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Summary. In this article, Feed-forward Neural Network is formalized in
the Mizar system [1], [2]. First, the multilayer perceptron [6], [7], [8] is formalized
using functional sequences. Next, we show that a set of functions generated by
these neural networks satisfies equicontinuousness and equiboundedness property
[10], [5]. At last, we formalized the compactness of the function set of these neural
networks by using the Ascoli-Arzela’s theorem according to [4] and [3].
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1. Preliminaries

From now on R1, R2 denote real linear spaces.
Now we state the propositions:

(1) Suppose the RLS structure of R1 = the RLS structure of R2. Then
the carrier of R1 = the carrier of R2.

(2) Suppose the RLS structure of R1 = the RLS structure ofR2. Then 0R1 =
0R2 .

(3) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider elements p, q of R1, and elements f , g of R2. If p = f and q = g,
then p+ q = f + g.
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(4) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a real number r, an element q of R1, and an element g of R2. If
q = g, then r · q = r · g.

(5) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider an element q of R1, and an element g of R2. If q = g, then
−q = −g.

(6) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider elements p, q of R1, and elements f , g of R2. If p = f and q = g,
then p− q = f − g.

(7) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a set X, and a natural number n. Then X is a linear combination
of R2 if and only if X is a linear combination of R1.

(8) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a linear combination L5 of R1, and a linear combination L3 of
R2. Suppose L3 = L5. Then the support of L3 = the support of L5.

Let us consider a set F . Now we state the propositions:

(9) Suppose the RLS structure of R1 = the RLS structure of R2. Then F is
a subset of R1 if and only if F is a subset of R2.

(10) Suppose the RLS structure of R1 = the RLS structure of R2. Then F is
a finite sequence of elements of R1 if and only if F is a finite sequence of
elements of R2.

(11) Suppose the RLS structure of R1 = the RLS structure of R2. Then F is
a function from R1 into R if and only if F is a function from R2 into R.

(12) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a finite sequence F1 of elements of R1, a function f1 from R1 into
R, a finite sequence F3 of elements of R2, and a function f2 from R2 into
R. If f1 = f2 and F1 = F3, then f1 · F1 = f2 · F3.

(13) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a finite sequence F2 of elements of R1, and a finite sequence F1
of elements of R2. If F2 = F1, then

∑
F2 =

∑
F1.

Proof: Set T = R1. Set V = R2. Consider f being a sequence of the car-
rier of T such that

∑
F = f(lenF ) and f(0) = 0T and for every natural

number j and for every element v of T such that j < lenF and v = F (j+1)
holds f(j+ 1) = f(j) +v. Consider f2 being a sequence of the carrier of V
such that

∑
F3 = f2(lenF3) and f2(0) = 0V and for every natural number

j and for every element v of V such that j < lenF3 and v = F3(j + 1)
holds f2(j+1) = f2(j)+v. Define S[natural number] ≡ if $1 ¬ lenF , then
f($1) = f2($1). For every natural number i such that S[i] holds S[i + 1].
For every natural number n, S[n]. �
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(14) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a linear combination L3 of R2, and a linear combination L4 of
R1. If L3 = L4, then

∑
L3 =

∑
L4. The theorem is a consequence of (12)

and (13).

(15) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a subset A1 of R2, and a subset A2 of R1. Suppose A1 = A2. Let
us consider an object X. Then X is a linear combination of A1 if and only
if X is a linear combination of A2. The theorem is a consequence of (7).

Let us consider a subset A1 of R2 and a subset A2 of R1. Now we state the
propositions:

(16) Suppose the RLS structure of R1 = the RLS structure of R2. Then if
A1 = A2, then ΩLin(A1) = ΩLin(A2). The theorem is a consequence of (7)
and (14).

(17) Suppose the RLS structure of R1 = the RLS structure of R2. Then if
A1 = A2, then A1 is linearly independent iff A2 is linearly independent.
The theorem is a consequence of (7) and (14).

(18) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider an object X. Then X is a subspace of R2 if and only if X is
a subspace of R1.

(19) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a linear combination L of R2, and a linear combination S of R1.
If L = S, then

∑
L =

∑
S. The theorem is a consequence of (12) and

(13).

(20) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a set X. Then X is a basis of R1 if and only if X is a basis of R2.
The theorem is a consequence of (17) and (16).

(21) Let us consider real linear spaces R1, R2. Suppose the RLS structure of
R1 = the RLS structure of R2 and R1 is finite dimensional. Then

(i) R2 is finite dimensional, and

(ii) dim(R2) = dim(R1).

The theorem is a consequence of (20).

Let us consider a real normed space R3. Now we state the propositions:

(22) The normed structure of R3 is a strict real normed space.

