds $I(g) \le A_I(g)$. \Box

- (59) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number a. Suppose $[a, +\infty] \subseteq \text{dom } f$ and f is improper integrable on $[a, +\infty]$ and |f| is extended Riemann integrable on $a, +\infty$. Then
 - (i) f is extended Riemann integrable on $a, +\infty$, and

(ii)
$$\int_{a}^{+\infty} f(x)dx \leqslant \int_{a}^{+\infty} |f|(x)dx < +\infty.$$

PROOF: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I = [a, +\infty[$ and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{a}^{x} f(x) dx$ and I is convergent in $+\infty$ or divergent in $+\infty$ to $+\infty$ or divergent in $+\infty$ to $-\infty$. Consider A_I being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_I = [a, +\infty[$ and for every real number x such that $x \in \text{dom } A_I$ holds $A_I(x) = \int_{a}^{x} |f|(x) dx$ and A_I is convergent in $+\infty$. For every real numbers r_1, r_2 such that $r_1, r_2 \in \text{dom } A_I$ and $r_1 < r_2$ holds $A_I(r_1) \leq A_I(r_2)$. For every real number g such that $g \in \text{dom } I \cap]1, +\infty[$ holds $I(g) \leq A_I(g)$. \Box

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:

- (60) Suppose $a \leq b$ and $[a, b] \subseteq \text{dom } f$ and f is integrable on [a, b] and $f \upharpoonright [a, b]$ is bounded. Then
 - (i) $\max_{+}(f)$ is integrable on [a, b], and
 - (ii) $\max_{-}(f)$ is integrable on [a, b], and

(iii)
$$2 \cdot (\int_{a}^{b} \max_{+}(f)(x)dx) = \int_{a}^{b} f(x)dx + \int_{a}^{b} |f|(x)dx$$
, and
(iv) $2 \cdot (\int_{a}^{b} \max_{-}(f)(x)dx) = -\int_{a}^{b} f(x)dx + \int_{a}^{b} |f|(x)dx$, and
(v) $\int_{a}^{b} f(x)dx = \int_{a}^{b} \max_{+}(f)(x)dx - \int_{a}^{b} \max_{-}(f)(x)dx$.

- (61) Suppose a < b and $]a, b] \subseteq \text{dom } f$ and f is left extended Riemann integrable on a, b and |f| is left extended Riemann integrable on a, b. Then $\max_+(f)$ is left extended Riemann integrable on a, b.
 - PROOF: Set $G = (R^{<}) \int_{a}^{b} f(x) dx$. Set $A_{G} = (R^{<}) \int_{a}^{b} |f|(x) dx$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom I =]a, b] and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{x}^{b} f(x) dx$ and I is right convergent in a and $G = \lim_{a \neq I} I$.
 - Consider A_I being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_I = [a, b]$ and for every real number x such that $x \in \text{dom } A_I$ holds $A_I(x) = \int_x^b |f|(x)dx$ and A_I is right convergent in a and $A_G = \lim_{a^+} A_I$. For every real number d such that $a < d \leq b$ holds $\max_+(f)$ is integrable on [d, b] and $\max_+(f) \upharpoonright [d, b]$ is bounded. There exists a partial function I_3 from \mathbb{R} to \mathbb{R} such that dom $I_3 = [a, b]$ and for every real number x such that $x \in \text{dom } I_3$ holds $I_3(x) = \int_x^b \max_+(f)(x)dx$ and I_3 is right convergent in a. \Box
- (62) Suppose a < b and $[a, b] \subseteq \text{dom } f$ and f is right extended Riemann integrable on a, b and |f| is right extended Riemann integrable on a, b. Then $\max_+(f)$ is right extended Riemann integrable on a, b.

PROOF: Set $G = (R^{>}) \int_{a}^{b} f(x) dx$. Set $A_{G} = (R^{>}) \int_{a}^{b} |f|(x) dx$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom I = [a, b] and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{a}^{x} f(x) dx$ and I is left convergent in b and $G = \lim_{b \to I} I$.

