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Summary. In [11] the existence (and uniqueness) of splitting fields has
been formalized. In this article we apply this result by providing splitting fields
for the polynomials X2 − 2, X3 − 1, X2 +X + 1 and X3 − 2 over Q using the
Mizar [2], [1] formalism. We also compute the degrees and bases for these splitting
fields, which requires some additional registrations to adopt types properly.

The main result, however, is that the polynomial X3 − 2 does not split over
Q( 3
√

2). Because X3 − 2 obviously has a root over Q( 3
√

2), this shows that the
field extension Q( 3

√
2) is not normal over Q [3], [4], [5] and [7].
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1. Preliminaries

Let L be a non empty double loop structure and a, b, c be elements of L.
Note that the functor {a, b, c} yields a subset of L. Let i be an integer. Let us
observe that i3 is integer.

Let i be an even integer. Let us observe that i3 is even.
Let i be an odd integer. Let us observe that i3 is odd.
Now we state the propositions:

(1) Let us consider complex numbers r, s. Then (r · s)3 = r3 · s3.
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(2) Let us consider a rational number r. Then r3  0 if and only if r  0.

(3) There exists no rational number r such that r3 = 2. The theorem is
a consequence of (2) and (1).

Note that root3(2) is non rational. Now we state the proposition:

(4) Let us consider finite sets X1, X2. Suppose X1 ⊆ X2 and X1 = X2 .
Then X1 = X2.

Let F be a field. Observe that there exists an element of the carrier of
PolyRing(F ) which is linear and there exists an element of the carrier of PolyRing
(F ) which is non linear and non constant.

Let us consider a field F and an element p of the carrier of PolyRing(F ).
Now we state the propositions:

(5) If deg(p) = 2, then p is reducible iff p has roots.

(6) If deg(p) = 3, then p is reducible iff p has roots.

2. More on Field Extensions

One can check that CF is (FQ)-extending and there exists an element of
RF which is (FQ)-membered and there exists an element of RF which is non
(FQ)-membered and there exists an element of CF which is (RF)-membered and
there exists an element of CF which is non (RF)-membered and there exists
an element of CF which is (FQ)-membered and there exists an element of CF
which is non (FQ)-membered.

Now we state the propositions:

(7) Let us consider a field F , an extension E of F , an E-extending extension
K of F , an element p of the carrier of PolyRing(F ), and an element q of
the carrier of PolyRing(E). If p = q, then Roots(K, p) = Roots(K, q).

(8) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an element a of E, and an element b of K. Suppose b = a. Then
RAdj(F, {a}) = RAdj(F, {b}).

(9) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F-algebraic element a of E, and an F-algebraic element b of
K. Suppose b = a. Then FAdj(F, {a}) = FAdj(F, {b}).

(10) Let us consider a field F , an extension E of F , an E-extending extension
K of F , an F-algebraic element a of E, and an F-algebraic element b of
K. If a = b, then MinPoly(a, F ) = MinPoly(b, F ).

(11) Let us consider a field F , an F -finite extension E of F , and an element
a of E. Then deg(MinPoly(a, F )) | deg(E,F ).
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Let F be a field, E be an extension of F , and T1, T2 be subsets of E. One
can check that FAdj(F, T1 ∪ T2) is (FAdj(F, T1))-extending and (FAdj(F, T2))-
extending.

Let a, b be elements of E. Observe that FAdj(F, {a, b}) is (FAdj(F, {a}))-
extending and (FAdj(F, {b}))-extending. Let a, b, c be elements of E. Let us
observe that FAdj(F, {a, b, c}) is (FAdj(F, {a, b}))-extending, (FAdj(F, {a, c}))-
extending, and (FAdj(F, {b, c}))-extending.

