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Summary. In this article, Feed-forward Neural Network is formalized in
the Mizar system [I], [2]. First, the multilayer perceptron [6], [7], [§] is formalized
using functional sequences. Next, we show that a set of functions generated by
these neural networks satisfies equicontinuousness and equiboundedness property
[10], [5]. At last, we formalized the compactness of the function set of these neural
networks by using the Ascoli-Arzela’s theorem according to [4] and [3].
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1. PRELIMINARIES

From now on R;, Ry denote real linear spaces.
Now we state the propositions:
(1) Suppose the RLS structure of Ry = the RLS structure of Ry. Then
the carrier of Ry = the carrier of Rs.
(2) Suppose the RLS structure of R; = the RLS structure of Ry. Then Og, =
OR,-
(3) Suppose the RLS structure of Ry = the RLS structure of Rs. Let us
consider elements p, ¢ of Ry, and elements f, g of Rs. If p= f and ¢ = g,
thenp+q=f+g.
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(4) Suppose the RLS structure of Ry = the RLS structure of Ry. Let us
consider a real number r, an element ¢ of Ry, and an element g of Ro. If
q=g,thenr.-gq=1r-g.

(5) Suppose the RLS structure of Ry = the RLS structure of Rs. Let us
consider an element ¢ of R;, and an element g of Rs. If ¢ = g, then
—q=-g

(6) Suppose the RLS structure of R; = the RLS structure of Ry. Let us
consider elements p, ¢ of Ry, and elements f, g of Re. If p= f and ¢ = g,
thenp—g=f—g.

(7) Suppose the RLS structure of Ry = the RLS structure of Rs. Let us
consider a set X, and a natural number n. Then X is a linear combination
of Ry if and only if X is a linear combination of R;.

(8) Suppose the RLS structure of Ry = the RLS structure of Rs. Let us
consider a linear combination Ls of R, and a linear combination L3 of
Ry. Suppose L3 = Ls. Then the support of Ly = the support of Ls.

Let us consider a set F. Now we state the propositions:

(9) Suppose the RLS structure of R; = the RLS structure of Re. Then F' is
a subset of R; if and only if F' is a subset of Ra.

(10) Suppose the RLS structure of R; = the RLS structure of Ry. Then F' is
a finite sequence of elements of R; if and only if F' is a finite sequence of
elements of Rs.

(11) Suppose the RLS structure of R; = the RLS structure of Ry. Then F' is
a function from R; into R if and only if F' is a function from Ry into R.

(12) Suppose the RLS structure of Ry = the RLS structure of Ry. Let us
consider a finite sequence Fj of elements of Ry, a function f; from R; into
R, a finite sequence Fj of elements of Ro, and a function fo from Rs into
R. If f1 = f2 and F1 = F3, then f1 . F1 = f2 . Fg.

(13) Suppose the RLS structure of Ry = the RLS structure of Ry. Let us
consider a finite sequence F5 of elements of Ri, and a finite sequence Fj
of elements of Ro. If Fo = F, then > Fy, =" F}.
PROOF: Set T'= R;. Set V = Ry. Consider f being a sequence of the car-
rier of T such that Y F' = f(len F') and f(0) = Or and for every natural
number j and for every element v of T such that j < len F'and v = F/(j+1)
holds f(j+1) = f(j) +v. Consider fs being a sequence of the carrier of V'
such that Y F3 = fo(len F3) and f2(0) = Oy and for every natural number
j and for every element v of V' such that j < len F3 and v = F3(j + 1)
holds fa(j+1) = fa(j) +v. Define S[natural number| = if §; < len F', then
f($1) = f2($1). For every natural number i such that S[i] holds S[i + 1].
For every natural number n, S[n]. O
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(14) Suppose the RLS structure of Ry = the RLS structure of Ry. Let us
consider a linear combination L3 of Ry, and a linear combination L4 of
Ry. If Ly = Ly, then >~ Ly = Y Ly. The theorem is a consequence of (12)
and (13).

(15) Suppose the RLS structure of Ry = the RLS structure of Ry. Let us
consider a subset A; of Ry, and a subset As of R;. Suppose A1 = As. Let
us consider an object X. Then X is a linear combination of A; if and only
if X is a linear combination of As. The theorem is a consequence of (7).

Let us consider a subset A; of Ry and a subset Ay of Ry. Now we state the
propositions:

(16) Suppose the RLS structure of R; = the RLS structure of Ry. Then if
Ay = A, then Qpi,4,) = QLin(a,)- The theorem is a consequence of (7)
and (14).

