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Summary. The goal of this article is to clarify the relationship between
Riemann’s improper integrals and Lebesgue integrals. In previous articles [6], [7],
we treated Riemann’s improper integrals [1], [11] and [4] on arbitrary intervals.
Therefore, in this article, we will continue to clarify the relationship between
improper integrals and Lebesgue integrals [8], using the Mizar [3], [2] formalism.
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1. Preliminaries

Let s be a without −∞ sequence of extended reals. One can check that
(
∑κ
α=0 s(α))κ∈N is without −∞.
Let s be a without +∞ sequence of extended reals. One can verify that

(
∑κ
α=0 s(α))κ∈N is without +∞.
Now we state the propositions:

(1) Let us consider a without −∞ sequence f1 of extended reals, and a wi-
thout +∞ sequence f2 of extended reals. Then

(i) (
∑κ
α=0(f1 − f2)(α))κ∈N = (

∑κ
α=0 f1(α))κ∈N − (

∑κ
α=0 f2(α))κ∈N, and

(ii) (
∑κ
α=0(f2 − f1)(α))κ∈N = (

∑κ
α=0 f2(α))κ∈N − (

∑κ
α=0 f1(α))κ∈N.

Proof: Set P1 = (
∑κ
α=0 f1(α))κ∈N. Set P2 = (

∑κ
α=0 f2(α))κ∈N. Set P12 =

(
∑κ
α=0(f1−f2)(α))κ∈N. Set P21 = (

∑κ
α=0(f2−f1)(α))κ∈N. Define C[natural

number] ≡ P12($1) = P1($1) − P2($1). For every natural number k such
that C[k] holds C[k+1]. For every natural number k, C[k]. For every element
k of N, P12(k) = (P1 − P2)(k). Define C[natural number] ≡ P21($1) =
P2($1)−P1($1). For every natural number k such that C[k] holds C[k+ 1].
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For every natural number k, C[k]. For every element k of N, P21(k) =
(P2 − P1)(k) by [5, (7)]. �

(2) Let us consider sets X, A, and a partial function f from X to R. If f is
non-positive, then f�A is non-positive.

(3) Let us consider a set X, and a partial function f from X to R. If f is
non-positive, then −f is non-negative.

Let us consider a partial function f from R to R, a real number a, and a real
number x. Now we state the propositions:

(4) If f is left convergent in a and non-decreasing, then if x ∈ dom f and
x < a, then f(x) ¬ lima− f .

(5) If f is left convergent in a and non-increasing, then if x ∈ dom f and
x < a, then f(x)  lima− f .

(6) If f is right convergent in a and non-decreasing, then if x ∈ dom f and
a < x, then f(x)  lima+ f .

(7) If f is right convergent in a and non-increasing, then if x ∈ dom f and
a < x, then f(x) ¬ lima+ f .

(8) If f is convergent in −∞ and non-increasing, then if x ∈ dom f , then
f(x) ¬ lim−∞ f .

(9) If f is convergent in +∞ and non-decreasing, then if x ∈ dom f , then
f(x) ¬ lim+∞ f .

Let us consider real numbers a, b and a partial function f from R to R. Now
we state the propositions:

(10) Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is bounded and non-

negative. Then
b∫
a

f(x)dx  0.

(11) Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is bounded and f is

integrable on [a, b] and f�[a, b] is non-positive. Then
b∫
a

f(x)dx ¬ 0. The

theorem is a consequence of (3) and (10).

Let us consider real numbers a, b, c, d and a partial function f from R to
R. Now we state the propositions:

(12) Suppose c ¬ d and [c, d] ⊆ [a, b] ⊆ dom f and f�[a, b] is bounded and

f is integrable on [a, b] and f�[a, b] is non-negative. Then
d∫
c

f(x)dx ¬
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b∫
a

f(x)dx. The theorem is a consequence of (10).

(13) Suppose c ¬ d and [c, d] ⊆ [a, b] ⊆ dom f and f�[a, b] is bounded and

f is integrable on [a, b] and f�[a, b] is non-positive. Then
d∫
c

f(x)dx 

b∫
a

f(x)dx. The theorem is a consequence of (2) and (11).

2. Fundamental Properties of Measure and Integral

Now we state the propositions:

(14) Let us consider a non empty set X, a partial function f from X to R,
and a set E. Then R(f)�E = R(f�E).

(15) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, an element A of S, and
a sequence E of subsets of S. Suppose f is A-measurable and A = dom f

and E is disjoint valued and A =
⋃
E and (

∫+max+(f) dM < +∞ or∫+max−(f) dM < +∞). Then there exists a sequence I of extended reals
such that

(i) for every natural number n, I(n) =
∫
f�E(n) dM , and

(ii) I is summable, and

(iii)
∫
f dM =

∑
I.

Proof: Consider I1 being a non-negative sequence of extended reals such
that for every natural number n, I1(n) =

∫
max+(f)�E(n) dM and I1 is

summable and
∫

max+(f) dM =
∑
I1. Consider I2 being a non-negative

sequence of extended reals such that for every natural number n, I2(n) =∫
max−(f)�E(n) dM and I2 is summable and

∫
max−(f) dM =

∑
I2. For

every natural number n, E(n) is an element of S and E(n) ⊆ dom f . For
every natural number n, I1(n) =

∫+max+(f)�E(n) dM . For every natural
number n, I2(n) =

∫+max−(f)�E(n) dM . �

(16) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, B of
S. Suppose A ∪B ⊆ dom f and f is (A ∪B)-measurable and A misses B
and (

∫+max+(f�(A∪B)) dM < +∞ or
∫+max−(f�(A∪B)) dM < +∞).

