

Improper Integral. Part II

Noboru Endou^D National Institute of Technology, Gifu College 2236-2 Kamimakuwa, Motosu, Gifu, Japan

Summary. In this article, using the Mizar system [2], [3], we deal with Riemann's improper integral on infinite interval [1]. As with [4], we referred to [6], which discusses improper integrals of finite values.

MSC: 26A42 68V20

Keywords: improper integral

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{INTEGR25}, \ \mathrm{version:} \ \mathtt{8.1.11} \ \mathtt{5.68.1412}$

1. PROPERTIES OF EXTENDED RIEMANN INTEGRAL ON INFINITE INTERVAL

Let us consider a partial function f from \mathbb{R} to \mathbb{R} . Now we state the propositions:

- (1) If f is divergent in $-\infty$ to $+\infty$, then f is not convergent in $-\infty$ and f is not divergent in $-\infty$ to $-\infty$.
- (2) If f is divergent in $-\infty$ to $-\infty$, then f is not convergent in $-\infty$ and f is not divergent in $-\infty$ to $+\infty$.
- (3) If f is divergent in $+\infty$ to $+\infty$, then f is not convergent in $+\infty$ and f is not divergent in $+\infty$ to $-\infty$.
- (4) If f is divergent in +∞ to -∞, then f is not convergent in +∞ and f is not divergent in +∞ to +∞.
- (5) Suppose f is convergent in $-\infty$. Then
 - (i) there exists a real number r such that $f\!\upharpoonright]\!-\!\infty,r[$ is lower bounded, and
 - (ii) there exists a real number r such that $f \upharpoonright -\infty, r$ is upper bounded.

PROOF: Consider g being a real number such that for every real number g_1 such that $0 < g_1$ there exists a real number r such that for every real number r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < g_1$. Consider r being a real number such that for every real number r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < 1$. For every object r_1 such that $r_1 \in \text{dom } (f \uparrow] - \infty, r[)$ holds $-1 + g < (f \uparrow] - \infty, r[)(r_1)$. Consider r being a real number such that for every real number r_1 such that $r_1 < r$ and $r_1 \in \text{dom } (f \uparrow] - \infty, r[) + g < 1$. For every object r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < 1$. For every object r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < 1$. For every object r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < 1$. For every object r_1 such that $r_1 < r$ and $r_1 \in \text{dom } (f \uparrow] - \infty, r[)$ holds $(f \uparrow] - \infty, r[)(r_1) < g + 1$. \Box

- (6) Suppose f is convergent in $+\infty$. Then
 - (i) there exists a real number r such that $f\!\upharpoonright]r,+\infty[$ is lower bounded, and
 - (ii) there exists a real number r such that $f \upharpoonright r, +\infty$ is upper bounded.

PROOF: Consider g being a real number such that for every real number g_1 such that $0 < g_1$ there exists a real number r such that for every real number r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < g_1$. Consider r being a real number such that for every real number r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < g_1$. Consider r being a real number such that for every real number r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < 1$. For every object r_1 such that $r_1 \in \text{dom}(f \upharpoonright]r, +\infty[)$ holds $-1 + g < (f \upharpoonright]r, +\infty[)(r_1)$. Consider r being a real number such that for every real number r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < 1$. For every object r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) - g| < 1$. For every object r_1 such that $r_1 \in \text{dom}(f \upharpoonright]r, +\infty[)$ holds $(f \upharpoonright]r, +\infty[)(r_1) < g + 1$. \Box

- (7) Suppose f is divergent in -∞ to +∞. Then there exists a real number r such that f |]-∞, r[is lower bounded.
 PROOF: Consider r being a real number such that for every real number r₁ such that r₁ < r and r₁ ∈ dom f holds 1 < f(r₁). For every object r₁
- such that r₁ ∈ dom(f↾]-∞, r[) holds 1 < (f↾]-∞, r[)(r₁). □
 (8) Suppose f is divergent in -∞ to -∞. Then there exists a real number r such that f↾]-∞, r[is upper bounded.