(17) Suppose the RLS structure of R; = the RLS structure of Ry. Then if
Ay = As, then A; is linearly independent iff Ay is linearly independent.
The theorem is a consequence of (7) and (14).

(18) Suppose the RLS structure of Ry = the RLS structure of Ry. Let us
consider an object X. Then X is a subspace of Ry if and only if X is
a subspace of Rj.

(19) Suppose the RLS structure of Ry = the RLS structure of Ry. Let us
consider a linear combination L of Ry, and a linear combination S of Rj.
If L =S, then Y},L = > S. The theorem is a consequence of (12) and
(13).

(20) Suppose the RLS structure of Ry = the RLS structure of Ry. Let us
consider a set X. Then X is a basis of R; if and only if X is a basis of Ra.
The theorem is a consequence of (17) and (16).

(21) Let us consider real linear spaces Ry, Ry. Suppose the RLS structure of
R1 = the RLS structure of Ry and R; is finite dimensional. Then

(i) Rq is finite dimensional, and
(ii) dim(R2) = dim(Ry).
The theorem is a consequence of (20).
Let us consider a real normed space R3. Now we state the propositions:

(22) The normed structure of R3 is a strict real normed space.

(23) There exists a normed linear topological space T' such that the normed
structure of R3 = the normed structure of T
ProOOF: Reconsider R3 = the normed structure of RN S0 as a strict re-
al normed space. Set Lo = LinearTopSpaceNorm R3. Reconsider N =
the norm of Rz as a function from the carrier of Ly into R. Set W =
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(the carrier of Ly, the zero of Lg, the addition of Lg, the external multiplic-
ation of Lo, the topology of Ly, N). W is topological space-like, right com-
plementable, Abelian, add-associative, right zeroed, vector distributive,
scalar distributive, scalar associative, scalar unital, add-continuous, and
mult-continuous. [

(24) Suppose Rs is finite dimensional. Then there exists a normed linear
topological space T' such that

(i) the normed structure of Rg = the normed structure of 7', and
(ii) T is finite dimensional.

The theorem is a consequence of (23) and (21).

(25) Let us consider a normed linear topological space T', and a real normed
space R3. Suppose T is finite dimensional and Rs = the normed structure
of T. Then

(i) Rs is finite dimensional, and
(i) dim(Rs3) = dim(7T).

The theorem is a consequence of (21).

2. THE ASCOLI-ARZELA THEOREM ON FINITE DIMENSIONAL NORMED
LINEAR SPACES

Let us consider a non empty metric space M, a non empty, compact topolo-
gical space S, a normed linear topological space T', a subset G of (the carrier of
T) (the carrier of M) a1 a4 non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T').

Now we state the propositions:

(26) Suppose S = M;p and T is complete and finite dimensional and dim(7") #

0. Then suppose G = H. Then MetricSpaceNorm(the R-norm space of
continuous functions of S and T)[H is totally bounded if and only if G is
equibounded and equicontinuous.
PRrOOF: For every point x of S and for every non empty subset Hp of
MetricSpaceNorm T such that Hy = {f(x), where f is a function from S
into T : f € H} holds MetricSpaceNorm T'| H; is compact by [9} (1)], (25).
O

(27) Suppose S = M;p and T is complete and finite dimensional and dim(7") #
0. Then if G = H, then H is sequentially compact iff G is equibounded
and equicontinuous. The theorem is a consequence of (26).
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(28) Let us consider a non empty metric space M, a non empty, compact
topological space S, and a normed linear topological space T. Suppose
S = Miop and T is complete and finite dimensional and dim(T") # 0. Let
us consider a subset G of (the carrier of T)®, and a non empty subset F
of the R-norm space of continuous functions of S and 7T'. Suppose G = F'.
Then F is compact if and only if G is equibounded and equicontinuous,
where « is the carrier of M. The theorem is a consequence of (27).

(29) Let us consider a non empty real normed space Rs, a normed linear
topological space T', a non empty subset X of R3, a non empty, compact,
strict topological space S, and a non empty subset G of the R-norm space
of continuous functions of S and T'.

Suppose S is a subspace of TopSpaceNorm R3 and the carrier of S = X
and X is compact and 7T is complete and finite dimensional and dim(7") #
0 and there exist real numbers K, D such that 0 < K and 0 < D and for
every function F' from X into 7" such that F' € G holds for every points x,
y of R3 such that z, y € X holds ||[F), — Fy,|| < D - ||z — y|| and for every
point z of R3 such that x € X holds [|F/,|| < K. Then G is compact.
PROOF: Reconsider Y = X as a non empty subset of MetricSpaceNorm Rs.
Reconsider M = MetricSpaceNorm R3[Y as a non empty metric space.
For every object z, z € the topology of S iff z € the open set family of
M. For every object z such that z € the continuous functions of S and
T holds z € (the carrier of T')%, where « is the carrier of M. Reconsider
H = G as a subset of (the carrier of T)(the carrier of M) "Gl ig compact iff H
is equibounded and equicontinuous.

