

Splitting Fields for the Rational Polynomials X^2-2 , X^2+X+1 , X^3-1 , and X^3-2

Christoph Schwarzweller Institute of Informatics University of Gdańsk Poland

Sara Burgoa Weston, Florida United States of America

Summary. In [11] the existence (and uniqueness) of splitting fields has been formalized. In this article we apply this result by providing splitting fields for the polynomials $X^2 - 2$, $X^3 - 1$, $X^2 + X + 1$ and $X^3 - 2$ over Q using the Mizar [2], [1] formalism. We also compute the degrees and bases for these splitting fields, which requires some additional registrations to adopt types properly.

The main result, however, is that the polynomial $X^3 - 2$ does not split over $\mathcal{Q}(\sqrt[3]{2})$. Because $X^3 - 2$ obviously has a root over $\mathcal{Q}(\sqrt[3]{2})$, this shows that the field extension $\mathcal{Q}(\sqrt[3]{2})$ is not normal over \mathcal{Q} [3], [4], [5] and [7].

MSC: 12F05 68V20

Keywords: splitting fields; rational polynomials

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{FIELD_10}, \ \mathrm{version:} \ \mathtt{8.1.12} \ \mathtt{5.71.1431}$

1. Preliminaries

Let L be a non empty double loop structure and a, b, c be elements of L. Note that the functor $\{a, b, c\}$ yields a subset of L. Let i be an integer. Let us observe that i^3 is integer.

Let *i* be an even integer. Let us observe that i^3 is even.

Let *i* be an odd integer. Let us observe that i^3 is odd.

Now we state the propositions:

(1) Let us consider complex numbers r, s. Then $(r \cdot s)^3 = r^3 \cdot s^3$.

© 2022 The Author(s) / AMU (Association of Mizar Users) under CC BY-SA 3.0 license

- (2) Let us consider a rational number r. Then $r^3 \ge 0$ if and only if $r \ge 0$.
- (3) There exists no rational number r such that $r^3 = 2$. The theorem is a consequence of (2) and (1).

Note that $root_3(2)$ is non rational. Now we state the proposition:

(4) Let us consider finite sets X_1 , X_2 . Suppose $X_1 \subseteq X_2$ and $\overline{X_1} = \overline{X_2}$. Then $X_1 = X_2$.

Let F be a field. Observe that there exists an element of the carrier of $\operatorname{PolyRing}(F)$ which is linear and there exists an element of the carrier of $\operatorname{PolyRing}(F)$ which is non linear and non constant.

Let us consider a field F and an element p of the carrier of PolyRing(F). Now we state the propositions:

- (5) If $\deg(p) = 2$, then p is reducible iff p has roots.
- (6) If $\deg(p) = 3$, then p is reducible iff p has roots.

2. More on Field Extensions

One can check that \mathbb{C}_{F} is $(\mathbb{F}_{\mathbb{Q}})$ -extending and there exists an element of \mathbb{R}_{F} which is $(\mathbb{F}_{\mathbb{Q}})$ -membered and there exists an element of \mathbb{C}_{F} which is non $(\mathbb{F}_{\mathbb{Q}})$ -membered and there exists an element of \mathbb{C}_{F} which is $(\mathbb{R}_{\mathrm{F}})$ -membered and there exists an element of \mathbb{C}_{F} which is non $(\mathbb{R}_{\mathrm{F}})$ -membered and there exists an element of \mathbb{C}_{F} which is $(\mathbb{F}_{\mathbb{Q}})$ -membered and there exists an element of \mathbb{C}_{F} which is non $(\mathbb{R}_{\mathrm{F}})$ -membered and there exists an element of \mathbb{C}_{F} which is $(\mathbb{F}_{\mathbb{Q}})$ -membered and there exists an element of \mathbb{C}_{F} which is $(\mathbb{F}_{\mathbb{Q}})$ -membered.