PROOF: Consider r being a real number such that for every real number r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $f(r_1) < 1$. For every object r_1 such that $r_1 \in \text{dom}(f \upharpoonright] -\infty, r[)$ holds $(f \upharpoonright] -\infty, r[)(r_1) < 1$. \Box

- (9) Suppose f is divergent in $+\infty$ to $+\infty$. Then there exists a real number r such that $f \upharpoonright]r, +\infty [$ is lower bounded. PROOF: Consider r being a real number such that for every real number r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $1 < f(r_1)$. For every object r_1 such that $r_1 \in \text{dom}(f \upharpoonright]r, +\infty [)$ holds $1 < (f \upharpoonright]r, +\infty [)(r_1)$. \Box
- (10) Suppose f is divergent in $+\infty$ to $-\infty$. Then there exists a real number r such that $f \upharpoonright r, +\infty[$ is upper bounded.

PROOF: Consider r being a real number such that for every real number r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $f(r_1) < 1$. For every object r_1 such that $r_1 \in \text{dom}(f \upharpoonright]r, +\infty[)$ holds $(f \upharpoonright]r, +\infty[)(r_1) < 1$. \Box

Let us consider partial functions f_1 , f_2 from \mathbb{R} to \mathbb{R} . Now we state the propositions:

- (11) Suppose f_1 is divergent in $-\infty$ to $-\infty$ and for every real number r, there exists a real number g such that g < r and $g \in \text{dom}(f_1 + f_2)$ and there exists a real number r such that $f_2 \upharpoonright] -\infty, r[$ is upper bounded. Then $f_1 + f_2$ is divergent in $-\infty$ to $-\infty$.
- (12) Suppose f_1 is divergent in $+\infty$ to $-\infty$ and for every real number r, there exists a real number g such that r < g and $g \in \text{dom}(f_1 + f_2)$ and there exists a real number r such that $f_2 \upharpoonright]r, +\infty [$ is upper bounded. Then $f_1 + f_2$ is divergent in $+\infty$ to $-\infty$.
- (13) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number d. Suppose $]-\infty, d] \subseteq \text{dom } f$ and f is extended Riemann integrable on $-\infty$, d. Let us consider real numbers b, c. Suppose $b < c \leq d$. Then f is right extended Riemann integrable on b, c and left extended Riemann integrable on b, c.
- (14) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number a. Suppose $[a, +\infty] \subseteq \text{dom } f$ and f is extended Riemann integrable on $a, +\infty$. Let us consider real numbers b, c. Suppose $a \leq b < c$. Then f is right extended Riemann integrable on b, c and left extended Riemann integrable on b, c.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number a, and a real number b. Now we state the propositions:

- (15) Suppose $]-\infty, a] \subseteq \text{dom } f$ and f is extended Riemann integrable on $-\infty$, a. Then if $b \leq a$, then f is extended Riemann integrable on $-\infty$, b.
- (16) Suppose $[a, +\infty] \subseteq \text{dom } f$ and f is extended Riemann integrable on a, $+\infty$. Then if $a \leq b$, then f is extended Riemann integrable on $b, +\infty$.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:

(17) Suppose $a \leq b$ and $]-\infty, b] \subseteq \text{dom } f$ and f is integrable on [a, b] and $f \upharpoonright [a, b]$ is bounded and f is extended Riemann integrable on $-\infty, a$. Then

(i)
$$f$$
 is extended Riemann integrable on $-\infty$, b , and

(ii)
$$(R^{<}) \int_{-\infty}^{b} f(x) dx = (R^{<}) \int_{-\infty}^{a} f(x) dx + \int_{a}^{b} f(x) dx.$$

PROOF: For every real number c such that $c \leq b$ holds f is integrable on

- (18) Suppose $a \leq b$ and $[a, +\infty] \subseteq \text{dom } f$ and f is integrable on [a, b] and $f \upharpoonright [a, b]$ is bounded and f is extended Riemann integrable on $b, +\infty$. Then
 - (i) f is extended Riemann integrable on $a, +\infty$, and

(ii)
$$(R^{>}) \int_{a}^{+\infty} f(x)dx = (R^{>}) \int_{b}^{+\infty} f(x)dx + \int_{a}^{b} f(x)dx$$

PROOF: For every real number c such that $a \leq c$ holds f is integrable on [a,c] and $f \upharpoonright [a,c]$ is bounded. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I = [b, +\infty[$ and for every real number x such that $x \in \text{dom } I$ holds $I(x) = \int_{b}^{x} f(x) dx$ and I is convergent in $+\infty$. Reconsider $A = [a, +\infty[$ as a non empty subset of \mathbb{R} . Define $\mathcal{F}(\text{element of } A) = (\int_{a}^{\$_{1}} f(x) dx) (\in \mathbb{R})$. Consider I_{1} being a function from A into \mathbb{R} such that for every element x of A, $I_{1}(x) = \mathcal{F}(x)$. For every real number x such that $x \in \text{dom } I_{1}$ holds $I_{1}(x) = \int_{a}^{x} f(x) dx$. For every real number r, there exists a real number g such that r < g and $g \in \text{dom } I_{1}$. Consider G being a real

