About Graph Sums

Sebastian Koch
Johannes Gutenberg University
Mainz, Germany ${ }^{1}$

Abstract

Summary. In this article the sum (or disjoint union) of graphs is formalized in the Mizar system 4, [1, based on the formalization of graphs in 9].

MSC: 05 C 76 68V20
Keywords: graph union; graph sum
MML identifier: GLIB_015, version: 8.1.11 5.68.1412

0. Introduction

The sum of graphs has already been formalized in Mizar to a certain extent in [7], in the case where the vertices and edges of the graphs are disjoint. This disjoint union matches the definitions often given in the literature (cf. [2], [10], [11, [3]). However, graphs are added together most of the time without much concern about what kind of objects actually constitute the vertices and edges. This article's goal is to formalize that practice. Naturally, in this paper the sum is generalized to families of multidigraphs, i.e. the graphs of 9 .

The first section introduces functors to replace the concrete objects behind vertices and edges of a graph with other objects, which will later be used in section 5 .

In the second section graph selector variants for Graph-yielding functions are described in a similar way as it was done for Graph-membered sets in section 1 of (7].

[^0]Isomorphisms between two Graph-membered sets or two Graph-yielding functions are formalized in section 3. They are the foundation for isomorphisms between unions (section 4) and sums (section 6) of graphs.

Section 4 introduces attributes vertex-disjoint and edge-disjoint for sets or functions of graphs. A lot of attention is given to graph unions of vertexdisjoint sets of graphs, since these essentially are the graph sums.

The rest of the article then focuses on graph sums, that are vertex-disjoint unions of the range of a function of graphs, which is isomorphic to a given graph function not necessarily vertex-disjoint, so that in future articles authors do not need to create a vertex-disjoint function themselves. This "canonical" distinction function is formalized in section 5 . A second distinction function is provided that leaves exactly one graph of the original graph function as it was. Isomorphism theorems between these two distinction functions and the original functions are provided as well and needed for the sum isomorphisms in the next section.

Section 6 introduces the mode GraphSum of a (not necessarily vertex-disjoint) graph function as a graph (directed) isomorphic to the union of the range of the distinction function. The second distinction function is used to provide a graph sum that is a supergraph of a given graph in the graph function.

Finally the last section defines the graph sum of two graph as a supergraph of the first graph using the general definition from section 6 .

1. Replacing Vertices and Edges

Let G be a graph, V be a non empty, one-to-one many sorted set indexed by the vertices of G, and E be a one-to-one many sorted set indexed by the edges of G. The functor replaceVerticesEdges (V, E) yielding a plain graph is defined by
(Def. 1) there exist functions S, T from $\operatorname{rng} E$ into $\operatorname{rng} V$ such that $S=V$. (the source of $G) \cdot\left(E^{-1}\right)$ and $T=V \cdot($ the target of $G) \cdot\left(E^{-1}\right)$ and it $=$ createGraph $(\operatorname{rng} V, \operatorname{rng} E, S, T)$.
The functor replaceVertices (V) yielding a plain graph is defined by the term (Def. 2) replaceVerticesEdges $\left(V, \operatorname{id}_{\alpha}\right)$, where α is the edges of G.

Let E be a one-to-one many sorted set indexed by the edges of G. The functor replaceEdges (E) yielding a plain graph is defined by the term
(Def. 3) replaceVerticesEdges $\left(\mathrm{id}_{\alpha}, E\right)$, where α is the vertices of G.
Now we state the propositions:
(1) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, and a one-to-one many sorted set E indexed
by the edges of G. Then
(i) the vertices of replaceVerticesEdges $(V, E)=$ rng V, and
(ii) the edges of replaceVerticesEdges $(V, E)=\operatorname{rng} E$, and
(iii) the source of replaceVerticesEdges $(V, E)=V \cdot($ the source of $G)$. (E^{-1}), and
(iv) the target of replaceVerticesEdges $(V, E)=V \cdot($ the target of $G)$. $\left(E^{-1}\right)$.
(2) Let us consider a graph G, and a non empty, one-to-one many sorted set V indexed by the vertices of G. Then
(i) the vertices of replaceVertices $(V)=\operatorname{rng} V$, and
(ii) the edges of replaceVertices $(V)=$ the edges of G, and
(iii) the source of replaceVertices $(V)=V \cdot($ the source of $G)$, and
(iv) the target of replaceVertices $(V)=V \cdot($ the target of $G)$.

The theorem is a consequence of (1).
(3) Let us consider a graph G, and a one-to-one many sorted set E indexed by the edges of G. Then
(i) the vertices of replaceEdges $(E)=$ the vertices of G, and
(ii) the edges of replaceEdges $(E)=\operatorname{rng} E$, and
(iii) the source of replaceEdges $(E)=($ the source of $G) \cdot\left(E^{-1}\right)$, and
(iv) the target of replaceEdges $(E)=($ the target of $G) \cdot\left(E^{-1}\right)$.

The theorem is a consequence of (1).
(4) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, a one-to-one many sorted set E indexed by the edges of G, and objects e, v, w. Suppose e joins v to w in G. Then $E(e)$ joins $V(v)$ to $V(w)$ in replaceVerticesEdges (V, E). The theorem is a consequence of (1).
(5) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, and objects e, v, w. Suppose e joins v to w in G. Then e joins $V(v)$ to $V(w)$ in replaceVertices (V). The theorem is a consequence of (4).
(6) Let us consider a graph G, a one-to-one many sorted set E indexed by the edges of G, and objects e, v, w. If e joins v to w in G, then $E(e)$ joins v to w in replaceEdges (E). The theorem is a consequence of (4).
(7) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e joins v and w in G. Then $E(e)$ joins $V(v)$ and $V(w)$ in replaceVerticesEdges (V, E). The theorem is a consequence of (4).
(8) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, and objects e, v, w. Suppose e joins v and w in G. Then e joins $V(v)$ and $V(w)$ in replaceVertices (V). The theorem is a consequence of (5).
(9) Let us consider a graph G, a one-to-one many sorted set E indexed by the edges of G, and objects e, v, w. If e joins v and w in G, then $E(e)$ joins v and w in replaceEdges (E). The theorem is a consequence of (6).
(10) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, a one-to-one many sorted set E indexed by the edges of G, and objects e, v, w. Suppose $e \in \operatorname{dom} E$ and $v, w \in \operatorname{dom} V$ and $E(e)$ joins $V(v)$ to $V(w)$ in replaceVerticesEdges (V, E). Then e joins v to w in G. The theorem is a consequence of (1).
(11) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, and objects e, v, w. Suppose $v, w \in \operatorname{dom} V$ and e joins $V(v)$ to $V(w)$ in replaceVertices (V). Then e joins v to w in G. The theorem is a consequence of (2) and (10).
(12) Let us consider a graph G, a one-to-one many sorted set E indexed by the edges of G, and objects e, v, w. Suppose $e \in \operatorname{dom} E$ and $E(e)$ joins v to w in replaceEdges (E). Then e joins v to w in G. The theorem is a consequence of (3) and (10).
(13) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, a one-to-one many sorted set E indexed by the edges of G, and objects e, v, w. Suppose $e \in \operatorname{dom} E$ and $v, w \in \operatorname{dom} V$ and $E(e)$ joins $V(v)$ and $V(w)$ in replaceVerticesEdges (V, E). Then e joins v and w in G. The theorem is a consequence of (10).
(14) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, and objects e, v, w. Suppose $v, w \in \operatorname{dom} V$ and e joins $V(v)$ and $V(w)$ in replaceVertices (V). Then e joins v and w in G. The theorem is a consequence of (11).
(15) Let us consider a graph G, a one-to-one many sorted set E indexed by the edges of G, and objects e, v, w. Suppose $e \in \operatorname{dom} E$ and $E(e)$ joins v and w in replaceEdges (E). Then e joins v and w in G. The theorem is a consequence of (12).
Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, and a one-to-one many sorted set E indexed by the edges of G. Now we state the propositions:
(16) There exists a partial graph mapping F from G to replaceVerticesEdges (V, E) such that
(i) $F_{\mathrm{V}}=V$, and
(ii) $F_{\mathbb{E}}=E$, and
(iii) F is directed-isomorphism.

The theorem is a consequence of (1) and (4).
replaceVerticesEdges (V, E) is G-directed-isomorphic.
The theorem is a consequence of (16).
Let G be a loopless graph, V be a non empty, one-to-one many sorted set indexed by the vertices of G, and E be a one-to-one many sorted set indexed by the edges of G. One can verify that replaceVerticesEdges (V, E) is loopless and replaceVertices (V) is loopless.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us observe that replaceEdges (E) is loopless.

Let G be a non loopless graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can verify that replaceVerticesEdges (V, E) is non loopless and replaceVertices (V) is non loopless.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us note that replaceEdges (E) is non loopless.

Let G be a non-multi graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Observe that replaceVerticesEdges (V, E) is non-multi and replaceVertices (V) is non-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us note that replaceEdges (E) is non-multi.

Let G be a non non-multi graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Observe that replaceVerticesEdges (V, E) is non non-multi and replaceVertices (V) is non non-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. One can check that replaceEdges (E) is non non-multi.

