
FORMALIZED MATHEMATICS

Vol. 29, No. 4, Pages 249–278, 2021
DOI: 10.2478/forma-2021-0023 https://sciendo.com/journal/forma

About Graph Sums

Sebastian Koch
Johannes Gutenberg University

Mainz, Germany1

Summary. In this article the sum (or disjoint union) of graphs is forma-
lized in the Mizar system [4], [1], based on the formalization of graphs in [9].

MSC: 05C76 68V20

Keywords: graph union; graph sum

MML identifier: GLIB 015, version: 8.1.11 5.68.1412

0. Introduction

The sum of graphs has already been formalized in Mizar to a certain extent
in [7], in the case where the vertices and edges of the graphs are disjoint. This
disjoint union matches the definitions often given in the literature (cf. [2], [10],
[11], [3]). However, graphs are added together most of the time without much
concern about what kind of objects actually constitute the vertices and edges.
This article’s goal is to formalize that practice. Naturally, in this paper the sum
is generalized to families of multidigraphs, i.e. the graphs of [9].

The first section introduces functors to replace the concrete objects behind
vertices and edges of a graph with other objects, which will later be used in
section 5.

In the second section graph selector variants for Graph-yielding functions
are described in a similar way as it was done for Graph-membered sets in section
1 of [7].

1The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto:
skoch02@students.uni-mainz.de

c© 2021 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)249

https://sciendo.com/journal/forma
https://orcid.org/0000-0002-9628-177X
http://zbmath.org/classification/?q=cc:05C76
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/glib_015.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

250 sebastian koch

Isomorphisms between two Graph-membered sets or two Graph-yielding
functions are formalized in section 3. They are the foundation for isomorphisms
between unions (section 4) and sums (section 6) of graphs.

Section 4 introduces attributes vertex-disjoint and edge-disjoint for
sets or functions of graphs. A lot of attention is given to graph unions of vertex-
disjoint sets of graphs, since these essentially are the graph sums.

The rest of the article then focuses on graph sums, that are vertex-disjoint
unions of the range of a function of graphs, which is isomorphic to a given
graph function not necessarily vertex-disjoint, so that in future articles authors
do not need to create a vertex-disjoint function themselves. This “canonical”
distinction function is formalized in section 5. A second distinction function is
provided that leaves exactly one graph of the original graph function as it was.
Isomorphism theorems between these two distinction functions and the original
functions are provided as well and needed for the sum isomorphisms in the next
section.

Section 6 introduces the mode GraphSum of a (not necessarily vertex-disjoint)
graph function as a graph (directed) isomorphic to the union of the range of the
distinction function. The second distinction function is used to provide a graph
sum that is a supergraph of a given graph in the graph function.

Finally the last section defines the graph sum of two graph as a supergraph
of the first graph using the general definition from section 6.

1. Replacing Vertices and Edges

Let G be a graph, V be a non empty, one-to-one many sorted set indexed by
the vertices of G, and E be a one-to-one many sorted set indexed by the edges
of G. The functor replaceVerticesEdges(V,E) yielding a plain graph is defined
by

(Def. 1) there exist functions S, T from rngE into rng V such that S = V ·
(the source of G) · (E−1) and T = V · (the target of G) · (E−1) and it =
createGraph(rng V, rngE,S, T).

The functor replaceVertices(V) yielding a plain graph is defined by the term

(Def. 2) replaceVerticesEdges(V, idα), where α is the edges of G.

Let E be a one-to-one many sorted set indexed by the edges of G. The
functor replaceEdges(E) yielding a plain graph is defined by the term

(Def. 3) replaceVerticesEdges(idα, E), where α is the vertices of G.

Now we state the propositions:

(1) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and a one-to-one many sorted set E indexed

About graph sums 251

by the edges of G. Then

(i) the vertices of replaceVerticesEdges(V,E) = rng V , and

(ii) the edges of replaceVerticesEdges(V,E) = rngE, and

(iii) the source of replaceVerticesEdges(V,E) = V · (the source of G) ·
(E−1), and

(iv) the target of replaceVerticesEdges(V,E) = V · (the target of G) ·
(E−1).

(2) Let us consider a graph G, and a non empty, one-to-one many sorted set
V indexed by the vertices of G. Then

(i) the vertices of replaceVertices(V) = rng V , and

(ii) the edges of replaceVertices(V) = the edges of G, and

(iii) the source of replaceVertices(V) = V · (the source of G), and

(iv) the target of replaceVertices(V) = V · (the target of G).

The theorem is a consequence of (1).

(3) Let us consider a graph G, and a one-to-one many sorted set E indexed
by the edges of G. Then

(i) the vertices of replaceEdges(E) = the vertices of G, and

(ii) the edges of replaceEdges(E) = rngE, and

(iii) the source of replaceEdges(E) = (the source of G) · (E−1), and

(iv) the target of replaceEdges(E) = (the target of G) · (E−1).
The theorem is a consequence of (1).

(4) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e joins v to w in G. Then
E(e) joins V (v) to V (w) in replaceVerticesEdges(V,E). The theorem is
a consequence of (1).

(5) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and objects e, v, w. Suppose e joins v to w
in G. Then e joins V (v) to V (w) in replaceVertices(V). The theorem is
a consequence of (4).

(6) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. If e joins v to w in G, then E(e) joins
v to w in replaceEdges(E). The theorem is a consequence of (4).

(7) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by

252 sebastian koch

the edges of G, and objects e, v, w. Suppose e joins v and w in G. Then
E(e) joins V (v) and V (w) in replaceVerticesEdges(V,E). The theorem is
a consequence of (4).

(8) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and objects e, v, w. Suppose e joins v and
w in G. Then e joins V (v) and V (w) in replaceVertices(V). The theorem
is a consequence of (5).

(9) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. If e joins v and w in G, then E(e)
joins v and w in replaceEdges(E). The theorem is a consequence of (6).

(10) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e ∈ domE and v, w ∈ domV

and E(e) joins V (v) to V (w) in replaceVerticesEdges(V,E). Then e joins
v to w in G. The theorem is a consequence of (1).

(11) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and objects e, v, w. Suppose v, w ∈ domV

and e joins V (v) to V (w) in replaceVertices(V). Then e joins v to w in G.
The theorem is a consequence of (2) and (10).

(12) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e ∈ domE and E(e) joins
v to w in replaceEdges(E). Then e joins v to w in G. The theorem is
a consequence of (3) and (10).

(13) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e ∈ domE and v, w ∈ domV

and E(e) joins V (v) and V (w) in replaceVerticesEdges(V,E). Then e joins
v and w in G. The theorem is a consequence of (10).

(14) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and objects e, v, w. Suppose v, w ∈ domV

and e joins V (v) and V (w) in replaceVertices(V). Then e joins v and w in
G. The theorem is a consequence of (11).

(15) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e ∈ domE and E(e) joins
v and w in replaceEdges(E). Then e joins v and w in G. The theorem is
a consequence of (12).

Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and a one-to-one many sorted set E indexed by
the edges of G. Now we state the propositions:

About graph sums 253

(16) There exists a partial graph mapping F from G to replaceVerticesEdges
(V,E) such that

(i) FV = V , and

(ii) FE = E, and

(iii) F is directed-isomorphism.

The theorem is a consequence of (1) and (4).

(17) replaceVerticesEdges(V,E) is G-directed-isomorphic.
The theorem is a consequence of (16).

Let G be a loopless graph, V be a non empty, one-to-one many sorted set
indexed by the vertices of G, and E be a one-to-one many sorted set indexed by
the edges of G. One can verify that replaceVerticesEdges(V,E) is loopless and
replaceVertices(V) is loopless.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is loopless.

Let G be a non loopless graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can verify that replaceVerticesEdges(V,E)
is non loopless and replaceVertices(V) is non loopless.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
note that replaceEdges(E) is non loopless.