- (7) Let us consider a field F, an extension E of F, an E-extending extension K of F, an element p of the carrier of PolyRing(F), and an element q of the carrier of PolyRing(E). If p = q, then Roots(K, p) = Roots(K, q).
- (8) Let us consider a field F, an extension E of F, an F-extending extension K of E, an element a of E, and an element b of K. Suppose b = a. Then RAdj(F, {a}) = RAdj(F, {b}).
- (9) Let us consider a field F, an extension E of F, an F-extending extension K of E, an F-algebraic element a of E, and an F-algebraic element b of K. Suppose b = a. Then FAdj(F, {a}) = FAdj(F, {b}).
- (10) Let us consider a field F, an extension E of F, an E-extending extension K of F, an F-algebraic element a of E, and an F-algebraic element b of K. If a = b, then MinPoly(a, F) = MinPoly(b, F).
- (11) Let us consider a field F, an F-finite extension E of F, and an element a of E. Then deg(MinPoly(a, F)) | deg(E, F).

Let F be a field, E be an extension of F, and T_1 , T_2 be subsets of E. One can check that $FAdj(F, T_1 \cup T_2)$ is $(FAdj(F, T_1))$ -extending and $(FAdj(F, T_2))$ -extending.

Let a, b be elements of E. Observe that $\operatorname{FAdj}(F, \{a, b\})$ is $(\operatorname{FAdj}(F, \{a\}))$ extending and $(\operatorname{FAdj}(F, \{b\}))$ -extending. Let a, b, c be elements of E. Let us observe that $\operatorname{FAdj}(F, \{a, b, c\})$ is $(\operatorname{FAdj}(F, \{a, b\}))$ -extending, $(\operatorname{FAdj}(F, \{a, c\}))$ extending, and $(\operatorname{FAdj}(F, \{b, c\}))$ -extending.

3. The Rational Polynomials $X^2 - 2$, $X^3 - 1$, $X^2 + X + 1$ and $X^3 - 2$

The functors: X^2-2 , X^3-1 , X^3-2 , and X^2+X+1 yielding elements of the carrier of PolyRing($\mathbb{F}_{\mathbb{Q}}$) are defined by terms

(Def. 1) $\langle -(1_{\mathbb{F}_{\mathbb{O}}}+1_{\mathbb{F}_{\mathbb{O}}}), 0_{\mathbb{F}_{\mathbb{O}}}, 1_{\mathbb{F}_{\mathbb{O}}} \rangle$,

- (Def. 2) $(\mathbf{0}.\mathbb{F}_{\mathbb{Q}} + (0, -1)) + (3, 1),$
- (Def. 3) $(\mathbf{0}.\mathbb{F}_{\mathbb{Q}} + (0, -2)) + (3, 1),$
- (Def. 4) $\langle 1_{\mathbb{F}_{\mathbb{O}}}, 1_{\mathbb{F}_{\mathbb{O}}}, 1_{\mathbb{F}_{\mathbb{O}}} \rangle$,

respectively. The functors: $\sqrt{2}$ and $\sqrt[3]{2}$ yielding non zero elements of \mathbb{R}_F are defined by terms

- (Def. 5) $\sqrt{2}$,
- (Def. 6) $root_3(2)$,

respectively. The functors: $\sqrt{2}$, $\sqrt[3]{2}$, and $\sqrt{-3}$ yielding non zero elements of \mathbb{C}_{F} are defined by terms

- (Def. 7) $\sqrt{2}$,
- $(Def. 8) \mod_3(2),$
- (Def. 9) $(i) \cdot \sqrt{3}$,

respectively. The functor ζ yielding a non zero element of \mathbb{C}_{F} is defined by the term

(Def. 10) $\frac{-1+(i)\cdot\sqrt{3}}{2}$.

