Absolutely Integrable Functions

Noboru Endou(
National Institute of Technology, Gifu College
2236-2 Kamimakuwa, Motosu, Gifu, Japan

Abstract

Summary. The goal of this article is to clarify the relationship between Riemann's improper integrals and Lebesgue integrals. In previous articles [6, [7, we treated Riemann's improper integrals [1, 11 and (4) on arbitrary intervals. Therefore, in this article, we will continue to clarify the relationship between improper integrals and Lebesgue integrals [8], using the Mizar [3, [2] formalism.

MSC: 26A42 68V20
Keywords: absolutely integrable; improper integral
MML identifier: MESFUN15, version: 8.1.12 5.71.1431

1. Preliminaries

Let s be a without $-\infty$ sequence of extended reals. One can check that $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is without $-\infty$.

Let s be a without $+\infty$ sequence of extended reals. One can verify that $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is without $+\infty$.

Now we state the propositions:
(1) Let us consider a without $-\infty$ sequence f_{1} of extended reals, and a without $+\infty$ sequence f_{2} of extended reals. Then
(i) $\left(\sum_{\alpha=0}^{\kappa}\left(f_{1}-f_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}$, and
(ii) $\left(\sum_{\alpha=0}^{\kappa}\left(f_{2}-f_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}$.

Proof: Set $P_{1}=\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $P_{2}=\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $P_{12}=$ $\left(\sum_{\alpha=0}^{\kappa}\left(f_{1}-f_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $P_{21}=\left(\sum_{\alpha=0}^{\kappa}\left(f_{2}-f_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$. Define \mathcal{C} [natural number $] \equiv P_{12}\left(\$_{1}\right)=P_{1}\left(\$_{1}\right)-P_{2}\left(\$_{1}\right)$. For every natural number k such that $\mathcal{C}[k]$ holds $\mathcal{C}[k+1]$. For every natural number $k, \mathcal{C}[k]$. For every element k of $\mathbb{N}, P_{12}(k)=\left(P_{1}-P_{2}\right)(k)$. Define $\mathcal{C}[$ natural number $] \equiv P_{21}\left(\$_{1}\right)=$ $P_{2}\left(\$_{1}\right)-P_{1}\left(\$_{1}\right)$. For every natural number k such that $\mathcal{C}[k]$ holds $\mathcal{C}[k+1]$.

For every natural number $k, \mathcal{C}[k]$. For every element k of $\mathbb{N}, P_{21}(k)=$ $\left(P_{2}-P_{1}\right)(k)$ by [5, (7)].
(2) Let us consider sets X, A, and a partial function f from X to \mathbb{R}. If f is non-positive, then $f \upharpoonright A$ is non-positive.
(3) Let us consider a set X, and a partial function f from X to \mathbb{R}. If f is non-positive, then $-f$ is non-negative.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a real number x. Now we state the propositions:
(4) If f is left convergent in a and non-decreasing, then if $x \in \operatorname{dom} f$ and $x<a$, then $f(x) \leqslant \lim _{a^{-}} f$.
(5) If f is left convergent in a and non-increasing, then if $x \in \operatorname{dom} f$ and $x<a$, then $f(x) \geqslant \lim _{a^{-}} f$.
(6) If f is right convergent in a and non-decreasing, then if $x \in \operatorname{dom} f$ and $a<x$, then $f(x) \geqslant \lim _{a^{+}} f$.
(7) If f is right convergent in a and non-increasing, then if $x \in \operatorname{dom} f$ and $a<x$, then $f(x) \leqslant \lim _{a^{+}} f$.
(8) If f is convergent in $-\infty$ and non-increasing, then if $x \in \operatorname{dom} f$, then $f(x) \leqslant \lim _{-\infty} f$.
(9) If f is convergent in $+\infty$ and non-decreasing, then if $x \in \operatorname{dom} f$, then $f(x) \leqslant \lim _{+\infty} f$.
Let us consider real numbers a, b and a partial function f from \mathbb{R} to \mathbb{R}. Now we state the propositions:
(10) Suppose $a \leqslant b$ and $[a, b] \subseteq \operatorname{dom} f$ and $f\lceil[a, b]$ is bounded and nonnegative. Then $\int_{a}^{b} f(x) d x \geqslant 0$.
(11) Suppose $a \leqslant b$ and $[a, b] \subseteq \operatorname{dom} f$ and $f\lceil[a, b]$ is bounded and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is non-positive. Then $\int_{a}^{b} f(x) d x \leqslant 0$. The theorem is a consequence of (3) and (10).
Let us consider real numbers a, b, c, d and a partial function f from \mathbb{R} to \mathbb{R}. Now we state the propositions:
(12) Suppose $c \leqslant d$ and $[c, d] \subseteq[a, b] \subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and f is integrable on $[a, b]$ and $f\left\lceil[a, b]\right.$ is non-negative. Then $\int_{c}^{d} f(x) d x \leqslant$
$\int_{a}^{b} f(x) d x$. The theorem is a consequence of (10).
(13) Suppose $c \leqslant d$ and $[c, d] \subseteq[a, b] \subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is non-positive. Then $\int_{c}^{d} f(x) d x \geqslant$ $\int_{a}^{b} f(x) d x$. The theorem is a consequence of (2) and (11).

2. Fundamental Properties of Measure and Integral

Now we state the propositions:
(14) Let us consider a non empty set X, a partial function f from X to \mathbb{R}, and a set E. Then $\overline{\mathbb{R}}(f) \upharpoonright E=\overline{\mathbb{R}}(f \upharpoonright E)$.
(15) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, an element A of S, and a sequence E of subsets of S. Suppose f is A-measurable and $A=\operatorname{dom} f$ and E is disjoint valued and $A=\bigcup E$ and $\left(\int^{+} \max _{+}(f) \mathrm{d} M<+\infty\right.$ or $\left.\int^{+} \max _{-}(f) \mathrm{d} M<+\infty\right)$. Then there exists a sequence I of extended reals such that
(i) for every natural number $n, I(n)=\int f \upharpoonright E(n) \mathrm{d} M$, and
(ii) I is summable, and
(iii) $\int f \mathrm{~d} M=\sum I$.

