

Compactness of Neural Networks¹

Keiichi Miyajima Ibaraki University Faculty of Engineering Hitachi, Ibaraki, Japan Hiroshi Yamazaki Nagano Prefectural Institute of Technology Nagano, Japan

Summary. In this article, Feed-forward Neural Network is formalized in the Mizar system [1], [2]. First, the multilayer perceptron [6], [7], [8] is formalized using functional sequences. Next, we show that a set of functions generated by these neural networks satisfies equicontinuousness and equiboundedness property [10], [5]. At last, we formalized the compactness of the function set of these neural networks by using the Ascoli-Arzela's theorem according to [4] and [3].

MSC: 46B50 68T05 68V20

Keywords: neural network; compactness; Ascoli-Arzela's theorem; equicontinuousness of continuous functions; equiboundedness of continuous functions

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{NEURONS1}, \ \mathrm{version:} \ \mathtt{8.1.12} \ \mathtt{5.71.1431}$

1. Preliminaries

From now on R_1 , R_2 denote real linear spaces. Now we state the propositions:

- (1) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Then the carrier of R_1 = the carrier of R_2 .
- (2) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Then $0_{R_1} = 0_{R_2}$.
- (3) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider elements p, q of R_1 , and elements f, g of R_2 . If p = f and q = g, then p + q = f + g.

¹This work was supported by JSPS KAKENHI Grant Number JP17K00182.

- (4) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a real number r, an element q of R_1 , and an element g of R_2 . If q = g, then $r \cdot q = r \cdot g$.
- (5) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider an element q of R_1 , and an element g of R_2 . If q = g, then -q = -g.
- (6) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider elements p, q of R_1 , and elements f, g of R_2 . If p = f and q = g, then p q = f g.
- (7) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a set X, and a natural number n. Then X is a linear combination of R_2 if and only if X is a linear combination of R_1 .
- (8) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a linear combination L_5 of R_1 , and a linear combination L_3 of R_2 . Suppose $L_3 = L_5$. Then the support of L_3 = the support of L_5 .

Let us consider a set F. Now we state the propositions:

- (9) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Then F is a subset of R_1 if and only if F is a subset of R_2 .
- (10) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Then F is a finite sequence of elements of R_1 if and only if F is a finite sequence of elements of R_2 .
- (11) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Then F is a function from R_1 into \mathbb{R} if and only if F is a function from R_2 into \mathbb{R} .
- (12) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a finite sequence F_1 of elements of R_1 , a function f_1 from R_1 into \mathbb{R} , a finite sequence F_3 of elements of R_2 , and a function f_2 from R_2 into \mathbb{R} . If $f_1 = f_2$ and $F_1 = F_3$, then $f_1 \cdot F_1 = f_2 \cdot F_3$.
- (13) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a finite sequence F_2 of elements of R_1 , and a finite sequence F_1 of elements of R_2 . If $F_2 = F_1$, then $\sum F_2 = \sum F_1$. PROOF: Set $T = R_1$. Set $V = R_2$. Consider f being a sequence of the carrier of T such that $\sum F = f(\operatorname{len} F)$ and $f(0) = 0_T$ and for every natural number j and for every element v of T such that $j < \operatorname{len} F$ and v = F(j+1)holds f(j+1) = f(j) + v. Consider f_2 being a sequence of the carrier of Vsuch that $\sum F_3 = f_2(\operatorname{len} F_3)$ and $f_2(0) = 0_V$ and for every natural number j and for every element v of V such that $j < \operatorname{len} F_3$ and $v = F_3(j+1)$ holds $f_2(j+1) = f_2(j) + v$. Define $\mathcal{S}[\operatorname{natural number}] \equiv \operatorname{if} \$_1 \leqslant \operatorname{len} F$, then $f(\$_1) = f_2(\$_1)$. For every natural number i such that $\mathcal{S}[i]$ holds $\mathcal{S}[i+1]$. For every natural number n, $\mathcal{S}[n]$. \Box

- (14) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a linear combination L_3 of R_2 , and a linear combination L_4 of R_1 . If $L_3 = L_4$, then $\sum L_3 = \sum L_4$. The theorem is a consequence of (12) and (13).
- (15) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a subset A_1 of R_2 , and a subset A_2 of R_1 . Suppose $A_1 = A_2$. Let us consider an object X. Then X is a linear combination of A_1 if and only if X is a linear combination of A_2 . The theorem is a consequence of (7).