Observe that X^2-2 is monic, purely quadratic, and irreducible and X^3-2 is monic, non constant, and irreducible and X^3-1 is monic, non constant, and reducible and $X^2 + X + 1$ is monic, quadratic, and irreducible and $\sqrt{2}$ is non $(\mathbb{F}_{\mathbb{Q}})$ -membered and $(\mathbb{F}_{\mathbb{Q}})$ -algebraic and $\sqrt{2}$ is non $(\mathbb{F}_{\mathbb{Q}})$ -membered and $(\mathbb{F}_{\mathbb{Q}})$ -algebraic and $\sqrt{2}$ is non $(\mathbb{F}_{\mathbb{Q}})$ -algebraic.

 $(\zeta)^2$ is non (\mathbb{R}_F) -membered and (\mathbb{F}_Q) -algebraic and $FAdj(\mathbb{F}_Q, \{\sqrt[3]{2}\})$ is (\mathbb{F}_Q) -finite and $FAdj(\mathbb{F}_Q, \{\sqrt[3]{2}, \zeta\})$ is (\mathbb{F}_Q) -finite and \mathbb{R}_F is $(FAdj(\mathbb{F}_Q, \{\sqrt[3]{2}\}))$ -extending and \mathbb{R}_F is $(FAdj(\mathbb{F}_Q, \{\sqrt[3]{2}\}))$ -extending and \mathbb{C}_F is $(FAdj(\mathbb{F}_Q, \{\sqrt[3]{2}\}))$ -extending and \mathbb{C}_F is $(FAdj(\mathbb{F}_Q, \{\sqrt[3]{2}\}))$ -extending.

- (12) $\zeta = -\frac{1}{2} + (i) \cdot \frac{\sqrt{3}}{2}.$ (13) $(\zeta)^2 = -\frac{1}{2} - \frac{(i) \cdot \sqrt{3}}{2}.$ (14) (i) $\zeta^2 \neq 1$, and (ii) $\zeta^3 = 1$, and (iii) $\zeta^2 = -\zeta - 1$. (15) (i) ζ is a complex root of 3, 1, and (ii) $(\zeta)^2$ is a complex root of 3, 1. (16) $\sqrt[3]{2}^3 = 2$ (17) $X^3 - 1 = (X - 1_{\mathbb{F}_0}) \cdot (X^2 + X + 1).$ (18) (i) $\deg(X^2-2) = 2$, and (ii) $\deg(X^3-2) = 3$, and (iii) $\deg(X^3-1) = 3$, and (iv) $\deg(X^2 + X + 1) = 2$. Let us consider an element x of $\mathbb{F}_{\mathbb{Q}}$. Now we state the propositions: (19) $eval(X^2-2, x) = x^2 - 2.$ (20) $eval(X^3-1, x) = x^3 - 1.$ (21) $eval(X^2 + X + 1, x) = x^2 + x + 1.$ (22) $eval(X^3-2, x) = x^3 - 2.$ Let us consider an element r of \mathbb{R}_{F} . Then $\mathrm{ExtEval}(\mathrm{X}^2-2,r)=r^2-2$. (23)Let us consider an element z of \mathbb{C}_{F} . Now we state the propositions: (24) ExtEval($X^3 - 1, z$) = $z^3 - 1$. (25) ExtEval $(X^2 + X + 1, z) = z^2 + z + 1$. (26) ExtEval($X^3 - 2, z$) = $z^3 - 2$. (27) Let us consider an element z of the carrier of \mathbb{C}_{F} .
 - Then $\operatorname{ExtEval}(X^3-1, z) = 0_{\mathbb{C}_F}$ if and only if z is a complex root of 3, 1.
- (28) Discriminant $(X^2 + X + 1) = -3$.
- (29) FAdj($\mathbb{F}_{\mathbb{Q}}, \{\zeta\}$) = FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt{-3}\}$). PROOF: $\{\zeta\}$ is a subset of FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt{-3}\}$) by [10, (35)], [9, (12)], [6, (2)]. $\{\sqrt{-3}\}$ is a subset of FAdj($\mathbb{F}_{\mathbb{Q}}, \{\zeta\}$). \Box