Let G be a non-multi graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Observe that replaceVerticesEdges(V,E) is
non-multi and replaceVertices(V) is non-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
note that replaceEdges(E) is non-multi.

Let G be a non non-multi graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. Observe that replaceVerticesEdges(V,E)
is non non-multi and replaceVertices(V) is non non-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is non non-multi.

Let G be a non-directed-multi graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. Note that replaceVerticesEdges(V,E) is
non-directed-multi and replaceVertices(V) is non-directed-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is non-directed-multi.

Let G be a non non-directed-multi graph and V be a non empty, one-to-one
many sorted set indexed by the vertices of G. Note that replaceVerticesEdges(V,

E) is non non-directed-multi and replaceVertices(V) is non non-directed-
multi.

254 sebastian koch

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is non non-directed-multi.

Let G be a simple graph and V be a non empty, one-to-one many sorted set
indexed by the vertices of G. One can verify that replaceVerticesEdges(V,E) is
simple and replaceVertices(V) is simple.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is simple.

Let G be a directed-simple graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. One can check that replaceVerticesEdges

(V,E) is directed-simple and replaceVertices(V) is directed-simple.
Let E be a one-to-one many sorted set indexed by the edges of G. One can

verify that replaceEdges(E) is directed-simple.
Let G be a trivial graph and V be a non empty, one-to-one many sorted

set indexed by the vertices of G. Note that replaceVerticesEdges(V,E) is trivial
and replaceVertices(V) is trivial.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is trivial.

Let G be a non trivial graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Note that replaceVerticesEdges(V,E) is non
trivial and replaceVertices(V) is non trivial.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is non trivial.

Let G be a vertex-finite graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can verify that replaceVerticesEdges(V,E)
is vertex-finite and replaceVertices(V) is vertex-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is vertex-finite.

Let G be a non vertex-finite graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. One can verify that replaceVerticesEdges

(V,E) is non vertex-finite and replaceVertices(V) is non vertex-finite.
Let E be a one-to-one many sorted set indexed by the edges of G. Let us

note that replaceEdges(E) is non vertex-finite.
Let G be an edge-finite graph and V be a non empty, one-to-one many sorted

set indexed by the vertices of G. Observe that replaceVerticesEdges(V,E) is
edge-finite and replaceVertices(V) is edge-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
note that replaceEdges(E) is edge-finite.

Let G be a non edge-finite graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. Observe that replaceVerticesEdges(V,E)
is non edge-finite and replaceVertices(V) is non edge-finite.

About graph sums 255

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is non edge-finite.

Let G be a finite graph and V be a non empty, one-to-one many sorted set
indexed by the vertices of G. Note that replaceVerticesEdges(V,E) is finite and
replaceVertices(V) is finite.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is finite.

Let G be an acyclic graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Let us note that replaceVerticesEdges(V,E) is
acyclic and replaceVertices(V) is acyclic.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that
replaceEdges(E) is acyclic.

Let G be a non acyclic graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Let us note that replaceVerticesEdges(V,E) is
non acyclic and replaceVertices(V) is non acyclic.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is non acyclic.

Let G be a connected graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can check that replaceVerticesEdges(V,E)
is connected and replaceVertices(V) is connected.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is connected.

Let G be a non connected graph and V be a non empty, one-to-one many sor-
ted set indexed by the vertices of G. One can check that replaceVerticesEdges(V,

E) is non connected and replaceVertices(V) is non connected.
Let E be a one-to-one many sorted set indexed by the edges of G. Observe

that replaceEdges(E) is non connected.
Let G be a tree-like graph and V be a non empty, one-to-one many sorted

set indexed by the vertices of G. Let us observe that replaceVerticesEdges(V,E)
is tree-like and replaceVertices(V) is tree-like.

Let E be a one-to-one many sorted set indexed by the edges of G. Observe
that replaceEdges(E) is tree-like.

Let G be a chordal graph and V be a non empty, one-to-one many sorted set
indexed by the vertices of G. One can verify that replaceVerticesEdges(V,E) is
chordal and replaceVertices(V) is chordal.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is chordal.

Let G be an edgeless graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can check that replaceVerticesEdges(V,E)
is edgeless and replaceVertices(V) is edgeless.

256 sebastian koch

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is edgeless.

Let G be a non edgeless graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can check that replaceVerticesEdges(V,E)
is non edgeless and replaceVertices(V) is non edgeless.

Let E be a one-to-one many sorted set indexed by the edges of G. Observe
that replaceEdges(E) is non edgeless.

Let G be a loopfull graph and V be a non empty, one-to-one many sorted set
indexed by the vertices of G. Let us observe that replaceVerticesEdges(V,E) is
loopfull and replaceVertices(V) is loopfull. Let E be a one-to-one many sorted
set indexed by the edges of G. Observe that replaceEdges(E) is loopfull.

Let G be a non loopfull graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Let us observe that replaceVerticesEdges(V,E)
is non loopfull and replaceVertices(V) is non loopfull.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that
replaceEdges(E) is non loopfull.

LetG be a locally-finite graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Let us note that replaceVerticesEdges(V,E) is
locally-finite and replaceVertices(V) is locally-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that
replaceEdges(E) is locally-finite.

Let G be a non locally-finite graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. Let us note that replaceVerticesEdges(V,

E) is non locally-finite and replaceVertices(V) is non locally-finite. Let E be
a one-to-one many sorted set indexed by the edges of G. One can verify that
replaceEdges(E) is non locally-finite.

Let c be a non zero cardinal number, G be a c-vertex graph, and V be a non
empty, one-to-one many sorted set indexed by the vertices of G. Let us observe
that replaceVerticesEdges(V,E) is c-vertex and replaceVertices(V) is c-vertex.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is c-vertex.

Let c be a cardinal number, G be a c-edge graph, and V be a non empty,
one-to-one many sorted set indexed by the vertices of G. Let us observe that
replaceVerticesEdges(V,E) is c-edge and replaceVertices(V) is c-edge.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is c-edge. Now we state the propositions:

(18) Let us consider a graph G, a non empty, one-to-one many sorted set
V indexed by the vertices of G, a one-to-one many sorted set E indexed
by the edges of G, and a walk W1 of G. Then there exists a walk W2 of
replaceVerticesEdges(V,E) such that

About graph sums 257

(i) V ·W1.vertexSeq() = W2.vertexSeq(), and

(ii) E ·W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (16).

(19) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and a walk W1 of G. Then there exists a walk
W2 of replaceVertices(V) such that

(i) V ·W1.vertexSeq() = W2.vertexSeq(), and

(ii) W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (18).

(20) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and a walk W1 of G. Then there exists a walk W2 of
replaceEdges(E) such that

(i) W1.vertexSeq() = W2.vertexSeq(), and

(ii) E ·W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (18).

(21) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and a walk W2 of replaceVerticesEdges(V,E). Then there
exists a walk W1 of G such that

(i) V ·W1.vertexSeq() = W2.vertexSeq(), and

(ii) E ·W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (16).

(22) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and a walk W2 of replaceVertices(V). Then
there exists a walk W1 of G such that

(i) V ·W1.vertexSeq() = W2.vertexSeq(), and

(ii) W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (21).

(23) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and a walk W2 of replaceEdges(E). Then there exists
a walk W1 of G such that

(i) W1.vertexSeq() = W2.vertexSeq(), and

(ii) E ·W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (21).