Proof: Consider I_{1} being a non-negative sequence of extended reals such that for every natural number $n, I_{1}(n)=\int \max _{+}(f) \upharpoonright E(n) \mathrm{d} M$ and I_{1} is summable and $\int \max _{+}(f) \mathrm{d} M=\sum I_{1}$. Consider I_{2} being a non-negative sequence of extended reals such that for every natural number $n, I_{2}(n)=$ $\int \max _{-}(f) \upharpoonright E(n) \mathrm{d} M$ and I_{2} is summable and $\int \max _{-}(f) \mathrm{d} M=\sum I_{2}$. For every natural number $n, E(n)$ is an element of S and $E(n) \subseteq \operatorname{dom} f$. For every natural number $n, I_{1}(n)=\int^{+} \max _{+}(f) \upharpoonright E(n) \mathrm{d} M$. For every natural number $n, I_{2}(n)=\int^{+} \max _{-}(f) \upharpoonright E(n) \mathrm{d} M$.
(16) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and elements A, B of S. Suppose $A \cup B \subseteq \operatorname{dom} f$ and f is $(A \cup B)$-measurable and A misses B and $\left(\int^{+} \max _{+}(f \upharpoonright(A \cup B)) \mathrm{d} M<+\infty\right.$ or $\left.\int^{+} \max _{-}(f \upharpoonright(A \cup B)) \mathrm{d} M<+\infty\right)$. Then $\int f \upharpoonright(A \cup B) \mathrm{d} M=\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$.
(17) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, an element A of S, and
a sequence E of subsets of S. Suppose f is A-measurable and $A=\operatorname{dom} f$ and E is non descending and $\lim E \subseteq A$ and $M(A \backslash(\lim E))=0$ and $\left(\int^{+} \max _{+}(f) \mathrm{d} M<+\infty\right.$ or $\left.\int^{+} \max _{-}(f) \mathrm{d} M<+\infty\right)$. Then there exists a sequence I of extended reals such that
(i) for every natural number $n, I(n)=$ $\int f \upharpoonright($ the partial unions of $E)(n) \mathrm{d} M$, and
(ii) I is convergent, and
(iii) $\int f \mathrm{~d} M=\lim I$.

Proof: Reconsider $L_{2}=\lim E$ as an element of S. Reconsider $F=$ the partial diff-unions of E as a sequence of subsets of S. Set $g=f \upharpoonright L_{2}$. Consider J being a sequence of extended reals such that for every natural number $n, J(n)=\int g \upharpoonright F(n) \mathrm{d} M$ and J is summable and $\int g \mathrm{~d} M=\sum J$. Reconsider $I=\left(\sum_{\alpha=0}^{\kappa} J(\alpha)\right)_{\kappa \in \mathbb{N}}$ as a sequence of extended reals.