Then
∫
f�(A ∪B) dM =

∫
f�AdM +

∫
f�B dM .

(17) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, an element A of S, and



34 noboru endou

a sequence E of subsets of S. Suppose f is A-measurable and A = dom f

and E is non descending and limE ⊆ A and M(A \ (limE)) = 0 and
(
∫+max+(f) dM < +∞ or

∫+max−(f) dM < +∞). Then there exists
a sequence I of extended reals such that

(i) for every natural number n, I(n) =∫
f�(the partial unions of E)(n) dM , and

(ii) I is convergent, and

(iii)
∫
f dM = lim I.

Proof: Reconsider L2 = limE as an element of S. Reconsider F =
the partial diff-unions of E as a sequence of subsets of S. Set g = f�L2.
Consider J being a sequence of extended reals such that for every natural
number n, J(n) =

∫
g�F (n) dM and J is summable and

∫
g dM =

∑
J .

Reconsider I = (
∑κ
α=0 J(α))κ∈N as a sequence of extended reals.

For every natural number n, g�(the partial unions of F )(n) =
f�(the partial unions of E)(n). For every natural number n, (the partial
unions of E)(n) ⊆

⋃
E. Define P[natural number] ≡ I($1) =

∫
g�(the part-

ial unions of F )($1) dM . For every natural number n such that P[n] holds
P[n+ 1]. For every natural number n, P[n]. For every natural number n,
I(n) =

∫
f�(the partial unions of E)(n) dM . �

(18) Let us consider non empty sets X, Y, a set A, a sequence F of X, and
a sequence G of Y. Suppose for every element n of N, G(n) = A ∩ F (n).
Then

⋃
rngG = A ∩

⋃
rngF .

(19) Let us consider a non empty set X, a σ-field S of subsets of X, a sequence
E of S, and a partial function f from X to R. Suppose for every natural
number n, f is (E(n))-measurable. Then f is (

⋃
E)-measurable.

Proof: For every real number r,
⋃
E ∩ LE-dom(f, r) ∈ S. �

(20) Let us consider real numbers a, b, and a natural number n. If a < b, then
a ¬ b− b−a

n+1 < b and a < a+ b−a
n+1 ¬ b.

Let us consider real numbers a, b. Now we state the propositions:

(21) Suppose a < b. Then there exists a sequence E of subsets of L-Field such
that

(i) for every natural number n, E(n) = [a, b − b−a
n+1 ] and E(n) ⊆ [a, b[

and E(n) is a non empty, closed interval subset of R, and

(ii) E is non descending and convergent, and

(iii)
⋃
E = [a, b[.

Proof: Define F(element of N) = [a, b− b−a
$1+1

]. Consider E being a function
from N into 2R such that for every element n of N, E(n) = F(n). For
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every natural number n, E(n) = [a, b − b−a
n+1 ]. For every natural number

n, E(n) = [a, b− b−a
n+1 ] and E(n) ⊆ [a, b[ and E(n) is a non empty, closed

interval subset of R. �

(22) Suppose a < b. Then there exists a sequence E of subsets of L-Field such
that

(i) for every natural number n, E(n) = [a + b−a
n+1 , b] and E(n) ⊆ ]a, b]

and E(n) is a non empty, closed interval subset of R, and

(ii) E is non descending and convergent, and

(iii)
⋃
E = ]a, b].

Proof: Define F(element of N) = [a+ b−a
$1+1

, b]. Consider E being a function
from N into 2R such that for every element n of N, E(n) = F(n). For every
natural number n, E(n) = [a+ b−a

n+1 , b] and E(n) ⊆ ]a, b] and E(n) is a non
empty, closed interval subset of R. �

Let us consider a real number a. Now we state the propositions:

(23) There exists a sequence E of subsets of L-Field such that

(i) for every natural number n, E(n) = [a, a+ n], and

(ii) E is non descending and convergent, and

(iii)
⋃
E = [a,+∞[.

Proof: Define F(element of N) = [a, a+$1]. Consider E being a function
from N into 2R such that for every element n of N, E(n) = F(n). For every
natural number n, E(n) = [a, a+ n]. �

(24) There exists a sequence E of subsets of L-Field such that

(i) for every natural number n, E(n) = [a− n, a], and

(ii) E is non descending and convergent, and

(iii)
⋃
E = ]−∞, a].

Proof: Define F(element of N) = [a−$1, a]. Consider E being a function
from N into 2R such that for every element n of N, E(n) = F(n). For every
natural number n, E(n) = [a− n, a]. �

(25) Let us consider a set X, a σ-field S of subsets of X, a σ-measure M on
S, and a set A with measure zero w.r.t. M . Then A ∈ COM(S,M).

(26) Let us consider a real number r. Then {r} ∈ L-Field. The theorem is
a consequence of (25).