Let us consider a subset A_1 of R_2 and a subset A_2 of R_1 . Now we state the propositions:

- (16) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Then if $A_1 = A_2$, then $\Omega_{\text{Lin}(A_1)} = \Omega_{\text{Lin}(A_2)}$. The theorem is a consequence of (7) and (14).
- (17) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Then if $A_1 = A_2$, then A_1 is linearly independent iff A_2 is linearly independent. The theorem is a consequence of (7) and (14).
- (18) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider an object X. Then X is a subspace of R_2 if and only if X is a subspace of R_1 .
- (19) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a linear combination L of R_2 , and a linear combination S of R_1 . If L = S, then $\sum L = \sum S$. The theorem is a consequence of (12) and (13).
- (20) Suppose the RLS structure of R_1 = the RLS structure of R_2 . Let us consider a set X. Then X is a basis of R_1 if and only if X is a basis of R_2 . The theorem is a consequence of (17) and (16).
- (21) Let us consider real linear spaces R_1 , R_2 . Suppose the RLS structure of R_1 = the RLS structure of R_2 and R_1 is finite dimensional. Then
 - (i) R_2 is finite dimensional, and
 - (ii) $\dim(R_2) = \dim(R_1)$.

The theorem is a consequence of (20).

Let us consider a real normed space R_3 . Now we state the propositions:

- (22) The normed structure of R_3 is a strict real normed space.
- (23) There exists a normed linear topological space T such that the normed structure of R_3 = the normed structure of T.

PROOF: Reconsider R_3 = the normed structure of RNS0 as a strict real normed space. Set L_2 = LinearTopSpaceNorm R_3 . Reconsider N = the norm of R_3 as a function from the carrier of L_2 into \mathbb{R} . Set W = (the carrier of L_2 , the zero of L_2 , the addition of L_2 , the external multiplication of L_2 , the topology of L_2 , N). W is topological space-like, right complementable, Abelian, add-associative, right zeroed, vector distributive, scalar distributive, scalar associative, scalar unital, add-continuous, and mult-continuous. \Box

- (24) Suppose R_3 is finite dimensional. Then there exists a normed linear topological space T such that
 - (i) the normed structure of R_3 = the normed structure of T, and
 - (ii) T is finite dimensional.

The theorem is a consequence of (23) and (21).

- (25) Let us consider a normed linear topological space T, and a real normed space R_3 . Suppose T is finite dimensional and R_3 = the normed structure of T. Then
 - (i) R_3 is finite dimensional, and
 - (ii) $\dim(R_3) = \dim(T)$.

The theorem is a consequence of (21).

2. The Ascoli-Arzela Theorem on Finite Dimensional Normed Linear Spaces

Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a subset G of (the carrier of T)^(the carrier of M), and a non empty subset H of MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and T).

Now we state the propositions:

(26) Suppose $S = M_{top}$ and T is complete and finite dimensional and $\dim(T) \neq 0$. Then suppose G = H. Then MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and T) $\upharpoonright H$ is totally bounded if and only if G is equibounded and equicontinuous.

PROOF: For every point x of S and for every non empty subset H_1 of MetricSpaceNorm T such that $H_1 = \{f(x), \text{ where } f \text{ is a function from } S$ into $T : f \in H\}$ holds MetricSpaceNorm $T \upharpoonright \overline{H_1}$ is compact by [9, (1)], (25).

(27) Suppose $S = M_{top}$ and T is complete and finite dimensional and dim $(T) \neq 0$. Then if G = H, then \overline{H} is sequentially compact iff G is equibounded and equicontinuous. The theorem is a consequence of (26).

- (28) Let us consider a non empty metric space M, a non empty, compact topological space S, and a normed linear topological space T. Suppose $S = M_{top}$ and T is complete and finite dimensional and $\dim(T) \neq 0$. Let us consider a subset G of (the carrier of T)^{α}, and a non empty subset Fof the \mathbb{R} -norm space of continuous functions of S and T. Suppose G = F. Then \overline{F} is compact if and only if G is equibounded and equicontinuous, where α is the carrier of M. The theorem is a consequence of (27).
- (29) Let us consider a non empty real normed space R_3 , a normed linear topological space T, a non empty subset X of R_3 , a non empty, compact, strict topological space S, and a non empty subset G of the \mathbb{R} -norm space of continuous functions of S and T.