Consider K, D being real numbers such that 0 < K and 0 < D and for
every function F' from X into T such that F' € G holds for every points
z, y of Rz such that z, y € X holds ||[F), — F,|| < D - |lz — y|| and for
every point x of R3 such that z € X holds ||F,|| < K. For every function
f from the carrier of M into the carrier of T such that f € H for every
element x of M, ||f(z)]| < K. For every real number e such that 0 < e
there exists a real number d such that 0 < d and for every function f from
the carrier of M into the carrier of T' such that f € H for every points z1,
x9 of M such that p(x1,z2) < d holds ||f(x1) — f(z2)| <e. O
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3. HIGH-ORDER AND MULTILAYER PERCEPTRON

Let n be a natural number, k& be a finite sequence of elements of N, and N
be a finite sequence. We say that N is a multilayer perceptron with k& and n if
and only if

(Def. 1) len N = n and len N+1 = len k and for every natural number 7 such that
1 <i < lenk holds N (i) is a function from (£F@ |- |) into (EFEHD |- )).
We say that N is a multilayer perceptron-like if and only if

(Def. 2) there exists a finite sequence k of elements of N such that len N+1 = len k
and for every natural number i such that 1 < i < lenk holds N (i) is
a function from (EF® || - ||} into (EFE+D || |).
Observe that there exists a finite sequence which is a multilayer perceptron-
like. A multilayer perceptron is multilayer perceptron-like finite sequence. Now
we state the proposition:

(30) Let us consider a multilayer perceptron N. Then there exists a finite
sequence k of elements of N such that

(i) len N +1 =lenk, and

(ii) for every natural number 4 such that 1 < ¢ < lenk holds N(i) is
a function from (E¥0), || - |[) into (EXCTD |- ).

Let n be a natural number, £ be a finite sequence of elements of N, and
N be a finite sequence. Assume N is a multilayer perceptron with k& and n.
Assume len N # 0. The functor OutputFunc(V, k,n) yielding a function from
(EFM |-y into (EFHD || .||} is defined by

(Def. 3) there exists a finite sequence p such that lenp = len N and p(1) = N(1)
and for every natural number ¢ such that 1 < 7 < len N there exists
a function Ny from (EFCHD || ||} into (£FG+2) || - ||) and there exists
a function py from (EFMW |- ||) into (EFEHD |- ||) such that Ny = N(i+1)
and py = p(i) and p(i + 1) = Ny - py and it = p(len N).
Now we state the proposition:

(31) Let us consider a natural number n, a finite sequence k of elements
of N, and a non empty finite sequence N. Suppose n # 0 and N is a
multilayer perceptron with k and n+ 1. Then there exists a finite sequence
k1 of elements of N and there exists a non empty finite sequence N; and
there exists a function Ny from (£ +D || .||} into (¥(+2) || - ||) such
that Ny = N[n and k1 = kf(n + 1) and No = N(n + 1) and N; is
a multilayer perceptron with k; and n and OutputFunc(N,k,n + 1) =
Ny - (OutputFunc(Ny, k1, n)).



COMPACTNESS OF NEURAL NETWORKS

PROOF: Reconsider N1 = N [n as a non empty finite sequence. Reconsider
k1 = k[(n + 1) as a finite sequence of elements of N. For every natural

number i such that 1 < i < len k1 holds Ny (4) is a function from (EF1@_||-||)
into (£F1G+D || |). Consider p being a finite sequence such that lenp =
len N and p(1) = N(1) and for every natural number i such that 1 <
i < len N there exists a function Ny from (EFCG+D || .||} into (EFG+2) || .
) and there exists a function py from (EFM || - ||) into (EFGHD || - ||)

such that Noa = N(i + 1) and po = p(i) and p(i +1) = Nz - p2 and
OutputFunc(N, k,n 4+ 1) = p(len N). Consider Ny being a function from

(EREFD |1L||) into (EXMF2) |||, p2 being a function from (¥ |||} into
<gkn+1,u |} such that No = N(n+1) and py = ()andp(n+1) Na-pa.
O

Let n be a natural number and k be a finite sequence of elements of N. The
functor Neurons(n, k) yielding a subset of

(the carrier of (EF(+1), || - ||y)(the carrier of (X1 i defined by the term

(Def. 4) {F, where F is a function from (£ || - ||) into (D || - ||} : there
exists a finite sequence N such that N is a multilayer perceptron with k
and n and F' = OutputFunc(N, k,n)}.