283

number such that for every real number g_1 such that $0 < g_1$ there exists a real number r such that for every real number r_1 such that $r < r_1$ and $r_1 \in \text{dom } I \text{ holds } |I(r_1) - G| < g_1. \text{ Set } G_1 = G + \int_{-\infty}^{\infty} f(x) dx.$ For every real number g_1 such that $0 < g_1$ there exists a real number r such that for every real number r_1 such that $r < r_1$ and $r_1 \in \text{dom } I_1$ holds $|I_1(r_1) - G_1| < g_1$ by [5, (17)].

(19) Let us consider a partial function f from \mathbb{R} to \mathbb{R} . Suppose dom $f = \mathbb{R}$. Then f is ∞ -extended Riemann integrable if and only if for every real number a, f is extended Riemann integrable on a, $+\infty$ and extended Riemann integrable on $-\infty$, a. The theorem is a consequence of (16), (17), (18), and (15).

2. Improper Integral on Infinite Interval

Let f be a partial function from \mathbb{R} to \mathbb{R} and b be a real number. We say that f is improper integrable on $\left[-\infty, b\right]$ if and only if

(Def. 1) for every real number a such that $a \leq b$ holds f is integrable on [a, b] and $f \upharpoonright [a, b]$ is bounded and there exists a partial function I_1 from \mathbb{R} to \mathbb{R} such that dom $I_1 = [-\infty, b]$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_{x}^{b} f(x) dx$ and $(I_1 \text{ is convergent in } -\infty \text{ or divergent in } -\infty$

to $+\infty$ or I_1 is divergent in $-\infty$ to $-\infty$).

Let a be a real number. We say that f is improper integrable on $[a, +\infty]$ if and only if

(Def. 2) for every real number b such that $a \leq b$ holds f is integrable on [a, b] and $f \upharpoonright [a, b]$ is bounded and there exists a partial function I_1 from \mathbb{R} to \mathbb{R} such that dom $I_1 = [a, +\infty[$ and for every real number x such that $x \in \operatorname{dom} I_1$ holds $I_1(x) = \int_a^{-} f(x) dx$ and $(I_1 \text{ is convergent in } +\infty \text{ or divergent in } +\infty)$ to $+\infty$ or I_1 is divergent in $+\infty$ to $-\infty$).

Let b be a real number. Assume f is improper integrable on $]-\infty, b]$. The functor $\int_{-\infty}^{\tilde{}} f(x) dx$ yielding an extended real is defined by

(Def. 3) there exists a partial function I_1 from \mathbb{R} to \mathbb{R} such that dom $I_1 =]-\infty, b]$

and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_x^b f(x) dx$ and $(I_1 \text{ is convergent in } -\infty \text{ and } it = \lim_{x \to \infty} I_1 \text{ or } I_1 \text{ is divergent in } -\infty$

- to $+\infty$ and $it = +\infty$ or I_1 is divergent in $-\infty$ to $-\infty$ and $it = -\infty$).
- Let a be a real number. Assume f is improper integrable on $[a, +\infty[$. The functor $\int_{-\infty}^{+\infty} f(x) dx$ yielding an extended real is defined by

(Def. 4) there exists a partial function I_1 from \mathbb{R} to \mathbb{R} such that dom $I_1 = [a, +\infty[$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_a^x f(x) dx$ and $(I_1 \text{ is convergent in } +\infty \text{ and } it = \lim_{t \to \infty} I_1 \text{ or } I_1 \text{ is divergent in } +\infty$ to $+\infty$ and $it = +\infty$ or I_1 is divergent in $+\infty$ to $-\infty$ and $it = -\infty$).