258 sebastian koch

2. Graph Selectors of Graph-yielding Functions

Let F be a graph-yielding function. The functors: the vertices of F , the edges
of F , the source of F , and the target of F yielding functions are defined by
conditions

(Def. 4) dom the vertices of F = domF and for every object x such that x ∈
domF there exists a graph G such that G = F (x) and (the vertices of
F)(x) = the vertices of G,

(Def. 5) dom the edges of F = domF and for every object x such that x ∈ domF

there exists a graph G such that G = F (x) and (the edges of F)(x) =
the edges of G,

(Def. 6) dom the source of F = domF and for every object x such that x ∈
domF there exists a graph G such that G = F (x) and (the source of
F)(x) = the source of G,

(Def. 7) dom the target of F = domF and for every object x such that x ∈ domF

there exists a graph G such that G = F (x) and (the target of F)(x) =
the target of G,

respectively. Let us observe that the source of F is function yielding and the tar-
get of F is function yielding.

Let F be an empty, graph-yielding function. One can verify that the vertices
of F is empty and the edges of F is empty and the source of F is empty and
the target of F is empty.

Let F be a non empty, graph-yielding function. One can verify that the ver-
tices of F is non empty and the edges of F is non empty and the source of F is
non empty and the target of F is non empty.

Let F be a graph-yielding function. One can check that the vertices of F is
non-empty.

Let F be a non empty, graph-yielding function. The functors: the vertices of
F , the edges of F , the source of F , and the target of F are defined by conditions

(Def. 8) dom the vertices of F = domF and for every element x of domF ,
(the vertices of F)(x) = the vertices of F (x),

(Def. 9) dom the edges of F = domF and for every element x of domF , (the edges
of F)(x) = the edges of F (x),

(Def. 10) dom the source of F = domF and for every element x of domF , (the source
of F)(x) = the source of F (x),

(Def. 11) dom the target of F = domF and for every element x of domF , (the target
of F)(x) = the target of F (x),

respectively.
Let us consider a graph-yielding function F . Now we state the propositions:

About graph sums 259

(24) The vertices of rngF = rng(the vertices of F).

(25) The edges of rngF = rng(the edges of F).

(26) The source of rngF = rng(the source of F).

(27) The target of rngF = rng(the target of F).

3. Isomorphisms between Graph-membered Sets or Graph-yielding
Functions

Let S1, S2 be graph-membered sets. We say that S1 and S2 are directed-
isomorphic if and only if

(Def. 12) there exists a one-to-one function f such that dom f = S1 and rng f = S2
and for every graph G such that G ∈ S1 holds f(G) is a G-directed-
isomorphic graph.

One can check that the predicate is reflexive and symmetric. We say that S1
and S2 are isomorphic if and only if

(Def. 13) there exists a one-to-one function f such that dom f = S1 and rng f = S2
and for every graph G such that G ∈ S1 holds f(G) is a G-isomorphic
graph.

Let us note that the predicate is reflexive and symmetric.
Let us consider graph-membered sets S1, S2, S3. Now we state the proposi-

tions:

(28) If S1 and S2 are directed-isomorphic and S2 and S3 are directed-isomorphic,
then S1 and S3 are directed-isomorphic.

(29) If S1 and S2 are isomorphic and S2 and S3 are isomorphic, then S1 and
S3 are isomorphic.

Let us consider graph-membered sets S1, S2. Now we state the propositions:

(30) If S1 and S2 are directed-isomorphic, then S1 and S2 are isomorphic.

(31) If S1 and S2 are directed-isomorphic, then S1 = S2 .

(32) If S1 and S2 are isomorphic, then S1 = S2 .

(33) Let us consider empty, graph-membered sets S1, S2. Then S1 and S2 are
directed-isomorphic.

Let us consider graphs G1, G2. Now we state the propositions:

(34) {G1} and {G2} are directed-isomorphic if and only if G2 is G1-directed-
isomorphic.

(35) {G1} and {G2} are isomorphic if and only if G2 is G1-isomorphic.

Let us consider graph-membered sets S1, S2. Now we state the propositions:

(36) Suppose S1 and S2 are isomorphic. Then

260 sebastian koch

(i) if S1 is empty, then S2 is empty, and

(ii) if S1 is loopless, then S2 is loopless, and

(iii) if S1 is non-multi, then S2 is non-multi, and

(iv) if S1 is simple, then S2 is simple, and

(v) if S1 is acyclic, then S2 is acyclic, and

(vi) if S1 is connected, then S2 is connected, and

(vii) if S1 is tree-like, then S2 is tree-like, and

(viii) if S1 is chordal, then S2 is chordal, and

(ix) if S1 is edgeless, then S2 is edgeless, and

(x) if S1 is loopfull, then S2 is loopfull.

(37) Suppose S1 and S2 are directed-isomorphic. Then

(i) if S1 is non-directed-multi, then S2 is non-directed-multi, and

(ii) if S1 is directed-simple, then S2 is directed-simple.

Let F1, F2 be graph-yielding functions. We say that F1 and F2 are directed-
isomorphic if and only if

(Def. 14) there exists a one-to-one function p such that dom p = domF1 and
rng p = domF2 and for every object x such that x ∈ domF1 there exist
graphs G1, G2 such that G1 = F1(x) and G2 = F2(p(x)) and G2 is G1-
directed-isomorphic.

Let us observe that the predicate is reflexive and symmetric. We say that F1
and F2 are isomorphic if and only if

(Def. 15) there exists a one-to-one function p such that dom p = domF1 and
rng p = domF2 and for every object x such that x ∈ domF1 there exist
graphs G1, G2 such that G1 = F1(x) and G2 = F2(p(x)) and G2 is G1-
isomorphic.

Observe that the predicate is reflexive and symmetric.
Let us consider non empty, graph-yielding functions F1, F2. Now we state

the propositions:

(38) Suppose domF1 = domF2 and for every element x1 of domF1 and for
every element x2 of domF2 such that x1 = x2 holds F2(x2) is F1(x1)-
directed-isomorphic. Then F1 and F2 are directed-isomorphic.

(39) Suppose domF1 = domF2 and for every element x1 of domF1 and for
every element x2 of domF2 such that x1 = x2 holds F2(x2) is F1(x1)-
isomorphic. Then F1 and F2 are isomorphic.

Let us consider graph-yielding functions F1, F2, F3. Now we state the pro-
positions:

About graph sums 261

(40) If F1 and F2 are directed-isomorphic and F2 and F3 are
directed-isomorphic, then F1 and F3 are directed-isomorphic.

(41) If F1 and F2 are isomorphic and F2 and F3 are isomorphic, then F1 and
F3 are isomorphic.

(42) Let us consider graph-yielding functions F1, F2. If F1 and F2 are directed-
isomorphic, then F1 and F2 are isomorphic.

(43) Let us consider empty, graph-yielding functions F1, F2. Then

(i) F1 and F2 are directed-isomorphic, and

(ii) F1 and F2 are isomorphic.

Let us consider graph-yielding functions F1, F2. Now we state the proposi-
tions:

(44) If F1 and F2 are directed-isomorphic, then F1 = F2 .

(45) If F1 and F2 are isomorphic, then F1 = F2 .

Let us consider graphs G1, G2 and objects x, y. Now we state the proposi-
tions:

(46) x 7−→. G1 and y 7−→. G2 are directed-isomorphic if and only if G2 is G1-
directed-isomorphic.

(47) x 7−→. G1 and y 7−→. G2 are isomorphic if and only if G2 is G1-isomorphic.

Let us consider graph-yielding functions F1, F2. Now we state the proposi-
tions:

(48) Suppose F1 and F2 are isomorphic. Then

(i) if F1 is empty, then F2 is empty, and

(ii) if F1 is loopless, then F2 is loopless, and

(iii) if F1 is non-multi, then F2 is non-multi, and

(iv) if F1 is simple, then F2 is simple, and

(v) if F1 is acyclic, then F2 is acyclic, and

(vi) if F1 is connected, then F2 is connected, and

(vii) if F1 is tree-like, then F2 is tree-like, and

(viii) if F1 is chordal, then F2 is chordal, and

(ix) if F1 is edgeless, then F2 is edgeless, and

(x) if F1 is loopfull, then F2 is loopfull.