Let G be a non-directed-multi graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Note that replaceVerticesEdges (V, E) is non-directed-multi and replaceVertices (V) is non-directed-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. One can check that replaceEdges (E) is non-directed-multi.

Let G be a non non-directed-multi graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Note that replaceVerticesEdges $(V$,
$E)$ is non non-directed-multi and replaceVertices (V) is non non-directedmulti.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us observe that replaceEdges (E) is non non-directed-multi.

Let G be a simple graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can verify that replaceVerticesEdges (V, E) is simple and replaceVertices (V) is simple.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us observe that replaceEdges (E) is simple.

Let G be a directed-simple graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can check that replaceVerticesEdges
(V, E) is directed-simple and replaceVertices (V) is directed-simple.
Let E be a one-to-one many sorted set indexed by the edges of G. One can verify that replaceEdges (E) is directed-simple.

Let G be a trivial graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Note that replaceVerticesEdges (V, E) is trivial and replaceVertices (V) is trivial.

Let E be a one-to-one many sorted set indexed by the edges of G. One can check that replaceEdges (E) is trivial.

Let G be a non trivial graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Note that replaceVerticesEdges (V, E) is non trivial and replaceVertices (V) is non trivial.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us observe that replaceEdges (E) is non trivial.

Let G be a vertex-finite graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can verify that replaceVerticesEdges (V, E) is vertex-finite and replaceVertices (V) is vertex-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us observe that replaceEdges (E) is vertex-finite.

Let G be a non vertex-finite graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can verify that replaceVerticesEdges
(V, E) is non vertex-finite and replaceVertices (V) is non vertex-finite.
Let E be a one-to-one many sorted set indexed by the edges of G. Let us note that replaceEdges (E) is non vertex-finite.

Let G be an edge-finite graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Observe that replaceVerticesEdges (V, E) is edge-finite and replaceVertices (V) is edge-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us note that replaceEdges (E) is edge-finite.

Let G be a non edge-finite graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Observe that replaceVerticesEdges (V, E) is non edge-finite and replaceVertices (V) is non edge-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. One can check that replaceEdges (E) is non edge-finite.

Let G be a finite graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Note that replaceVerticesEdges (V, E) is finite and replaceVertices (V) is finite.

Let E be a one-to-one many sorted set indexed by the edges of G. One can check that replaceEdges (E) is finite.

Let G be an acyclic graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us note that replaceVerticesEdges (V, E) is acyclic and replaceVertices (V) is acyclic.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that replaceEdges (E) is acyclic.

Let G be a non acyclic graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us note that replaceVerticesEdges (V, E) is non acyclic and replaceVertices (V) is non acyclic.

Let E be a one-to-one many sorted set indexed by the edges of G. One can verify that replaceEdges (E) is non acyclic.

Let G be a connected graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can check that replaceVerticesEdges (V, E) is connected and replaceVertices (V) is connected.

Let E be a one-to-one many sorted set indexed by the edges of G. One can verify that replaceEdges (E) is connected.

Let G be a non connected graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can check that replaceVerticesEdges $(V$,
$E)$ is non connected and replaceVertices (V) is non connected.
Let E be a one-to-one many sorted set indexed by the edges of G. Observe that replaceEdges (E) is non connected.

Let G be a tree-like graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us observe that replaceVerticesEdges (V, E) is tree-like and replaceVertices (V) is tree-like.

Let E be a one-to-one many sorted set indexed by the edges of G. Observe that replaceEdges (E) is tree-like.

Let G be a chordal graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can verify that replaceVerticesEdges (V, E) is chordal and replaceVertices (V) is chordal.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us observe that replaceEdges (E) is chordal.

Let G be an edgeless graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can check that replaceVerticesEdges (V, E) is edgeless and replaceVertices (V) is edgeless.

Let E be a one-to-one many sorted set indexed by the edges of G. One can verify that replaceEdges (E) is edgeless.

Let G be a non edgeless graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. One can check that replaceVerticesEdges (V, E) is non edgeless and replaceVertices (V) is non edgeless.

Let E be a one-to-one many sorted set indexed by the edges of G. Observe that replaceEdges (E) is non edgeless.

Let G be a loopfull graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us observe that replaceVerticesEdges (V, E) is loopfull and replaceVertices (V) is loopfull. Let E be a one-to-one many sorted set indexed by the edges of G. Observe that replaceEdges (E) is loopfull.

Let G be a non loopfull graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us observe that replaceVerticesEdges (V, E) is non loopfull and replaceVertices (V) is non loopfull.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that replaceEdges (E) is non loopfull.

Let G be a locally-finite graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us note that replaceVerticesEdges (V, E) is locally-finite and replaceVertices (V) is locally-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that replaceEdges (E) is locally-finite.

Let G be a non locally-finite graph and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us note that replaceVerticesEdges (V,
$E)$ is non locally-finite and replaceVertices (V) is non locally-finite. Let E be a one-to-one many sorted set indexed by the edges of G. One can verify that replaceEdges (E) is non locally-finite.

Let c be a non zero cardinal number, G be a c-vertex graph, and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us observe that replaceVerticesEdges (V, E) is c-vertex and replaceVertices (V) is c-vertex.

Let E be a one-to-one many sorted set indexed by the edges of G. One can verify that replaceEdges (E) is c-vertex.

Let c be a cardinal number, G be a c-edge graph, and V be a non empty, one-to-one many sorted set indexed by the vertices of G. Let us observe that replaceVerticesEdges (V, E) is c-edge and replaceVertices (V) is c-edge.

Let E be a one-to-one many sorted set indexed by the edges of G. One can verify that replaceEdges (E) is c-edge. Now we state the propositions:
(18) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, a one-to-one many sorted set E indexed by the edges of G, and a walk W_{1} of G. Then there exists a walk W_{2} of replaceVerticesEdges (V, E) such that
(i) $V \cdot W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, and
(ii) $E \cdot W_{1} \cdot$ edgeSeq ()$=W_{2} \cdot \operatorname{edgeSeq}()$.

The theorem is a consequence of (16).
(19) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, and a walk W_{1} of G. Then there exists a walk W_{2} of replaceVertices (V) such that
(i) $V \cdot W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, and
(ii) $W_{1} \cdot \operatorname{edgeSeq}()=W_{2} \cdot \operatorname{edgeSeq}()$.

The theorem is a consequence of (18).
(20) Let us consider a graph G, a one-to-one many sorted set E indexed by the edges of G, and a walk W_{1} of G. Then there exists a walk W_{2} of replaceEdges (E) such that
(i) $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, and
(ii) $E \cdot W_{1} \cdot \operatorname{edgeSeq}()=W_{2}$.edgeSeq().

The theorem is a consequence of (18).
(21) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, a one-to-one many sorted set E indexed by the edges of G, and a walk W_{2} of replaceVerticesEdges (V, E). Then there exists a walk W_{1} of G such that
(i) $V \cdot W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, and
(ii) $E \cdot W_{1} \cdot$ edgeSeq ()$=W_{2} \cdot$ edgeSeq () .

The theorem is a consequence of (16).
(22) Let us consider a graph G, a non empty, one-to-one many sorted set V indexed by the vertices of G, and a walk W_{2} of replaceVertices (V). Then there exists a walk W_{1} of G such that
(i) $V \cdot W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, and
(ii) $W_{1} \cdot \operatorname{edgeSeq}()=W_{2} \cdot \operatorname{edgeSeq}()$.

The theorem is a consequence of (21).
(23) Let us consider a graph G, a one-to-one many sorted set E indexed by the edges of G, and a walk W_{2} of replaceEdges (E). Then there exists a walk W_{1} of G such that
(i) $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, and
(ii) $E \cdot W_{1} \cdot \operatorname{edgeSeq}()=W_{2} \cdot \operatorname{edgeSeq}()$.

The theorem is a consequence of (21).

2. Graph Selectors of Graph-yielding Functions

Let F be a graph-yielding function. The functors: the vertices of F, the edges of F, the source of F, and the target of F yielding functions are defined by conditions
(Def. 4) dom the vertices of $F=\operatorname{dom} F$ and for every object x such that $x \in$ $\operatorname{dom} F$ there exists a graph G such that $G=F(x)$ and (the vertices of $F)(x)=$ the vertices of G,
(Def. 5) dom the edges of $F=\operatorname{dom} F$ and for every object x such that $x \in \operatorname{dom} F$ there exists a graph G such that $G=F(x)$ and (the edges of $F)(x)=$ the edges of G,
(Def. 6) dom the source of $F=\operatorname{dom} F$ and for every object x such that $x \in$ $\operatorname{dom} F$ there exists a graph G such that $G=F(x)$ and (the source of $F)(x)=$ the source of G,
(Def. 7) dom the target of $F=\operatorname{dom} F$ and for every object x such that $x \in \operatorname{dom} F$ there exists a graph G such that $G=F(x)$ and (the target of $F)(x)=$ the target of G,
respectively. Let us observe that the source of F is function yielding and the target of F is function yielding.