For every natural number $n, g \upharpoonright($ the partial unions of $F)(n)=$ $f \upharpoonright($ the partial unions of $E)(n)$. For every natural number n, (the partial unions of $E)(n) \subseteq \bigcup E$. Define \mathcal{P} [natural number] $\equiv I(\$ 1)=\int g \upharpoonright$ (the partial unions of $F)\left(\$_{1}\right) \mathrm{d} M$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$. For every natural number n, $I(n)=\int f \upharpoonright($ the partial unions of $E)(n) \mathrm{d} M$.
(18) Let us consider non empty sets X, Y, a set A, a sequence F of X, and a sequence G of Y. Suppose for every element n of $\mathbb{N}, G(n)=A \cap F(n)$. Then $\bigcup \operatorname{rng} G=A \cap \bigcup \operatorname{rng} F$.
(19) Let us consider a non empty set X, a σ-field S of subsets of X, a sequence E of S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose for every natural number n, f is $(E(n))$-measurable. Then f is $(\bigcup E)$-measurable.
Proof: For every real number $r, \bigcup E \cap \operatorname{LE}-\operatorname{dom}(f, r) \in S$.
(20) Let us consider real numbers a, b, and a natural number n. If $a<b$, then $a \leqslant b-\frac{b-a}{n+1}<b$ and $a<a+\frac{b-a}{n+1} \leqslant b$.
Let us consider real numbers a, b. Now we state the propositions:
(21) Suppose $a<b$. Then there exists a sequence E of subsets of L-Field such that
(i) for every natural number $n, E(n)=\left[a, b-\frac{b-a}{n+1}\right]$ and $E(n) \subseteq[a, b[$ and $E(n)$ is a non empty, closed interval subset of \mathbb{R}, and
(ii) E is non descending and convergent, and
(iii) $\cup E=[a, b[$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=\left[a, b-\frac{b-a}{\$_{1}+1}\right]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of $\mathbb{N}, E(n)=\mathcal{F}(n)$. For
every natural number $n, E(n)=\left[a, b-\frac{b-a}{n+1}\right]$. For every natural number $n, E(n)=\left[a, b-\frac{b-a}{n+1}\right]$ and $E(n) \subseteq[a, b[$ and $E(n)$ is a non empty, closed interval subset of \mathbb{R}.
(22) Suppose $a<b$. Then there exists a sequence E of subsets of L-Field such that
(i) for every natural number $n, E(n)=\left[a+\frac{b-a}{n+1}, b\right]$ and $\left.\left.E(n) \subseteq\right] a, b\right]$ and $E(n)$ is a non empty, closed interval subset of \mathbb{R}, and
(ii) E is non descending and convergent, and
(iii) $\cup E=] a, b]$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=\left[a+\frac{b-a}{\$_{1}+1}, b\right]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of $\mathbb{N}, E(n)=\mathcal{F}(n)$. For every natural number $n, E(n)=\left[a+\frac{b-a}{n+1}, b\right]$ and $\left.\left.E(n) \subseteq\right] a, b\right]$ and $E(n)$ is a non empty, closed interval subset of \mathbb{R}.
Let us consider a real number a. Now we state the propositions:
(23) There exists a sequence E of subsets of L-Field such that
(i) for every natural number $n, E(n)=[a, a+n]$, and
(ii) E is non descending and convergent, and
(iii) $\bigcup E=[a,+\infty[$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=\left[a, a+\$_{1}\right]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of $\mathbb{N}, E(n)=\mathcal{F}(n)$. For every natural number $n, E(n)=[a, a+n]$.
(24) There exists a sequence E of subsets of L-Field such that
(i) for every natural number $n, E(n)=[a-n, a]$, and
(ii) E is non descending and convergent, and
(iii) $\cup E=]-\infty, a]$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=\left[a-\$_{1}, a\right]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of $\mathbb{N}, E(n)=\mathcal{F}(n)$. For every natural number $n, E(n)=[a-n, a]$.
(25) Let us consider a set X, a σ-field S of subsets of X, a σ-measure M on S, and a set A with measure zero w.r.t. M. Then $A \in \operatorname{COM}(S, M)$.
(26) Let us consider a real number r. Then $\{r\} \in$ L-Field. The theorem is a consequence of (25).
(27) Let us consider a non empty set X, a σ-field S of subsets of X, an element E of S, and a partial function f from X to $\overline{\mathbb{R}}$. If $E=\emptyset$, then f is E measurable.
(28) Let us consider a non empty set X, a σ-field S of subsets of X, an element E of S, and a partial function f from X to \mathbb{R}. If $E=\emptyset$, then f is E measurable. The theorem is a consequence of (27).
(29) Let us consider a real number r, an element E of L-Field, and a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. If $E=\{r\}$, then f is E-measurable.
Proof: For every real number $a, E \cap \operatorname{LE}-\operatorname{dom}(f, a) \in$ L-Field.
(30) Let us consider a real number r, an element E of L-Field, and a partial function f from \mathbb{R} to \mathbb{R}. If $E=\{r\}$, then f is E-measurable. The theorem is a consequence of (29).
Let us consider real numbers a, b, a partial function f from \mathbb{R} to \mathbb{R}, and an element E of L-Field. Now we state the propositions:
(31) Suppose $[a, b[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and b. Then if $E \subseteq[a, b[$, then f is E-measurable. The theorem is a consequence of (21), (19), and (28).
(32) Suppose $] a, b] \subseteq \operatorname{dom} f$ and f is left improper integrable on a and b. Then if $E \subseteq] a, b]$, then f is E-measurable. The theorem is a consequence of (22), (20), (19), and (28).
(33) Suppose $] a, b[\subseteq \operatorname{dom} f$ and f is improper integrable on a and b. Then if $E \subseteq] a, b[$, then f is E-measurable. The theorem is a consequence of (32) and (31).
Let us consider a real number a, a partial function f from \mathbb{R} to \mathbb{R}, and an element E of L-Field. Now we state the propositions:
(34) Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and f is improper integrable on $[a,+\infty[$. Then if $E \subseteq[a,+\infty[$, then f is E-measurable.
Proof: Set $A=[a,+\infty[$. Consider K being a sequence of subsets of L-Field such that for every natural number $n, K(n)=[a, a+n]$ and K is non descending and convergent and $\bigcup K=\left[a,+\infty\left[\right.\right.$. Reconsider $K_{1}=K$ as a sequence of L-Field. For every natural number $n, \overline{\mathbb{R}}(f)$ is $\left(K_{1}(n)\right)$ measurable by [8, (49)]. $\overline{\mathbb{R}}(f)$ is A-measurable.
(35) Suppose $]-\infty, a] \subseteq \operatorname{dom} f$ and f is improper integrable on $]-\infty, a]$. Then if $E \subseteq]-\infty, a]$, then f is E-measurable.
Proof: Consider K being a sequence of subsets of L-Field such that for every natural number $n, K(n)=[a-n, a]$ and K is non descending and convergent and $\bigcup K=]-\infty, a]$. For every element n of $\mathbb{N}, K(n)$ is a non empty, closed interval subset of \mathbb{R}. Reconsider $K_{1}=K$ as a sequence of L-Field. For every natural number $n, \overline{\mathbb{R}}(f)$ is $\left(K_{1}(n)\right)$-measurable by [8, (49)]. $\overline{\mathbb{R}}(f)$ is $\left(\bigcup K_{1}\right)$-measurable.
(36) Let us consider a partial function f from \mathbb{R} to \mathbb{R}. Suppose $\operatorname{dom} f=\mathbb{R}$ and f is improper integrable on \mathbb{R}. Let us consider an element E of L-Field.

Then f is E-measurable. The theorem is a consequence of (34) and (35).