(27) Let us consider a non empty set X, a σ-field S of subsets of X, an element
E of S, and a partial function f from X to R. If E = ∅, then f is E-
measurable.
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(28) Let us consider a non empty set X, a σ-field S of subsets of X, an element
E of S, and a partial function f from X to R. If E = ∅, then f is E-
measurable. The theorem is a consequence of (27).

(29) Let us consider a real number r, an element E of L-Field, and a partial
function f from R to R. If E = {r}, then f is E-measurable.
Proof: For every real number a, E ∩ LE-dom(f, a) ∈ L-Field. �

(30) Let us consider a real number r, an element E of L-Field, and a partial
function f from R to R. If E = {r}, then f is E-measurable. The theorem
is a consequence of (29).

Let us consider real numbers a, b, a partial function f from R to R, and
an element E of L-Field. Now we state the propositions:

(31) Suppose [a, b[ ⊆ dom f and f is right improper integrable on a and b.
Then if E ⊆ [a, b[, then f is E-measurable. The theorem is a consequence
of (21), (19), and (28).

(32) Suppose ]a, b] ⊆ dom f and f is left improper integrable on a and b.
Then if E ⊆ ]a, b], then f is E-measurable. The theorem is a consequence
of (22), (20), (19), and (28).

(33) Suppose ]a, b[ ⊆ dom f and f is improper integrable on a and b. Then if
E ⊆ ]a, b[, then f is E-measurable. The theorem is a consequence of (32)
and (31).

Let us consider a real number a, a partial function f from R to R, and
an element E of L-Field. Now we state the propositions:

(34) Suppose [a,+∞[ ⊆ dom f and f is improper integrable on [a, +∞[. Then
if E ⊆ [a,+∞[, then f is E-measurable.
Proof: Set A = [a,+∞[. Consider K being a sequence of subsets of
L-Field such that for every natural number n, K(n) = [a, a+ n] and K is
non descending and convergent and

⋃
K = [a,+∞[. Reconsider K1 = K

as a sequence of L-Field. For every natural number n, R(f) is (K1(n))-
measurable by [8, (49)]. R(f) is A-measurable. �

(35) Suppose ]−∞, a] ⊆ dom f and f is improper integrable on ]−∞, a]. Then
if E ⊆ ]−∞, a], then f is E-measurable.
Proof: Consider K being a sequence of subsets of L-Field such that for
every natural number n, K(n) = [a − n, a] and K is non descending and
convergent and

⋃
K = ]−∞, a]. For every element n of N, K(n) is a non

empty, closed interval subset of R. Reconsider K1 = K as a sequence of
L-Field. For every natural number n, R(f) is (K1(n))-measurable by [8,
(49)]. R(f) is (

⋃
K1)-measurable. �

(36) Let us consider a partial function f from R to R. Suppose dom f = R and
f is improper integrable on R. Let us consider an element E of L-Field.
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Then f is E-measurable. The theorem is a consequence of (34) and (35).

3. Relation between Improper Integral and Lebesgue Integral

Now we state the propositions:

(37) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and an element A of
S. Suppose A = dom f and f is A-measurable. Then

∫
−f dM = −

∫
f dM .

(38) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, B,
E of S. Suppose E = dom f and f is E-measurable and non-positive and
A ⊆ B. Then

∫
f�AdM 

∫
f�B dM .

Proof: For every set x such that x ∈ dom(R(f)) holds (R(f))(x) ¬ 0.∫
R(f�A) dM 

∫
R(f)�B dM .

∫
R(f�A) dM 

∫
R(f�B) dM . �

Let us consider a partial function f from R to R, real numbers a, b, and
a non empty subset A of R. Now we state the propositions:

(39) Suppose [a, b[ ⊆ dom f and A = [a, b[ and f is right improper integrable
on a and b and f�A is non-negative. Then

(i) right-improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if f is right extended Riemann integrable on a, b, then f�A is inte-
grable on L-Meas, and

(iii) if f is not right extended Riemann integrable on a, b, then
∫
f�Ad L-

Meas = +∞.

The theorem is a consequence of (12), (21), (31), (14), (17), (20), and (4).

(40) Suppose [a, b[ ⊆ dom f and A = [a, b[ and f is right improper integrable
on a and b and f�A is non-positive. Then

(i) right-improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if f is right extended Riemann integrable on a, b, then f�A is inte-
grable on L-Meas, and

(iii) if f is not right extended Riemann integrable on a, b, then
∫
f�Ad L-

Meas = −∞.

The theorem is a consequence of (3), (39), and (31).

(41) Suppose ]a, b] ⊆ dom f and A = ]a, b] and f is left improper integrable
on a and b and f�A is non-negative. Then

(i) left-improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if f is left extended Riemann integrable on a, b, then f�A is integrable
on L-Meas, and
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(iii) if f is not left extended Riemann integrable on a, b, then
∫
f�Ad L-

Meas = +∞.

The theorem is a consequence of (12), (22), (32), (14), (17), (20), and (7).

(42) Suppose ]a, b] ⊆ dom f and A = ]a, b] and f is left improper integrable
on a and b and f�A is non-positive. Then

(i) left-improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if f is left extended Riemann integrable on a, b, then f�A is integrable
on L-Meas, and

(iii) if f is not left extended Riemann integrable on a, b, then
∫
f�Ad L-

Meas = −∞.

The theorem is a consequence of (3), (41), and (32).