Let F be an empty, graph-yielding function. One can verify that the vertices of F is empty and the edges of F is empty and the source of F is empty and the target of F is empty.

Let F be a non empty, graph-yielding function. One can verify that the vertices of F is non empty and the edges of F is non empty and the source of F is non empty and the target of F is non empty.

Let F be a graph-yielding function. One can check that the vertices of F is non-empty.

Let F be a non empty, graph-yielding function. The functors: the vertices of F, the edges of F, the source of F, and the target of F are defined by conditions
(Def. 8) dom the vertices of $F=\operatorname{dom} F$ and for every element x of $\operatorname{dom} F$, (the vertices of $F)(x)=$ the vertices of $F(x)$,
(Def. 9) dom the edges of $F=\operatorname{dom} F$ and for every element x of $\operatorname{dom} F$, (the edges of $F)(x)=$ the edges of $F(x)$,
(Def. 10) dom the source of $F=\operatorname{dom} F$ and for every element x of dom F, (the source of $F)(x)=$ the source of $F(x)$,
(Def. 11) dom the target of $F=\operatorname{dom} F$ and for every element x of dom F, (the target of $F)(x)=$ the target of $F(x)$,
respectively.
Let us consider a graph-yielding function F. Now we state the propositions:
(24) The vertices of $\operatorname{rng} F=\operatorname{rng}($ the vertices of $F)$.
(25) The edges of $\operatorname{rng} F=\operatorname{rng}($ the edges of $F)$.
(26) The source of $\operatorname{rng} F=\operatorname{rng}($ the source of $F)$.
(27) The target of $\operatorname{rng} F=\operatorname{rng}($ the target of $F)$.

3. Isomorphisms between Graph-membered Sets or Graph-yielding Functions

Let S_{1}, S_{2} be graph-membered sets. We say that S_{1} and S_{2} are directedisomorphic if and only if
(Def. 12) there exists a one-to-one function f such that $\operatorname{dom} f=S_{1}$ and $\operatorname{rng} f=S_{2}$ and for every graph G such that $G \in S_{1}$ holds $f(G)$ is a G-directedisomorphic graph.
One can check that the predicate is reflexive and symmetric. We say that S_{1} and S_{2} are isomorphic if and only if
(Def. 13) there exists a one-to-one function f such that $\operatorname{dom} f=S_{1}$ and $\operatorname{rng} f=S_{2}$ and for every graph G such that $G \in S_{1}$ holds $f(G)$ is a G-isomorphic graph.
Let us note that the predicate is reflexive and symmetric.
Let us consider graph-membered sets S_{1}, S_{2}, S_{3}. Now we state the propositions:
(28) If S_{1} and S_{2} are directed-isomorphic and S_{2} and S_{3} are directed-isomorphic, then S_{1} and S_{3} are directed-isomorphic.
(29) If S_{1} and S_{2} are isomorphic and S_{2} and S_{3} are isomorphic, then S_{1} and S_{3} are isomorphic.
Let us consider graph-membered sets S_{1}, S_{2}. Now we state the propositions:
(30) If S_{1} and S_{2} are directed-isomorphic, then S_{1} and S_{2} are isomorphic.
(31) If S_{1} and S_{2} are directed-isomorphic, then $\overline{\overline{S_{1}}}=\overline{\overline{S_{2}}}$.
(32) If S_{1} and S_{2} are isomorphic, then $\overline{\overline{S_{1}}}=\overline{\overline{S_{2}}}$.
(33) Let us consider empty, graph-membered sets S_{1}, S_{2}. Then S_{1} and S_{2} are directed-isomorphic.
Let us consider graphs G_{1}, G_{2}. Now we state the propositions:
(34) $\left\{G_{1}\right\}$ and $\left\{G_{2}\right\}$ are directed-isomorphic if and only if G_{2} is G_{1}-directedisomorphic.
(35) $\left\{G_{1}\right\}$ and $\left\{G_{2}\right\}$ are isomorphic if and only if G_{2} is G_{1}-isomorphic.

Let us consider graph-membered sets S_{1}, S_{2}. Now we state the propositions:
(36) Suppose S_{1} and S_{2} are isomorphic. Then
(i) if S_{1} is empty, then S_{2} is empty, and
(ii) if S_{1} is loopless, then S_{2} is loopless, and
(iii) if S_{1} is non-multi, then S_{2} is non-multi, and
(iv) if S_{1} is simple, then S_{2} is simple, and
(v) if S_{1} is acyclic, then S_{2} is acyclic, and
(vi) if S_{1} is connected, then S_{2} is connected, and
(vii) if S_{1} is tree-like, then S_{2} is tree-like, and
(viii) if S_{1} is chordal, then S_{2} is chordal, and
(ix) if S_{1} is edgeless, then S_{2} is edgeless, and
(x) if S_{1} is loopfull, then S_{2} is loopfull.
(37) Suppose S_{1} and S_{2} are directed-isomorphic. Then
(i) if S_{1} is non-directed-multi, then S_{2} is non-directed-multi, and
(ii) if S_{1} is directed-simple, then S_{2} is directed-simple.

Let F_{1}, F_{2} be graph-yielding functions. We say that F_{1} and F_{2} are directedisomorphic if and only if
(Def. 14) there exists a one-to-one function p such that $\operatorname{dom} p=\operatorname{dom} F_{1}$ and $\operatorname{rng} p=\operatorname{dom} F_{2}$ and for every object x such that $x \in \operatorname{dom} F_{1}$ there exist graphs G_{1}, G_{2} such that $G_{1}=F_{1}(x)$ and $G_{2}=F_{2}(p(x))$ and G_{2} is $G_{1^{-}}$ directed-isomorphic.
Let us observe that the predicate is reflexive and symmetric. We say that F_{1} and F_{2} are isomorphic if and only if
(Def. 15) there exists a one-to-one function p such that $\operatorname{dom} p=\operatorname{dom} F_{1}$ and $\operatorname{rng} p=\operatorname{dom} F_{2}$ and for every object x such that $x \in \operatorname{dom} F_{1}$ there exist graphs G_{1}, G_{2} such that $G_{1}=F_{1}(x)$ and $G_{2}=F_{2}(p(x))$ and G_{2} is $G_{1^{-}}$ isomorphic.
Observe that the predicate is reflexive and symmetric.
Let us consider non empty, graph-yielding functions F_{1}, F_{2}. Now we state the propositions:
(38) Suppose dom $F_{1}=\operatorname{dom} F_{2}$ and for every element x_{1} of $\operatorname{dom} F_{1}$ and for every element x_{2} of dom F_{2} such that $x_{1}=x_{2}$ holds $F_{2}\left(x_{2}\right)$ is $F_{1}\left(x_{1}\right)$ -directed-isomorphic. Then F_{1} and F_{2} are directed-isomorphic.
(39) Suppose dom $F_{1}=\operatorname{dom} F_{2}$ and for every element x_{1} of dom F_{1} and for every element x_{2} of dom F_{2} such that $x_{1}=x_{2}$ holds $F_{2}\left(x_{2}\right)$ is $F_{1}\left(x_{1}\right)$ isomorphic. Then F_{1} and F_{2} are isomorphic.
Let us consider graph-yielding functions F_{1}, F_{2}, F_{3}. Now we state the propositions:
(40) If F_{1} and F_{2} are directed-isomorphic and F_{2} and F_{3} are directed-isomorphic, then F_{1} and F_{3} are directed-isomorphic.
(41) If F_{1} and F_{2} are isomorphic and F_{2} and F_{3} are isomorphic, then F_{1} and F_{3} are isomorphic.
(42) Let us consider graph-yielding functions F_{1}, F_{2}. If F_{1} and F_{2} are directedisomorphic, then F_{1} and F_{2} are isomorphic.
(43) Let us consider empty, graph-yielding functions F_{1}, F_{2}. Then
(i) F_{1} and F_{2} are directed-isomorphic, and
(ii) F_{1} and F_{2} are isomorphic.

Let us consider graph-yielding functions F_{1}, F_{2}. Now we state the propositions:
(44) If F_{1} and F_{2} are directed-isomorphic, then $\overline{\overline{F_{1}}}=\overline{\overline{F_{2}}}$.
(45) If F_{1} and F_{2} are isomorphic, then $\overline{\overline{F_{1}}}=\overline{\overline{F_{2}}}$.

Let us consider graphs G_{1}, G_{2} and objects x, y. Now we state the propositions:
(46) $\quad x \longmapsto G_{1}$ and $y \longmapsto G_{2}$ are directed-isomorphic if and only if G_{2} is $G_{1^{-}}$ directed-isomorphic.
(47) $\quad x \longmapsto G_{1}$ and $y \longmapsto G_{2}$ are isomorphic if and only if G_{2} is G_{1}-isomorphic.