3. The Rational Polynomials X2 − 2, X3 − 1, X2 +X + 1 and X3 − 2

The functors: X2−2, X3−1, X3−2, and X2 + X + 1 yielding elements of
the carrier of PolyRing(FQ) are defined by terms

(Def. 1) 〈−(1FQ + 1FQ), 0FQ , 1FQ〉,
(Def. 2) (0.FQ +· (0,−1)) +· (3, 1),

(Def. 3) (0.FQ +· (0,−2)) +· (3, 1),

(Def. 4) 〈1FQ , 1FQ , 1FQ〉,
respectively. The functors:

√
2 and 3

√
2 yielding non zero elements of RF are

defined by terms

(Def. 5)
√

2,

(Def. 6) root3(2),

respectively. The functors:
√

2, 3
√

2, and
√
−3 yielding non zero elements of CF

are defined by terms

(Def. 7)
√

2,

(Def. 8) root3(2),

(Def. 9) (i) ·
√

3,

respectively. The functor ζ yielding a non zero element of CF is defined by the
term

(Def. 10) −1+(i)·
√
3

2 .

Observe that X2−2 is monic, purely quadratic, and irreducible and X3−2
is monic, non constant, and irreducible and X3−1 is monic, non constant, and
reducible and X2 + X + 1 is monic, quadratic, and irreducible and

√
2 is non

(FQ)-membered and (FQ)-algebraic and
√

2 is non (FQ)-membered and (FQ)-
algebraic and 3

√
2 is non (FQ)-membered and (FQ)-algebraic and 3

√
2 is non (FQ)-

membered and (FQ)-algebraic and ζ is non (RF)-membered and (FQ)-algebraic.
(ζ)2 is non (RF)-membered and (FQ)-algebraic and FAdj(FQ, { 3

√
2}) is (FQ)-

finite and FAdj(FQ, { 3
√

2, ζ}) is (FQ)-finite and RF is (FAdj(FQ, {
√

2}))-extending
and RF is (FAdj(FQ, { 3

√
2}))-extending and CF is (FAdj(FQ, {

√
2}))-extending

and CF is (FAdj(FQ, { 3
√

2}))-extending and CF is (FAdj(FQ, { 3
√

2, ζ}))-extending.
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Now we state the propositions:

(12) ζ = −12 + (i) ·
√
3
2 .

(13) (ζ)2 = −12 −
(i)·
√
3

2 .

(14) (i) ζ2 6= 1, and

(ii) ζ3 = 1, and

(iii) ζ2 = −ζ − 1.

(15) (i) ζ is a complex root of 3, 1, and

(ii) (ζ)2 is a complex root of 3, 1.

(16) 3
√

2
3

= 2.

(17) X3−1 = (X− 1FQ) · (X2 + X + 1).

(18) (i) deg(X2−2) = 2, and

(ii) deg(X3−2) = 3, and

(iii) deg(X3−1) = 3, and

(iv) deg(X2 + X + 1) = 2.

Let us consider an element x of FQ. Now we state the propositions:

(19) eval(X2−2, x) = x2 − 2.

(20) eval(X3−1, x) = x3 − 1.

(21) eval(X2 + X + 1, x) = x2 + x+ 1.

(22) eval(X3−2, x) = x3 − 2.

(23) Let us consider an element r of RF. Then ExtEval(X2−2, r) = r2 − 2.

Let us consider an element z of CF. Now we state the propositions:

(24) ExtEval(X3−1, z) = z3 − 1.

(25) ExtEval(X2 + X + 1, z) = z2 + z + 1.

(26) ExtEval(X3−2, z) = z3 − 2.

(27) Let us consider an element z of the carrier of CF.
Then ExtEval(X3−1, z) = 0CF if and only if z is a complex root of 3, 1.

(28) Discriminant(X2 + X + 1) = −3.

(29) FAdj(FQ, {ζ}) = FAdj(FQ, {
√
−3}).

Proof: {ζ} is a subset of FAdj(FQ, {
√
−3}) by [10, (35)], [9, (12)], [6, (2)].

{
√
−3} is a subset of FAdj(FQ, {ζ}). �
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4. A Splitting Field of X2 − 2

Now we state the propositions:

(30) MinPoly(
√

2,FQ) = X2−2.