Consider A_I being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_I = [a, b]$ and for every real number x such that $x \in \text{dom } A_I$ holds $A_I(x) = \int_a^x |f|(x)dx$ and A_I is left convergent in b and $A_G = \lim_{b} A_I$. For every real number d such that $a \leq d < b$ holds $\max_+(f)$ is integrable on [a, d] and $\max_+(f) \upharpoonright [a, d]$ is bounded. There exists a partial function I_3 from \mathbb{R} to \mathbb{R} such that dom $I_3 = [a, b]$ and for every real number x such that $x \in \text{dom } I_3$ holds $I_3(x) = \int_{+}^x \max_+(f)(x)dx$ and I_3 is left convergent in b. \Box

(63) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose $]-\infty, b] \subseteq \text{dom } f$ and f is extended Riemann integrable on $-\infty$, b and |f| is extended Riemann integrable on $-\infty$, b. Then $\max_+(f)$ is extended Riemann integrable on $-\infty$, b.

PROOF: Set $G = (R^{<}) \int_{-\infty}^{b} f(x) dx$. Set $A_{G} = (R^{<}) \int_{-\infty}^{b} |f|(x) dx$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I =]-\infty, b]$ and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{x}^{b} f(x) dx$ and I is convergent in $-\infty$ and $G = \lim_{x \to \infty} I$.

Consider A_I being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_I =]-\infty, b]$ and for every real number x such that $x \in \text{dom } A_I$ holds $A_I(x) = \int_x^b |f|(x)dx$ and A_I is convergent in $-\infty$ and $A_G = \lim_{-\infty} A_I$. For every real number d such that $d \leq b$ holds $\max_+(f)$ is integrable on [d, b] and $\max_+(f) \upharpoonright [d, b]$ is bounded. There exists a partial function I_3 from \mathbb{R} to \mathbb{R} such that dom $I_3 =]-\infty, b]$ and for every real number x such that $x \in \text{dom } I_3$ holds $I_3(x) = \int_x^b \max_+(f)(x)dx$ and I_3 is convergent in $-\infty$. \Box

(64) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number

a. Suppose $[a, +\infty] \subseteq \text{dom } f$ and f is extended Riemann integrable on a, $+\infty$ and |f| is extended Riemann integrable on $a, +\infty$. Then $\max_+(f)$ is extended Riemann integrable on $a, +\infty$.

PROOF: Set $G = (R^{>}) \int_{a}^{+\infty} f(x) dx$. Set $A_G = (R^{>}) \int_{a}^{+\infty} |f|(x) dx$. Consider Ibeing a partial function from \mathbb{R} to \mathbb{R} such that dom $I = [a, +\infty[$ and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{a}^{x} f(x) dx$ and I is convergent in $+\infty$ and $G = \lim_{x \to \infty} I$.

Consider A_I being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_I = [a, +\infty[$ and for every real number x such that $x \in \text{dom } A_I$ holds $A_I(x) = \int_a^x |f|(x)dx$ and A_I is convergent in $+\infty$ and $A_G = \lim_{+\infty} A_I$. For every real number d such that $a \leq d$ holds $\max_+(f)$ is integrable on [a, d] and $\max_+(f) \upharpoonright [a, d]$ is bounded. There exists a partial function I_3 from \mathbb{R} to \mathbb{R} such that dom $I_3 = [a, +\infty[$ and for every real number x such that $x \in \text{dom } I_3$ holds $I_3(x) = \int_a^x \max_+(f)(x)dx$ and I_3 is convergent in $+\infty$. \Box

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:

- (65) Suppose a < b and $]a, b] \subseteq \text{dom } f$ and f is left extended Riemann integrable on a, b and |f| is left extended Riemann integrable on a, b. Then $\max_{-}(f)$ is left extended Riemann integrable on a, b. The theorem is a consequence of (61).
- (66) Suppose a < b and $[a, b] \subseteq \text{dom } f$ and f is right extended Riemann integrable on a, b and |f| is right extended Riemann integrable on a, b. Then $\max_{-}(f)$ is right extended Riemann integrable on a, b. The theorem is a consequence of (62).
- (67) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose $]-\infty, b] \subseteq \text{dom } f$ and f is extended Riemann integrable on $-\infty$, b and |f| is extended Riemann integrable on $-\infty$, b. Then $\max_{-}(f)$ is extended Riemann integrable on $-\infty$, b. The theorem is a consequence of (63).
- (68) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number a. Suppose $[a, +\infty] \subseteq \text{dom } f$ and f is extended Riemann integrable on a, $+\infty$ and |f| is extended Riemann integrable on $a, +\infty$. Then $\max_{-}(f)$ is extended Riemann integrable on $a, +\infty$. The theorem is a consequence of

(64).

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:

- (69) Suppose $[a, b] \subseteq \text{dom } f$ and $\max_+(f)$ is left extended Riemann integrable on a, b and $\max_-(f)$ is left extended Riemann integrable on a, b. Then
 - (i) f is left extended Riemann integrable on a, b, and
 - (ii) left-improper-integral(f, a, b) = left-improper-integral $(\max_+(f), a, b)$ left-improper-integral $(\max_-(f), a, b)$.

PROOF: Consider I_1 being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_1 =]a, b]$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_x^b \max_+(f)(x)dx$ and I_1 is right convergent in a. Consider I_2 being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_2 =]a, b]$ and for every real number x such that $x \in \text{dom } I_2$ holds $I_2(x) = \int_x^b \max_-(f)(x)dx$ and I_2 is right convergent in a. For every real number d such that $a < d \le b$ holds f is integrable on [d, b] and $f \upharpoonright [d, b]$ is bounded. For every real number xsuch that $x \in \text{dom}(I_1 - I_2)$ holds $(I_1 - I_2)(x) = \int_x^b f(x)dx$. \Box

- (70) Suppose $[a, b] \subseteq \text{dom } f$ and $\max_+(f)$ is right extended Riemann integrable on a, b and $\max_-(f)$ is right extended Riemann integrable on a, b. Then
 - (i) f is right extended Riemann integrable on a, b, and
 - (ii) right-improper-integral(f, a, b) = right-improper-integral $(\max_+(f), a, b)$ right-improper-integral $(\max_-(f), a, b)$.

PROOF: Consider I_1 being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_1 = [a, b]$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_a^x \max(f)(x) dx$ and I_1 is left convergent in b. Consider I_2 being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_2 = [a, b]$ and for every real number x such that $x \in \text{dom } I_2$ holds $I_2(x) = \int_a^x \max(f)(x) dx$ and I_2 is left convergent in b. For every real number d such that $a \leq d < b$ holds f is integrable on [a, d] and $f \upharpoonright [a, d]$ is bounded. For every real number x

such that
$$x \in \operatorname{dom}(I_1 - I_2)$$
 holds $(I_1 - I_2)(x) = \int_a^x f(x) dx$. \Box

- (71) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose $]-\infty, b] \subseteq \text{dom } f$ and $\max_+(f)$ is extended Riemann integrable on $-\infty$, b and $\max_-(f)$ is extended Riemann integrable on $-\infty$, b. Then
 - (i) f is extended Riemann integrable on $-\infty$, b, and

(ii)
$$\int_{-\infty}^{b} f(x)dx = \int_{-\infty}^{b} \max_{+}(f)(x)dx - \int_{-\infty}^{b} \max_{-\infty}(f)(x)dx$$

PROOF: Consider I_1 being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_1 =]-\infty, b]$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_x^b \max_+(f)(x)dx$ and I_1 is convergent in $-\infty$. Consider I_2 being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_2 =]-\infty, b]$ and for every real number x such that $x \in \text{dom } I_2$ holds $I_2(x) = \int_x^b \max_-(f)(x)dx$ and I_2 is convergent in $-\infty$. For every real number d such that $d \leq b$ holds f is integrable on [d, b] and $f \upharpoonright [d, b]$ is bounded. For every real number xsuch that $x \in \text{dom}(I_1 - I_2)$ holds $(I_1 - I_2)(x) = \int_x^b f(x)dx$. \Box