Let us consider graph-yielding functions F_{1}, F_{2}. Now we state the propositions:
(48) Suppose F_{1} and F_{2} are isomorphic. Then
(i) if F_{1} is empty, then F_{2} is empty, and
(ii) if F_{1} is loopless, then F_{2} is loopless, and
(iii) if F_{1} is non-multi, then F_{2} is non-multi, and
(iv) if F_{1} is simple, then F_{2} is simple, and
(v) if F_{1} is acyclic, then F_{2} is acyclic, and
(vi) if F_{1} is connected, then F_{2} is connected, and
(vii) if F_{1} is tree-like, then F_{2} is tree-like, and
(viii) if F_{1} is chordal, then F_{2} is chordal, and
(ix) if F_{1} is edgeless, then F_{2} is edgeless, and
(x) if F_{1} is loopfull, then F_{2} is loopfull.
(49) Suppose F_{1} and F_{2} are directed-isomorphic. Then
(i) if F_{1} is non-directed-multi, then F_{2} is non-directed-multi, and
(ii) if F_{1} is directed-simple, then F_{2} is directed-simple.

Let I be a set and F_{1}, F_{2} be graph-yielding many sorted sets indexed by I. Note that F_{1} and F_{2} are directed-isomorphic if and only if the condition (Def. 16) is satisfied.
(Def. 16) there exists a permutation p of I such that for every object x such that $x \in I$ there exist graphs G_{1}, G_{2} such that $G_{1}=F_{1}(x)$ and $G_{2}=F_{2}(p(x))$ and G_{2} is G_{1}-directed-isomorphic.
One can check that the predicate is reflexive and symmetric. Let us note that F_{1} and F_{2} are isomorphic if and only if the condition (Def. 17) is satisfied.
(Def. 17) there exists a permutation p of I such that for every object x such that $x \in I$ there exist graphs G_{1}, G_{2} such that $G_{1}=F_{1}(x)$ and $G_{2}=F_{2}(p(x))$ and G_{2} is G_{1}-isomorphic.
Note that the predicate is reflexive and symmetric.

4. Distinguishing the Vertex and Edge Sets of Several Graphs from Each Other

Let S be a graph-membered set. We say that S is vertex-disjoint if and only if
(Def. 18) for every graphs G_{1}, G_{2} such that $G_{1}, G_{2} \in S$ and $G_{1} \neq G_{2}$ holds the vertices of G_{1} misses the vertices of G_{2}.
We say that S is edge-disjoint if and only if
(Def. 19) for every graphs G_{1}, G_{2} such that $G_{1}, G_{2} \in S$ and $G_{1} \neq G_{2}$ holds the edges of G_{1} misses the edges of G_{2}.
Now we state the proposition:
(50) Let us consider a graph-membered set S. Then S is vertex-disjoint and edge-disjoint if and only if for every graphs G_{1}, G_{2} such that $G_{1}, G_{2} \in$ S and $G_{1} \neq G_{2}$ holds the vertices of G_{1} misses the vertices of G_{2} and the edges of G_{1} misses the edges of G_{2}.
Let us note that every graph-membered set which is trivial is also vertexdisjoint and edge-disjoint and every graph-membered set which is edgeless is also edge-disjoint and every graph-membered set which is edge-disjoint is also \cup-tolerating and every graph-membered set which is vertex-disjoint and \cup tolerating is also edge-disjoint.

Let G be a graph. One can check that $\{G\}$ is vertex-disjoint and edgedisjoint.

Let us consider graphs G_{1}, G_{2}. Now we state the propositions:
(51) $\left\{G_{1}, G_{2}\right\}$ is vertex-disjoint if and only if $G_{1}=G_{2}$ or the vertices of G_{1} misses the vertices of G_{2}.
(52) $\quad\left\{G_{1}, G_{2}\right\}$ is edge-disjoint if and only if $G_{1}=G_{2}$ or the edges of G_{1} misses the edges of G_{2}.
One can verify that there exists a graph-membered set which is non empty, U-tolerating, vertex-disjoint, edge-disjoint, acyclic, simple, directed-simple, loopless, non-multi, and non-directed-multi.

Let S be a vertex-disjoint, graph-membered set. Note that the vertices of S is mutually-disjoint.

Let S be an edge-disjoint, graph-membered set. One can verify that the edges of S is mutually-disjoint.

Let S be a vertex-disjoint, graph-membered set. Observe that every subset of S is vertex-disjoint.

Let S_{1} be a vertex-disjoint, graph-membered set and S_{2} be a set. Let us note that $S_{1} \cap S_{2}$ is vertex-disjoint and $S_{1} \backslash S_{2}$ is vertex-disjoint.

Let S be an edge-disjoint, graph-membered set. One can verify that every subset of S is edge-disjoint.

Let S_{1} be an edge-disjoint, graph-membered set and S_{2} be a set. Let us observe that $S_{1} \cap S_{2}$ is edge-disjoint and $S_{1} \backslash S_{2}$ is edge-disjoint.

Let us consider graph-membered sets S_{1}, S_{2}. Now we state the propositions:
(53) If $S_{1} \cup S_{2}$ is vertex-disjoint, then S_{1} is vertex-disjoint and S_{2} is vertexdisjoint.
(54) If $S_{1} \cup S_{2}$ is edge-disjoint, then S_{1} is edge-disjoint and S_{2} is edge-disjoint.

Let us consider vertex-disjoint graph union sets S_{1}, S_{2}, a graph union G_{1} of S_{1}, and a graph union G_{2} of S_{2}. Now we state the propositions:
(55) If S_{1} and S_{2} are directed-isomorphic, then G_{2} is G_{1}-directed-isomorphic. Proof: Consider h being a one-to-one function such that dom $h=S_{1}$ and $\operatorname{rng} h=S_{2}$ and for every graph G such that $G \in S_{1}$ holds $h(G)$ is a G-directed-isomorphic graph. Define $\mathcal{Q}[$ object, object $] \equiv$ there exists an element G of S_{1} and there exists a partial graph mapping F from G to $h(G)$ such that $\$_{1}=G$ and $\$_{2}=F$ and F is directed-isomorphism. For every element G of S_{1}, there exists an object F such that $\mathcal{Q}[G, F]$.

Consider H being a many sorted set indexed by S_{1} such that for every element G of $S_{1}, \mathcal{Q}[G, H(G)]$. For every element G of S_{1}, there exists a partial graph mapping F from G to $h(G)$ such that $H(G)=F$ and F is directed-isomorphism. Set $V=\operatorname{rng} \operatorname{pr} 1(H)$. Set $E=\operatorname{rng} \operatorname{pr2} 2(H)$. For every object y such that $y \in V$ holds y is a function. For every functions f_{1}, f_{2} such that $f_{1}, f_{2} \in V$ holds f_{1} tolerates f_{2}. For every object y such that $y \in E$ holds y is a function. For every functions g_{1}, g_{2} such that g_{1}, $g_{2} \in E$ holds g_{1} tolerates g_{2}.
(56) Suppose S_{1} and S_{2} are isomorphic. Then there exists a vertex-disjoint
graph union set S_{3} and there exists a subset E of the edges of G_{2} and there exists a graph union G_{3} of S_{3} such that S_{1} and S_{3} are directed-isomorphic and G_{3} is a graph given by reversing directions of the edges E of G_{2}.
Proof: Consider h being a one-to-one function such that dom $h=S_{1}$ and rng $h=S_{2}$ and for every graph G such that $G \in S_{1}$ holds $h(G)$ is a G isomorphic graph. Define $\mathcal{Q}[$ object, object $] \equiv$ there exists an element G of S_{1} and there exists a partial graph mapping F from G to $h(G)$ such that $\$_{1}=G$ and $\$_{2}=F$ and F is isomorphism. For every element G of S_{1}, there exists an object F such that $\mathcal{Q}[G, F]$. Consider H being a many sorted set indexed by S_{1} such that for every element G of $S_{1}, \mathcal{Q}[G, H(G)]$. For every element G of S_{1}, there exists a partial graph mapping F from G to $h(G)$ such that $H(G)=F$ and F is isomorphism. Define \mathcal{R} [object, object] \equiv there exists an element G of S_{1} and there exists a subset E of the edges of $h(G)$ such that $\$_{1}=G$ and $\$_{2}=E$ and for every graph G^{\prime} given by reversing directions of the edges E of $h(G)$, there exists a partial graph mapping F from G to G^{\prime} such that $F=H(G)$ and F is directed-isomorphism.

For every element G of S_{1}, there exists an object E such that $\mathcal{R}[G, E]$ by [5, (89)]. Consider A being a many sorted set indexed by S_{1} such that for every element G of $S_{1}, \mathcal{R}[G, A(G)]$. For every element G of $S_{1}, A(G)$ is a subset of the edges of $h(G)$. For every element G of S_{1} and for every graph G^{\prime} given by reversing directions of the edges $A(G)$ of $h(G)$, there exists a partial graph mapping F from G to G^{\prime} such that $F=H(G)$ and F is directed-isomorphism. Define \mathcal{U} (element of $\left.S_{1}\right)=$ the graph given by reversing directions of the edges $A\left(\$_{1}\right)$ of $h\left(\$_{1}\right)$. Consider B being a many sorted set indexed by S_{1} such that for every element G of $S_{1}, B(G)=$ $\mathcal{U}(G)$. For every object y such that $y \in \bigcup \operatorname{rng} A$ holds $y \in$ the edges of G_{2}.
(57) If S_{1} and S_{2} are isomorphic, then G_{2} is G_{1}-isomorphic. The theorem is a consequence of (56) and (55).
(58) Let us consider a vertex-disjoint graph union set S, a graph union G of S, and a walk W of G. Then there exists an element H of S such that W is a walk of H.