(31) deg(FAdj(FQ, {
√

2}),FQ) = 2.

(32) {1,
√

2} is a basis of VecSp(FAdj(FQ, {
√

2}),FQ). The theorem is a con-
sequence of (30).

(33) Roots(X2−2) = ∅.
(34) X2−2 does not split in FQ.

(35) Roots(RF,X2−2) = {
√

2,−
√

2}.
Proof: Roots(RF,X2−2) = 2 by [12, (22)], [13, (13)]. �

(36) X2−2 = (X−
√

2) · (X+
√

2).

(37) FAdj(FQ, {
√

2}) is a splitting field of X2−2.
Proof: Set F = FAdj(FQ, {

√
2}). X2−2 = 1RF · (rpoly(1,

√
2) ∗ rpoly(1,

−
√

2)). {
√

2,−
√

2} ⊆ the carrier of F . X2−2 splits in F . �

(38) 3
√

2 is not an element of FAdj(FQ, {
√

2}). The theorem is a consequence
of (10), (30), and (11).

(39) RF is not a splitting field of X2−2. The theorem is a consequence of (37)
and (38).

(40) CF is not a splitting field of X2−2. The theorem is a consequence of (37)
and (38).

5. A Splitting Field of X3 − 1 and X2 +X + 1

Now we state the propositions:

(41) Roots(X3−1) = {1}.
(42) Roots(X2 + X + 1) = ∅.
(43) MinPoly(ζ,FQ) = X2 + X + 1.

(44) Roots(CF,X3−1) = {1, ζ, (ζ)2}.
(45) Roots(CF,X2 + X + 1) = {ζ, (ζ)2}.
(46) X3−1 does not split in FQ.

(47) X3−1 does not split in RF.
(48) X2 + X + 1 does not split in FQ.

(49) X2 + X + 1 does not split in RF.
(50) X2 + X + 1 = (X− ζ) · (X−(ζ)2).
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(51) X3−1 = (X− 1CF) · (X− ζ) · (X−(ζ)2). The theorem is a consequence of
(50).

(52) FAdj(FQ, {ζ}) is a splitting field of X2 + X + 1.
Proof: Set F = FAdj(FQ, {ζ}). Roots(CF,X2 + X + 1) ⊆ the carrier of
F . �

(53) FAdj(FQ, {ζ}) is a splitting field of X3−1.
Proof: Set F = FAdj(FQ, {ζ}). Roots(CF,X3−1) ⊆ the carrier of F . �

(54) deg(FAdj(FQ, {ζ}),FQ) = 2.

(55) {1, ζ} is a basis of VecSp(FAdj(FQ, {ζ}),FQ). The theorem is a consequ-
ence of (43).

(56)
√

2 is not an element of FAdj(FQ, {ζ}). The theorem is a consequence of
(55).

(57) CF is not a splitting field of X2 + X + 1. The theorem is a consequence
of (52) and (56).

(58) CF is not a splitting field of X3−1. The theorem is a consequence of (53)
and (56).

6. A Splitting Field of X3 − 2

Now we state the propositions:

(59) MinPoly( 3
√

2,FQ) = X3−2.

(60) deg(FAdj(FQ, { 3
√

2}),FQ) = 3.

(61) {1, 3
√

2, 3
√

2
2} is a basis of VecSp(FAdj(FQ, { 3

√
2}),FQ). The theorem is

a consequence of (59).

(62) Roots(X3−2) = ∅. The theorem is a consequence of (6).

(63) X3−2 does not split in FQ. The theorem is a consequence of (6).

(64) Roots(FAdj(FQ, { 3
√

2}),X3−2) = { 3
√

2}.
(65) X3−2 does not split in FAdj(FQ, { 3

√
2}).