- (72) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number a. Suppose $[a, +\infty] \subseteq \text{dom } f$ and $\max_+(f)$ is extended Riemann integrable on $a, +\infty$ and $\max_-(f)$ is extended Riemann integrable on $a, +\infty$. Then
 - (i) f is extended Riemann integrable on $a, +\infty$, and

(ii)
$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{+\infty} \max_{+} (f)(x)dx - \int_{a}^{+\infty} \max_{-} (f)(x)dx$$

PROOF: Consider I_1 being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_1 = [a, +\infty[$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_a^x \max_+(f)(x) dx$ and I_1 is convergent in $+\infty$. Consider I_2 being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_2 = [a, +\infty[$ and for every real number x such that $x \in \text{dom } I_2$ holds $I_2(x) = \int_a^x \max_-(f)(x) dx$ and I_2 is convergent in $+\infty$. For every real number d such that $a \leq d$ holds f is integrable on [a, d] and $f \upharpoonright [a, d]$ is bounded. For every real number x such that $x \in \text{dom}(I_1 - I_2)$ holds $(I_1 - I_2)(x) = \int_a^x f(x) dx$. \Box

5. Improper Integral of Absolutely Integrable Functions

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , real numbers a, b, and a non empty subset A of \mathbb{R} . Now we state the propositions:

- (73) Suppose $[a, b] \subseteq \text{dom } f$ and A = [a, b] and f is left improper integrable on a and b and |f| is left extended Riemann integrable on a, b and $f \upharpoonright A$ is non-negative. Then
 - (i) $f \upharpoonright A$ is integrable on L-Meas, and
 - (ii) left-improper-integral $(f, a, b) = \int f \upharpoonright A \, \mathrm{d} \, \mathrm{L}$ -Meas.

The theorem is a consequence of (56) and (41).

- (74) Suppose $[a, b] \subseteq \text{dom } f$ and A = [a, b] and f is right improper integrable on a and b and |f| is right extended Riemann integrable on a, b and $f \upharpoonright A$ is non-negative. Then
 - (i) $f \upharpoonright A$ is integrable on L-Meas, and
 - (ii) right-improper-integral $(f, a, b) = \int f \uparrow A \, d L$ -Meas.

The theorem is a consequence of (55) and (39).

(75) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number b, and a non empty subset A of \mathbb{R} . Suppose $]-\infty, b] \subseteq \text{dom } f$ and $A =]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and |f| is extended Riemann integrable on $-\infty, b$ and f is non-negative. Then

(i)
$$f \upharpoonright A$$
 is integrable on L-Meas, and

(ii)
$$\int_{-\infty}^{b} f(x) dx = \int f \upharpoonright A \, \mathrm{d} \, \mathrm{L}$$
-Meas.

The theorem is a consequence of (58) and (45).

- (76) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number a, and a non empty subset A of \mathbb{R} . Suppose $[a, +\infty[\subseteq \text{dom } f \text{ and } A = [a, +\infty[$ and f is improper integrable on $[a, +\infty[$ and |f| is extended Riemann integrable on $a, +\infty$ and f is non-negative. Then
 - (i) $f \upharpoonright A$ is integrable on L-Meas, and

(ii)
$$\int_{a}^{+\infty} f(x)dx = \int f \upharpoonright A \,\mathrm{d} \,\mathrm{L}\text{-Meas}.$$

The theorem is a consequence of (59) and (47).

(77) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and real numbers a, b. Suppose a < b and $[a, b] \subseteq \text{dom } f$ and f is right improper integrable on a and b and |f| is right extended Riemann integrable on a, b. Then $\max_+(f)$ is right extended Riemann integrable on a, b. The theorem is a consequence of (55) and (62).