Suppose S is a subspace of TopSpaceNorm R_3 and the carrier of S = Xand X is compact and T is complete and finite dimensional and dim $(T) \neq 0$ and there exist real numbers K, D such that 0 < K and 0 < D and for every function F from X into T such that $F \in G$ holds for every points x, y of R_3 such that $x, y \in X$ holds $||F_{/x} - F_{/y}|| \leq D \cdot ||x - y||$ and for every point x of R_3 such that $x \in X$ holds $||F_{/x}| \leq K$. Then \overline{G} is compact. PROOF: Reconsider Y = X as a non empty subset of MetricSpaceNorm R_3 . Reconsider M = MetricSpaceNorm $R_3 | Y$ as a non empty metric space. For every object $z, z \in$ the topology of S iff $z \in$ the open set family of

M. For every object z such that $z \in$ the continuous functions of S and T holds $z \in$ (the carrier of T)^{α}, where α is the carrier of *M*. Reconsider H = G as a subset of (the carrier of T)^(the carrier of *M*). \overline{G} is compact iff *H* is equibounded and equicontinuous.

Consider K, D being real numbers such that 0 < K and 0 < D and for every function F from X into T such that $F \in G$ holds for every points x, y of R_3 such that $x, y \in X$ holds $||F_{/x} - F_{/y}|| \leq D \cdot ||x - y||$ and for every point x of R_3 such that $x \in X$ holds $||F_{/x}|| \leq K$. For every function f from the carrier of M into the carrier of T such that $f \in H$ for every element x of M, $||f(x)|| \leq K$. For every real number e such that 0 < ethere exists a real number d such that 0 < d and for every function f from the carrier of M into the carrier of T such that $f \in H$ for every points x_1 , x_2 of M such that $\rho(x_1, x_2) < d$ holds $||f(x_1) - f(x_2)|| < e$. \Box

3. High-Order and Multilayer Perceptron

Let n be a natural number, k be a finite sequence of elements of \mathbb{N} , and N be a finite sequence. We say that N is a multilayer perceptron with k and n if and only if

- (Def. 1) len N = n and len N+1 = len k and for every natural number i such that $1 \leq i < \text{len } k$ holds N(i) is a function from $\langle \mathcal{E}^{k(i)}, \|\cdot\|\rangle$ into $\langle \mathcal{E}^{k(i+1)}, \|\cdot\|\rangle$. We say that N is a multilayer perceptron-like if and only if
- (Def. 2) there exists a finite sequence k of elements of \mathbb{N} such that $\operatorname{len} N+1 = \operatorname{len} k$ and for every natural number i such that $1 \leq i < \operatorname{len} k$ holds N(i) is a function from $\langle \mathcal{E}^{k(i)}, \|\cdot\| \rangle$ into $\langle \mathcal{E}^{k(i+1)}, \|\cdot\| \rangle$.

Observe that there exists a finite sequence which is a multilayer perceptronlike. A multilayer perceptron is multilayer perceptron-like finite sequence. Now we state the proposition:

- (30) Let us consider a multilayer perceptron N. Then there exists a finite sequence k of elements of \mathbb{N} such that
 - (i) $\operatorname{len} N + 1 = \operatorname{len} k$, and
 - (ii) for every natural number i such that $1 \leq i < \text{len } k$ holds N(i) is a function from $\langle \mathcal{E}^{k(i)}, \|\cdot\| \rangle$ into $\langle \mathcal{E}^{k(i+1)}, \|\cdot\| \rangle$.

Let *n* be a natural number, *k* be a finite sequence of elements of \mathbb{N} , and *N* be a finite sequence. Assume *N* is a multilayer perceptron with *k* and *n*. Assume len $N \neq 0$. The functor OutputFunc(N, k, n) yielding a function from $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$ into $\langle \mathcal{E}^{k(n+1)}, \|\cdot\| \rangle$ is defined by

(Def. 3) there exists a finite sequence p such that $\operatorname{len} p = \operatorname{len} N$ and p(1) = N(1)and for every natural number i such that $1 \leq i < \operatorname{len} N$ there exists a function N_2 from $\langle \mathcal{E}^{k(i+1)}, \|\cdot\| \rangle$ into $\langle \mathcal{E}^{k(i+2)}, \|\cdot\| \rangle$ and there exists a function p_2 from $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$ into $\langle \mathcal{E}^{k(i+1)}, \|\cdot\| \rangle$ such that $N_2 = N(i+1)$ and $p_2 = p(i)$ and $p(i+1) = N_2 \cdot p_2$ and $it = p(\operatorname{len} N)$.