Now we state the propositions:

- (20) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose f is extended Riemann integrable on $-\infty$, b. Then f is improper integrable on $]-\infty$, b].
- (21) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number a. Suppose f is extended Riemann integrable on $a, +\infty$. Then f is improper integrable on $[a, +\infty]$.
- (22) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose f is improper integrable on $]-\infty, b]$. Then

(i)
$$f$$
 is extended Riemann integrable on $-\infty$, b and

$$\int_{-\infty}^{b} f(x)dx = (R^{<})\int_{-\infty}^{b} f(x)dx$$
, or

(ii) f is not extended Riemann integrable on $-\infty$, b and $\int_{-\infty}^{b} f(x)dx = +\infty$, or

(iii) f is not extended Riemann integrable on $-\infty$, b and $\int_{-\infty}^{b} f(x)dx = -\infty$.

The theorem is a consequence of (1) and (2).

(23) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose there exists a partial function I_1 from \mathbb{R} to \mathbb{R} such that dom $I_1 =]-\infty, b]$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) =$ $\int_{x}^{b} f(x)dx \text{ and } I_1 \text{ is divergent in } -\infty \text{ to } +\infty \text{ or divergent in } -\infty \text{ to } -\infty.$ Then f is not extended Riemann integrable on $-\infty$, b. The theorem is a consequence of (1) and (2).

(24) Let us consider partial functions f, I_1 from \mathbb{R} to \mathbb{R} , and a real number b. Suppose f is improper integrable on $]-\infty$, b] and dom $I_1 =]-\infty$, b] and

for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_x^b f(x) dx$

and I_1 is convergent in $-\infty$. Then $\int_{-\infty}^{b} f(x) dx = \lim_{-\infty} I_1$. The theorem is

a consequence of (22).

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers b, c. Now we state the propositions:

- (25) Suppose $b \leq c$ and $]-\infty, c] \subseteq \text{dom } f$ and f is improper integrable on $]-\infty, c]$. Then
 - (i) f is improper integrable on $]-\infty$, b], and

(ii) if
$$\int_{-\infty}^{c} f(x)dx = (R^{<})\int_{-\infty}^{c} f(x)dx$$
, then $\int_{-\infty}^{b} f(x)dx = (R^{<})\int_{-\infty}^{b} f(x)dx$, and

(iii) if
$$\int_{-\infty}^{c} f(x)dx = +\infty$$
, then $\int_{-\infty}^{b} f(x)dx = +\infty$, and
(iv) if $\int_{-\infty}^{c} f(x)dx = -\infty$, then $\int_{-\infty}^{b} f(x)dx = -\infty$.

The theorem is a consequence of (22).

(26) Suppose $b \leq c$ and $]-\infty, c] \subseteq \text{dom } f$ and $f \upharpoonright [b, c]$ is bounded and f is improper integrable on $]-\infty, b]$ and f is integrable on [b, c]. Then

(i) f is improper integrable on $]-\infty, c]$, and

(ii) if
$$\int_{-\infty}^{b} f(x)dx = (R^{<})\int_{-\infty}^{b} f(x)dx$$
, then
$$\int_{-\infty}^{c} f(x)dx = \int_{-\infty}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$
, and

(iii) if
$$\int_{-\infty}^{b} f(x)dx = +\infty$$
, then $\int_{-\infty}^{c} f(x)dx = +\infty$, and
(iv) if $\int_{-\infty}^{b} f(x)dx = -\infty$, then $\int_{-\infty}^{c} f(x)dx = -\infty$.

The theorem is a consequence of (22).

(27) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose f is improper integrable on $[b, +\infty[$. Then

(i)
$$f$$
 is extended Riemann integrable on b , $+\infty$ and

$$\int_{b}^{+\infty} f(x)dx = (R^{>})\int_{b}^{+\infty} f(x)dx$$
, or

(ii) f is not extended Riemann integrable on b, $+\infty$ and $\int_{b}^{+\infty} f(x)dx = +\infty$, or

(iii) f is not extended Riemann integrable on b, $+\infty$ and $\int_{b}^{+\infty} f(x)dx = -\infty$.

The theorem is a consequence of (3) and (4).

(28) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose there exists a partial function I_1 from \mathbb{R} to \mathbb{R} such that dom $I_1 = [b, +\infty[$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_{x}^{x} f(x) dx$ and I_1 is divergent in $+\infty$ to $+\infty$ or divergent in $+\infty$ to $-\infty$. Then f is not extended Riemann integrable on $b, +\infty$. The theorem is a consequence of (3) and (4).