Now we state the propositions:

(32) Let us consider a natural number n, a finite sequence k of elements of N,
a non empty, compact, strict topological space .S, a non empty subspace M
of MetricSpaceNorm (£ || - ||}, a non empty subset X of (£ _||-||), and
a normed linear topological space T'. Suppose S = M., and the carrier
of M = X and X is compact and 7T is complete and finite dimensional
and dim(7T) # 0 and (¥ || - ||) = the normed structure of 7.

Let us consider a subset G of (the carrier of 7)%, and a non empty
subset F' of the R-norm space of continuous functions of S and T'. Sup-
pose G = F and G C {f] X, where f is a function from (£¥( || - ||} into
(EFMFD |||} - f € Neurons(n, k)}. Then F is compact if and only if G is
equibounded and equicontinuous, where « is the carrier of M.

(33) Let us consider a natural number n, a finite sequence k of elements of
N, a non empty7 compact, strict topological space S, a non empty subset
X of (¥ || -|), and a normed linear topological space T'. Suppose S is
a subspace of TopSpaceNorm(£¥(M) || ||} and the carrier of S = X and X
is compact and 7" is complete and finite dimensional and dim(7") # 0 and
(EFM+D) || .||y = the normed structure of T. Let us consider a non empty
subset G of the R-norm space of continuous functions of S and 7.

Suppose G C {f|X, where f is a function from (¥ || - |) into

(R || .||y : f € Neurons(n, k)} and there exist real numbers K, D
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such that 0 < K and 0 < D and for every function F' from X into T such
that F' € G holds for every points z, y of (¥ || - ||) such that z, y € X
holds [|Fy, — Fy,l| < D - ||z — y| and for every point x of (EFW |- ) such
that z € X holds ||F/,|| < K. Then G is compact.

Let X, Y be real normed spaces, F' be a function from X into Y, and D, K
be real numbers. We say that F' is a layer function of D and K if and only if

(Def. 5) for every points x, y of X, ||F(z) — F(y)|| < D - ||z — y|| and for every
point z of X, ||F(z)] < K.

Let n be a natural number, k& be a finite sequence of elements of N, and NV
be a finite sequence. We say that IV is a layer sequence of D, K, k and n if and
only if

(Def. 6) len N =n and N is a multilayer perceptron with k& and n and for every
natural number ¢ such that 1 < ¢ < len k there exists a function N3 from
(EF@ -]} into (EFEHD || . ||) such that N(i) = N3 and Nj is a layer
function of D and K.
Now we state the propositions:

(34) Let us consider real numbers D, K. Suppose 0 < D and 0 < K. Let
us consider a natural number n, a finite sequence k of elements of N, and
a non empty finite sequence N. Suppose N is a layer sequence of D, K, k
and n. Then OutputFunc(N, k,n) is a layer function of D™ and K.
PROOF: Define P[natural number| = for every finite sequence k of elements
of N for every non empty finite sequence N such that len N = $; and N is
a layer sequence of D, K, k and $; holds OutputFunc(N, k, $;) is a layer
function of D% and K. For every natural number n such that P[n] holds
P[n + 1]. For every natural number n, P[n]. O

(35) Let us consider a natural number n, a finite sequence k of elements of
N, a non empty, compact, strict topological space S, a non empty subset
X of (€¥M || - |), and a normed linear topological space T'. Suppose S is
a subspace of TopSpaceNorm(E*M) || - ||) and the carrier of S = X and X
is compact and 7T is complete and finite dimensional and dim(7") # 0 and
(EFMFD) |||y = the normed structure of 7.

Let us consider a non empty subset G of the R-norm space of con-
tinuous functions of S and 7', and real numbers D, K. Suppose 0 < D
and 0 < K and G C {F|X, where F is a function from (£¥1) || - ||} into
(EFMHAD ||y : there exists a non empty finite sequence N such that
N is a layer sequence of D, K, k and n and F' = OutputFunc(N, k,n)}.
Then G is compact.

PRrROOF: Set K1 = K + 1. Set D1 = D™ + 1. For every function F' from X
into 7 such that F € G holds for every points z, y of (£¥(1) || - ||) such
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that =, y € X holds ||[F), — F),|| < D1 - [|x — y|| and for every point z of
(EFW || - ||) such that 2 € X holds [ F)zll < K. O
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