Proof: Define $\mathcal{P}[$ walk of $G] \equiv$ there exists an element H of S such that $\$_{1}$ is a walk of H. For every trivial walk W of $G, \mathcal{P}[W]$ by [8, (128)]. For every walk W of G and for every object e such that $e \in W$.last().edgesInOut() and $\mathcal{P}[W]$ holds $\mathcal{P}[W$.addEdge $(e)]$ by [7, (21)], [8, (16)], [9, (67)], [6, (117)]. For every walk W of $G, \mathcal{P}[W]$ by [8, Sch.1].

Let us consider a vertex-disjoint graph union set S and a graph union G of S. Now we state the propositions:
(59) If G is connected, then there exists a graph H such that $S=\{H\}$. The theorem is a consequence of (58).
(60) (i) S is non-multi iff G is non-multi, and
(ii) S is non-directed-multi iff G is non-directed-multi, and
(iii) S is acyclic iff G is acyclic.

The theorem is a consequence of (58).
(61) (i) S is simple iff G is simple, and
(ii) S is directed-simple iff G is directed-simple.

The theorem is a consequence of (60).
Let S be a vertex-disjoint, non-multi graph union set. Let us note that every graph union of S is non-multi.

Let S be a vertex-disjoint, non-directed-multi graph union set. One can check that every graph union of S is non-directed-multi.

Let S be a vertex-disjoint, simple graph union set. Let us observe that every graph union of S is simple.

Let S be a vertex-disjoint, directed-simple graph union set. Observe that every graph union of S is directed-simple.

Let S be a vertex-disjoint, acyclic graph union set. Let us note that every graph union of S is acyclic.

Now we state the propositions:
(62) Let us consider a vertex-disjoint graph union set S, an element H of S, and a graph union G of S. Then H is a subgraph of G induced by the vertices of H.
(63) Let us consider a vertex-disjoint graph union set S, and a graph union G of S. Then
(i) S is chordal iff G is chordal, and
(ii) S is loopfull iff G is loopfull.

The theorem is a consequence of (58) and (62).
(64) Let us consider a vertex-disjoint graph union set S, a graph union G of S, an element H of S, a vertex v of G, and a vertex w of H. If $v=w$, then G.reachableFrom $(v)=H$.reachableFrom (w). The theorem is a consequence of (58).
(65) Let us consider a vertex-disjoint graph union set S, and a graph union G of S. Then G.componentSet ()$=\bigcup$ the set of all H.componentSet() where H is an element of S. The theorem is a consequence of (64).
(66) Let us consider a vertex-disjoint, non empty, graph-membered set S. Then the set of all H.componentSet() where H is an element of S is mutually-disjoint.
(67) Let us consider a non empty, connected, graph-membered set S. Then the set of all H.componentSet() where H is an element of $S=$ SmallestPartition(the vertices of S).
Let us consider a vertex-disjoint graph union set S and a graph union G of S. Now we state the propositions:
(68) $\overline{\bar{S}} \subseteq G$.numComponents(). The theorem is a consequence of (66) and (65).
(69) If S is connected, then $\overline{\bar{S}}=G$.numComponents(). The theorem is a consequence of (67) and (65).
Let F be a graph-yielding function. We say that F is vertex-disjoint if and only if
(Def. 20) for every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} F$ and $x_{1} \neq x_{2}$ there exist graphs G_{1}, G_{2} such that $G_{1}=F\left(x_{1}\right)$ and $G_{2}=F\left(x_{2}\right)$ and the vertices of G_{1} misses the vertices of G_{2}.
We say that F is edge-disjoint if and only if
(Def. 21) for every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} F$ and $x_{1} \neq x_{2}$ there exist graphs G_{1}, G_{2} such that $G_{1}=F\left(x_{1}\right)$ and $G_{2}=F\left(x_{2}\right)$ and the edges of G_{1} misses the edges of G_{2}.
Observe that every graph-yielding function which is trivial is also vertexdisjoint and edge-disjoint and every graph-yielding function which is vertexdisjoint is also one-to-one.

Let F be a non empty, graph-yielding function. Let us observe that F is vertex-disjoint if and only if the condition (Def. 22) is satisfied.
(Def. 22) for every elements x_{1}, x_{2} of dom F such that $x_{1} \neq x_{2}$ holds the vertices of $F\left(x_{1}\right)$ misses the vertices of $F\left(x_{2}\right)$.
Observe that F is edge-disjoint if and only if the condition (Def. 23) is satisfied.
(Def. 23) for every elements x_{1}, x_{2} of dom F such that $x_{1} \neq x_{2}$ holds the edges of $F\left(x_{1}\right)$ misses the edges of $F\left(x_{2}\right)$.
Let us consider a non empty, graph-yielding function F. Now we state the propositions:
(70) F is vertex-disjoint if and only if for every elements x_{1}, x_{2} of dom F such that $x_{1} \neq x_{2}$ holds (the vertices of $\left.F\right)\left(x_{1}\right)$ misses (the vertices of $\left.F\right)\left(x_{2}\right)$.
(71) F is edge-disjoint if and only if for every elements x_{1}, x_{2} of dom F such that $x_{1} \neq x_{2}$ holds (the edges of $\left.F\right)\left(x_{1}\right)$ misses (the edges of $\left.F\right)\left(x_{2}\right)$.
(72) F is vertex-disjoint and edge-disjoint if and only if for every elements x_{1}, x_{2} of dom F such that $x_{1} \neq x_{2}$ holds the vertices of $F\left(x_{1}\right)$ misses the vertices of $F\left(x_{2}\right)$ and the edges of $F\left(x_{1}\right)$ misses the edges of $F\left(x_{2}\right)$.
(73) F is vertex-disjoint and edge-disjoint if and only if for every elements x_{1}, x_{2} of $\operatorname{dom} F$ such that $x_{1} \neq x_{2}$ holds (the vertices of $\left.F\right)\left(x_{1}\right)$ misses (the vertices of $F)\left(x_{2}\right)$ and (the edges of $\left.F\right)\left(x_{1}\right)$ misses (the edges of $F)\left(x_{2}\right)$. The theorem is a consequence of (70) and (71).
Let x be an object and G be a graph. One can check that $x \longmapsto G$ is vertexdisjoint and edge-disjoint and $\langle G\rangle$ is vertex-disjoint and edge-disjoint and there exists a graph-yielding function which is non empty, vertex-disjoint, and edgedisjoint.

Let F be a vertex-disjoint, graph-yielding function. Observe that $\operatorname{rng} F$ is vertex-disjoint.

Let F be an edge-disjoint, graph-yielding function. Let us note that rng F is edge-disjoint.

Let us consider non empty, one-to-one, graph-yielding functions F_{1}, F_{2}. Now we state the propositions:
(74) If F_{1} and F_{2} are directed-isomorphic, then $\mathrm{rng} F_{1}$ and $\mathrm{rng} F_{2}$ are directedisomorphic.
(75) If F_{1} and F_{2} are isomorphic, then $\operatorname{rng} F_{1}$ and $\operatorname{rng} F_{2}$ are isomorphic.

Let us consider graphs G_{1}, G_{2}. Now we state the propositions:
(76) $\left\langle G_{1}, G_{2}\right\rangle$ is vertex-disjoint if and only if the vertices of G_{1} misses the vertices of G_{2}.
(77) $\left\langle G_{1}, G_{2}\right\rangle$ is edge-disjoint if and only if the edges of G_{1} misses the edges of G_{2}.

5. Distinguishing the Range of a Graph-Yielding Function

Let f be a function and x be an object. The functor $\amalg(f, x)$ yielding a many sorted set indexed by $f(x)$ is defined by the term
(Def. 24) $\left\langle f(x) \longmapsto\langle f, x\rangle, \operatorname{id}_{f(x)}\right\rangle$.
Now we state the propositions:
(78) Let us consider a function f, and objects x, y. Suppose $x \in \operatorname{dom} f$ and $y \in f(x)$. Then $\amalg(f, x)(y)=\langle f, x, y\rangle$.
(79) Let us consider a function f, and objects x, z. Suppose $x \in \operatorname{dom} f$ and $z \in \operatorname{rng} \coprod(f, x)$. Then there exists an object y such that
(i) $y \in f(x)$, and
(ii) $z=\langle f, x, y\rangle$.

The theorem is a consequence of (78).
(80) Let us consider a function f, and an object x. Then $\operatorname{rng} \coprod(f, x)=\{\langle f$, $x\rangle\} \times f(x)$. The theorem is a consequence of (79) and (78).
Let us consider a function f and objects x_{1}, x_{2}. Now we state the propositions:
(81) rng $\amalg\left(f, x_{1}\right)$ misses $f\left(x_{2}\right)$. The theorem is a consequence of (79).
(82) If $x_{1} \neq x_{2}$, then $\operatorname{rng} \amalg\left(f, x_{1}\right)$ misses $\operatorname{rng} \amalg\left(f, x_{2}\right)$. The theorem is a consequence of (79).
Let f be a function and x be an object. One can verify that $\amalg(f, x)$ is one-to-one.