3. Relation between Improper Integral and Lebesgue Integral

Now we state the propositions:
(37) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R}, and an element A of S. Suppose $A=\operatorname{dom} f$ and f is A-measurable. Then $\int-f \mathrm{~d} M=-\int f \mathrm{~d} M$.
(38) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R}, and elements A, B, E of S. Suppose $E=\operatorname{dom} f$ and f is E-measurable and non-positive and $A \subseteq B$. Then $\int f\left\lceil A \mathrm{~d} M \geqslant \int f \upharpoonright B \mathrm{~d} M\right.$.
Proof: For every set x such that $x \in \operatorname{dom}(\overline{\mathbb{R}}(f))$ holds $(\overline{\mathbb{R}}(f))(x) \leqslant 0$. $\int \overline{\mathbb{R}}(f \upharpoonright A) \mathrm{d} M \geqslant \int \overline{\mathbb{R}}(f) \upharpoonright B \mathrm{~d} M . \int \overline{\mathbb{R}}(f \upharpoonright A) \mathrm{d} M \geqslant \int \overline{\mathbb{R}}(f \upharpoonright B) \mathrm{d} M$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(39) Suppose $[a, b[\subseteq \operatorname{dom} f$ and $A=[a, b[$ and f is right improper integrable on a and b and $f \upharpoonright A$ is non-negative. Then
(i) right-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is right extended Riemann integrable on a, b, then $f\lceil A$ is integrable on L-Meas, and
(iii) if f is not right extended Riemann integrable on a, b, then $\int f\lceil A \mathrm{~d} \mathrm{~L}$ Meas $=+\infty$.
The theorem is a consequence of (12), (21), (31), (14), (17), (20), and (4).
(40) Suppose $[a, b[\subseteq \operatorname{dom} f$ and $A=[a, b[$ and f is right improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
(i) right-improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas, and
(ii) if f is right extended Riemann integrable on a, b, then $f\lceil A$ is integrable on L-Meas, and
(iii) if f is not right extended Riemann integrable on a, b, then $\int f\lceil A \mathrm{~d}$ Meas $=-\infty$.
The theorem is a consequence of (3), (39), and (31).
(41) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $A=] a, b]$ and f is left improper integrable on a and b and $f \upharpoonright A$ is non-negative. Then
(i) left-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is left extended Riemann integrable on a, b, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if f is not left extended Riemann integrable on a, b, then $\int f \upharpoonright A \mathrm{~d}$ LMeas $=+\infty$.
The theorem is a consequence of (12), (22), (32), (14), (17), (20), and (7).
(42) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $A=] a, b]$ and f is left improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
(i) left-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is left extended Riemann integrable on a, b, then $f\lceil A$ is integrable on L-Meas, and
(iii) if f is not left extended Riemann integrable on a, b, then $\int f \upharpoonright A \mathrm{~d} \mathrm{~L}$ Meas $=-\infty$.
The theorem is a consequence of (3), (41), and (32).
(43) Suppose $] a, b[\subseteq \operatorname{dom} f$ and $A=] a, b[$ and f is improper integrable on a and b and $f\lceil A$ is non-negative. Then
(i) improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas, and
(ii) if there exists a real number c such that $a<c<b$ and f is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if for every real number c such that $a<c<b$ holds f is not left extended Riemann integrable on a, c or f is not right extended Riemann integrable on c, b, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=+\infty$.
The theorem is a consequence of (31), (32), (41), (39), (26), and (33).
(44) Suppose $] a, b[\subseteq \operatorname{dom} f$ and $A=] a, b[$ and f is improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
(i) improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas, and
(ii) if there exists a real number c such that $a<c<b$ and f is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if for every real number c such that $a<c<b$ holds f is not left extended Riemann integrable on a, c or f is not right extended Riemann integrable on c, b, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=-\infty$.
The theorem is a consequence of $(3),(43),(33)$, and (37).
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number b, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(45) Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $A=]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and f is non-negative. Then
(i) $\int_{-\infty}^{b} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is extended Riemann integrable on $-\infty, b$, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if f is not extended Riemann integrable on $-\infty, b$, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=+\infty$.

The theorem is a consequence of (12), (24), (35), (14), (17), and (8).
(46) Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $A=]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and f is non-positive. Then
(i) $\int_{-\infty}^{b} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is extended Riemann integrable on $-\infty, b$, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if f is not extended Riemann integrable on $-\infty, b$, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=-\infty$.

Proof: Reconsider $A_{1}=A$ as an element of L-Field. For every object x such that $x \in \operatorname{dom}(-f)$ holds $0 \leqslant(-f)(x) . \int_{-\infty}^{b}(-f)(x) d x=\int(-f) \upharpoonright A \mathrm{~d} \mathrm{~L}-$
Meas. $f \upharpoonright A$ is A_{1}-measurable. $\int-f \upharpoonright A \mathrm{~d}$ L-Meas $=-\int f \upharpoonright A \mathrm{~d}$ L-Meas.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(47) Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and $A=[a,+\infty[$ and f is improper integrable on $[a,+\infty[$ and f is non-negative. Then
(i) $\int_{a}^{+\infty} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is extended Riemann integrable on $a,+\infty$, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if f is not extended Riemann integrable on $a,+\infty$, then $\int f \upharpoonright A \mathrm{~d}$ Meas $=+\infty$.

The theorem is a consequence of (12), (23), (34), (14), (17), and (9).
(48) Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and $A=[a,+\infty[$ and f is improper integrable on $[a,+\infty[$ and f is non-positive. Then
(i) $\int_{a}^{+\infty} f(x) d x=\int f \upharpoonright A d$ L-Meas, and
(ii) if f is extended Riemann integrable on $a,+\infty$, then $f\lceil A$ is integrable on L-Meas, and
(iii) if f is not extended Riemann integrable on $a,+\infty$, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=-\infty$.
Proof: Reconsider $A_{1}=A$ as an element of L-Field. For every object x such that $x \in \operatorname{dom}(-f)$ holds $0 \leqslant(-f)(x) . \int_{a}^{+\infty}(-f)(x) d x=\int(-f) \upharpoonright A \mathrm{~d} \mathrm{~L}-$ Meas. $f \upharpoonright A$ is A_{1}-measurable. $\int-f \upharpoonright A \mathrm{~d}$ L-Meas $=-\int f \upharpoonright A \mathrm{~d}$ L-Meas.
(49) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and elements A, B of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is E-measurable and f is non-negative. Then $\int^{+} f \upharpoonright(A \cup B) \mathrm{d} M \leqslant$ $\int^{+} f \upharpoonright A \mathrm{~d} M+\int^{+} f \upharpoonright B \mathrm{~d} M$.
(50) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and sets A, B. Suppose $A \subseteq \operatorname{dom} f$ and $B \subseteq \operatorname{dom} f$ and $f \upharpoonright A$ is integrable on M and $f \upharpoonright B$ is integrable on M. Then $f \upharpoonright(A \cup B)$ is integrable on M. The theorem is a consequence of (49).
(51) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R}, and sets A, B. Suppose $A \subseteq \operatorname{dom} f$ and $B \subseteq \operatorname{dom} f$ and $f \upharpoonright A$ is integrable on M and $f \upharpoonright B$ is integrable on M. Then $f \upharpoonright(A \cup B)$ is integrable on M. The theorem is a consequence of (14) and (50).
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(52) Suppose $\operatorname{dom} f=\mathbb{R}$ and f is improper integrable on \mathbb{R} and f is nonnegative. Then
(i) $\int_{-\infty}^{+\infty} f(x) d x=\int f \mathrm{~d}$ L-Meas, and
(ii) if f is ∞-extended Riemann integrable, then f is integrable on L-Meas, and
(iii) if f is not ∞-extended Riemann integrable, then $\int f \mathrm{~d}$ L-Meas $=+\infty$.