(43) Suppose ]a, b[ ⊆ dom f and A = ]a, b[ and f is improper integrable on a

and b and f�A is non-negative. Then

(i) improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if there exists a real number c such that a < c < b and f is left
extended Riemann integrable on a, c and right extended Riemann
integrable on c, b, then f�A is integrable on L-Meas, and

(iii) if for every real number c such that a < c < b holds f is not left exten-
ded Riemann integrable on a, c or f is not right extended Riemann
integrable on c, b, then

∫
f�Ad L-Meas = +∞.

The theorem is a consequence of (31), (32), (41), (39), (26), and (33).

(44) Suppose ]a, b[ ⊆ dom f and A = ]a, b[ and f is improper integrable on a

and b and f�A is non-positive. Then

(i) improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if there exists a real number c such that a < c < b and f is left
extended Riemann integrable on a, c and right extended Riemann
integrable on c, b, then f�A is integrable on L-Meas, and

(iii) if for every real number c such that a < c < b holds f is not left exten-
ded Riemann integrable on a, c or f is not right extended Riemann
integrable on c, b, then

∫
f�Ad L-Meas = −∞.

The theorem is a consequence of (3), (43), (33), and (37).

Let us consider a partial function f from R to R, a real number b, and a non
empty subset A of R. Now we state the propositions:

(45) Suppose ]−∞, b] ⊆ dom f and A = ]−∞, b] and f is improper integrable
on ]−∞, b] and f is non-negative. Then



Absolutely integrable functions 39

(i)
b∫

−∞

f(x)dx =
∫
f�Ad L-Meas, and

(ii) if f is extended Riemann integrable on −∞, b, then f�A is integrable
on L-Meas, and

(iii) if f is not extended Riemann integrable on−∞, b, then
∫
f�Ad L-Meas

= +∞.

The theorem is a consequence of (12), (24), (35), (14), (17), and (8).

(46) Suppose ]−∞, b] ⊆ dom f and A = ]−∞, b] and f is improper integrable
on ]−∞, b] and f is non-positive. Then

(i)
b∫

−∞

f(x)dx =
∫
f�Ad L-Meas, and

(ii) if f is extended Riemann integrable on −∞, b, then f�A is integrable
on L-Meas, and

(iii) if f is not extended Riemann integrable on−∞, b, then
∫
f�Ad L-Meas

= −∞.

Proof: Reconsider A1 = A as an element of L-Field. For every object x

such that x ∈ dom(−f) holds 0 ¬ (−f)(x).
b∫

−∞

(−f)(x)dx =
∫

(−f)�Ad L-

Meas. f�A is A1-measurable.
∫
−f�Ad L-Meas = −

∫
f�Ad L-Meas. �

Let us consider a partial function f from R to R, a real number a, and a non
empty subset A of R. Now we state the propositions:

(47) Suppose [a,+∞[ ⊆ dom f and A = [a,+∞[ and f is improper integrable
on [a, +∞[ and f is non-negative. Then

(i)
+∞∫
a

f(x)dx =
∫
f�Ad L-Meas, and

(ii) if f is extended Riemann integrable on a, +∞, then f�A is integrable
on L-Meas, and

(iii) if f is not extended Riemann integrable on a, +∞, then
∫
f�Ad L-

Meas = +∞.

The theorem is a consequence of (12), (23), (34), (14), (17), and (9).

(48) Suppose [a,+∞[ ⊆ dom f and A = [a,+∞[ and f is improper integrable
on [a, +∞[ and f is non-positive. Then
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(i)
+∞∫
a

f(x)dx =
∫
f�Ad L-Meas, and

(ii) if f is extended Riemann integrable on a, +∞, then f�A is integrable
on L-Meas, and

(iii) if f is not extended Riemann integrable on a, +∞, then
∫
f�Ad L-Meas

= −∞.

Proof: Reconsider A1 = A as an element of L-Field. For every object x

such that x ∈ dom(−f) holds 0 ¬ (−f)(x).
+∞∫
a

(−f)(x)dx =
∫

(−f)�Ad L-

Meas. f�A is A1-measurable.
∫
−f�Ad L-Meas = −

∫
f�Ad L-Meas. �

(49) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A,
B of S. Suppose there exists an element E of S such that E = dom f

and f is E-measurable and f is non-negative. Then
∫+ f�(A ∪ B) dM ¬∫+ f�AdM +

∫+ f�B dM .

(50) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and sets A, B. Suppose
A ⊆ dom f and B ⊆ dom f and f�A is integrable on M and f�B is
integrable on M . Then f�(A ∪ B) is integrable on M . The theorem is
a consequence of (49).

(51) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and sets A, B. Suppose
A ⊆ dom f and B ⊆ dom f and f�A is integrable on M and f�B is
integrable on M . Then f�(A ∪ B) is integrable on M . The theorem is
a consequence of (14) and (50).

Let us consider a partial function f from R to R, a real number a, and a non
empty subset A of R. Now we state the propositions:

(52) Suppose dom f = R and f is improper integrable on R and f is non-
negative. Then

(i)
+∞∫
−∞

f(x)dx =
∫
f d L-Meas, and

(ii) if f is∞-extended Riemann integrable, then f is integrable on L-Meas,
and

(iii) if f is not∞-extended Riemann integrable, then
∫
f d L-Meas = +∞.