(49) Suppose F1 and F2 are directed-isomorphic. Then

(i) if F1 is non-directed-multi, then F2 is non-directed-multi, and

(ii) if F1 is directed-simple, then F2 is directed-simple.

262 sebastian koch

Let I be a set and F1, F2 be graph-yielding many sorted sets indexed by I.
Note that F1 and F2 are directed-isomorphic if and only if the condition (Def.
16) is satisfied.

(Def. 16) there exists a permutation p of I such that for every object x such that
x ∈ I there exist graphs G1, G2 such that G1 = F1(x) and G2 = F2(p(x))
and G2 is G1-directed-isomorphic.

One can check that the predicate is reflexive and symmetric. Let us note that
F1 and F2 are isomorphic if and only if the condition (Def. 17) is satisfied.

(Def. 17) there exists a permutation p of I such that for every object x such that
x ∈ I there exist graphs G1, G2 such that G1 = F1(x) and G2 = F2(p(x))
and G2 is G1-isomorphic.

Note that the predicate is reflexive and symmetric.

4. Distinguishing the Vertex and Edge Sets of Several Graphs
from Each Other

Let S be a graph-membered set. We say that S is vertex-disjoint if and only
if

(Def. 18) for every graphs G1, G2 such that G1, G2 ∈ S and G1 6= G2 holds
the vertices of G1 misses the vertices of G2.

We say that S is edge-disjoint if and only if

(Def. 19) for every graphs G1, G2 such that G1, G2 ∈ S and G1 6= G2 holds
the edges of G1 misses the edges of G2.

Now we state the proposition:

(50) Let us consider a graph-membered set S. Then S is vertex-disjoint and
edge-disjoint if and only if for every graphs G1, G2 such that G1, G2 ∈
S and G1 6= G2 holds the vertices of G1 misses the vertices of G2 and
the edges of G1 misses the edges of G2.

Let us note that every graph-membered set which is trivial is also vertex-
disjoint and edge-disjoint and every graph-membered set which is edgeless is
also edge-disjoint and every graph-membered set which is edge-disjoint is al-
so ∪-tolerating and every graph-membered set which is vertex-disjoint and ∪-
tolerating is also edge-disjoint.

Let G be a graph. One can check that {G} is vertex-disjoint and edge-
disjoint.

Let us consider graphs G1, G2. Now we state the propositions:

(51) {G1, G2} is vertex-disjoint if and only if G1 = G2 or the vertices of G1
misses the vertices of G2.

About graph sums 263

(52) {G1, G2} is edge-disjoint if and only if G1 = G2 or the edges of G1 misses
the edges of G2.

One can verify that there exists a graph-membered set which is non emp-
ty, ∪-tolerating, vertex-disjoint, edge-disjoint, acyclic, simple, directed-simple,
loopless, non-multi, and non-directed-multi.

Let S be a vertex-disjoint, graph-membered set. Note that the vertices of S
is mutually-disjoint.

Let S be an edge-disjoint, graph-membered set. One can verify that the edges
of S is mutually-disjoint.

Let S be a vertex-disjoint, graph-membered set. Observe that every subset
of S is vertex-disjoint.

Let S1 be a vertex-disjoint, graph-membered set and S2 be a set. Let us note
that S1 ∩ S2 is vertex-disjoint and S1 \ S2 is vertex-disjoint.

Let S be an edge-disjoint, graph-membered set. One can verify that every
subset of S is edge-disjoint.

Let S1 be an edge-disjoint, graph-membered set and S2 be a set. Let us
observe that S1 ∩ S2 is edge-disjoint and S1 \ S2 is edge-disjoint.

Let us consider graph-membered sets S1, S2. Now we state the propositions:

(53) If S1 ∪ S2 is vertex-disjoint, then S1 is vertex-disjoint and S2 is vertex-
disjoint.

(54) If S1∪S2 is edge-disjoint, then S1 is edge-disjoint and S2 is edge-disjoint.

Let us consider vertex-disjoint graph union sets S1, S2, a graph union G1 of
S1, and a graph union G2 of S2. Now we state the propositions:

(55) If S1 and S2 are directed-isomorphic, then G2 is G1-directed-isomorphic.
Proof: Consider h being a one-to-one function such that domh = S1
and rng h = S2 and for every graph G such that G ∈ S1 holds h(G)
is a G-directed-isomorphic graph. Define Q[object, object] ≡ there exists
an element G of S1 and there exists a partial graph mapping F from G

to h(G) such that $1 = G and $2 = F and F is directed-isomorphism. For
every element G of S1, there exists an object F such that Q[G,F].

Consider H being a many sorted set indexed by S1 such that for every
element G of S1, Q[G,H(G)]. For every element G of S1, there exists
a partial graph mapping F from G to h(G) such that H(G) = F and F

is directed-isomorphism. Set V = rng pr1(H). Set E = rng pr2(H). For
every object y such that y ∈ V holds y is a function. For every functions
f1, f2 such that f1, f2 ∈ V holds f1 tolerates f2. For every object y such
that y ∈ E holds y is a function. For every functions g1, g2 such that g1,
g2 ∈ E holds g1 tolerates g2. �

(56) Suppose S1 and S2 are isomorphic. Then there exists a vertex-disjoint

264 sebastian koch

graph union set S3 and there exists a subset E of the edges of G2 and there
exists a graph union G3 of S3 such that S1 and S3 are directed-isomorphic
and G3 is a graph given by reversing directions of the edges E of G2.

Proof: Consider h being a one-to-one function such that domh = S1 and
rng h = S2 and for every graph G such that G ∈ S1 holds h(G) is a G-
isomorphic graph. Define Q[object, object] ≡ there exists an element G of
S1 and there exists a partial graph mapping F from G to h(G) such that
$1 = G and $2 = F and F is isomorphism. For every element G of S1, there
exists an object F such that Q[G,F]. Consider H being a many sorted set
indexed by S1 such that for every element G of S1, Q[G,H(G)]. For every
element G of S1, there exists a partial graph mapping F from G to h(G)
such that H(G) = F and F is isomorphism. Define R[object, object] ≡
there exists an element G of S1 and there exists a subset E of the edges of
h(G) such that $1 = G and $2 = E and for every graph G′ given by rever-
sing directions of the edges E of h(G), there exists a partial graph mapping
F from G to G′ such that F = H(G) and F is directed-isomorphism.

For every element G of S1, there exists an object E such that R[G,E]
by [5, (89)]. Consider A being a many sorted set indexed by S1 such that
for every element G of S1, R[G,A(G)]. For every element G of S1, A(G)
is a subset of the edges of h(G). For every element G of S1 and for every
graph G′ given by reversing directions of the edges A(G) of h(G), there
exists a partial graph mapping F from G to G′ such that F = H(G) and
F is directed-isomorphism. Define U(element of S1) = the graph given by
reversing directions of the edges A($1) of h($1). Consider B being a many
sorted set indexed by S1 such that for every element G of S1, B(G) =
U(G). For every object y such that y ∈

⋃
rngA holds y ∈ the edges of G2.

�

(57) If S1 and S2 are isomorphic, then G2 is G1-isomorphic. The theorem is
a consequence of (56) and (55).

(58) Let us consider a vertex-disjoint graph union set S, a graph union G of
S, and a walk W of G. Then there exists an element H of S such that W
is a walk of H.