The theorem is a consequence of (45), (36), (26), (47), and (51).
(53) Suppose $\operatorname{dom} f=\mathbb{R}$ and f is improper integrable on \mathbb{R} and f is nonpositive. Then
(i) $\int_{-\infty}^{+\infty} f(x) d x=\int f \mathrm{~d}$ L-Meas, and
(ii) if f is ∞-extended Riemann integrable, then f is integrable on L-Meas, and
(iii) if f is not ∞-extended Riemann integrable, then $\int f \mathrm{~d} \mathrm{~L}$-Meas $=-\infty$. Proof: For every object x such that $x \in \operatorname{dom}(-f)$ holds $0 \leqslant(-f)(x)$. Reconsider $E=\mathbb{R}$ as an element of L-Field. f is E-measurable. $-\int_{-\infty}^{+\infty} f(x) d x=$ $\int-f$ d L-Meas. $-\int_{-\infty}^{+\infty} f(x) d x=-\int f \mathrm{~d}$ L-Meas.

4. Absolutely Integrable Function

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(54) Suppose $[a, b[=\operatorname{dom} f$. Then there exists a sequence F of partial functions from \mathbb{R} into \mathbb{R} such that
(i) for every natural number n, $\operatorname{dom}(F(n))=\operatorname{dom} f$ and for every real number x such that $x \in\left[a, b-\frac{1}{n+1}\right]$ holds $F(n)(x)=f(x)$ and for every real number x such that $x \notin\left[a, b-\frac{1}{n+1}\right]$ holds $F(n)(x)=0$, and
(ii) $\lim \overline{\mathbb{R}}(F)=f$.

Proof: For every element n of $\mathbb{N},\left[a, b-\frac{1}{n+1}\right] \subseteq \operatorname{dom} f$. Define \mathcal{P} [element of \mathbb{N}, object $] \equiv \$_{2}=\chi_{\left[a, b-\frac{1}{S_{1}+1}\right] \text {,dom } f}$. For every element n of \mathbb{N}, there exists an element $\left\langle\right.$ of $\mathbb{R} \rightarrow \mathbb{R}$ such that $P\left[n,\langle]\right.$. Consider C_{2} being a sequence of $\mathbb{R} \rightarrow \mathbb{R}$ such that for every element n of $\mathbb{N}, P\left[n, C_{2}(n)\right]$. Define \mathcal{Q} [element of \mathbb{N}, object $] \equiv \$_{2}=f \cdot C_{2}\left(\$_{1}\right)$. For every element n of \mathbb{N}, there exists an element F of $\mathbb{R} \rightarrow \mathbb{R}$ such that $Q[n, F]$. Consider F being a sequence of $\mathbb{R} \rightarrow \mathbb{R}$ such that for every element n of $\mathbb{N}, Q[n, F(n)]$. For every natural number n, $\operatorname{dom}(F(n))=\operatorname{dom} f$ and for every real number x such that $x \in\left[a, b-\frac{1}{n+1}\right]$ holds $F(n)(x)=f(x)$ and for every real number x such that $x \notin\left[a, b-\frac{1}{n+1}\right]$ holds $F(n)(x)=0$. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(\lim \overline{\mathbb{R}}(F))$ holds $(\lim \overline{\mathbb{R}}(F))(x)=(\overline{\mathbb{R}}(f))(x)$ by [9, (16)].
(55) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and b and $|f|$ is right extended Riemann integrable on a, b. Then
(i) f is right extended Riemann integrable on a, b, and
(ii) $\operatorname{right}-i m p r o p e r-i n t e g r a l(f, a, b) \leqslant \operatorname{right-improper-integral}(|f|, a, b)<$ $+\infty$.

Proof: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=$ $[a, b[$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=$ $\int_{a}^{x} f(x) d x$ and I is left convergent in b or left divergent to $+\infty$ in b or left divergent to $-\infty$ in b. Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_{I}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=\int_{a}^{x}|f|(x) d x$ and A_{I} is left convergent in b. For every real numbers r_{1}, r_{2} such that $r_{1}, r_{2} \in \operatorname{dom} A_{I}$ and $r_{1}<r_{2}$ holds $A_{I}\left(r_{1}\right) \leqslant A_{I}\left(r_{2}\right)$. Consider r being a real number such that $0<r<b-a$. For every real number g such that $g \in \operatorname{dom} I \cap] b-r, b\left[\right.$ holds $I(g) \leqslant A_{I}(g)$ by [10, (8)].
(56) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and f is left improper integrable on a and b and $|f|$ is left extended Riemann integrable on a, b. Then
(i) f is left extended Riemann integrable on a, b, and
(ii) left-improper-integral $(f, a, b) \leqslant$ left-improper-integral $(|f|, a, b)<+\infty$.