The theorem is a consequence of (45), (36), (26), (47), and (51).
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(53) Suppose dom f = R and f is improper integrable on R and f is non-
positive. Then

(i)
+∞∫
−∞

f(x)dx =
∫
f d L-Meas, and

(ii) if f is∞-extended Riemann integrable, then f is integrable on L-Meas,
and

(iii) if f is not∞-extended Riemann integrable, then
∫
f d L-Meas = −∞.

Proof: For every object x such that x ∈ dom(−f) holds 0 ¬ (−f)(x). Re-

consider E = R as an element of L-Field. f is E-measurable. −
+∞∫
−∞

f(x)dx =

∫
−f d L-Meas. −

+∞∫
−∞

f(x)dx = −
∫
f d L-Meas. �

4. Absolutely Integrable Function

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(54) Suppose [a, b[ = dom f . Then there exists a sequence F of partial func-
tions from R into R such that

(i) for every natural number n, dom(F (n)) = dom f and for every real
number x such that x ∈ [a, b − 1

n+1 ] holds F (n)(x) = f(x) and for
every real number x such that x /∈ [a, b − 1

n+1 ] holds F (n)(x) = 0,
and

(ii) lim R(F ) = f .

Proof: For every element n of N, [a, b− 1
n+1 ] ⊆ dom f . Define P[element

of N, object] ≡ $2 = χ
[a,b− 1

$1+1
],dom f . For every element n of N, there exists

an element 〈 of R→̇R such that P [n, 〈]. Consider C2 being a sequence of
R→̇R such that for every element n of N, P [n,C2(n)]. Define Q[element
of N, object] ≡ $2 = f · C2($1). For every element n of N, there exists
an element F of R→̇R such that Q[n, F ]. Consider F being a sequence of
R→̇R such that for every element n of N, Q[n, F (n)]. For every natural
number n, dom(F (n)) = dom f and for every real number x such that
x ∈ [a, b − 1

n+1 ] holds F (n)(x) = f(x) and for every real number x such
that x /∈ [a, b − 1

n+1 ] holds F (n)(x) = 0. For every element x of R such
that x ∈ dom(lim R(F )) holds (lim R(F ))(x) = (R(f))(x) by [9, (16)]. �
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(55) Suppose a < b and [a, b[ ⊆ dom f and f is right improper integrable on
a and b and |f | is right extended Riemann integrable on a, b. Then

(i) f is right extended Riemann integrable on a, b, and

(ii) right-improper-integral(f, a, b) ¬ right-improper-integral(|f |, a, b) <
+∞.

Proof: Consider I being a partial function from R to R such that dom I =
[a, b[ and for every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx and I is left convergent in b or left divergent to +∞ in b or

left divergent to −∞ in b. Consider AI being a partial function from R
to R such that domAI = [a, b[ and for every real number x such that

x ∈ domAI holds AI(x) =
x∫
a

|f |(x)dx and AI is left convergent in b. For

every real numbers r1, r2 such that r1, r2 ∈ domAI and r1 < r2 holds
AI(r1) ¬ AI(r2). Consider r being a real number such that 0 < r < b− a.
For every real number g such that g ∈ dom I ∩ ]b−r, b[ holds I(g) ¬ AI(g)
by [10, (8)]. �

(56) Suppose a < b and ]a, b] ⊆ dom f and f is left improper integrable on a

and b and |f | is left extended Riemann integrable on a, b. Then

(i) f is left extended Riemann integrable on a, b, and

(ii) left-improper-integral(f, a, b) ¬ left-improper-integral(|f |, a, b) < +∞.

Proof: Consider I being a partial function from R to R such that dom I =
]a, b] and for every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is right convergent in a or right divergent to +∞ in a

or right divergent to −∞ in a. Consider AI being a partial function from
R to R such that domAI = ]a, b] and for every real number x such that

x ∈ domAI holds AI(x) =
b∫
x

|f |(x)dx and AI is right convergent in a. For

every real numbers r1, r2 such that r1, r2 ∈ domAI and r1 < r2 holds
AI(r1)  AI(r2). Consider r being a real number such that 0 < r < b− a.
For every real number g such that g ∈ dom I∩]a, a+r[ holds I(g) ¬ AI(g).
�

(57) Let us consider a partial function f from R to R, and a non empty, closed
interval subset A of R. Suppose A ⊆ dom f . Then

(i) max+(f � A) = max+(f�A), and
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(ii) max−(f � A) = max−(f�A).

(58) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and f is improper integrable on ]−∞, b] and |f |
is extended Riemann integrable on −∞, b. Then

(i) f is extended Riemann integrable on −∞, b, and

(ii)
b∫

−∞

f(x)dx ¬
b∫

−∞

|f |(x)dx < +∞.

Proof: Consider I being a partial function from R to R such that dom I =
]−∞, b] and for every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is convergent in −∞ or divergent in −∞ to +∞ or di-

vergent in −∞ to −∞. Consider AI being a partial function from R to
R such that domAI = ]−∞, b] and for every real number x such that

x ∈ domAI holds AI(x) =
b∫
x

|f |(x)dx and AI is convergent in −∞. For

every real numbers r1, r2 such that r1, r2 ∈ domAI and r1 < r2 holds
AI(r1)  AI(r2). For every real number g such that g ∈ dom I ∩ ]−∞, 1[
holds I(g) ¬ AI(g). �

(59) Let us consider a partial function f from R to R, and a real number a.
Suppose [a,+∞[ ⊆ dom f and f is improper integrable on [a, +∞[ and
|f | is extended Riemann integrable on a, +∞. Then

(i) f is extended Riemann integrable on a, +∞, and

(ii)
+∞∫
a

f(x)dx ¬
+∞∫
a

|f |(x)dx < +∞.