(29) Let us consider partial functions f, I_1 from \mathbb{R} to \mathbb{R} , and a real number b. Suppose f is improper integrable on $[b, +\infty[$ and dom $I_1 = [b, +\infty[$ and $\overset{x}{f}]$

for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_b f(x) dx$

and I_1 is convergent in $+\infty$. Then $\int_{b}^{+\infty} f(x)dx = \lim_{+\infty} I_1$. The theorem is

a consequence of (27).

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers b, c. Now we state the propositions:

- (30) Suppose $b \ge c$ and $[c, +\infty] \subseteq \text{dom } f$ and f is improper integrable on $[c, +\infty]$. Then
 - (i) f is improper integrable on $[b, +\infty]$, and

(ii) if
$$\int_{c}^{+\infty} f(x)dx = (R^{>}) \int_{c}^{+\infty} f(x)dx$$
, then $\int_{b}^{+\infty} f(x)dx = (R^{>}) \int_{b}^{+\infty} f(x)dx$,
and
(iii) if $\int_{c}^{+\infty} f(x)dx = +\infty$, then $\int_{c}^{+\infty} f(x)dx = +\infty$, and

(iii) if
$$\int_{c} f(x)dx = +\infty$$
, then $\int_{b} f(x)dx = +\infty$, and
(iv) if $\int_{c}^{+\infty} f(x)dx = -\infty$, then $\int_{b}^{+\infty} f(x)dx = -\infty$.

The theorem is a consequence of (27).

- (31) Suppose $b \ge c$ and $[c, +\infty[\subseteq \text{dom } f \text{ and } f \upharpoonright [c, b] \text{ is bounded and } f \text{ is improper integrable on } [b, +\infty[\text{ and } f \text{ is integrable on } [c, b].$ Then
 - (i) f is improper integrable on $[c, +\infty)$, and

(ii) if
$$\int_{b}^{+\infty} f(x)dx = (R^{>}) \int_{b}^{+\infty} f(x)dx$$
, then $\int_{c}^{+\infty} f(x)dx = \int_{b}^{+\infty} f(x)dx + \int_{c}^{b} f(x)dx$
and
(iii) if $\int_{b}^{+\infty} f(x)dx = +\infty$, then $\int_{c}^{+\infty} f(x)dx = +\infty$, and
(iv) if $\int_{b}^{+\infty} f(x)dx = -\infty$, then $\int_{c}^{+\infty} f(x)dx = -\infty$.

The theorem is a consequence of (27).

Let f be a partial function from \mathbb{R} to \mathbb{R} . We say that f is improper integrable on \mathbb{R} if and only if

(Def. 5) there exists a real number r such that f is improper integrable on $]-\infty, r]$

and f is improper integrable on $[r, +\infty[$ and it is not true that $\int f(x)dx =$

$$-\infty \text{ and } \int_{r}^{+\infty} f(x)dx = +\infty \text{ and it is not true that } \int_{-\infty}^{r} f(x)dx = +\infty \text{ and}$$
$$\int_{r}^{+\infty} f(x)dx = -\infty.$$

Now we state the propositions:

1.00

(32) Let us consider a partial function f from \mathbb{R} to \mathbb{R} . Suppose f is improper integrable on \mathbb{R} . Then there exists a real number b such that $\int_{a}^{b} f(x)dx =$

$$(R^{<}) \int_{-\infty}^{b} f(x)dx \text{ and } \int_{b}^{+\infty} f(x)dx = (R^{>}) \int_{b}^{+\infty} f(x)dx \text{ or } \int_{-\infty}^{b} f(x)dx + \int_{b}^{+\infty} f(x)dx$$
$$= +\infty \text{ or } \int_{-\infty}^{b} f(x)dx + \int_{b}^{+\infty} f(x)dx = -\infty. \text{ The theorem is a consequence of}$$
$$(22) \text{ and } (27).$$

(33) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose dom $f = \mathbb{R}$ and f is improper integrable on $]-\infty$, b and f

is improper integrable on $[b, +\infty[$ and it is not true that $\int_{-\infty}^{b} f(x) dx =$

$$-\infty$$
 and $\int_{b}^{+\infty} f(x)dx = +\infty$ and it is not true that $\int_{-\infty}^{b} f(x)dx = +\infty$ and $+\infty$

 $\int_{b}^{\infty} f(x)dx = -\infty.$ Let us consider a real number b_1 . Suppose $b_1 \leq b$.

Then
$$\int_{-\infty}^{b} f(x)dx + \int_{b}^{+\infty} f(x)dx = \int_{-\infty}^{b_1} f(x)dx + \int_{b_1}^{+\infty} f(x)dx$$
. The theorem is a consequence of (22), (27), and (31).