Now we state the proposition:

(31) Let us consider a natural number n, a finite sequence k of elements of \mathbb{N} , and a non empty finite sequence N. Suppose $n \neq 0$ and N is a multilayer perceptron with k and n+1. Then there exists a finite sequence k_1 of elements of \mathbb{N} and there exists a non empty finite sequence N_1 and there exists a function N_2 from $\langle \mathcal{E}^{k(n+1)}, \|\cdot\| \rangle$ into $\langle \mathcal{E}^{k(n+2)}, \|\cdot\| \rangle$ such that $N_1 = N \upharpoonright n$ and $k_1 = k \upharpoonright (n+1)$ and $N_2 = N(n+1)$ and N_1 is a multilayer perceptron with k_1 and n and OutputFunc(N, k, n+1) = $N_2 \cdot (\text{OutputFunc}(N_1, k_1, n)).$ PROOF: Reconsider $N_1 = N \upharpoonright n$ as a non empty finite sequence. Reconsider $k_1 = k \upharpoonright (n+1)$ as a finite sequence of elements of \mathbb{N} . For every natural number i such that $1 \leq i < \ln k_1$ holds $N_1(i)$ is a function from $\langle \mathcal{E}^{k_1(i)}, \| \cdot \| \rangle$ into $\langle \mathcal{E}^{k_1(i+1)}, \| \cdot \| \rangle$. Consider p being a finite sequence such that $\ln p = \ln N$ and p(1) = N(1) and for every natural number i such that $1 \leq i < \ln N$ there exists a function N_2 from $\langle \mathcal{E}^{k(i+1)}, \| \cdot \| \rangle$ into $\langle \mathcal{E}^{k(i+2)}, \| \cdot \| \rangle$ and there exists a function p_2 from $\langle \mathcal{E}^{k(1)}, \| \cdot \| \rangle$ into $\langle \mathcal{E}^{k(i+1)}, \| \cdot \| \rangle$ such that $N_2 = N(i+1)$ and $p_2 = p(i)$ and $p(i+1) = N_2 \cdot p_2$ and OutputFunc $(N, k, n+1) = p(\ln N)$. Consider N_2 being a function from $\langle \mathcal{E}^{k(n+1)}, \| \cdot \| \rangle$ into $\langle \mathcal{E}^{k(n+2)}, \| \cdot \| \rangle$, p_2 being a function from $\langle \mathcal{E}^{k(1)}, \| \cdot \| \rangle$ into $\langle \mathcal{E}^{k(n+1)}, \| \cdot \| \rangle$ such that $N_2 = N(n+1)$ and $p_2 = p(n)$ and $p(n+1) = N_2 \cdot p_2$. \Box

Let n be a natural number and k be a finite sequence of elements of N. The functor Neurons(n, k) yielding a subset of

(the carrier of $\langle \mathcal{E}^{k(n+1)}, \|\cdot\| \rangle$)^{(the carrier of $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$)} is defined by the term

(Def. 4) {F, where F is a function from $\langle \mathcal{E}^{k(1)}, \|\cdot\|\rangle$ into $\langle \mathcal{E}^{k(n+1)}, \|\cdot\|\rangle$: there exists a finite sequence N such that N is a multilayer perceptron with k and n and F = OutputFunc(N, k, n)}.

Now we state the propositions:

(32) Let us consider a natural number n, a finite sequence k of elements of \mathbb{N} , a non empty, compact, strict topological space S, a non empty subspace Mof MetricSpaceNorm $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$, a non empty subset X of $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$, and a normed linear topological space T. Suppose $S = M_{\text{top}}$ and the carrier of M = X and X is compact and T is complete and finite dimensional and $\dim(T) \neq 0$ and $\langle \mathcal{E}^{k(n+1)}, \|\cdot\| \rangle =$ the normed structure of T.

Let us consider a subset G of (the carrier of T)^{α}, and a non empty subset F of the \mathbb{R} -norm space of continuous functions of S and T. Suppose G = F and $G \subseteq \{f \mid X, \text{ where } f \text{ is a function from } \langle \mathcal{E}^{k(1)}, \|\cdot\|\rangle$ into $\langle \mathcal{E}^{k(n+1)}, \|\cdot\|\rangle : f \in \operatorname{Neurons}(n,k)\}$. Then \overline{F} is compact if and only if G is equibounded and equicontinuous, where α is the carrier of M.

(33) Let us consider a natural number n, a finite sequence k of elements of \mathbb{N} , a non empty, compact, strict topological space S, a non empty subset X of $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$, and a normed linear topological space T. Suppose S is a subspace of TopSpaceNorm $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$ and the carrier of S = X and X is compact and T is complete and finite dimensional and dim $(T) \neq 0$ and $\langle \mathcal{E}^{k(n+1)}, \|\cdot\| \rangle$ = the normed structure of T. Let us consider a non empty subset G of the \mathbb{R} -norm space of continuous functions of S and T.