Proof: Consider I being a partial function from R to R such that dom I =
[a,+∞[ and for every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx and I is convergent in +∞ or divergent in +∞ to +∞ or di-

vergent in +∞ to −∞. Consider AI being a partial function from R to
R such that domAI = [a,+∞[ and for every real number x such that

x ∈ domAI holds AI(x) =
x∫
a

|f |(x)dx and AI is convergent in +∞. For

every real numbers r1, r2 such that r1, r2 ∈ domAI and r1 < r2 holds
AI(r1) ¬ AI(r2). For every real number g such that g ∈ dom I ∩ ]1,+∞[
holds I(g) ¬ AI(g). �
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Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(60) Suppose a ¬ b and [a, b] ⊆ dom f and f is integrable on [a, b] and f�[a, b]
is bounded. Then

(i) max+(f) is integrable on [a, b], and

(ii) max−(f) is integrable on [a, b], and

(iii) 2 · (
b∫
a

max
+

(f)(x)dx) =
b∫
a

f(x)dx+
b∫
a

|f |(x)dx, and

(iv) 2 · (
b∫
a

max
−

(f)(x)dx) = −
b∫
a

f(x)dx+
b∫
a

|f |(x)dx, and

(v)
b∫
a

f(x)dx =
b∫
a

max
+

(f)(x)dx−
b∫
a

max
−

(f)(x)dx.

(61) Suppose a < b and ]a, b] ⊆ dom f and f is left extended Riemann inte-
grable on a, b and |f | is left extended Riemann integrable on a, b. Then
max+(f) is left extended Riemann integrable on a, b.

Proof: Set G = (R<)
b∫
a

f(x)dx. Set AG = (R<)
b∫
a

|f |(x)dx. Consider I

being a partial function from R to R such that dom I = ]a, b] and for every

real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is right

convergent in a and G = lima+ I.
Consider AI being a partial function from R to R such that domAI =

]a, b] and for every real number x such that x ∈ domAI holds AI(x) =
b∫
x

|f |(x)dx and AI is right convergent in a and AG = lima+ AI . For every

real number d such that a < d ¬ b holds max+(f) is integrable on [d, b]
and max+(f)�[d, b] is bounded. There exists a partial function I3 from
R to R such that dom I3 = ]a, b] and for every real number x such that

x ∈ dom I3 holds I3(x) =
b∫
x

max
+

(f)(x)dx and I3 is right convergent in a.

�

(62) Suppose a < b and [a, b[ ⊆ dom f and f is right extended Riemann
integrable on a, b and |f | is right extended Riemann integrable on a, b.
Then max+(f) is right extended Riemann integrable on a, b.
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Proof: Set G = (R>)
b∫
a

f(x)dx. Set AG = (R>)
b∫
a

|f |(x)dx. Consider I

being a partial function from R to R such that dom I = [a, b[ and for every

real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx and I is left

convergent in b and G = limb− I.

Consider AI being a partial function from R to R such that domAI =
[a, b[ and for every real number x such that x ∈ domAI holds AI(x) =
x∫
a

|f |(x)dx and AI is left convergent in b and AG = limb− AI . For every

real number d such that a ¬ d < b holds max+(f) is integrable on [a, d]
and max+(f)�[a, d] is bounded. There exists a partial function I3 from
R to R such that dom I3 = [a, b[ and for every real number x such that

x ∈ dom I3 holds I3(x) =
x∫
a

max
+

(f)(x)dx and I3 is left convergent in b. �

(63) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and f is extended Riemann integrable on −∞,
b and |f | is extended Riemann integrable on −∞, b. Then max+(f) is
extended Riemann integrable on −∞, b.

Proof: Set G = (R<)
b∫

−∞

f(x)dx. Set AG = (R<)
b∫

−∞

|f |(x)dx. Consider I

being a partial function from R to R such that dom I = ]−∞, b] and for

every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is

convergent in −∞ and G = lim−∞ I.

Consider AI being a partial function from R to R such that domAI =
]−∞, b] and for every real number x such that x ∈ domAI holds AI(x) =
b∫
x

|f |(x)dx and AI is convergent in −∞ and AG = lim−∞AI . For every

real number d such that d ¬ b holds max+(f) is integrable on [d, b] and
max+(f)�[d, b] is bounded. There exists a partial function I3 from R to
R such that dom I3 = ]−∞, b] and for every real number x such that

x ∈ dom I3 holds I3(x) =
b∫
x

max
+

(f)(x)dx and I3 is convergent in −∞. �

(64) Let us consider a partial function f from R to R, and a real number
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a. Suppose [a,+∞[ ⊆ dom f and f is extended Riemann integrable on a,
+∞ and |f | is extended Riemann integrable on a, +∞. Then max+(f) is
extended Riemann integrable on a, +∞.