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , real numbers a, b, and a non empty subset A of \mathbb{R} . Now we state the propositions:

- (78) Suppose $[a, b] \subseteq \text{dom } f$ and A = [a, b] and f is right improper integrable on a and b and |f| is right extended Riemann integrable on a, b. Then
 - (i) $f \upharpoonright A$ is integrable on L-Meas, and
 - (ii) right-improper-integral $(f, a, b) = \int f \uparrow A \, d \, L$ -Meas.

The theorem is a consequence of (55), (62), (74), (66), and (70).

- (79) Suppose $[a,b] \subseteq \text{dom } f$ and A = [a,b] and f is left improper integrable on a and b and |f| is left extended Riemann integrable on a, b. Then
 - (i) $f \upharpoonright A$ is integrable on L-Meas, and
 - (ii) left-improper-integral $(f, a, b) = \int f \uparrow A \, d L$ -Meas.

The theorem is a consequence of (56), (61), (73), (65), and (69).

- (80) Suppose $]a, b[\subseteq \text{dom } f \text{ and } A =]a, b[$ and f is improper integrable on a and b and there exists a real number c such that a < c < b and |f| is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b. Then
 - (i) $f \upharpoonright A$ is integrable on L-Meas, and
 - (ii) improper-integral $(f, a, b) = \int f \uparrow A \, d L$ -Meas.

The theorem is a consequence of (79), (78), (51), and (26).

- (81) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number b, and a non empty subset A of \mathbb{R} . Suppose $]-\infty, b] \subseteq \text{dom } f$ and $A =]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and |f| is extended Riemann integrable on $-\infty, b$. Then
 - (i) $f \upharpoonright A$ is integrable on L-Meas, and

(ii)
$$\int_{-\infty}^{0} f(x) dx = \int f \upharpoonright A \, \mathrm{d} \, \mathrm{L}$$
-Meas.

The theorem is a consequence of (58), (63), (75), (67), and (71).

(82) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number a, and a non empty subset A of \mathbb{R} . Suppose $[a, +\infty] \subseteq \text{dom } f$ and $A = [a, +\infty]$ and f is improper integrable on $[a, +\infty)$ and |f| is extended Riemann integrable on $a, +\infty$. Then

(i) $f \upharpoonright A$ is integrable on L-Meas, and (ii) $\int_{a}^{+\infty} f(x) dx = \int f \upharpoonright A \, \mathrm{d} \, \mathrm{L}$ -Meas.

The theorem is a consequence of (59), (64), (76), (68), and (72).

- (83) Let us consider a partial function f from \mathbb{R} to \mathbb{R} . Suppose dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} and |f| is ∞ -extended Riemann integrable. Then
 - (i) f is integrable on L-Meas, and

(ii)
$$\int_{-\infty}^{+\infty} f(x) dx = \int f \, \mathrm{d} \, \mathrm{L}$$
-Meas.

The theorem is a consequence of (81), (82), (51), and (36).

References

- [1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [4] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
- [5] Noboru Endou. Extended real-valued double sequence and its convergence. Formalized Mathematics, 23(3):253-277, 2015. doi:10.1515/forma-2015-0021.
- [6] Noboru Endou. Improper integral. Part I. Formalized Mathematics, 29(4):201–220, 2021. doi:10.2478/forma-2021-0019.
- [7] Noboru Endou. Improper integral. Part II. Formalized Mathematics, 29(4):279–294, 2021. doi:10.2478/forma-2021-0024.
- [8] Noboru Endou. Relationship between the Riemann and Lebesgue integrals. Formalized Mathematics, 29(4):185–199, 2021. doi:10.2478/forma-2021-0018.
- [9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. *Formalized Mathematics*, 9(**3**):491–494, 2001.
- [10] Noboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from ℝ into ℝ. Formalized Mathematics, 14(4):207–212, 2006. doi:10.2478/v10037-006-0023-y.
- [11] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2nd edition, 1999.

Accepted April 30, 2022