(23) There exists a normed linear topological space T such that the normed
structure of R3 = the normed structure of T .
Proof: Reconsider R3 = the normed structure of RNS0 as a strict re-
al normed space. Set L2 = LinearTopSpaceNormR3. Reconsider N =
the norm of R3 as a function from the carrier of L2 into R. Set W =
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〈〈the carrier of L2, the zero of L2, the addition of L2, the external multiplic-
ation of L2, the topology of L2, N〉〉. W is topological space-like, right com-
plementable, Abelian, add-associative, right zeroed, vector distributive,
scalar distributive, scalar associative, scalar unital, add-continuous, and
mult-continuous. �

(24) Suppose R3 is finite dimensional. Then there exists a normed linear
topological space T such that

(i) the normed structure of R3 = the normed structure of T , and

(ii) T is finite dimensional.

The theorem is a consequence of (23) and (21).

(25) Let us consider a normed linear topological space T , and a real normed
space R3. Suppose T is finite dimensional and R3 = the normed structure
of T . Then

(i) R3 is finite dimensional, and

(ii) dim(R3) = dim(T ).

The theorem is a consequence of (21).

2. The Ascoli-Arzela Theorem on Finite Dimensional Normed
Linear Spaces

Let us consider a non empty metric space M , a non empty, compact topolo-
gical space S, a normed linear topological space T , a subset G of (the carrier of
T )(the carrier of M), and a non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T ).

Now we state the propositions:

(26) Suppose S = Mtop and T is complete and finite dimensional and dim(T ) 6=
0. Then suppose G = H. Then MetricSpaceNorm(the R-norm space of
continuous functions of S and T )�H is totally bounded if and only if G is
equibounded and equicontinuous.
Proof: For every point x of S and for every non empty subset H1 of
MetricSpaceNormT such that H1 = {f(x), where f is a function from S

into T : f ∈ H} holds MetricSpaceNormT �H1 is compact by [9, (1)], (25).
�

(27) Suppose S = Mtop and T is complete and finite dimensional and dim(T ) 6=
0. Then if G = H, then H is sequentially compact iff G is equibounded
and equicontinuous. The theorem is a consequence of (26).



Compactness of neural networks 17

(28) Let us consider a non empty metric space M , a non empty, compact
topological space S, and a normed linear topological space T . Suppose
S = Mtop and T is complete and finite dimensional and dim(T ) 6= 0. Let
us consider a subset G of (the carrier of T )α, and a non empty subset F
of the R-norm space of continuous functions of S and T . Suppose G = F .
Then F is compact if and only if G is equibounded and equicontinuous,
where α is the carrier of M . The theorem is a consequence of (27).

(29) Let us consider a non empty real normed space R3, a normed linear
topological space T , a non empty subset X of R3, a non empty, compact,
strict topological space S, and a non empty subset G of the R-norm space
of continuous functions of S and T .

Suppose S is a subspace of TopSpaceNormR3 and the carrier of S = X

and X is compact and T is complete and finite dimensional and dim(T ) 6=
0 and there exist real numbers K, D such that 0 < K and 0 < D and for
every function F from X into T such that F ∈ G holds for every points x,
y of R3 such that x, y ∈ X holds ‖F/x − F/y‖ ¬ D · ‖x− y‖ and for every
point x of R3 such that x ∈ X holds ‖F/x‖ ¬ K. Then G is compact.
Proof: Reconsider Y = X as a non empty subset of MetricSpaceNormR3.
Reconsider M = MetricSpaceNormR3�Y as a non empty metric space.
For every object z, z ∈ the topology of S iff z ∈ the open set family of
M . For every object z such that z ∈ the continuous functions of S and
T holds z ∈ (the carrier of T )α, where α is the carrier of M . Reconsider
H = G as a subset of (the carrier of T )(the carrier of M). G is compact iff H

is equibounded and equicontinuous.
Consider K, D being real numbers such that 0 < K and 0 < D and for

every function F from X into T such that F ∈ G holds for every points
x, y of R3 such that x, y ∈ X holds ‖F/x − F/y‖ ¬ D · ‖x − y‖ and for
every point x of R3 such that x ∈ X holds ‖F/x‖ ¬ K. For every function
f from the carrier of M into the carrier of T such that f ∈ H for every
element x of M , ‖f(x)‖ ¬ K. For every real number e such that 0 < e

there exists a real number d such that 0 < d and for every function f from
the carrier of M into the carrier of T such that f ∈ H for every points x1,
x2 of M such that ρ(x1, x2) < d holds ‖f(x1)− f(x2)‖ < e. �
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3. High-Order and Multilayer Perceptron

Let n be a natural number, k be a finite sequence of elements of N, and N

be a finite sequence. We say that N is a multilayer perceptron with k and n if
and only if

(Def. 1) lenN = n and lenN+1 = len k and for every natural number i such that
1 ¬ i < len k holds N(i) is a function from 〈Ek(i), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉.