(34) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose dom $f = \mathbb{R}$ and f is improper integrable on $]-\infty$, b] and f

b. Suppose dom f = 1 and f = 1 and f = 1. is improper integrable on $[b, +\infty[$ and it is not true that $\int_{-\infty}^{b} f(x) dx = -\infty$

$$-\infty$$
 and $\int_{b}^{+\infty} f(x)dx = +\infty$ and it is not true that $\int_{-\infty}^{b} f(x)dx = +\infty$ and $+\infty$

 $\int_{b}^{+\infty} f(x)dx = -\infty. \text{ Let us consider a real number } b_2. \text{ Suppose } b \leqslant b_2.$

Then
$$\int_{-\infty}^{b} f(x)dx + \int_{b}^{+\infty} f(x)dx = \int_{-\infty}^{b_2} f(x)dx + \int_{b_2}^{+\infty} f(x)dx$$
. The theorem is

a consequence of (27), (30), (31), and (22).

(35) Let us consider a partial function f from \mathbb{R} to \mathbb{R} . Suppose dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} . Let us consider real numbers b_1 , b_2 . Then $\int_{-\infty}^{b_1} f(x)dx + \int_{b_1}^{+\infty} f(x)dx = \int_{-\infty}^{b_2} f(x)dx + \int_{b_2}^{+\infty} f(x)dx$. The theorem is a consequence of (33) and (34).

Let f be a partial function from \mathbb{R} to \mathbb{R} . Assume dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} . The functor $\int_{-\infty}^{+\infty} f(x) dx$ yielding an extended real is defined by

(Def. 6) there exists a real number c such that f is improper integrable on $]-\infty$, c] and f is improper integrable on $[c, +\infty[$ and $it = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$.

Now we state the proposition:

- (36) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} . Then
 - (i) f is improper integrable on $]-\infty$, b], and
 - (ii) f is improper integrable on $[b, +\infty[$, and

(iii)
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{b}^{+\infty} f(x)dx.$$

The theorem is a consequence of (25), (31), (35), (26), and (30).

3. Linearity of Improper Integral on Infinite Interval

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number b, and a partial function I_1 from \mathbb{R} to \mathbb{R} . Now we state the propositions:

(37) Suppose f is improper integrable on $]-\infty$, b] and $\int_{-\infty}^{b} f(x)dx = +\infty$. Then suppose dom $I_1 =]-\infty, b$] and for every real number x such that $x \in \text{dom } I_1 \text{ holds } I_1(x) = \int_{x}^{b} f(x)dx$. Then I_1 is divergent in $-\infty$ to $+\infty$.

(38) Suppose f is improper integrable on $]-\infty$, b] and $\int_{-\infty}^{b} f(x)dx = -\infty$.

Then suppose dom $I_1 = [-\infty, b]$ and for every real number x such that $x \in \text{dom } I_1$ holds $I_1(x) = \int_x^b f(x) dx$. Then I_1 is divergent in $-\infty$ to $-\infty$.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a real number a, and a partial function I_1 from \mathbb{R} to \mathbb{R} . Now we state the propositions:

(39) Suppose f is improper integrable on $[a, +\infty[$ and $\int_{a}^{x} f(x)dx = +\infty$. Then suppose dom $I_1 = [a, +\infty[$ and for every real number x such that $x \in \text{dom } I_1 \text{ holds } I_1(x) = \int_{a}^{x} f(x)dx$. Then I_1 is divergent in $+\infty$ to $+\infty$.

(40) Suppose f is improper integrable on $[a, +\infty[$ and $\int_{a}^{\infty} f(x)dx = -\infty$. Then suppose dom $I_1 = [a, +\infty[$ and for every real number x such that $x \in \text{dom } I_1 \text{ holds } I_1(x) = \int_{a}^{x} f(x)dx$. Then I_1 is divergent in $+\infty$ to $-\infty$.