Proof: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=$]a,b] and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=$ $\int_{x}^{b} f(x) d x$ and I is right convergent in a or right divergent to $+\infty$ in a or right divergent to $-\infty$ in a. Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that dom $\left.\left.A_{I}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=\int_{x}^{b}|f|(x) d x$ and A_{I} is right convergent in a. For every real numbers r_{1}, r_{2} such that $r_{1}, r_{2} \in \operatorname{dom} A_{I}$ and $r_{1}<r_{2}$ holds $A_{I}\left(r_{1}\right) \geqslant A_{I}\left(r_{2}\right)$. Consider r being a real number such that $0<r<b-a$. For every real number g such that $g \in \operatorname{dom} I \cap] a, a+r\left[\right.$ holds $I(g) \leqslant A_{I}(g)$.
(57) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a non empty, closed interval subset A of \mathbb{R}. Suppose $A \subseteq \operatorname{dom} f$. Then
(i) $\max _{+}(f \upharpoonright A)=\max _{+}(f \upharpoonright A)$, and
(ii) $\max _{-}(f \upharpoonright A)=\max _{-}(f \upharpoonright A)$.
(58) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number b. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and f is improper integrable on $]-\infty, b]$ and $|f|$ is extended Riemann integrable on $-\infty, b$. Then
(i) f is extended Riemann integrable on $-\infty, b$, and
(ii) $\int_{-\infty}^{b} f(x) d x \leqslant \int_{-\infty}^{b}|f|(x) d x<+\infty$.

Proof: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=$ $]-\infty, b]$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=$ $\int_{x}^{b} f(x) d x$ and I is convergent in $-\infty$ or divergent in $-\infty$ to $+\infty$ or divergent in $-\infty$ to $-\infty$. Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} A_{I}=\right]-\infty, b\right]$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=\int_{x}^{b}|f|(x) d x$ and A_{I} is convergent in $-\infty$. For every real numbers r_{1}, r_{2} such that $r_{1}, r_{2} \in \operatorname{dom} A_{I}$ and $r_{1}<r_{2}$ holds $A_{I}\left(r_{1}\right) \geqslant A_{I}\left(r_{2}\right)$. For every real number g such that $\left.g \in \operatorname{dom} I \cap\right]-\infty, 1[$ holds $I(g) \leqslant A_{I}(g)$.
(59) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number a. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and f is improper integrable on $[a,+\infty[$ and $|f|$ is extended Riemann integrable on $a,+\infty$. Then
(i) f is extended Riemann integrable on $a,+\infty$, and
(ii) $\int_{a}^{+\infty} f(x) d x \leqslant \int_{a}^{+\infty}|f|(x) d x<+\infty$.

Proof: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=$ $[a,+\infty[$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=$ $\int_{a}^{x} f(x) d x$ and I is convergent in $+\infty$ or divergent in $+\infty$ to $+\infty$ or divergent in $+\infty$ to $-\infty$. Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=[a,+\infty[$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=\int_{a}^{x}|f|(x) d x$ and A_{I} is convergent in $+\infty$. For every real numbers r_{1}, r_{2} such that $r_{1}, r_{2} \in \operatorname{dom} A_{I}$ and $r_{1}<r_{2}$ holds $A_{I}\left(r_{1}\right) \leqslant A_{I}\left(r_{2}\right)$. For every real number g such that $\left.g \in \operatorname{dom} I \cap\right] 1,+\infty[$ holds $I(g) \leqslant A_{I}(g)$.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(60) Suppose $a \leqslant b$ and $[a, b] \subseteq \operatorname{dom} f$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded. Then
(i) $\max _{+}(f)$ is integrable on $[a, b]$, and
(ii) $\max _{-}(f)$ is integrable on $[a, b]$, and
(iii) $2 \cdot\left(\int_{a}^{b} \max _{+}(f)(x) d x\right)=\int_{a}^{b} f(x) d x+\int_{a}^{b}|f|(x) d x$, and
(iv) $2 \cdot\left(\int_{a}^{b} \max _{-}(f)(x) d x\right)=-\int_{a}^{b} f(x) d x+\int_{a}^{b}|f|(x) d x$, and
(v) $\int_{a}^{b} f(x) d x=\int_{a}^{b} \max _{+}(f)(x) d x-\int_{a}^{b} \max _{-}(f)(x) d x$.
(61) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and f is left extended Riemann integrable on a, b and $|f|$ is left extended Riemann integrable on a, b. Then $\max _{+}(f)$ is left extended Riemann integrable on a, b.
Proof: Set $G=\left(R^{<}\right) \int_{a}^{b} f(x) d x$. Set $A_{G}=\left(R^{<}\right) \int_{a}^{b}|f|(x) d x$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I=] a, b]$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{x}^{b} f(x) d x$ and I is right convergent in a and $G=\lim _{a^{+}} I$.

Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=$]a,b] and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=$ $\int_{x}^{b}|f|(x) d x$ and A_{I} is right convergent in a and $A_{G}=\lim _{a^{+}} A_{I}$. For every real number d such that $a<d \leqslant b$ holds $\max _{+}(f)$ is integrable on $[d, b]$ and $\max _{+}(f) \upharpoonright[d, b]$ is bounded. There exists a partial function I_{3} from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} I_{3}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{x}^{b} \max _{+}(f)(x) d x$ and I_{3} is right convergent in a.
(62) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right extended Riemann integrable on a, b and $|f|$ is right extended Riemann integrable on a, b. Then $\max _{+}(f)$ is right extended Riemann integrable on a, b.

Proof: Set $G=\left(R^{>}\right) \int_{a}^{b} f(x) d x$. Set $A_{G}=\left(R^{>}\right) \int_{a}^{b}|f|(x) d x$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{a}^{x} f(x) d x$ and I is left convergent in b and $G=\lim _{b^{-}} I$.

Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=$ $\left[a, b\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=$ $\int_{a}^{x}|f|(x) d x$ and A_{I} is left convergent in b and $A_{G}=\lim _{b^{-}} A_{I}$. For every real number d such that $a \leqslant d<b$ holds $\max _{+}(f)$ is integrable on $[a, d]$ and $\max _{+}(f) \upharpoonright[a, d]$ is bounded. There exists a partial function I_{3} from \mathbb{R} to \mathbb{R} such that dom $I_{3}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{a}^{x} \max _{+}(f)(x) d x$ and I_{3} is left convergent in $b . \square$
(63) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number b. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and f is extended Riemann integrable on $-\infty$, b and $|f|$ is extended Riemann integrable on $-\infty, b$. Then $\max _{+}(f)$ is extended Riemann integrable on $-\infty, b$.
Proof: Set $G=\left(R^{<}\right) \int_{-\infty}^{b} f(x) d x$. Set $A_{G}=\left(R^{<}\right) \int_{-\infty}^{b}|f|(x) d x$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I=]-\infty, b]$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{x}^{b} f(x) d x$ and I is convergent in $-\infty$ and $G=\lim _{-\infty} I$.

Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=$ $]-\infty, b]$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=$ $\int_{x}^{b}|f|(x) d x$ and A_{I} is convergent in $-\infty$ and $A_{G}=\lim _{-\infty} A_{I}$. For every real number d such that $d \leqslant b$ holds $\max _{+}(f)$ is integrable on $[d, b]$ and $\max _{+}(f) \upharpoonright[d, b]$ is bounded. There exists a partial function I_{3} from \mathbb{R} to \mathbb{R} such that dom $\left.\left.I_{3}=\right]-\infty, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{x}^{b} \max _{+}(f)(x) d x$ and I_{3} is convergent in $-\infty$.
(64) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number
a. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and f is extended Riemann integrable on a, $+\infty$ and $|f|$ is extended Riemann integrable on $a,+\infty$. Then $\max _{+}(f)$ is extended Riemann integrable on $a,+\infty$.
Proof: Set $G=\left(R^{>}\right) \int_{a}^{+\infty} f(x) d x$. Set $A_{G}=\left(R^{>}\right) \int_{a}^{+\infty}|f|(x) d x$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=[a,+\infty[$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{a}^{x} f(x) d x$ and I is convergent in $+\infty$ and $G=\lim _{+\infty} I$.

Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=$ $\left[a,+\infty\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=$ $\int_{a}^{x}|f|(x) d x$ and A_{I} is convergent in $+\infty$ and $A_{G}=\lim _{+\infty} A_{I}$. For every real number d such that $a \leqslant d$ holds $\max _{+}(f)$ is integrable on $[a, d]$ and $\max _{+}(f) \upharpoonright[a, d]$ is bounded. There exists a partial function I_{3} from \mathbb{R} to \mathbb{R} such that dom $I_{3}=[a,+\infty[$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{a}^{x} \max _{+}(f)(x) d x$ and I_{3} is convergent in $+\infty$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(65) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and f is left extended Riemann integrable on a, b and $|f|$ is left extended Riemann integrable on a, b. Then $\max _{-}(f)$ is left extended Riemann integrable on a, b. The theorem is a consequence of (61).
(66) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right extended Riemann integrable on a, b and $|f|$ is right extended Riemann integrable on a, b. Then max_ (f) is right extended Riemann integrable on a, b. The theorem is a consequence of (62).
(67) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number b. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and f is extended Riemann integrable on $-\infty$, b and $|f|$ is extended Riemann integrable on $-\infty, b$. Then $\max _{-}(f)$ is extended Riemann integrable on $-\infty, b$. The theorem is a consequence of (63).
(68) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number a. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and f is extended Riemann integrable on a, $+\infty$ and $|f|$ is extended Riemann integrable on $a,+\infty$. Then max_ (f) is extended Riemann integrable on $a,+\infty$. The theorem is a consequence of

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(69) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $\max _{+}(f)$ is left extended Riemann integrable on a, b and max_ (f) is left extended Riemann integrable on a, b. Then
(i) f is left extended Riemann integrable on a, b, and
(ii) left-improper-integral $(f, a, b)=$ left-improper-integral($\left.\max _{+}(f), a, b\right)-$ left-improper-integral(max_ $(f), a, b)$.
Proof: Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} I_{1}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} \max _{+}(f)(x) d x$ and I_{1} is right convergent in a. Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that dom $\left.\left.I_{2}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{2}$ holds $I_{2}(x)=\int_{x}^{b} \max (f)(x) d x$ and I_{2} is right convergent in a. For every real number d such that $a<d \leqslant b$ holds f is integrable on $[d, b]$ and $f \upharpoonright[d, b]$ is bounded. For every real number x such that $x \in \operatorname{dom}\left(I_{1}-I_{2}\right)$ holds $\left(I_{1}-I_{2}\right)(x)=\int_{x}^{b} f(x) d x$. \square
(70) Suppose $\left[a, b\left[\subseteq \operatorname{dom} f\right.\right.$ and $\max _{+}(f)$ is right extended Riemann integrable on a, b and max_ (f) is right extended Riemann integrable on a, b. Then
(i) f is right extended Riemann integrable on a, b, and
(ii) $\operatorname{right-improper-integral}(f, a, b)=\operatorname{right-improper-integral}\left(\max _{+}(f)\right.$, $a, b)$ - right-improper-integral(max_ $(f), a, b)$.
Proof: Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I_{1}=\left[a, b\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} \max _{+}(f)(x) d x$ and I_{1} is left convergent in b. Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_{2}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{2}$ holds $I_{2}(x)=\int_{a}^{x} \max (f)(x) d x$ and I_{2} is left convergent in b. For every real number d such that $a \leqslant d<b$ holds f is integrable on $[a, d]$ and $f \upharpoonright[a, d]$ is bounded. For every real number x
such that $x \in \operatorname{dom}\left(I_{1}-I_{2}\right)$ holds $\left(I_{1}-I_{2}\right)(x)=\int_{a}^{x} f(x) d x$.
(71) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number b. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $\max _{+}(f)$ is extended Riemann integrable on $-\infty, b$ and $\max _{-}(f)$ is extended Riemann integrable on $-\infty, b$. Then
(i) f is extended Riemann integrable on $-\infty, b$, and
(ii) $\int_{-\infty}^{b} f(x) d x=\int_{-\infty}^{b} \max _{+}(f)(x) d x-\int_{-\infty}^{b} \max _{-}(f)(x) d x$.