Proof: Define P[walk of G] ≡ there exists an element H of S such that $1
is a walk of H. For every trivial walk W of G, P[W] by [8, (128)]. For every
walk W of G and for every object e such that e ∈ W.last().edgesInOut()
and P[W] holds P[W.addEdge(e)] by [7, (21)], [8, (16)], [9, (67)], [6, (117)].
For every walk W of G, P[W] by [8, Sch.1]. �

Let us consider a vertex-disjoint graph union set S and a graph union G of
S. Now we state the propositions:

About graph sums 265

(59) If G is connected, then there exists a graph H such that S = {H}. The
theorem is a consequence of (58).

(60) (i) S is non-multi iff G is non-multi, and

(ii) S is non-directed-multi iff G is non-directed-multi, and

(iii) S is acyclic iff G is acyclic.
The theorem is a consequence of (58).

(61) (i) S is simple iff G is simple, and

(ii) S is directed-simple iff G is directed-simple.
The theorem is a consequence of (60).

Let S be a vertex-disjoint, non-multi graph union set. Let us note that every
graph union of S is non-multi.

Let S be a vertex-disjoint, non-directed-multi graph union set. One can check
that every graph union of S is non-directed-multi.

Let S be a vertex-disjoint, simple graph union set. Let us observe that every
graph union of S is simple.

Let S be a vertex-disjoint, directed-simple graph union set. Observe that
every graph union of S is directed-simple.

Let S be a vertex-disjoint, acyclic graph union set. Let us note that every
graph union of S is acyclic.

Now we state the propositions:

(62) Let us consider a vertex-disjoint graph union set S, an element H of
S, and a graph union G of S. Then H is a subgraph of G induced by
the vertices of H.

(63) Let us consider a vertex-disjoint graph union set S, and a graph union
G of S. Then

(i) S is chordal iff G is chordal, and

(ii) S is loopfull iff G is loopfull.

The theorem is a consequence of (58) and (62).

(64) Let us consider a vertex-disjoint graph union set S, a graph union G of
S, an element H of S, a vertex v of G, and a vertex w of H. If v = w,
then G.reachableFrom(v) = H.reachableFrom(w). The theorem is a con-
sequence of (58).

(65) Let us consider a vertex-disjoint graph union set S, and a graph union G
of S. ThenG.componentSet() =

⋃
the set of all H.componentSet() where

H is an element of S. The theorem is a consequence of (64).

(66) Let us consider a vertex-disjoint, non empty, graph-membered set S.
Then the set of all H.componentSet() where H is an element of S is
mutually-disjoint.

266 sebastian koch

(67) Let us consider a non empty, connected, graph-membered set S. Then
the set of all H.componentSet() where H is an element of S =
SmallestPartition(the vertices of S).

Let us consider a vertex-disjoint graph union set S and a graph union G of
S. Now we state the propositions:

(68) S ⊆ G.numComponents(). The theorem is a consequence of (66) and
(65).

(69) If S is connected, then S = G.numComponents(). The theorem is a con-
sequence of (67) and (65).

Let F be a graph-yielding function. We say that F is vertex-disjoint if and
only if

(Def. 20) for every objects x1, x2 such that x1, x2 ∈ domF and x1 6= x2 there exist
graphs G1, G2 such that G1 = F (x1) and G2 = F (x2) and the vertices of
G1 misses the vertices of G2.

We say that F is edge-disjoint if and only if

(Def. 21) for every objects x1, x2 such that x1, x2 ∈ domF and x1 6= x2 there
exist graphs G1, G2 such that G1 = F (x1) and G2 = F (x2) and the edges
of G1 misses the edges of G2.

Observe that every graph-yielding function which is trivial is also vertex-
disjoint and edge-disjoint and every graph-yielding function which is vertex-
disjoint is also one-to-one.

Let F be a non empty, graph-yielding function. Let us observe that F is
vertex-disjoint if and only if the condition (Def. 22) is satisfied.

(Def. 22) for every elements x1, x2 of domF such that x1 6= x2 holds the vertices
of F (x1) misses the vertices of F (x2).

Observe that F is edge-disjoint if and only if the condition (Def. 23) is satisfied.

(Def. 23) for every elements x1, x2 of domF such that x1 6= x2 holds the edges of
F (x1) misses the edges of F (x2).

Let us consider a non empty, graph-yielding function F . Now we state the
propositions:

(70) F is vertex-disjoint if and only if for every elements x1, x2 of domF such
that x1 6= x2 holds (the vertices of F)(x1) misses (the vertices of F)(x2).

(71) F is edge-disjoint if and only if for every elements x1, x2 of domF such
that x1 6= x2 holds (the edges of F)(x1) misses (the edges of F)(x2).

(72) F is vertex-disjoint and edge-disjoint if and only if for every elements
x1, x2 of domF such that x1 6= x2 holds the vertices of F (x1) misses
the vertices of F (x2) and the edges of F (x1) misses the edges of F (x2).

About graph sums 267

(73) F is vertex-disjoint and edge-disjoint if and only if for every elements
x1, x2 of domF such that x1 6= x2 holds (the vertices of F)(x1) mis-
ses (the vertices of F)(x2) and (the edges of F)(x1) misses (the edges of
F)(x2). The theorem is a consequence of (70) and (71).

Let x be an object and G be a graph. One can check that x 7−→. G is vertex-
disjoint and edge-disjoint and 〈G〉 is vertex-disjoint and edge-disjoint and there
exists a graph-yielding function which is non empty, vertex-disjoint, and edge-
disjoint.

Let F be a vertex-disjoint, graph-yielding function. Observe that rngF is
vertex-disjoint.

Let F be an edge-disjoint, graph-yielding function. Let us note that rngF
is edge-disjoint.

Let us consider non empty, one-to-one, graph-yielding functions F1, F2. Now
we state the propositions:

(74) If F1 and F2 are directed-isomorphic, then rngF1 and rngF2 are directed-
isomorphic.

(75) If F1 and F2 are isomorphic, then rngF1 and rngF2 are isomorphic.

Let us consider graphs G1, G2. Now we state the propositions:

(76) 〈G1, G2〉 is vertex-disjoint if and only if the vertices of G1 misses the ver-
tices of G2.

(77) 〈G1, G2〉 is edge-disjoint if and only if the edges of G1 misses the edges
of G2.

5. Distinguishing the Range of a Graph-yielding Function

Let f be a function and x be an object. The functor
∐

(f, x) yielding a many
sorted set indexed by f(x) is defined by the term

(Def. 24) 〈f(x) 7−→ 〈〈f, x〉〉, idf(x)〉.
Now we state the propositions:

(78) Let us consider a function f , and objects x, y. Suppose x ∈ dom f and
y ∈ f(x). Then

∐
(f, x)(y) = 〈〈f, x, y〉〉.

(79) Let us consider a function f , and objects x, z. Suppose x ∈ dom f and
z ∈ rng

∐
(f, x). Then there exists an object y such that

(i) y ∈ f(x), and

(ii) z = 〈〈f, x, y〉〉.

The theorem is a consequence of (78).

268 sebastian koch

(80) Let us consider a function f , and an object x. Then rng
∐

(f, x) = {〈〈f,
x〉〉} × f(x). The theorem is a consequence of (79) and (78).

Let us consider a function f and objects x1, x2. Now we state the proposi-
tions:

(81) rng
∐

(f, x1) misses f(x2). The theorem is a consequence of (79).

(82) If x1 6= x2, then rng
∐

(f, x1) misses rng
∐

(f, x2). The theorem is a con-
sequence of (79).

Let f be a function and x be an object. One can verify that
∐

(f, x) is
one-to-one.

Let f be an empty function. One can verify that
∐

(f, x) is empty.
Let f be a non empty, non-empty function and x be an element of dom f .