4. A Splitting Field of $X^2 - 2$

Now we state the propositions:

- (30) MinPoly $(\sqrt{2}, \mathbb{F}_{\mathbb{Q}}) = X^2 2.$
- (31) $\deg(\operatorname{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\}), \mathbb{F}_{\mathbb{Q}}) = 2.$
- (32) $\{1, \sqrt{2}\}\$ is a basis of VecSp(FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\}\), \mathbb{F}_{\mathbb{Q}}$). The theorem is a consequence of (30).
- (33) Roots(X^2-2) = \emptyset .
- (34) X^2-2 does not split in $\mathbb{F}_{\mathbb{O}}$.
- (35) Roots($\mathbb{R}_{\mathrm{F}}, \mathrm{X}^2 2$) = { $\sqrt{2}, -\sqrt{2}$ }. PROOF: $\overline{\mathrm{Roots}(\mathbb{R}_{\mathrm{F}}, \mathrm{X}^2 - 2)}$ = 2 by [12, (22)], [13, (13)]. \Box
- (36) $X^2 2 = (X \sqrt{2}) \cdot (X + \sqrt{2}).$
- (37) FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\}$) is a splitting field of X²-2. PROOF: Set $F = \text{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\})$. X²-2 = 1_{$\mathbb{R}_{\text{F}}} · (rpoly(1, \sqrt{2}) * rpoly(1, -\sqrt{2}))$. $\{\sqrt{2}, -\sqrt{2}\} \subseteq \text{the carrier of } F. X^2-2 \text{ splits in } F. \Box$ </sub>
- (38) $\sqrt[3]{2}$ is not an element of FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\}$). The theorem is a consequence of (10), (30), and (11).
- (39) \mathbb{R}_{F} is not a splitting field of X²-2. The theorem is a consequence of (37) and (38).
- (40) \mathbb{C}_{F} is not a splitting field of X²-2. The theorem is a consequence of (37) and (38).

5. A Splitting Field of $X^3 - 1$ and $X^2 + X + 1$

- (41) $\operatorname{Roots}(X^3 1) = \{1\}.$
- (42) Roots($X^2 + X + 1$) = \emptyset .
- (43) MinPoly $(\zeta, \mathbb{F}_{\mathbb{O}}) = X^2 + X + 1.$
- (44) Roots($\mathbb{C}_{\mathrm{F}}, \mathrm{X}^3 1$) = {1, $\zeta, (\zeta)^2$ }.
- (45) Roots($\mathbb{C}_{\mathrm{F}}, \mathrm{X}^2 + \mathrm{X} + 1$) = { $\zeta, (\zeta)^2$ }.
- (46) X^3-1 does not split in $\mathbb{F}_{\mathbb{Q}}$.
- (47) X^3-1 does not split in \mathbb{R}_F .
- (48) $X^2 + X + 1$ does not split in $\mathbb{F}_{\mathbb{Q}}$.
- (49) $X^2 + X + 1$ does not split in \mathbb{R}_F .
- (50) $X^2 + X + 1 = (X \zeta) \cdot (X (\zeta)^2).$