Let f be an empty function. One can verify that $\amalg(f, x)$ is empty.
Let f be a non empty, non-empty function and x be an element of $\operatorname{dom} f$. One can verify that $\coprod(f, x)$ is non empty.

Let F be a non empty, graph-yielding function and x be an element of dom F. One can check that \coprod (the vertices of F, x) is non empty and (the vertices of $F(x)$)-defined and $\amalg($ the edges of $F, x)$ is (the edges of $F(x))$-defined and \coprod (the vertices of F, x) is total as a (the vertices of $F(x)$)-defined function and $\amalg($ the edges of $F, x)$ is total as a (the edges of $F(x)$)-defined function.

The functor $\amalg F$ yielding a graph-yielding function is defined by
(Def. 25) $\quad \operatorname{dom} i t=\operatorname{dom} F$ and for every element x of $\operatorname{dom} F, i t(x)=$ replaceVerticesEdges $(\amalg($ the vertices of $F, x), \amalg($ the edges of $F, x))$.
Note that $\amalg F$ is non empty and $\amalg F$ is plain.
Let us consider a non empty, graph-yielding function F and an element x of $\operatorname{dom} F$. Now we state the propositions:
(83) (The vertices of $\amalg F)(x)=\{\langle$ the vertices of $F, x\rangle\} \times$ (the vertices of $F)(x)$. The theorem is a consequence of (1) and (80).
(84) (The edges of $\amalg F)(x)=\{\langle$ the edges of $F, x\rangle\} \times$ (the edges of $F)(x)$. The theorem is a consequence of (1) and (80).
Let F be a non empty, graph-yielding function. Note that $\coprod F$ is vertexdisjoint and edge-disjoint.

Let us consider a non empty, graph-yielding function F, an element x of $\operatorname{dom} F$, and an element x^{\prime} of $\operatorname{dom}(\amalg F)$. Now we state the propositions:
(85) Suppose $x=x^{\prime}$. Then there exists a partial graph mapping G from $F(x)$ to $(\amalg F)\left(x^{\prime}\right)$ such that
(i) $G_{\mathbb{V}}=\amalg($ the vertices of $F, x)$, and
(ii) $G_{\mathbb{E}}=\amalg($ the edges of $F, x)$, and
(iii) G is directed-isomorphism.

The theorem is a consequence of (16).
(86) If $x=x^{\prime}$, then $(\amalg F)\left(x^{\prime}\right)$ is $F(x)$-directed-isomorphic. The theorem is a consequence of (85).
(87) Let us consider a non empty, graph-yielding function F. Then F and $\amalg F$ are directed-isomorphic. The theorem is a consequence of (86) and (38).

Let us consider non empty, graph-yielding functions F_{1}, F_{2}. Now we state the propositions:
(88) If F_{1} and F_{2} are directed-isomorphic, then $\amalg F_{1}$ and $\amalg F_{2}$ are directedisomorphic. The theorem is a consequence of (87) and (40).
(89) If F_{1} and F_{2} are isomorphic, then $\amalg F_{1}$ and $\amalg F_{2}$ are isomorphic. The theorem is a consequence of (42), (87), and (41).
Let us consider a non empty, graph-yielding function F, an element x of dom F, an element x^{\prime} of $\operatorname{dom}(\amalg F)$, and objects v, e, w. Now we state the propositions:
(90) Suppose $x=x^{\prime}$. Then suppose e joins v to w in $F(x)$. Then 〈the edges of $F, x, e\rangle$ joins \langle the vertices of $F, x, v\rangle$ to \langle the vertices of $F, x, w\rangle$ in $(\amalg F)\left(x^{\prime}\right)$. The theorem is a consequence of (85) and (78).
(91) Suppose $x=x^{\prime}$. Then suppose e joins v and w in $F(x)$. Then 〈the edges of $F, x, e\rangle$ joins \langle the vertices of $F, x, v\rangle$ and \langle the vertices of $F, x, w\rangle$ in $(\amalg F)\left(x^{\prime}\right)$. The theorem is a consequence of (90).
Let us consider a non empty, graph-yielding function F, an element x of dom F, an element x^{\prime} of $\operatorname{dom}(\amalg F)$, and objects $v^{\prime}, e^{\prime}, w^{\prime}$. Now we state the propositions:
(92) Suppose $x=x^{\prime}$ and e^{\prime} joins v^{\prime} to w^{\prime} in ($\left.\amalg F\right)\left(x^{\prime}\right)$. Then there exist objects v, e, w such that
(i) e joins v to w in $F(x)$, and
(ii) $e^{\prime}=\langle$ the edges of $F, x, e\rangle$, and
(iii) $v^{\prime}=\langle$ the vertices of $F, x, v\rangle$, and
(iv) $w^{\prime}=\langle$ the vertices of $F, x, w\rangle$.

The theorem is a consequence of (85), (83), (80), (79), (84), and (78).
(93) Suppose $x=x^{\prime}$ and e^{\prime} joins v^{\prime} and w^{\prime} in $(\amalg F)\left(x^{\prime}\right)$. Then there exist objects v, e, w such that
(i) e joins v and w in $F(x)$, and
(ii) $e^{\prime}=\langle$ the edges of $F, x, e\rangle$, and
(iii) $v^{\prime}=\langle$ the vertices of $F, x, v\rangle$, and
(iv) $w^{\prime}=\langle$ the vertices of $F, x, w\rangle$.

The theorem is a consequence of (92).
Let F be a non empty, loopless, graph-yielding function. One can verify that $\lfloor F$ is loopless.

Let F be a non empty, non loopless, graph-yielding function. Note that $\amalg F$ is non loopless.

Let F be a non empty, non-multi, graph-yielding function. Observe that $\amalg F$ is non-multi.

Let F be a non empty, non non-multi, graph-yielding function. One can verify that $\amalg F$ is non non-multi.

Let F be a non empty, non-directed-multi, graph-yielding function. Note that $\amalg F$ is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function. One can verify that $\amalg F$ is non non-directed-multi.

Let F be a non empty, simple, graph-yielding function. Observe that $\amalg F$ is simple.

Let F be a non empty, directed-simple, graph-yielding function. One can check that $\amalg F$ is directed-simple.

Let F be a non empty, acyclic, graph-yielding function. Let us observe that $\amalg F$ is acyclic.

Let F be a non empty, non acyclic, graph-yielding function. One can check that $\amalg F$ is non acyclic.

Let F be a non empty, connected, graph-yielding function. Let us note that $\amalg F$ is connected.

Let F be a non empty, non connected, graph-yielding function. Let us observe that $\coprod F$ is non connected.

Let F be a non empty, tree-like, graph-yielding function. One can check that $\amalg F$ is tree-like.

Let F be a non empty, edgeless, graph-yielding function. Observe that $\amalg F$ is edgeless.

Let F be a non empty, non edgeless, graph-yielding function. One can verify that $\lfloor F$ is non edgeless.

Let F be a non empty, graph-yielding function and z be an element of $\operatorname{dom} F$. The functor $\amalg(F, z)$ yielding a graph-yielding function is defined by the term
(Def. 26) $\coprod F+\cdot(z, F(z) \upharpoonright($ the graph selectors) $)$.
Let us note that $\lfloor(F, z)$ is non empty. Now we state the propositions:
(94) Let us consider a non empty, graph-yielding function F, and an element z of $\operatorname{dom} F$. Then $\operatorname{dom} F=\operatorname{dom}(\amalg(F, z))$.
(95) Let us consider a non empty, graph-yielding function F, an element z of dom F, and a graph-yielding function G. Then $G=\coprod(F, z)$ if and only
if $\operatorname{dom} G=\operatorname{dom} F$ and $G(z)=F(z) \upharpoonright($ the graph selectors) and for every element x of dom F such that $x \neq z$ holds $G(x)=$ replaceVerticesEdges($\amalg($ the vertices of $F, x), \amalg($ the edges of $F, x))$.
(96) Let us consider a non empty, graph-yielding function F, and an element z of dom F. Then $\coprod(F, z)(z)=F(z) \upharpoonright$ (the graph selectors).
Let F be a non empty, graph-yielding function and z be an element of dom F. Observe that $\amalg(F, z)$ is plain. Now we state the propositions:
(97) Let us consider a non empty, graph-yielding function F, and an element z of dom F. Then (the vertices of $\amalg(F, z))(z)=($ the vertices of $F)(z)$. The theorem is a consequence of (94) and (96).
(98) Let us consider a non empty, graph-yielding function F, and elements x, z of dom F. Suppose $x \neq z$. Then (the vertices of $\amalg(F, z))(x)=$ (the vertices of $\amalg F)(x)$. The theorem is a consequence of (95).
Let us consider a non empty, graph-yielding function F and an element z of $\operatorname{dom} F$. Now we state the propositions:
(99) The vertices of $\amalg(F, z)=$ (the vertices of $\amalg F)+\cdot(z$, the vertices of $F(z)$). The theorem is a consequence of (97) and (98).
(100) (The edges of $\amalg(F, z))(z)=$ (the edges of $F)(z)$. The theorem is a consequence of (94) and (96).
(101) Let us consider a non empty, graph-yielding function F, and elements x, z of dom F. Suppose $x \neq z$. Then (the edges of $\amalg(F, z))(x)=$ (the edges of $\amalg F)(x)$. The theorem is a consequence of (95).
(102) Let us consider a non empty, graph-yielding function F, and an element z of dom F. Then the edges of $\amalg(F, z)=$ (the edges of $\amalg F)+\cdot(z$, the edges of $F(z)$). The theorem is a consequence of (100) and (101).
Let F be a non empty, graph-yielding function and z be an element of dom F. Let us note that $\coprod(F, z)$ is vertex-disjoint and edge-disjoint.