(41) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and real numbers b, r. Suppose $]-\infty, b] \subseteq \text{dom } f$ and f is improper integrable on $]-\infty, b]$. Then

(i) $r \cdot f$ is improper integrable on $]-\infty, b]$, and

(ii)
$$\int_{-\infty}^{b} (r \cdot f)(x) dx = r \cdot \int_{-\infty}^{b} f(x) dx.$$

PROOF: For every real number d such that $d \leq b$ holds $r \cdot f$ is integrable on [d, b] and $(r \cdot f) \upharpoonright [d, b]$ is bounded. \Box

- (42) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and real numbers a, r. Suppose $[a, +\infty] \subseteq \text{dom } f$ and f is improper integrable on $[a, +\infty]$. Then
 - (i) $r \cdot f$ is improper integrable on $[a, +\infty[$, and

(ii)
$$\int_{a}^{+\infty} (r \cdot f)(x) dx = r \cdot \int_{a}^{+\infty} f(x) dx.$$

PROOF: For every real number d such that $a \leq d$ holds $r \cdot f$ is integrable on [a, d] and $(r \cdot f) \upharpoonright [a, d]$ is bounded. \Box

(43) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number b. Suppose $]-\infty, b] \subseteq \text{dom } f$ and f is improper integrable on $]-\infty, b]$. Then

(i) -f is improper integrable on $]-\infty, b]$, and

(ii)
$$\int_{-\infty}^{b} (-f)(x)dx = -\int_{-\infty}^{b} f(x)dx.$$

The theorem is a consequence of (41).

(44) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number a. Suppose $[a, +\infty] \subseteq \text{dom } f$ and f is improper integrable on $[a, +\infty]$. Then

(i)
$$-f$$
 is improper integrable on $[a, +\infty[$, and

(ii)
$$\int_{a}^{+\infty} (-f)(x)dx = -\int_{a}^{+\infty} f(x)dx.$$

The theorem is a consequence of (42).

(45) Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} , and a real number b. Suppose $]-\infty, b] \subseteq \text{dom } f$ and $]-\infty, b] \subseteq \text{dom } g$ and f is improper integrable on $]-\infty, b]$ and g is improper integrable on $]-\infty, b]$ and it is not true that $\int_{-\infty}^{b} f(x)dx = +\infty$ and $\int_{-\infty}^{b} g(x)dx = -\infty$ and it is not true b

that
$$\int_{-\infty}^{0} f(x)dx = -\infty$$
 and $\int_{-\infty}^{0} g(x)dx = +\infty$. Then

(i) f + g is improper integrable on $]-\infty, b]$, and

(ii)
$$\int_{-\infty}^{b} (f+g)(x)dx = \int_{-\infty}^{b} f(x)dx + \int_{-\infty}^{b} g(x)dx.$$

PROOF: For every real number d such that $d \leq b$ holds f + g is integrable on [d, b] and $(f + g) \upharpoonright [d, b]$ is bounded. \Box

(46) Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} , and a real number a. Suppose $[a, +\infty[\subseteq \text{dom } f \text{ and } [a, +\infty[\subseteq \text{dom } g \text{ and } f \text{ is improper integrable on } [a, +\infty[\text{ and } y \text{ is improper integrable on } [a, +\infty[\text{ and it is not true that } \int_{a}^{+\infty} f(x)dx = +\infty \text{ and } \int_{a}^{+\infty} g(x)dx = -\infty \text{ and it is not true that } \int_{a}^{+\infty} f(x)dx = -\infty \text{ and } \int_{a}^{+\infty} g(x)dx = +\infty.$ Then (i) f + g is improper integrable on $[a, +\infty[$, and (ii) $\int_{a}^{+\infty} (f + g)(x)dx = \int_{a}^{+\infty} f(x)dx + \int_{a}^{+\infty} g(x)dx.$ PROOF: For every real number d such that $a \leq d$ holds f + g is integrable on [a, d] and $(f + g) \upharpoonright [a, d]$ is bounded. \Box

(47) Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} , and a real number b. Suppose $]-\infty, b] \subseteq \text{dom } f$ and $]-\infty, b] \subseteq \text{dom } g$ and f is improper integrable on $]-\infty, b]$ and g is improper integrable on $]-\infty, b]$ and it is

not true that
$$\int_{-\infty}^{b} f(x)dx = +\infty$$
 and $\int_{-\infty}^{b} g(x)dx = +\infty$ and it is not true

that
$$\int_{-\infty} f(x)dx = -\infty$$
 and $\int_{-\infty} g(x)dx = -\infty$. Then

(i)
$$f - g$$
 is improper integrable on $]-\infty, b]$, and

(ii)
$$\int_{-\infty}^{b} (f-g)(x)dx = \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{b} g(x)dx.$$

The theorem is a consequence of (43) and (45).