(66) Roots(RF,X3−2) = { 3
√

2}.
(67) X3−2 does not split in RF.
(68) Roots(CF,X3−2) = { 3

√
2, 3
√

2 · ζ, 3
√

2 · (ζ)2}.
(69) X3−2 = (X− 3

√
2) · (X− 3

√
2 · ζ) · (X− 3

√
2 · (ζ)2).

Proof: Set F = CF. Set a = 3
√

2 · ζ. Set b = 3
√

2 · (ζ)2. Set c = 3
√

2.
Reconsider p1 = X− c as a polynomial over F . p1 ∗ 〈a · b,−b + −a, 1F 〉 =
X3−2 by [8, (10)]. �

(70) FAdj(FQ, { 3
√

2, ζ}) is a splitting field of X3−2.
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Proof: Set F = FAdj(FQ, { 3
√

2, ζ}). Roots(CF,X3−2) ⊆ the carrier of F .
�

Let us observe that CF is (FAdj(FQ, { 3
√

2}))-extending and FAdj(FQ, { 3
√

2, ζ})
is (FAdj(FQ, { 3

√
2}))-extending and ζ is (FAdj(FQ, { 3

√
2}))-algebraic.

Now we state the propositions:

(71) MinPoly(ζ,FAdj(FQ, { 3
√

2})) = X2 + X + 1. The theorem is a consequ-
ence of (9), (5), and (7).

(72) deg(FAdj(FQ, { 3
√

2, ζ}),FAdj(FQ, { 3
√

2})) = 2. The theorem is a conse-
quence of (71).

(73) {1, ζ} is a basis of VecSp(FAdj(FQ, { 3
√

2, ζ}),FAdj(FQ, { 3
√

2})). The the-
orem is a consequence of (71).

(74) deg(FAdj(FQ, { 3
√

2, ζ}),FQ) = 6. The theorem is a consequence of (59),
(9), and (72).

(75) {1, 3
√

2, 3
√

2
2
, ζ, 3
√

2·ζ, 3
√

2
2 ·ζ} is a basis of VecSp(FAdj(FQ, { 3

√
2, ζ}),FQ).

Proof: Set F = FAdj(FQ, { 3
√

2, ζ}). Set K = FAdj(FQ, { 3
√

2}). K =

FAdj(FQ, { 3
√

2}). Set M = {1, 3
√

2, 3
√

2
2
, ζ, 3
√

2 · ζ, 3
√

2
2 · ζ}. Reconsider

B1 = {1, 3
√

2, 3
√

2
2} as a basis of VecSp(K,FQ). Reconsider B2 = {1, ζ}

as a basis of VecSp(F,K). Base(B1, B2) = M . �

One can verify that CF is (FAdj(FQ, {
√

2}))-extending and CF is (FAdj(FQ,

{
√

2, ζ}))-extending and FAdj(FQ, {
√

2, ζ}) is (FAdj(FQ, {
√

2}))-extending and
FAdj(FQ, { 3

√
2, ζ,
√

2}) is (FAdj(FQ, {
√

2, ζ}))-extending and ζ is (FAdj(FQ,

{
√

2}))-algebraic and 3
√

2 is (FAdj(FQ, {
√

2, ζ}))-algebraic and FAdj(FQ, { 3
√

2,
ζ,
√

2}) is (FAdj(FQ, {
√

2, ζ}))-finite.
Now we state the propositions:

(76) MinPoly(ζ,FAdj(FQ, {
√

2})) = X2 + X + 1. The theorem is a consequ-
ence of (9), (5), and (7).

(77) deg(FAdj(FQ, {
√

2, ζ}),FAdj(FQ, {
√

2})) = 2. The theorem is a consequ-
ence of (76).

(78) deg(FAdj(FQ, {
√

2, ζ}),FQ) = 4. The theorem is a consequence of (30),
(10), and (77).

(79)
√

2 is not an element of FAdj(FQ, { 3
√

2, ζ}). The theorem is a consequence
of (78) and (74).

(80) CF is not a splitting field of X3−2. The theorem is a consequence of (70)
and (79).
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