Let us consider a non empty, graph-yielding function F, elements x, z of $\operatorname{dom} F$, and an element x^{\prime} of $\operatorname{dom}(\amalg(F, z))$. Now we state the propositions:
(103) Suppose $x \neq z$ and $x=x^{\prime}$. Then there exists a partial graph mapping G from $F(x)$ to $\coprod(F, z)\left(x^{\prime}\right)$ such that
(i) $G_{\mathbb{V}}=\coprod($ the vertices of $F, x)$, and
(ii) $G_{\mathbb{E}}=\coprod$ (the edges of $\left.F, x\right)$, and
(iii) G is directed-isomorphism.

The theorem is a consequence of (85).
(104) If $x=x^{\prime}$, then $\coprod(F, z)\left(x^{\prime}\right)$ is $(F(x))$-directed-isomorphic. The theorem is a consequence of (96) and (103).

Let us consider a non empty, graph-yielding function F and an element z of $\operatorname{dom} F$. Now we state the propositions:
(105) F and $\coprod(F, z)$ are directed-isomorphic. The theorem is a consequence of (104) and (38).
(106) $\amalg F$ and $\amalg(F, z)$ are directed-isomorphic. The theorem is a consequence of (87), (105), and (40).
(107) Let us consider non empty, graph-yielding functions F_{1}, F_{2}, an element z_{1} of $\operatorname{dom} F_{1}$, and an element z_{2} of $\operatorname{dom} F_{2}$. Suppose F_{1} and F_{2} are directedisomorphic. Then $\amalg\left(F_{1}, z_{1}\right)$ and $\amalg\left(F_{2}, z_{2}\right)$ are directed-isomorphic. The theorem is a consequence of (105) and (40).
Let us consider a non empty, graph-yielding function F, an element z of dom F, an element z^{\prime} of $\operatorname{dom}(\amalg(F, z))$, and objects v, e, w. Now we state the propositions:
(108) If $z=z^{\prime}$, then e joins v to w in $F(z)$ iff e joins v to w in $\amalg(F, z)\left(z^{\prime}\right)$. The theorem is a consequence of (96).
(109) If $z=z^{\prime}$, then e joins v and w in $F(z)$ iff e joins v and w in $\amalg(F, z)\left(z^{\prime}\right)$. The theorem is a consequence of (96).
Let us consider a non empty, graph-yielding function F, elements x, z of dom F, an element x^{\prime} of $\operatorname{dom}(\amalg(F, z))$, and objects v, e, w. Now we state the propositions:
(110) Suppose $x \neq z$ and $x=x^{\prime}$. Then suppose e joins v to w in $F(x)$. Then \langle the edges of $F, x, e\rangle$ joins \langle the vertices of $F, x, v\rangle$ to \langle the vertices of F, $x, w\rangle$ in $\amalg(F, z)\left(x^{\prime}\right)$. The theorem is a consequence of (90).
(111) Suppose $x \neq z$ and $x=x^{\prime}$. Then suppose e joins v and w in $F(x)$. Then〈the edges of $F, x, e\rangle$ joins \langle the vertices of $F, x, v\rangle$ and \langle the vertices of $F, x, w\rangle$ in $\coprod(F, z)\left(x^{\prime}\right)$. The theorem is a consequence of (91).
Let us consider a non empty, graph-yielding function F, elements x, z of dom F, an element x^{\prime} of $\operatorname{dom}(\amalg(F, z))$, and objects $v^{\prime}, e^{\prime}, w^{\prime}$. Now we state the propositions:
(112) Suppose $x \neq z$ and $x=x^{\prime}$ and e^{\prime} joins v^{\prime} to w^{\prime} in $\coprod(F, z)\left(x^{\prime}\right)$. Then there exist objects v, e, w such that
(i) e joins v to w in $F(x)$, and
(ii) $e^{\prime}=\langle$ the edges of $F, x, e\rangle$, and
(iii) $v^{\prime}=\langle$ the vertices of $F, x, v\rangle$, and
(iv) $w^{\prime}=\langle$ the vertices of $F, x, w\rangle$.

The theorem is a consequence of (92).
(113) Suppose $x \neq z$ and $x=x^{\prime}$ and e^{\prime} joins v^{\prime} and w^{\prime} in $\amalg(F, z)\left(x^{\prime}\right)$. Then there exist objects v, e, w such that
(i) e joins v and w in $F(x)$, and
(ii) $e^{\prime}=\langle$ the edges of $F, x, e\rangle$, and
(iii) $v^{\prime}=\langle$ the vertices of $F, x, v\rangle$, and
(iv) $w^{\prime}=\langle$ the vertices of $F, x, w\rangle$.

The theorem is a consequence of (93).
Let F be a non empty, loopless, graph-yielding function and z be an element of dom F. One can check that $\amalg(F, z)$ is loopless.

Let F be a non empty, non loopless, graph-yielding function. Let us observe that $\amalg(F, z)$ is non loopless.

Let F be a non empty, non-multi, graph-yielding function. Let us note that $\amalg(F, z)$ is non-multi.

Let F be a non empty, non non-multi, graph-yielding function. One can check that $\coprod(F, z)$ is non non-multi.

Let F be a non empty, non-directed-multi, graph-yielding function. Let us observe that $\amalg(F, z)$ is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function. Let us observe that $\lfloor(F, z)$ is non non-directed-multi.

Let F be a non empty, simple, graph-yielding function. Let us observe that $\amalg(F, z)$ is simple.

Let F be a non empty, directed-simple, graph-yielding function. Note that $\amalg(F, z)$ is directed-simple.

Let F be a non empty, acyclic, graph-yielding function. Let us observe that $\amalg(F, z)$ is acyclic.

Let F be a non empty, non acyclic, graph-yielding function. Let us note that $\coprod(F, z)$ is non acyclic.

Let F be a non empty, connected, graph-yielding function. One can check that $\amalg(F, z)$ is connected.

Let F be a non empty, non connected, graph-yielding function. Let us observe that $\coprod(F, z)$ is non connected.

Let F be a non empty, tree-like, graph-yielding function. Let us note that $\amalg(F, z)$ is tree-like.

Let F be a non empty, edgeless, graph-yielding function. One can verify that $\amalg(F, z)$ is edgeless.

Let F be a non empty, non edgeless, graph-yielding function. Observe that $\amalg(F, z)$ is non edgeless.

Let us consider graphs G_{2}, H and a partial graph mapping F from G_{2} to H. Now we state the propositions:
(114) If F is directed and weak subgraph embedding, then there exists a supergraph G_{1} of G_{2} such that G_{1} is H-directed-isomorphic.
Proof: Set $c=$ (the vertices of $H) \longmapsto\left(\right.$ the vertices of $\left.G_{2}\right) . \operatorname{rng}\left\langle c, \operatorname{id}_{\alpha}\right\rangle \cap$ $\operatorname{rng}\left(F_{\mathbb{V}}\right)^{-1}=\emptyset$, where α is the vertices of H. Set $d=$ (the edges of $H) \longmapsto\left(\right.$ the edges of $\left.G_{2}\right) . \operatorname{rng}\left\langle d, \operatorname{id}_{\alpha}\right\rangle \cap \operatorname{rng}\left(F_{\mathbb{E}}\right)^{-1}=\emptyset$, where α is the edges of H.
(115) If F is weak subgraph embedding, then there exists a supergraph G_{1} of G_{2} such that G_{1} is H-isomorphic. The theorem is a consequence of (114).