One can verify that
∐

(f, x) is non empty.
Let F be a non empty, graph-yielding function and x be an element of

domF . One can check that
∐

(the vertices of F, x) is non empty and (the vertices
of F (x))-defined and

∐
(the edges of F, x) is (the edges of F (x))-defined and∐

(the vertices of F, x) is total as a (the vertices of F (x))-defined function and∐
(the edges of F, x) is total as a (the edges of F (x))-defined function.

The functor
∐
F yielding a graph-yielding function is defined by

(Def. 25) dom it = domF and for every element x of domF , it(x) =
replaceVerticesEdges(

∐
(the vertices of F, x),

∐
(the edges of F, x)).

Note that
∐
F is non empty and

∐
F is plain.

Let us consider a non empty, graph-yielding function F and an element x of
domF . Now we state the propositions:

(83) (The vertices of
∐
F)(x) = {〈〈the vertices of F, x〉〉} × (the vertices of

F)(x). The theorem is a consequence of (1) and (80).

(84) (The edges of
∐
F)(x) = {〈〈the edges of F, x〉〉} × (the edges of F)(x).

The theorem is a consequence of (1) and (80).

Let F be a non empty, graph-yielding function. Note that
∐
F is vertex-

disjoint and edge-disjoint.
Let us consider a non empty, graph-yielding function F , an element x of

domF , and an element x′ of dom(
∐
F). Now we state the propositions:

(85) Suppose x = x′. Then there exists a partial graph mapping G from F (x)
to (
∐
F)(x′) such that

(i) GV =
∐

(the vertices of F, x), and

(ii) GE =
∐

(the edges of F, x), and

(iii) G is directed-isomorphism.

The theorem is a consequence of (16).

About graph sums 269

(86) If x = x′, then (
∐
F)(x′) is F (x)-directed-isomorphic. The theorem is

a consequence of (85).

(87) Let us consider a non empty, graph-yielding function F . Then F and∐
F are directed-isomorphic. The theorem is a consequence of (86) and

(38).

Let us consider non empty, graph-yielding functions F1, F2. Now we state
the propositions:

(88) If F1 and F2 are directed-isomorphic, then
∐
F1 and

∐
F2 are directed-

isomorphic. The theorem is a consequence of (87) and (40).

(89) If F1 and F2 are isomorphic, then
∐
F1 and

∐
F2 are isomorphic. The

theorem is a consequence of (42), (87), and (41).

Let us consider a non empty, graph-yielding function F , an element x of
domF , an element x′ of dom(

∐
F), and objects v, e, w. Now we state the

propositions:

(90) Suppose x = x′. Then suppose e joins v to w in F (x). Then 〈〈the edges
of F, x, e〉〉 joins 〈〈the vertices of F, x, v〉〉 to 〈〈the vertices of F, x, w〉〉 in
(
∐
F)(x′). The theorem is a consequence of (85) and (78).

(91) Suppose x = x′. Then suppose e joins v and w in F (x). Then 〈〈the edges
of F, x, e〉〉 joins 〈〈the vertices of F, x, v〉〉 and 〈〈the vertices of F, x, w〉〉 in
(
∐
F)(x′). The theorem is a consequence of (90).

Let us consider a non empty, graph-yielding function F , an element x of
domF , an element x′ of dom(

∐
F), and objects v′, e′, w′. Now we state the

propositions:

(92) Suppose x = x′ and e′ joins v′ to w′ in (
∐
F)(x′). Then there exist

objects v, e, w such that

(i) e joins v to w in F (x), and

(ii) e′ = 〈〈the edges of F, x, e〉〉, and

(iii) v′ = 〈〈the vertices of F, x, v〉〉, and

(iv) w′ = 〈〈the vertices of F, x, w〉〉.
The theorem is a consequence of (85), (83), (80), (79), (84), and (78).

(93) Suppose x = x′ and e′ joins v′ and w′ in (
∐
F)(x′). Then there exist

objects v, e, w such that

(i) e joins v and w in F (x), and

(ii) e′ = 〈〈the edges of F, x, e〉〉, and

(iii) v′ = 〈〈the vertices of F, x, v〉〉, and

(iv) w′ = 〈〈the vertices of F, x, w〉〉.

270 sebastian koch

The theorem is a consequence of (92).

Let F be a non empty, loopless, graph-yielding function. One can verify
that

∐
F is loopless.

Let F be a non empty, non loopless, graph-yielding function. Note that
∐
F

is non loopless.
Let F be a non empty, non-multi, graph-yielding function. Observe that∐
F is non-multi.
Let F be a non empty, non non-multi, graph-yielding function. One can

verify that
∐
F is non non-multi.

Let F be a non empty, non-directed-multi, graph-yielding function. Note
that

∐
F is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function. One
can verify that

∐
F is non non-directed-multi.

Let F be a non empty, simple, graph-yielding function. Observe that
∐
F

is simple.
Let F be a non empty, directed-simple, graph-yielding function. One can

check that
∐
F is directed-simple.

Let F be a non empty, acyclic, graph-yielding function. Let us observe that∐
F is acyclic.
Let F be a non empty, non acyclic, graph-yielding function. One can check

that
∐
F is non acyclic.

Let F be a non empty, connected, graph-yielding function. Let us note that∐
F is connected.
Let F be a non empty, non connected, graph-yielding function. Let us

observe that
∐
F is non connected.

Let F be a non empty, tree-like, graph-yielding function. One can check
that

∐
F is tree-like.

Let F be a non empty, edgeless, graph-yielding function. Observe that
∐
F

is edgeless.
Let F be a non empty, non edgeless, graph-yielding function. One can verify

that
∐
F is non edgeless.

Let F be a non empty, graph-yielding function and z be an element of domF .
The functor

∐
(F, z) yielding a graph-yielding function is defined by the term

(Def. 26)
∐
F +· (z, F (z)�(the graph selectors)).

Let us note that
∐

(F, z) is non empty. Now we state the propositions:

(94) Let us consider a non empty, graph-yielding function F , and an element
z of domF . Then domF = dom(

∐
(F, z)).

(95) Let us consider a non empty, graph-yielding function F , an element z of
domF , and a graph-yielding function G. Then G =

∐
(F, z) if and only

About graph sums 271

if domG = domF and G(z) = F (z)�(the graph selectors) and for every
element x of domF such that x 6= z holds G(x) =
replaceVerticesEdges(

∐
(the vertices of F, x),

∐
(the edges of F, x)).

(96) Let us consider a non empty, graph-yielding function F , and an element
z of domF . Then

∐
(F, z)(z) = F (z)�(the graph selectors).

Let F be a non empty, graph-yielding function and z be an element of domF .
Observe that

∐
(F, z) is plain. Now we state the propositions:

(97) Let us consider a non empty, graph-yielding function F , and an element
z of domF . Then (the vertices of

∐
(F, z))(z) = (the vertices of F)(z).

The theorem is a consequence of (94) and (96).

(98) Let us consider a non empty, graph-yielding function F , and elements
x, z of domF . Suppose x 6= z. Then (the vertices of

∐
(F, z))(x) =

(the vertices of
∐
F)(x). The theorem is a consequence of (95).

Let us consider a non empty, graph-yielding function F and an element z of
domF . Now we state the propositions:

(99) The vertices of
∐

(F, z) = (the vertices of
∐
F) +· (z, the vertices of

F (z)). The theorem is a consequence of (97) and (98).

(100) (The edges of
∐

(F, z))(z) = (the edges of F)(z). The theorem is a con-
sequence of (94) and (96).

(101) Let us consider a non empty, graph-yielding function F , and elements x,
z of domF . Suppose x 6= z. Then (the edges of

∐
(F, z))(x) = (the edges

of
∐
F)(x). The theorem is a consequence of (95).

(102) Let us consider a non empty, graph-yielding function F , and an element z
of domF . Then the edges of

∐
(F, z) = (the edges of

∐
F)+·(z, the edges

of F (z)). The theorem is a consequence of (100) and (101).