Suppose $G \subseteq \{f \upharpoonright X, \text{ where } f \text{ is a function from } \langle \mathcal{E}^{k(1)}, \| \cdot \| \rangle \text{ into } \langle \mathcal{E}^{k(n+1)}, \| \cdot \| \rangle : f \in \operatorname{Neurons}(n,k) \}$ and there exist real numbers K, D

such that 0 < K and 0 < D and for every function F from X into T such that $F \in G$ holds for every points x, y of $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$ such that $x, y \in X$ holds $\|F_{/x} - F_{/y}\| \leq D \cdot \|x - y\|$ and for every point x of $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$ such that $x \in X$ holds $\|F_{/x}\| \leq K$. Then \overline{G} is compact.

Let X, Y be real normed spaces, F be a function from X into Y, and D, K be real numbers. We say that F is a layer function of D and K if and only if

(Def. 5) for every points x, y of $X, ||F(x) - F(y)|| \le D \cdot ||x - y||$ and for every point x of $X, ||F(x)|| \le K$.

Let n be a natural number, k be a finite sequence of elements of \mathbb{N} , and N be a finite sequence. We say that N is a layer sequence of D, K, k and n if and only if

(Def. 6) len N = n and N is a multilayer perceptron with k and n and for every natural number i such that $1 \leq i < \text{len } k$ there exists a function N_3 from $\langle \mathcal{E}^{k(i)}, \| \cdot \| \rangle$ into $\langle \mathcal{E}^{k(i+1)}, \| \cdot \| \rangle$ such that $N(i) = N_3$ and N_3 is a layer function of D and K.

Now we state the propositions:

- (34) Let us consider real numbers D, K. Suppose $0 \leq D$ and $0 \leq K$. Let us consider a natural number n, a finite sequence k of elements of \mathbb{N} , and a non empty finite sequence N. Suppose N is a layer sequence of D, K, kand n. Then OutputFunc(N, k, n) is a layer function of D^n and K. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every finite sequence k of elements of \mathbb{N} for every non empty finite sequence N such that len $N = \$_1$ and N is a layer sequence of D, K, k and $\$_1$ holds OutputFunc $(N, k, \$_1)$ is a layer function of $D^{\$_1}$ and K. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$. \Box
- (35) Let us consider a natural number n, a finite sequence k of elements of \mathbb{N} , a non empty, compact, strict topological space S, a non empty subset X of $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$, and a normed linear topological space T. Suppose S is a subspace of TopSpaceNorm $\langle \mathcal{E}^{k(1)}, \|\cdot\| \rangle$ and the carrier of S = X and X is compact and T is complete and finite dimensional and $\dim(T) \neq 0$ and $\langle \mathcal{E}^{k(n+1)}, \|\cdot\| \rangle =$ the normed structure of T.

Let us consider a non empty subset G of the \mathbb{R} -norm space of continuous functions of S and T, and real numbers D, K. Suppose 0 < Dand 0 < K and $G \subseteq \{F \upharpoonright X, \text{ where } F \text{ is a function from } \langle \mathcal{E}^{k(1)}, \| \cdot \| \rangle$ into $\langle \mathcal{E}^{k(n+1)}, \| \cdot \| \rangle$: there exists a non empty finite sequence N such that N is a layer sequence of D, K, k and n and $F = \text{OutputFunc}(N, k, n)\}$. Then \overline{G} is compact.

PROOF: Set $K_1 = K + 1$. Set $D_1 = D^n + 1$. For every function F from X into T such that $F \in G$ holds for every points x, y of $\langle \mathcal{E}^{k(1)}, \| \cdot \| \rangle$ such

that $x, y \in X$ holds $||F_{/x} - F_{/y}|| \leq D_1 \cdot ||x - y||$ and for every point x of $\langle \mathcal{E}^{k(1)}, ||\cdot|| \rangle$ such that $x \in X$ holds $||F_{/x}|| \leq K_1$. \Box

ACKNOWLEDGEMENT: We would like to thank Prof. Yasunari Shidama for useful cooperation.

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Serge Lang. Real and Functional Analysis (Texts in Mathematics). Springer-Verlag, 1993.
- [4] Kazuo Matsuzaka. Sets and Topology (Introduction to Mathematics). IwanamiShoten, 2000.
- [5] Michael Read and Barry Simon. Functional Analysis (Methods of Modern Mathematical Physics). Academic Press, 1980.
- [6] Frank Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 1958.
- [7] David Everett Rumelhart, Geoffrey Everes Hinton, and Ronald J. Williams. *Learning representations by backpropagating errors*. Nature, 1986.
- [8] Jürgen Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural Networks, 2015.
- Hiroshi Yamazaki, Keiichi Miyajima, and Yasunari Shidama. Ascoli-Arzelà theorem. Formalized Mathematics, 29(2):87–94, 2021. doi:10.2478/forma-2021-0009.
- [10] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted April 30, 2022