- (51) $X^3-1 = (X-1_{\mathbb{C}_F}) \cdot (X-\zeta) \cdot (X-(\zeta)^2)$. The theorem is a consequence of (50).
- (52) FAdj($\mathbb{F}_{\mathbb{Q}}, \{\zeta\}$) is a splitting field of $X^2 + X + 1$. PROOF: Set $F = FAdj(\mathbb{F}_{\mathbb{Q}}, \{\zeta\})$. Roots($\mathbb{C}_F, X^2 + X + 1$) \subseteq the carrier of F. \Box
- (53) FAdj($\mathbb{F}_{\mathbb{Q}}, \{\zeta\}$) is a splitting field of X³-1. PROOF: Set $F = FAdj(\mathbb{F}_{\mathbb{Q}}, \{\zeta\})$. Roots($\mathbb{C}_{\mathrm{F}}, \mathrm{X}^3 - 1$) \subseteq the carrier of F. \Box
- (54) $\deg(\operatorname{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\zeta\}), \mathbb{F}_{\mathbb{Q}}) = 2.$
- (55) $\{1, \zeta\}$ is a basis of VecSp(FAdj($\mathbb{F}_{\mathbb{Q}}, \{\zeta\}$), $\mathbb{F}_{\mathbb{Q}}$). The theorem is a consequence of (43).
- (56) $\sqrt{2}$ is not an element of FAdj($\mathbb{F}_{\mathbb{Q}}, \{\zeta\}$). The theorem is a consequence of (55).
- (57) \mathbb{C}_{F} is not a splitting field of $X^2 + X + 1$. The theorem is a consequence of (52) and (56).
- (58) \mathbb{C}_{F} is not a splitting field of X³-1. The theorem is a consequence of (53) and (56).

6. A Splitting Field of $X^3 - 2$

- (59) MinPoly $(\sqrt[3]{2}, \mathbb{F}_{\mathbb{O}}) = X^3 2.$
- (60) $\deg(\operatorname{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\}), \mathbb{F}_{\mathbb{Q}}) = 3.$
- (61) $\{1, \sqrt[3]{2}, \sqrt[3]{2}^2\}$ is a basis of VecSp(FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\}$), $\mathbb{F}_{\mathbb{Q}}$). The theorem is a consequence of (59).
- (62) $\operatorname{Roots}(X^3-2) = \emptyset$. The theorem is a consequence of (6).
- (63) X^3-2 does not split in $\mathbb{F}_{\mathbb{Q}}$. The theorem is a consequence of (6).
- (64) Roots(FAdj($\mathbb{F}_{\mathbb{O}}, \{\sqrt[3]{2}\}), X^3-2) = \{\sqrt[3]{2}\}.$
- (65) X^3-2 does not split in FAdj $(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\})$.
- (66) Roots($\mathbb{R}_{\mathrm{F}}, \mathrm{X}^{3}-2$) = { $\sqrt[3]{2}$ }.
- (67) X^3-2 does not split in \mathbb{R}_F .
- (68) Roots($\mathbb{C}_{\mathrm{F}}, \mathrm{X}^3 2$) = { $\sqrt[3]{2}, \sqrt[3]{2} \cdot \zeta, \sqrt[3]{2} \cdot (\zeta)^2$ }.
- (69) $X^3-2 = (X \sqrt[3]{2}) \cdot (X \sqrt[3]{2} \cdot \zeta) \cdot (X \sqrt[3]{2} \cdot (\zeta)^2).$ PROOF: Set $F = \mathbb{C}_F$. Set $a = \sqrt[3]{2} \cdot \zeta$. Set $b = \sqrt[3]{2} \cdot (\zeta)^2$. Set $c = \sqrt[3]{2}.$ Reconsider $p_1 = X - c$ as a polynomial over F. $p_1 * \langle a \cdot b, -b + -a, 1_F \rangle = X^3 - 2$ by [8, (10)]. \Box
- (70) FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\}$) is a splitting field of X³-2.

PROOF: Set $F = FAdj(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\})$. Roots $(\mathbb{C}_F, X^3 - 2) \subseteq$ the carrier of F.

Let us observe that \mathbb{C}_{F} is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\}))$ -extending and $\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\})$ is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\}))$ -extending and ζ is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\}))$ -algebraic.