Proof: Set G = (R>)
+∞∫
a

f(x)dx. Set AG = (R>)
+∞∫
a

|f |(x)dx. Consider I

being a partial function from R to R such that dom I = [a,+∞[ and for

every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx and I is

convergent in +∞ and G = lim+∞ I.
Consider AI being a partial function from R to R such that domAI =

[a,+∞[ and for every real number x such that x ∈ domAI holds AI(x) =
x∫
a

|f |(x)dx and AI is convergent in +∞ and AG = lim+∞AI . For every

real number d such that a ¬ d holds max+(f) is integrable on [a, d] and
max+(f)�[a, d] is bounded. There exists a partial function I3 from R to
R such that dom I3 = [a,+∞[ and for every real number x such that

x ∈ dom I3 holds I3(x) =
x∫
a

max
+

(f)(x)dx and I3 is convergent in +∞. �

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(65) Suppose a < b and ]a, b] ⊆ dom f and f is left extended Riemann inte-
grable on a, b and |f | is left extended Riemann integrable on a, b. Then
max−(f) is left extended Riemann integrable on a, b. The theorem is
a consequence of (61).

(66) Suppose a < b and [a, b[ ⊆ dom f and f is right extended Riemann
integrable on a, b and |f | is right extended Riemann integrable on a, b.
Then max−(f) is right extended Riemann integrable on a, b. The theorem
is a consequence of (62).

(67) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and f is extended Riemann integrable on −∞,
b and |f | is extended Riemann integrable on −∞, b. Then max−(f) is
extended Riemann integrable on −∞, b. The theorem is a consequence of
(63).

(68) Let us consider a partial function f from R to R, and a real number
a. Suppose [a,+∞[ ⊆ dom f and f is extended Riemann integrable on a,
+∞ and |f | is extended Riemann integrable on a, +∞. Then max−(f) is
extended Riemann integrable on a, +∞. The theorem is a consequence of
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(64).

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(69) Suppose ]a, b] ⊆ dom f and max+(f) is left extended Riemann integrable
on a, b and max−(f) is left extended Riemann integrable on a, b. Then

(i) f is left extended Riemann integrable on a, b, and

(ii) left-improper-integral(f, a, b) = left-improper-integral(max+(f), a, b)−
left-improper-integral(max−(f), a, b).

Proof: Consider I1 being a partial function from R to R such that
dom I1 = ]a, b] and for every real number x such that x ∈ dom I1 holds

I1(x) =
b∫
x

max
+

(f)(x)dx and I1 is right convergent in a. Consider I2 being

a partial function from R to R such that dom I2 = ]a, b] and for every real

number x such that x ∈ dom I2 holds I2(x) =
b∫
x

max
−

(f)(x)dx and I2 is

right convergent in a. For every real number d such that a < d ¬ b holds
f is integrable on [d, b] and f�[d, b] is bounded. For every real number x

such that x ∈ dom(I1 − I2) holds (I1 − I2)(x) =
b∫
x

f(x)dx. �

(70) Suppose [a, b[ ⊆ dom f and max+(f) is right extended Riemann inte-
grable on a, b and max−(f) is right extended Riemann integrable on a, b.
Then

(i) f is right extended Riemann integrable on a, b, and

(ii) right-improper-integral(f, a, b) = right-improper-integral(max+(f),

a, b)− right-improper-integral(max−(f), a, b).

Proof: Consider I1 being a partial function from R to R such that
dom I1 = [a, b[ and for every real number x such that x ∈ dom I1 holds

I1(x) =
x∫
a

max
+

(f)(x)dx and I1 is left convergent in b. Consider I2 being

a partial function from R to R such that dom I2 = [a, b[ and for every real

number x such that x ∈ dom I2 holds I2(x) =
x∫
a

max
−

(f)(x)dx and I2 is

left convergent in b. For every real number d such that a ¬ d < b holds
f is integrable on [a, d] and f�[a, d] is bounded. For every real number x
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such that x ∈ dom(I1 − I2) holds (I1 − I2)(x) =
x∫
a

f(x)dx. �

(71) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and max+(f) is extended Riemann integrable
on −∞, b and max−(f) is extended Riemann integrable on −∞, b. Then

(i) f is extended Riemann integrable on −∞, b, and

(ii)
b∫

−∞

f(x)dx =
b∫

−∞

max
+

(f)(x)dx−
b∫

−∞

max
−

(f)(x)dx.

Proof: Consider I1 being a partial function from R to R such that
dom I1 = ]−∞, b] and for every real number x such that x ∈ dom I1

holds I1(x) =
b∫
x

max
+

(f)(x)dx and I1 is convergent in −∞. Consider I2

being a partial function from R to R such that dom I2 = ]−∞, b] and for

every real number x such that x ∈ dom I2 holds I2(x) =
b∫
x

max
−

(f)(x)dx

and I2 is convergent in −∞. For every real number d such that d ¬ b holds
f is integrable on [d, b] and f�[d, b] is bounded. For every real number x

such that x ∈ dom(I1 − I2) holds (I1 − I2)(x) =
b∫
x

f(x)dx. �

(72) Let us consider a partial function f from R to R, and a real number a.
Suppose [a,+∞[ ⊆ dom f and max+(f) is extended Riemann integrable
on a, +∞ and max−(f) is extended Riemann integrable on a, +∞. Then

(i) f is extended Riemann integrable on a, +∞, and

(ii)
+∞∫
a

f(x)dx =
+∞∫
a

max
+

(f)(x)dx−
+∞∫
a

max
−

(f)(x)dx.