(48) Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} , and a real number a. Suppose $[a, +\infty[\subseteq \text{dom } f \text{ and } [a, +\infty[\subseteq \text{dom } g \text{ and } f \text{ is improper} integrable on <math>[a, +\infty[\text{ and it is}] = 1, +\infty[\text{ and it is}] = 1, +\infty[\text{ and it is}] = 1, +\infty[\text{ and it is not true that } \int_{a}^{+\infty} f(x)dx = +\infty \text{ and } \int_{a}^{+\infty} g(x)dx = +\infty \text{ and it is not true}] = 1, +\infty[\text{ and it is not true that } \int_{a}^{+\infty} f(x)dx = -\infty \text{ and } \int_{a}^{+\infty} g(x)dx = -\infty. \text{ Then}] = 1, +\infty[\text{ and it is improper integrable on } [a, +\infty[, \text{ and}] = 1, +\infty[,$

The theorem is a consequence of (44) and (46).

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a real number r. Now we state the propositions:

(49) Suppose dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} . Then

(i) $r \cdot f$ is improper integrable on \mathbb{R} , and

(ii)
$$\int_{-\infty}^{+\infty} (r \cdot f)(x) dx = r \cdot \int_{-\infty}^{+\infty} f(x) dx.$$

The theorem is a consequence of (36), (41), and (42).

(50) Suppose dom $f = \mathbb{R}$ and f is improper integrable on \mathbb{R} . Then

(i) -f is improper integrable on \mathbb{R} , and

(ii)
$$\int_{-\infty}^{+\infty} (-f)(x)dx = -\int_{-\infty}^{+\infty} f(x)dx.$$

The theorem is a consequence of (49).

Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} . Now we state the propositions:

(51) Suppose dom $f = \mathbb{R}$ and dom $g = \mathbb{R}$ and f is improper integrable on \mathbb{R} and q is improper integrable on \mathbb{R} and it is not true that $\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} f(x) dx$

and
$$y$$
 is improper integrable on \mathbb{R} and it is not true that $\int_{-\infty}^{\infty} f(x) dx = -\infty$

$$+\infty \text{ and } \int_{-\infty}^{+\infty} g(x)dx = -\infty \text{ and it is not true that } \int_{-\infty}^{+\infty} f(x)dx = -\infty \text{ and }$$
$$\int_{-\infty}^{+\infty} g(x)dx = +\infty. \text{ Then}$$

(i) f + g is improper integrable on \mathbb{R} , and

(ii)
$$\int_{-\infty}^{+\infty} (f+g)(x)dx = \int_{-\infty}^{+\infty} f(x)dx + \int_{-\infty}^{+\infty} g(x)dx.$$

The theorem is a consequence of (25), (26), (31), (30), (36), (45), and (46). (52) Suppose dom $f = \mathbb{R}$ and dom $g = \mathbb{R}$ and f is improper integrable on $+\infty$

 \mathbb{R} and g is improper integrable on \mathbb{R} and it is not true that $\int_{-\infty} f(x) dx =$

$$+\infty$$
 and $\int_{-\infty}^{+\infty} g(x)dx = +\infty$ and it is not true that $\int_{-\infty}^{+\infty} f(x)dx = -\infty$ and $\int_{-\infty}^{+\infty} g(x)dx = -\infty$. Then

(i) f - g is improper integrable on \mathbb{R} , and

(ii)
$$\int_{-\infty}^{+\infty} (f-g)(x)dx = \int_{-\infty}^{+\infty} f(x)dx - \int_{-\infty}^{+\infty} g(x)dx.$$

The theorem is a consequence of (50) and (51).

NOBORU ENDOU

References

- [1] Tom M. Apostol. *Mathematical Analysis*. Addison-Wesley, 1969.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [4] Noboru Endou. Improper integral. Part I. Formalized Mathematics, 29(4):201–220, 2021. doi:10.2478/forma-2021-0019.
- [5] Noboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from ℝ into ℝ. Formalized Mathematics, 14(4):207–212, 2006. doi:10.2478/v10037-006-0023-y.
- [6] Masahiko Yamazaki, Hiroshi Yamazaki, and Yasunari Shidama. Extended Riemann integral of functions of real variable and one-sided Laplace transform. *Formalized Mathematics*, 16(4):311–317, 2008. doi:10.2478/v10037-008-0038-7.

Accepted December 8, 2021