Now we state the propositions:

- (71) MinPoly(ζ , FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\}$)) = X² + X + 1. The theorem is a consequence of (9), (5), and (7).
- (72) deg(FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\}$), FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\}$)) = 2. The theorem is a consequence of (71).
- (73) $\{1, \zeta\}$ is a basis of VecSp(FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\}$), FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\}$)). The theorem is a consequence of (71).
- (74) deg(FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\}$), $\mathbb{F}_{\mathbb{Q}}$) = 6. The theorem is a consequence of (59), (9), and (72).
- (75) $\{1, \sqrt[3]{2}, \sqrt[3]{2}^2, \zeta, \sqrt[3]{2} \cdot \zeta, \sqrt[3]{2}^2 \cdot \zeta\}$ is a basis of VecSp(FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\}$), $\mathbb{F}_{\mathbb{Q}}$). PROOF: Set $F = \text{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\})$. Set $K = \text{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\})$. $K = \text{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}\})$. Set $M = \{1, \sqrt[3]{2}, \sqrt[3]{2}^2, \zeta, \sqrt[3]{2} \cdot \zeta, \sqrt[3]{2}^2 \cdot \zeta\}$. Reconsider $B_1 = \{1, \sqrt[3]{2}, \sqrt[3]{2}^2\}$ as a basis of VecSp($K, \mathbb{F}_{\mathbb{Q}}$). Reconsider $B_2 = \{1, \zeta\}$ as a basis of VecSp(F, K). Base(B_1, B_2) = M. \Box

One can verify that \mathbb{C}_{F} is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\}))$ -extending and \mathbb{C}_{F} is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\}))$ -extending and $\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\})$ is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\}))$ -extending and $\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\})$)-extending and ζ is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\}))$ -extending and ζ is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\})$ -extending and ζ is $(\mathrm{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\})$ -extending and ζ -extending and

 $\{\sqrt{2}\}\)$ -algebraic and $\sqrt[3]{2}$ is $(FAdj(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\}))$ -algebraic and $FAdj(\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta, \sqrt{2}\})$ is $(FAdj(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\}))$ -finite.

- (76) MinPoly(ζ , FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\}$)) = X² + X + 1. The theorem is a consequence of (9), (5), and (7).
- (77) $\deg(\operatorname{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\}), \operatorname{FAdj}(\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}\})) = 2$. The theorem is a consequence of (76).
- (78) deg(FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt{2}, \zeta\}$), $\mathbb{F}_{\mathbb{Q}}$) = 4. The theorem is a consequence of (30), (10), and (77).
- (79) $\sqrt{2}$ is not an element of FAdj($\mathbb{F}_{\mathbb{Q}}, \{\sqrt[3]{2}, \zeta\}$). The theorem is a consequence of (78) and (74).
- (80) \mathbb{C}_{F} is not a splitting field of X³-2. The theorem is a consequence of (70) and (79).

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
- [4] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
- [5] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.
- [6] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265–269, 2001.
- [7] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
- [8] Christoph Schwarzweller. Field extensions and Kronecker's construction. Formalized Mathematics, 27(3):229–235, 2019. doi:10.2478/forma-2019-0022.
- Christoph Schwarzweller. Renamings and a condition-free formalization of Kronecker's construction. *Formalized Mathematics*, 28(2):129–135, 2020. doi:10.2478/forma-2020-0012.
- [10] Christoph Schwarzweller. Ring and field adjunctions, algebraic elements and minimal polynomials. Formalized Mathematics, 28(3):251–261, 2020. doi:10.2478/forma-2020-0022.
- [11] Christoph Schwarzweller. Splitting fields. Formalized Mathematics, 29(3):129–139, 2021. doi:10.2478/forma-2021-0013.
- [12] Christoph Schwarzweller. On roots of polynomials and algebraically closed fields. Formalized Mathematics, 25(3):185–195, 2017. doi:10.1515/forma-2017-0018.
- Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Algebraic extensions. *Formalized Mathematics*, 29(1):39–48, 2021. doi:10.2478/forma-2021-0004.

Accepted April 30, 2022