Proof: Consider I1 being a partial function from R to R such that
dom I1 = [a,+∞[ and for every real number x such that x ∈ dom I1

holds I1(x) =
x∫
a

max
+

(f)(x)dx and I1 is convergent in +∞. Consider I2

being a partial function from R to R such that dom I2 = [a,+∞[ and for

every real number x such that x ∈ dom I2 holds I2(x) =
x∫
a

max
−

(f)(x)dx

and I2 is convergent in +∞. For every real number d such that a ¬ d holds



Absolutely integrable functions 49

f is integrable on [a, d] and f�[a, d] is bounded. For every real number x

such that x ∈ dom(I1 − I2) holds (I1 − I2)(x) =
x∫
a

f(x)dx. �

5. Improper Integral of Absolutely Integrable Functions

Let us consider a partial function f from R to R, real numbers a, b, and
a non empty subset A of R. Now we state the propositions:

(73) Suppose ]a, b] ⊆ dom f and A = ]a, b] and f is left improper integrable
on a and b and |f | is left extended Riemann integrable on a, b and f�A is
non-negative. Then

(i) f�A is integrable on L-Meas, and

(ii) left-improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (56) and (41).

(74) Suppose [a, b[ ⊆ dom f and A = [a, b[ and f is right improper integrable
on a and b and |f | is right extended Riemann integrable on a, b and f�A
is non-negative. Then

(i) f�A is integrable on L-Meas, and

(ii) right-improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (55) and (39).

(75) Let us consider a partial function f from R to R, a real number b, and
a non empty subset A of R. Suppose ]−∞, b] ⊆ dom f and A = ]−∞, b]
and f is improper integrable on ]−∞, b] and |f | is extended Riemann
integrable on −∞, b and f is non-negative. Then

(i) f�A is integrable on L-Meas, and

(ii)
b∫

−∞

f(x)dx =
∫
f�Ad L-Meas.

The theorem is a consequence of (58) and (45).

(76) Let us consider a partial function f from R to R, a real number a, and
a non empty subset A of R. Suppose [a,+∞[ ⊆ dom f and A = [a,+∞[
and f is improper integrable on [a, +∞[ and |f | is extended Riemann
integrable on a, +∞ and f is non-negative. Then

(i) f�A is integrable on L-Meas, and

(ii)
+∞∫
a

f(x)dx =
∫
f�Ad L-Meas.
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The theorem is a consequence of (59) and (47).

(77) Let us consider a partial function f from R to R, and real numbers a,
b. Suppose a < b and [a, b[ ⊆ dom f and f is right improper integrable
on a and b and |f | is right extended Riemann integrable on a, b. Then
max+(f) is right extended Riemann integrable on a, b. The theorem is
a consequence of (55) and (62).

Let us consider a partial function f from R to R, real numbers a, b, and
a non empty subset A of R. Now we state the propositions:

(78) Suppose [a, b[ ⊆ dom f and A = [a, b[ and f is right improper integrable
on a and b and |f | is right extended Riemann integrable on a, b. Then

(i) f�A is integrable on L-Meas, and

(ii) right-improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (55), (62), (74), (66), and (70).

(79) Suppose ]a, b] ⊆ dom f and A = ]a, b] and f is left improper integrable
on a and b and |f | is left extended Riemann integrable on a, b. Then

(i) f�A is integrable on L-Meas, and

(ii) left-improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (56), (61), (73), (65), and (69).

(80) Suppose ]a, b[ ⊆ dom f and A = ]a, b[ and f is improper integrable on
a and b and there exists a real number c such that a < c < b and |f |
is left extended Riemann integrable on a, c and right extended Riemann
integrable on c, b. Then

(i) f�A is integrable on L-Meas, and

(ii) improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (79), (78), (51), and (26).

(81) Let us consider a partial function f from R to R, a real number b, and
a non empty subset A of R. Suppose ]−∞, b] ⊆ dom f and A = ]−∞, b]
and f is improper integrable on ]−∞, b] and |f | is extended Riemann
integrable on −∞, b. Then

(i) f�A is integrable on L-Meas, and

(ii)
b∫

−∞

f(x)dx =
∫
f�Ad L-Meas.

The theorem is a consequence of (58), (63), (75), (67), and (71).

(82) Let us consider a partial function f from R to R, a real number a, and
a non empty subset A of R. Suppose [a,+∞[ ⊆ dom f and A = [a,+∞[
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and f is improper integrable on [a, +∞[ and |f | is extended Riemann
integrable on a, +∞. Then

(i) f�A is integrable on L-Meas, and

(ii)
+∞∫
a

f(x)dx =
∫
f�Ad L-Meas.

The theorem is a consequence of (59), (64), (76), (68), and (72).

(83) Let us consider a partial function f from R to R. Suppose dom f = R and
f is improper integrable on R and |f | is ∞-extended Riemann integrable.
Then

(i) f is integrable on L-Meas, and

(ii)
+∞∫
−∞

f(x)dx =
∫
f d L-Meas.

The theorem is a consequence of (81), (82), (51), and (36).
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