We say that N is a multilayer perceptron-like if and only if

(Def. 2) there exists a finite sequence k of elements of N such that lenN+1 = len k
and for every natural number i such that 1 ¬ i < len k holds N(i) is
a function from 〈Ek(i), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉.

Observe that there exists a finite sequence which is a multilayer perceptron-
like. A multilayer perceptron is multilayer perceptron-like finite sequence. Now
we state the proposition:

(30) Let us consider a multilayer perceptron N . Then there exists a finite
sequence k of elements of N such that

(i) lenN + 1 = len k, and

(ii) for every natural number i such that 1 ¬ i < len k holds N(i) is
a function from 〈Ek(i), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉.

Let n be a natural number, k be a finite sequence of elements of N, and
N be a finite sequence. Assume N is a multilayer perceptron with k and n.
Assume lenN 6= 0. The functor OutputFunc(N, k, n) yielding a function from
〈Ek(1), ‖ · ‖〉 into 〈Ek(n+1), ‖ · ‖〉 is defined by

(Def. 3) there exists a finite sequence p such that len p = lenN and p(1) = N(1)
and for every natural number i such that 1 ¬ i < lenN there exists
a function N2 from 〈Ek(i+1), ‖ · ‖〉 into 〈Ek(i+2), ‖ · ‖〉 and there exists
a function p2 from 〈Ek(1), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉 such that N2 = N(i+ 1)
and p2 = p(i) and p(i+ 1) = N2 · p2 and it = p(lenN).

Now we state the proposition:

(31) Let us consider a natural number n, a finite sequence k of elements
of N, and a non empty finite sequence N . Suppose n 6= 0 and N is a
multilayer perceptron with k and n+1. Then there exists a finite sequence
k1 of elements of N and there exists a non empty finite sequence N1 and
there exists a function N2 from 〈Ek(n+1), ‖ · ‖〉 into 〈Ek(n+2), ‖ · ‖〉 such
that N1 = N�n and k1 = k�(n + 1) and N2 = N(n + 1) and N1 is
a multilayer perceptron with k1 and n and OutputFunc(N, k, n + 1) =
N2 · (OutputFunc(N1, k1, n)).
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Proof: Reconsider N1 = N�n as a non empty finite sequence. Reconsider
k1 = k�(n + 1) as a finite sequence of elements of N. For every natural
number i such that 1 ¬ i < len k1 holdsN1(i) is a function from 〈Ek1(i), ‖·‖〉
into 〈Ek1(i+1), ‖ · ‖〉. Consider p being a finite sequence such that len p =
lenN and p(1) = N(1) and for every natural number i such that 1 ¬
i < lenN there exists a function N2 from 〈Ek(i+1), ‖ · ‖〉 into 〈Ek(i+2), ‖ ·
‖〉 and there exists a function p2 from 〈Ek(1), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉
such that N2 = N(i + 1) and p2 = p(i) and p(i + 1) = N2 · p2 and
OutputFunc(N, k, n + 1) = p(lenN). Consider N2 being a function from
〈Ek(n+1), ‖·‖〉 into 〈Ek(n+2), ‖·‖〉, p2 being a function from 〈Ek(1), ‖·‖〉 into
〈Ek(n+1), ‖·‖〉 such that N2 = N(n+1) and p2 = p(n) and p(n+1) = N2·p2.
�

Let n be a natural number and k be a finite sequence of elements of N. The
functor Neurons(n, k) yielding a subset of

(the carrier of 〈Ek(n+1), ‖ · ‖〉)(the carrier of 〈Ek(1),‖·‖〉) is defined by the term

(Def. 4) {F , where F is a function from 〈Ek(1), ‖ · ‖〉 into 〈Ek(n+1), ‖ · ‖〉 : there
exists a finite sequence N such that N is a multilayer perceptron with k

and n and F = OutputFunc(N, k, n)}.

Now we state the propositions:

(32) Let us consider a natural number n, a finite sequence k of elements of N,
a non empty, compact, strict topological space S, a non empty subspaceM
of MetricSpaceNorm〈Ek(1), ‖·‖〉, a non empty subset X of 〈Ek(1), ‖·‖〉, and
a normed linear topological space T . Suppose S = Mtop and the carrier
of M = X and X is compact and T is complete and finite dimensional
and dim(T ) 6= 0 and 〈Ek(n+1), ‖ · ‖〉 = the normed structure of T .