Proof: Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} I_{1}=\right]-\infty, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} \max _{+}(f)(x) d x$ and I_{1} is convergent in $-\infty$. Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} I_{2}=\right]-\infty, b\right]$ and for every real number x such that $x \in$ dom I_{2} holds $I_{2}(x)=\int_{x}^{b} \max _{-}(f)(x) d x$ and I_{2} is convergent in $-\infty$. For every real number d such that $d \leqslant b$ holds f is integrable on $[d, b]$ and $f \upharpoonright[d, b]$ is bounded. For every real number x such that $x \in \operatorname{dom}\left(I_{1}-I_{2}\right)$ holds $\left(I_{1}-I_{2}\right)(x)=\int_{x}^{b} f(x) d x$.
(72) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number a. Suppose $\left[a,+\infty\left[\subseteq \operatorname{dom} f\right.\right.$ and $\max _{+}(f)$ is extended Riemann integrable on $a,+\infty$ and $\max _{-}(f)$ is extended Riemann integrable on $a,+\infty$. Then
(i) f is extended Riemann integrable on $a,+\infty$, and
(ii) $\int_{a}^{+\infty} f(x) d x=\int_{a}^{+\infty} \max _{+}(f)(x) d x-\int_{a}^{+\infty} \max _{-}(f)(x) d x$.

Proof: Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I_{1}=\left[a,+\infty\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} \max _{+}(f)(x) d x$ and I_{1} is convergent in $+\infty$. Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I_{2}=[a,+\infty[$ and for every real number x such that $x \in$ dom I_{2} holds $I_{2}(x)=\int_{a}^{x} \max _{-}(f)(x) d x$ and I_{2} is convergent in $+\infty$. For every real number d such that $a \leqslant d$ holds
f is integrable on $[a, d]$ and $f\lceil[a, d]$ is bounded. For every real number x such that $x \in \operatorname{dom}\left(I_{1}-I_{2}\right)$ holds $\left(I_{1}-I_{2}\right)(x)=\int_{a}^{x} f(x) d x$

5. Improper Integral of Absolutely Integrable Functions

Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(73) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $A=] a, b]$ and f is left improper integrable on a and b and $|f|$ is left extended Riemann integrable on a, b and $f \upharpoonright A$ is non-negative. Then
(i) $f\lceil A$ is integrable on L-Meas, and
(ii) left-improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (56) and (41).
(74) Suppose $[a, b[\subseteq \operatorname{dom} f$ and $A=[a, b[$ and f is right improper integrable on a and b and $|f|$ is right extended Riemann integrable on a, b and $f \upharpoonright A$ is non-negative. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) right-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d} \mathrm{~L}$-Meas.

The theorem is a consequence of (55) and (39).
(75) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number b, and a non empty subset A of \mathbb{R}. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $A=]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and $|f|$ is extended Riemann integrable on $-\infty, b$ and f is non-negative. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) $\int_{-\infty}^{b} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (58) and (45).
(76) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a non empty subset A of \mathbb{R}. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and $A=[a,+\infty[$ and f is improper integrable on $[a,+\infty[$ and $|f|$ is extended Riemann integrable on $a,+\infty$ and f is non-negative. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) $\int_{a}^{+\infty} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (59) and (47).
(77) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and b and $|f|$ is right extended Riemann integrable on a, b. Then $\max _{+}(f)$ is right extended Riemann integrable on a, b. The theorem is a consequence of (55) and (62).
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(78) Suppose $[a, b[\subseteq \operatorname{dom} f$ and $A=[a, b[$ and f is right improper integrable on a and b and $|f|$ is right extended Riemann integrable on a, b. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) right-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d} \mathrm{~L}-\mathrm{Meas}$.

The theorem is a consequence of (55), (62), (74), (66), and (70).
(79) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $A=] a, b]$ and f is left improper integrable on a and b and $|f|$ is left extended Riemann integrable on a, b. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) left-improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (56), (61), (73), (65), and (69).
(80) Suppose $] a, b[\subseteq \operatorname{dom} f$ and $A=] a, b[$ and f is improper integrable on a and b and there exists a real number c such that $a<c<b$ and $|f|$ is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (79), (78), (51), and (26).
(81) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number b, and a non empty subset A of \mathbb{R}. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $A=]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and $|f|$ is extended Riemann integrable on $-\infty, b$. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) $\int_{-\infty}^{b} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (58), (63), (75), (67), and (71).
(82) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a non empty subset A of \mathbb{R}. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and $A=[a,+\infty[$
and f is improper integrable on $[a,+\infty[$ and $|f|$ is extended Riemann integrable on $a,+\infty$. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) $\int_{a}^{+\infty} f(x) d x=\int f\lceil A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (59), (64), (76), (68), and (72).
(83) Let us consider a partial function f from \mathbb{R} to \mathbb{R}. Suppose $\operatorname{dom} f=\mathbb{R}$ and f is improper integrable on \mathbb{R} and $|f|$ is ∞-extended Riemann integrable. Then
(i) f is integrable on L-Meas, and
(ii) $\int_{-\infty}^{+\infty} f(x) d x=\int f \mathrm{~d}$ L-Meas.

The theorem is a consequence of $(81),(82),(51)$, and (36).

References

[1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. dol 10.1007/s10817-017-9440-6
[4] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
[5] Noboru Endou. Extended real-valued double sequence and its convergence. Formalized Mathematics, 23(3):253-277, 2015. doi 10.1515/forma-2015-0021
[6] Noboru Endou. Improper integral. Part I. Formalized Mathematics, 29(4):201-220, 2021. doi 10.2478/forma-2021-0019.
[7] Noboru Endou. Improper integral. Part II. Formalized Mathematics, 29(4):279-294, 2021. doi 10.2478/forma-2021-0024.
[8] Noboru Endou. Relationship between the Riemann and Lebesgue integrals. Formalized Mathematics, 29(4):185-199, 2021. doi 10.2478/forma-2021-0018
[9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[10] Noboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from \mathbb{R} into \mathbb{R}. Formalized Mathematics, 14(4):207-212, 2006. doi $10.2478 /$ v10037-006-0023-y
[11] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2nd edition, 1999.

Accepted April 30, 2022