Let F be a non empty, graph-yielding function and z be an element of domF .
Let us note that

∐
(F, z) is vertex-disjoint and edge-disjoint.

Let us consider a non empty, graph-yielding function F , elements x, z of
domF , and an element x′ of dom(

∐
(F, z)). Now we state the propositions:

(103) Suppose x 6= z and x = x′. Then there exists a partial graph mapping
G from F (x) to

∐
(F, z)(x′) such that

(i) GV =
∐

(the vertices of F, x), and

(ii) GE =
∐

(the edges of F, x), and

(iii) G is directed-isomorphism.

The theorem is a consequence of (85).

(104) If x = x′, then
∐

(F, z)(x′) is (F (x))-directed-isomorphic. The theorem
is a consequence of (96) and (103).

272 sebastian koch

Let us consider a non empty, graph-yielding function F and an element z of
domF . Now we state the propositions:

(105) F and
∐

(F, z) are directed-isomorphic. The theorem is a consequence of
(104) and (38).

(106)
∐
F and

∐
(F, z) are directed-isomorphic. The theorem is a consequence

of (87), (105), and (40).

(107) Let us consider non empty, graph-yielding functions F1, F2, an element z1
of domF1, and an element z2 of domF2. Suppose F1 and F2 are directed-
isomorphic. Then

∐
(F1, z1) and

∐
(F2, z2) are directed-isomorphic. The

theorem is a consequence of (105) and (40).

Let us consider a non empty, graph-yielding function F , an element z of
domF , an element z′ of dom(

∐
(F, z)), and objects v, e, w. Now we state the

propositions:

(108) If z = z′, then e joins v to w in F (z) iff e joins v to w in
∐

(F, z)(z′).
The theorem is a consequence of (96).

(109) If z = z′, then e joins v and w in F (z) iff e joins v and w in
∐

(F, z)(z′).
The theorem is a consequence of (96).

Let us consider a non empty, graph-yielding function F , elements x, z of
domF , an element x′ of dom(

∐
(F, z)), and objects v, e, w. Now we state the

propositions:

(110) Suppose x 6= z and x = x′. Then suppose e joins v to w in F (x). Then
〈〈the edges of F, x, e〉〉 joins 〈〈the vertices of F, x, v〉〉 to 〈〈the vertices of F,
x, w〉〉 in

∐
(F, z)(x′). The theorem is a consequence of (90).

(111) Suppose x 6= z and x = x′. Then suppose e joins v and w in F (x). Then
〈〈the edges of F, x, e〉〉 joins 〈〈the vertices of F, x, v〉〉 and 〈〈the vertices of
F, x, w〉〉 in

∐
(F, z)(x′). The theorem is a consequence of (91).

Let us consider a non empty, graph-yielding function F , elements x, z of
domF , an element x′ of dom(

∐
(F, z)), and objects v′, e′, w′. Now we state the

propositions:

(112) Suppose x 6= z and x = x′ and e′ joins v′ to w′ in
∐

(F, z)(x′). Then
there exist objects v, e, w such that

(i) e joins v to w in F (x), and

(ii) e′ = 〈〈the edges of F, x, e〉〉, and

(iii) v′ = 〈〈the vertices of F, x, v〉〉, and

(iv) w′ = 〈〈the vertices of F, x, w〉〉.

The theorem is a consequence of (92).

About graph sums 273

(113) Suppose x 6= z and x = x′ and e′ joins v′ and w′ in
∐

(F, z)(x′). Then
there exist objects v, e, w such that

(i) e joins v and w in F (x), and

(ii) e′ = 〈〈the edges of F, x, e〉〉, and

(iii) v′ = 〈〈the vertices of F, x, v〉〉, and

(iv) w′ = 〈〈the vertices of F, x, w〉〉.
The theorem is a consequence of (93).

Let F be a non empty, loopless, graph-yielding function and z be an element
of domF . One can check that

∐
(F, z) is loopless.

Let F be a non empty, non loopless, graph-yielding function. Let us observe
that

∐
(F, z) is non loopless.

Let F be a non empty, non-multi, graph-yielding function. Let us note that∐
(F, z) is non-multi.

Let F be a non empty, non non-multi, graph-yielding function. One can
check that

∐
(F, z) is non non-multi.

Let F be a non empty, non-directed-multi, graph-yielding function. Let us
observe that

∐
(F, z) is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function. Let
us observe that

∐
(F, z) is non non-directed-multi.

Let F be a non empty, simple, graph-yielding function. Let us observe that∐
(F, z) is simple.

Let F be a non empty, directed-simple, graph-yielding function. Note that∐
(F, z) is directed-simple.

Let F be a non empty, acyclic, graph-yielding function. Let us observe that∐
(F, z) is acyclic.

Let F be a non empty, non acyclic, graph-yielding function. Let us note
that

∐
(F, z) is non acyclic.

Let F be a non empty, connected, graph-yielding function. One can check
that

∐
(F, z) is connected.

Let F be a non empty, non connected, graph-yielding function. Let us
observe that

∐
(F, z) is non connected.

Let F be a non empty, tree-like, graph-yielding function. Let us note that∐
(F, z) is tree-like.

Let F be a non empty, edgeless, graph-yielding function. One can verify
that

∐
(F, z) is edgeless.

Let F be a non empty, non edgeless, graph-yielding function. Observe that∐
(F, z) is non edgeless.

Let us consider graphs G2, H and a partial graph mapping F from G2 to
H. Now we state the propositions:

274 sebastian koch

(114) If F is directed and weak subgraph embedding, then there exists a su-
pergraph G1 of G2 such that G1 is H-directed-isomorphic.
Proof: Set c = (the vertices of H) 7−→ (the vertices of G2). rng〈c, idα〉 ∩
rng(FV)−1 = ∅, where α is the vertices of H. Set d = (the edges of
H) 7−→ (the edges of G2). rng〈d, idα〉∩rng(FE)−1 = ∅, where α is the edges
of H. �

(115) If F is weak subgraph embedding, then there exists a supergraph G1 of
G2 such that G1 is H-isomorphic. The theorem is a consequence of (114).

6. The Sum of Graphs

Let F be a non empty, graph-yielding function.
A graph sum of F is a graph defined by

(Def. 27) there exists a graph union G′ of rng
∐
F such that it is G′-directed-

isomorphic.

Now we state the proposition:

(116) Let us consider a non empty, graph-yielding function F , a graph sum S

of F , and a graph union G′ of rng
∐
F . Then S is G′-directed-isomorphic.

Let us consider non empty, graph-yielding functions F1, F2, a graph sum S1
of F1, and a graph sum S2 of F2. Now we state the propositions:

(117) If F1 and F2 are directed-isomorphic, then S2 is S1-directed-isomorphic.
The theorem is a consequence of (74), (88), (55), and (116).

(118) If F1 and F2 are isomorphic, then S2 is S1-isomorphic. The theorem is
a consequence of (89), (57), (75), and (116).

Now we state the propositions:

(119) Let us consider a non empty, graph-yielding function F , and graph sums
S1, S2 of F . Then S2 is S1-directed-isomorphic.

(120) Let us consider an object x, and a graph G. Then every graph sum of
x 7−→. G is G-directed-isomorphic. The theorem is a consequence of (17).

(121) Let us consider a non empty, graph-yielding function F , and a graph
sum S of F . Suppose S is connected. Then there exists an object x and
there exists a connected graph G such that F = x7−→. G. The theorem is
a consequence of (59) and (120).

Let X be a non empty set. Observe that there exists a graph-yielding many
sorted set indexed by X which is non empty, vertex-disjoint, and edge-disjoint.

Now we state the propositions:

(122) Let us consider a non empty, graph-yielding function F , an element x
of domF , and a graph sum S of F . Then there exists a partial graph

About graph sums 275

mapping M from F (x) to S such that M is strong subgraph embedding.
The theorem is a consequence of (62) and (17).