Let us consider a subset G of (the carrier of T )α, and a non empty
subset F of the R-norm space of continuous functions of S and T . Sup-
pose G = F and G ⊆ {f�X, where f is a function from 〈Ek(1), ‖ · ‖〉 into
〈Ek(n+1), ‖ · ‖〉 : f ∈ Neurons(n, k)}. Then F is compact if and only if G is
equibounded and equicontinuous, where α is the carrier of M .

(33) Let us consider a natural number n, a finite sequence k of elements of
N, a non empty, compact, strict topological space S, a non empty subset
X of 〈Ek(1), ‖ · ‖〉, and a normed linear topological space T . Suppose S is
a subspace of TopSpaceNorm〈Ek(1), ‖ · ‖〉 and the carrier of S = X and X
is compact and T is complete and finite dimensional and dim(T ) 6= 0 and
〈Ek(n+1), ‖ · ‖〉 = the normed structure of T . Let us consider a non empty
subset G of the R-norm space of continuous functions of S and T .

Suppose G ⊆ {f�X, where f is a function from 〈Ek(1), ‖ · ‖〉 into
〈Ek(n+1), ‖ · ‖〉 : f ∈ Neurons(n, k)} and there exist real numbers K, D
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such that 0 < K and 0 < D and for every function F from X into T such
that F ∈ G holds for every points x, y of 〈Ek(1), ‖ · ‖〉 such that x, y ∈ X
holds ‖F/x−F/y‖ ¬ D · ‖x− y‖ and for every point x of 〈Ek(1), ‖ · ‖〉 such
that x ∈ X holds ‖F/x‖ ¬ K. Then G is compact.

Let X, Y be real normed spaces, F be a function from X into Y, and D, K
be real numbers. We say that F is a layer function of D and K if and only if

(Def. 5) for every points x, y of X, ‖F (x) − F (y)‖ ¬ D · ‖x − y‖ and for every
point x of X, ‖F (x)‖ ¬ K.

Let n be a natural number, k be a finite sequence of elements of N, and N

be a finite sequence. We say that N is a layer sequence of D, K, k and n if and
only if

(Def. 6) lenN = n and N is a multilayer perceptron with k and n and for every
natural number i such that 1 ¬ i < len k there exists a function N3 from
〈Ek(i), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉 such that N(i) = N3 and N3 is a layer
function of D and K.

Now we state the propositions:

(34) Let us consider real numbers D, K. Suppose 0 ¬ D and 0 ¬ K. Let
us consider a natural number n, a finite sequence k of elements of N, and
a non empty finite sequence N . Suppose N is a layer sequence of D, K, k
and n. Then OutputFunc(N, k, n) is a layer function of Dn and K.
Proof: Define P[natural number] ≡ for every finite sequence k of elements
of N for every non empty finite sequence N such that lenN = $1 and N is
a layer sequence of D, K, k and $1 holds OutputFunc(N, k, $1) is a layer
function of D$1 and K. For every natural number n such that P[n] holds
P[n+ 1]. For every natural number n, P[n]. �

(35) Let us consider a natural number n, a finite sequence k of elements of
N, a non empty, compact, strict topological space S, a non empty subset
X of 〈Ek(1), ‖ · ‖〉, and a normed linear topological space T . Suppose S is
a subspace of TopSpaceNorm〈Ek(1), ‖ · ‖〉 and the carrier of S = X and X
is compact and T is complete and finite dimensional and dim(T ) 6= 0 and
〈Ek(n+1), ‖ · ‖〉 = the normed structure of T .

Let us consider a non empty subset G of the R-norm space of con-
tinuous functions of S and T , and real numbers D, K. Suppose 0 < D

and 0 < K and G ⊆ {F �X, where F is a function from 〈Ek(1), ‖ · ‖〉 into
〈Ek(n+1), ‖ · ‖〉 : there exists a non empty finite sequence N such that
N is a layer sequence of D, K, k and n and F = OutputFunc(N, k, n)}.
Then G is compact.
Proof: Set K1 = K + 1. Set D1 = Dn + 1. For every function F from X

into T such that F ∈ G holds for every points x, y of 〈Ek(1), ‖ · ‖〉 such



Compactness of neural networks 21

that x, y ∈ X holds ‖F/x − F/y‖ ¬ D1 · ‖x − y‖ and for every point x of
〈Ek(1), ‖ · ‖〉 such that x ∈ X holds ‖F/x‖ ¬ K1. �
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[10] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted April 30, 2022

http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.2478/forma-2021-0009

	=0pt Compactness of Neural Networks  By Keiichi Miyajima and Hiroshi Yamazaki  