6. The Sum of Graphs

Let F be a non empty, graph-yielding function.
A graph sum of F is a graph defined by
(Def. 27) there exists a graph union G^{\prime} of $\operatorname{rng} \coprod F$ such that it is G^{\prime}-directedisomorphic.
Now we state the proposition:
(116) Let us consider a non empty, graph-yielding function F, a graph sum S of F, and a graph union G^{\prime} of $\operatorname{rng} \amalg F$. Then S is G^{\prime}-directed-isomorphic.
Let us consider non empty, graph-yielding functions F_{1}, F_{2}, a graph sum S_{1} of F_{1}, and a graph sum S_{2} of F_{2}. Now we state the propositions:
(117) If F_{1} and F_{2} are directed-isomorphic, then S_{2} is S_{1}-directed-isomorphic. The theorem is a consequence of (74), (88), (55), and (116).
(118) If F_{1} and F_{2} are isomorphic, then S_{2} is S_{1}-isomorphic. The theorem is a consequence of (89), (57), (75), and (116).
Now we state the propositions:
(119) Let us consider a non empty, graph-yielding function F, and graph sums S_{1}, S_{2} of F. Then S_{2} is S_{1}-directed-isomorphic.
(120) Let us consider an object x, and a graph G. Then every graph sum of $x \longmapsto G$ is G-directed-isomorphic. The theorem is a consequence of (17).
(121) Let us consider a non empty, graph-yielding function F, and a graph sum S of F. Suppose S is connected. Then there exists an object x and there exists a connected graph G such that $F=x \longmapsto G$. The theorem is a consequence of (59) and (120).
Let X be a non empty set. Observe that there exists a graph-yielding many sorted set indexed by X which is non empty, vertex-disjoint, and edge-disjoint.

Now we state the propositions:
(122) Let us consider a non empty, graph-yielding function F, an element x of $\operatorname{dom} F$, and a graph sum S of F. Then there exists a partial graph
mapping M from $F(x)$ to S such that M is strong subgraph embedding. The theorem is a consequence of (62) and (17).
(123) Let us consider a non empty, graph-yielding function F, and an element z of dom F. Then there exists a graph sum S of F such that S is supergraph of $F(z)$ and graph union of $\operatorname{rng} \coprod(F, z)$. The theorem is a consequence of (106), (55), (74), (94), and (95).
(124) Let us consider a non empty, graph-yielding function F, and a graph sum S of F. Then
(i) F is loopless iff S is loopless, and
(ii) F is non-multi iff S is non-multi, and
(iii) F is non-directed-multi iff S is non-directed-multi, and
(iv) F is simple iff S is simple, and
(v) F is directed-simple iff S is directed-simple, and
(vi) F is chordal iff S is chordal, and
(vii) F is edgeless iff S is edgeless, and
(viii) F is loopfull iff S is loopfull.

Let F be a non empty, loopless, graph-yielding function. Observe that every graph sum of F is loopless.

Let F be a non empty, non loopless, graph-yielding function. Note that every graph sum of F is non loopless.

Let F be a non empty, non-directed-multi, graph-yielding function. One can verify that every graph sum of F is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function. Observe that every graph sum of F is non non-directed-multi.

Let F be a non empty, non-multi, graph-yielding function. Note that every graph sum of F is non-multi.

Let F be a non empty, non non-multi, graph-yielding function. One can verify that every graph sum of F is non non-multi.

Let F be a non empty, simple, graph-yielding function. Observe that every graph sum of F is simple.

Let F be a non empty, directed-simple, graph-yielding function. Observe that every graph sum of F is directed-simple.

Let F be a non empty, edgeless, graph-yielding function. Observe that every graph sum of F is edgeless.

Let F be a non empty, non edgeless, graph-yielding function. Note that every graph sum of F is non edgeless.

Let F be a non empty, loopfull, graph-yielding function. One can verify that every graph sum of F is loopfull.

Let F be a non empty, non loopfull, graph-yielding function. Observe that every graph sum of F is non loopfull. Now we state the proposition:
(125) Let us consider a non empty, graph-yielding function F, and a graph sum S of F. Then
(i) F is acyclic iff S is acyclic, and
(ii) F is chordal iff S is chordal.

The theorem is a consequence of (87), (42), (60), (48), and (63).
Let F be a non empty, acyclic, graph-yielding function. Let us note that every graph sum of F is acyclic.

Let F be a non empty, non acyclic, graph-yielding function. One can check that every graph sum of F is non acyclic.

Now we state the propositions:
(126) Let us consider a non empty, graph-yielding function F, and a graph sum S of F. Then $\overline{\bar{F}} \subseteq S$.numComponents(). The theorem is a consequence of (68).
(127) Let us consider a non empty, connected, graph-yielding function F, and a graph sum S of F. Then $\overline{\bar{F}}=S$.numComponents(). The theorem is a consequence of (69).

7. The Sum of two Graphs

Let G_{1}, G_{2} be graphs.
A graph sum of G_{1} and G_{2} is a supergraph of G_{1} defined by
(Def. 28) it is a graph sum of $\left\langle G_{1}, G_{2}\right\rangle$.
Now we state the proposition:
(128) Let us consider graphs G_{1}, G_{2}, and a graph sum S of G_{1} and G_{2}. Then
(i) G_{1} is loopless and G_{2} is loopless iff S is loopless, and
(ii) G_{1} is non-multi and G_{2} is non-multi iff S is non-multi, and
(iii) G_{1} is non-directed-multi and G_{2} is non-directed-multi iff S is non-directed-multi, and
(iv) G_{1} is simple and G_{2} is simple iff S is simple, and
(v) G_{1} is directed-simple and G_{2} is directed-simple iff S is directedsimple, and
(vi) G_{1} is acyclic and G_{2} is acyclic iff S is acyclic, and
(vii) G_{1} is chordal and G_{2} is chordal iff S is chordal, and
(viii) G_{1} is edgeless and G_{2} is edgeless iff S is edgeless, and
(ix) G_{1} is loopfull and G_{2} is loopfull iff S is loopfull.

The theorem is a consequence of (124).
Let G_{1}, G_{2} be loopless graphs. Note that every graph sum of G_{1} and G_{2} is loopless.

Let G_{1}, G_{2} be non loopless graphs. Let us observe that every graph sum of G_{1} and G_{2} is non loopless.

Let G_{1}, G_{2} be non-directed-multi graphs. Let us note that every graph sum of G_{1} and G_{2} is non-directed-multi.

Let G_{1}, G_{2} be non non-directed-multi graphs. One can verify that every graph sum of G_{1} and G_{2} is non non-directed-multi.

Let G_{1}, G_{2} be non-multi graphs. Observe that every graph sum of G_{1} and G_{2} is non-multi.

Let G_{1}, G_{2} be non non-multi graphs. One can check that every graph sum of G_{1} and G_{2} is non non-multi.

Let G_{1}, G_{2} be simple graphs. Let us observe that every graph sum of G_{1} and G_{2} is simple.

Let G_{1}, G_{2} be directed-simple graphs. Observe that every graph sum of G_{1} and G_{2} is directed-simple.

Let G_{1}, G_{2} be acyclic graphs. Let us note that every graph sum of G_{1} and G_{2} is acyclic.

Let G_{1}, G_{2} be non acyclic graphs. One can verify that every graph sum of G_{1} and G_{2} is non acyclic.

Let G_{1}, G_{2} be edgeless graphs. Observe that every graph sum of G_{1} and G_{2} is edgeless.

Let G_{1}, G_{2} be non edgeless graphs. One can check that every graph sum of G_{1} and G_{2} is non edgeless.

Let G_{1}, G_{2} be loopfull graphs. Let us observe that every graph sum of G_{1} and G_{2} is loopfull.

Let G_{1}, G_{2} be non loopfull graphs. Note that every graph sum of G_{1} and G_{2} is non loopfull.

Let us consider graphs G_{1}, G_{2} and a graph sum S of G_{1} and G_{2}. Now we state the propositions:
(129) $S . \operatorname{order}()=G_{1} \cdot \operatorname{order}()+G_{2} \cdot \operatorname{order}()$.
(130) $S \cdot \operatorname{size}()=G_{1} \cdot \operatorname{size}()+G_{2} \cdot \operatorname{size}()$.
(131) S. numComponents ()$=G_{1}$.numComponents ()$+G_{2}$.numComponents().

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ sivelf-017-9440-6
[2] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics, 244. Springer, New York, 2008. ISBN 978-1-84628-969-9.
[3] Reinhard Diestel. Graph theory. Graduate Texts in Mathematics; 173. Springer, New York, 2nd edition, 2000. ISBN 0-387-98976-5; 0-387-98976-5.
[4] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[5] Sebastian Koch. Miscellaneous graph preliminaries. Formalized Mathematics, 28(1):2339, 2020. doi 10.2478/forma-2020-0003
[6] Sebastian Koch. Miscellaneous graph preliminaries. Part I. Formalized Mathematics, 29 (1):21-38, 2021. doi 10.2478/forma-2021-0003
[7] Sebastian Koch. About graph unions and intersections. Formalized Mathematics, 28(2): 155-171, 2020. doi 10.2478/forma-2020-0014
[8] Gilbert Lee. Walks in graphs, Formalized Mathematics, 13(2):253-269, 2005.
[9] Gilbert Lee and Piotr Rudnicki. Alternative graph structures Formalized Mathematics, 13(2):235-252, 2005.
[10] Kenneth H. Rosen, editor. Handbook of discrete and combinatorial mathematics. Discrete mathematics and its applications. CRC Press, Boca Raton, second edition, 2018. ISBN 978-1-58488-780-5.
[11] Klaus Wagner. Graphentheorie. B.I-Hochschultaschenbücher; 248. Bibliograph. Inst., Mannheim, 1970. ISBN 3-411-00248-4.

Accepted November 30, 2021

[^0]: ${ }^{1}$ The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto: skoch02@students.uni-mainz.de