(123) Let us consider a non empty, graph-yielding function F , and an element z
of domF . Then there exists a graph sum S of F such that S is supergraph
of F (z) and graph union of rng

∐
(F, z). The theorem is a consequence of

(106), (55), (74), (94), and (95).

(124) Let us consider a non empty, graph-yielding function F , and a graph
sum S of F . Then

(i) F is loopless iff S is loopless, and

(ii) F is non-multi iff S is non-multi, and

(iii) F is non-directed-multi iff S is non-directed-multi, and

(iv) F is simple iff S is simple, and

(v) F is directed-simple iff S is directed-simple, and

(vi) F is chordal iff S is chordal, and

(vii) F is edgeless iff S is edgeless, and

(viii) F is loopfull iff S is loopfull.

Let F be a non empty, loopless, graph-yielding function. Observe that every
graph sum of F is loopless.

Let F be a non empty, non loopless, graph-yielding function. Note that
every graph sum of F is non loopless.

Let F be a non empty, non-directed-multi, graph-yielding function. One can
verify that every graph sum of F is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function.
Observe that every graph sum of F is non non-directed-multi.

Let F be a non empty, non-multi, graph-yielding function. Note that every
graph sum of F is non-multi.

Let F be a non empty, non non-multi, graph-yielding function. One can
verify that every graph sum of F is non non-multi.

Let F be a non empty, simple, graph-yielding function. Observe that every
graph sum of F is simple.

Let F be a non empty, directed-simple, graph-yielding function. Observe
that every graph sum of F is directed-simple.

Let F be a non empty, edgeless, graph-yielding function. Observe that every
graph sum of F is edgeless.

Let F be a non empty, non edgeless, graph-yielding function. Note that
every graph sum of F is non edgeless.

Let F be a non empty, loopfull, graph-yielding function. One can verify that
every graph sum of F is loopfull.

276 sebastian koch

Let F be a non empty, non loopfull, graph-yielding function. Observe that
every graph sum of F is non loopfull. Now we state the proposition:

(125) Let us consider a non empty, graph-yielding function F , and a graph
sum S of F . Then

(i) F is acyclic iff S is acyclic, and

(ii) F is chordal iff S is chordal.

The theorem is a consequence of (87), (42), (60), (48), and (63).

Let F be a non empty, acyclic, graph-yielding function. Let us note that
every graph sum of F is acyclic.

Let F be a non empty, non acyclic, graph-yielding function. One can check
that every graph sum of F is non acyclic.

Now we state the propositions:

(126) Let us consider a non empty, graph-yielding function F , and a graph sum
S of F . Then F ⊆ S.numComponents(). The theorem is a consequence of
(68).

(127) Let us consider a non empty, connected, graph-yielding function F , and
a graph sum S of F . Then F = S.numComponents(). The theorem is
a consequence of (69).

7. The Sum of two Graphs

Let G1, G2 be graphs.
A graph sum of G1 and G2 is a supergraph of G1 defined by

(Def. 28) it is a graph sum of 〈G1, G2〉.
Now we state the proposition:

(128) Let us consider graphs G1, G2, and a graph sum S of G1 and G2. Then

(i) G1 is loopless and G2 is loopless iff S is loopless, and

(ii) G1 is non-multi and G2 is non-multi iff S is non-multi, and

(iii) G1 is non-directed-multi and G2 is non-directed-multi iff S is non-
directed-multi, and

(iv) G1 is simple and G2 is simple iff S is simple, and

(v) G1 is directed-simple and G2 is directed-simple iff S is directed-
simple, and

(vi) G1 is acyclic and G2 is acyclic iff S is acyclic, and

(vii) G1 is chordal and G2 is chordal iff S is chordal, and

About graph sums 277

(viii) G1 is edgeless and G2 is edgeless iff S is edgeless, and

(ix) G1 is loopfull and G2 is loopfull iff S is loopfull.

The theorem is a consequence of (124).

Let G1, G2 be loopless graphs. Note that every graph sum of G1 and G2 is
loopless.

Let G1, G2 be non loopless graphs. Let us observe that every graph sum of
G1 and G2 is non loopless.

Let G1, G2 be non-directed-multi graphs. Let us note that every graph sum
of G1 and G2 is non-directed-multi.

Let G1, G2 be non non-directed-multi graphs. One can verify that every
graph sum of G1 and G2 is non non-directed-multi.

Let G1, G2 be non-multi graphs. Observe that every graph sum of G1 and
G2 is non-multi.

Let G1, G2 be non non-multi graphs. One can check that every graph sum
of G1 and G2 is non non-multi.

Let G1, G2 be simple graphs. Let us observe that every graph sum of G1
and G2 is simple.

Let G1, G2 be directed-simple graphs. Observe that every graph sum of G1
and G2 is directed-simple.

Let G1, G2 be acyclic graphs. Let us note that every graph sum of G1 and
G2 is acyclic.

Let G1, G2 be non acyclic graphs. One can verify that every graph sum of
G1 and G2 is non acyclic.

Let G1, G2 be edgeless graphs. Observe that every graph sum of G1 and G2
is edgeless.

Let G1, G2 be non edgeless graphs. One can check that every graph sum of
G1 and G2 is non edgeless.

Let G1, G2 be loopfull graphs. Let us observe that every graph sum of G1
and G2 is loopfull.

Let G1, G2 be non loopfull graphs. Note that every graph sum of G1 and
G2 is non loopfull.

Let us consider graphs G1, G2 and a graph sum S of G1 and G2. Now we
state the propositions:

(129) S.order() = G1.order() +G2.order().

(130) S.size() = G1.size() +G2.size().

(131) S.numComponents() = G1.numComponents() +G2.numComponents().

278 sebastian koch

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[2] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics,
244. Springer, New York, 2008. ISBN 978-1-84628-969-9.

[3] Reinhard Diestel. Graph theory. Graduate Texts in Mathematics; 173. Springer, New
York, 2nd edition, 2000. ISBN 0-387-98976-5; 0-387-98976-5.

[4] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar.
Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.

[5] Sebastian Koch. Miscellaneous graph preliminaries. Formalized Mathematics, 28(1):23–
39, 2020. doi:10.2478/forma-2020-0003.

[6] Sebastian Koch. Miscellaneous graph preliminaries. Part I. Formalized Mathematics, 29
(1):21–38, 2021. doi:10.2478/forma-2021-0003.

[7] Sebastian Koch. About graph unions and intersections. Formalized Mathematics, 28(2):
155–171, 2020. doi:10.2478/forma-2020-0014.

[8] Gilbert Lee. Walks in graphs. Formalized Mathematics, 13(2):253–269, 2005.
[9] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,

13(2):235–252, 2005.
[10] Kenneth H. Rosen, editor. Handbook of discrete and combinatorial mathematics. Discrete

mathematics and its applications. CRC Press, Boca Raton, second edition, 2018. ISBN
978-1-58488-780-5.

[11] Klaus Wagner. Graphentheorie. B.I-Hochschultaschenbücher; 248. Bibliograph. Inst.,
Mannheim, 1970. ISBN 3-411-00248-4.

Accepted November 30, 2021

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-015-9345-1
http://dx.doi.org/10.2478/forma-2020-0003
http://dx.doi.org/\spaceskip 0.08mm 1 0 . 2 4 7 8 / f o r m a - 2 0 2 1 - 0 0 0 3
http://dx.doi.org/10.2478/forma-2020-0014
http://fm.mizar.org/2005-13/pdf13-2/glib_001.pdf
http://fm.mizar.org/2005-13/pdf13-2/glib_000.pdf

	=0pt About Graph Sums By Sebastian Koch

