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Summary. In this article we further develop field theory [6], [7], [12] in
Mizar [1], [2], [3]: we deal with quadratic polynomials and quadratic extensions
[5], [4]. First we introduce quadratic polynomials, their discriminants and prove
the midnight formula. Then we show that - in case the discriminant of p being
non square - adjoining a root of p’s discriminant results in a splitting field of p.
Finally we prove that these are the only field extensions of degree 2, e.g. that an
extension E of F is quadratic if and only if there is a non square Element a ∈ F
such that E and F (

√
a) are isomorphic over F .
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1. Preliminaries

Now we state the proposition:

(1) Let us consider natural numbers a, b. If a ¬ b, then a−′ 1 ¬ b−′ 1.

Let i be an integer. One can check that i2 is integer.
Let R be a ring, S be a ring extension of R, and a be an R-membered element

of S. The functor @a yielding an element of R is defined by the term

(Def. 1) a.

One can verify that −a is R-membered.
Let a, b be R-membered elements of S. One can verify that a + b is R-

membered and a · b is R-membered and 0S is R-membered.
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Let R be a non degenerated ring. One can check that 1S is non zero and R-
membered and there exists an element of S which is non zero and R-membered.

Let F be a field, E be an extension of F , and a be a non zero, F -membered
element of E. Let us observe that a−1 is F -membered.

Let R be a ring and a, b, c be elements of R. One can check that 〈a, b, c〉
is (the carrier of R)-valued and there exists a field which is strict and has not
characteristic 2.

Let R be a ring. One can check that (0R)2 reduces to 0R and (1R)2 reduces
to 1R and (−1R)2 reduces to 1R.

Now we state the propositions:

(2) Let us consider a commutative ring R, and elements a, b of R. Then
(a · b)2 = a2 · b2.

(3) Let us consider a field F , an element a of F , a non zero element b of F ,
and an integer i. Suppose i ? a 6= 0F and i ? b 6= 0F . Then (i ? a)·(i ? b)−1 =
a · b−1.

(4) Let us consider a commutative ring R, an element a of R, and an integer
i. Then (i ? a)2 = i2 ? a2.

Let us consider an integral domain R with non characteristic 2 and an ele-
ment a of R. Now we state the propositions:

(5) 2 ? a = 0R if and only if a = 0R.

(6) 4 ? a = 0R if and only if a = 0R. The theorem is a consequence of (5).

(7) Let us consider a ring R, a ring extension S of R, an element a of R,
and an element b of S. If b = a, then for every integer i, i ? a = i ? b.
Proof: Define P[integer] ≡ for every integer k such that k = $1 holds
k ? a = k ? b. For every integer u such that P[u] holds P[u−1] and P[u+1]
by [11, (62), (64)], [8, (15)]. For every integer i, P[i]. �

(8) Let us consider an integral domain R, a domain ring extension S of R,
an element a of R, and an element b of S. If b2 = a2, then b = a or b = −a.

Let us consider a field F , an extension E of F , and an element a of E. Now
we state the propositions:

(9) FAdj(F, {a,−a}) = FAdj(F, {a}).
(10) FAdj(F, {a}) = FAdj(F, {−a}). The theorem is a consequence of (9).

One can check that there exists a polynomial-disjoint field which is non
algebraic closed.

Let F be a non algebraic closed field. One can verify that there exists an ele-
ment of the carrier of PolyRing(F ) which is irreducible and non linear.

Let F be a field. One can verify that every element of the carrier of PolyRing(F )
which is irreducible and non linear and has also not roots and every element of
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the carrier of PolyRing(F ) which is irreducible and has roots is also linear.
Let F be a polynomial-disjoint field and p be an irreducible element of

the carrier of PolyRing(F ). Note that KrRootP(p) is F-algebraic.
Let F be a non algebraic closed, polynomial-disjoint field and p be an ir-

reducible, non linear element of the carrier of PolyRing(F ). Let us note that
KrRootP(p) is non zero and non F -membered.

2. More on Polynomials

Now we state the proposition:

(11) Let us consider a non degenerated ring R, a non zero polynomial p over
R, and a polynomial q over R. Then deg(p ∗ q) ¬ deg p+ deg q.

Let L be a well unital, non degenerated double loop structure, k be a non
zero element of N, and a be an element of L. Let us note that rpoly(k, a) is
monic.

Let R be a non degenerated ring, a be a non zero element of R, and b be
an element of R. Let us note that 〈b, a〉 is linear and 〈b, 1R〉 is monic and linear.

Now we state the propositions:

(12) Let us consider a ring R, and elements a, b, x of R. Then x · 〈b, a〉 =
〈x · b, x · a〉.

(13) Let us consider a ring R, and a polynomial p over R. Suppose deg p < 2.
Let us consider an element a of R. Then there exist elements y, z of R
such that p = 〈y, z〉.

(14) Let us consider a commutative ring R, and a polynomial p over R. Suppo-
se deg p < 2. Let us consider an element a of R. Then there exist elements
y, z of R such that eval(p, a) = y + a · z. The theorem is a consequence of
(13).

(15) Let us consider a field F , an extension E of F , and a polynomial p over
F . Suppose deg p < 2. Let us consider an element a of E. Then there exist
F -membered elements y, z of E such that ExtEval(p, a) = y + a · z. The
theorem is a consequence of (13).

Let R be a ring and a be an element of R. The functors: X- a and X+ a

yielding elements of the carrier of PolyRing(R) are defined by terms

(Def. 2) rpoly(1, a),

(Def. 3) rpoly(1,−a),

respectively. Let R be a non degenerated ring. Let us observe that X- a is linear
and monic and X+ a is linear and monic.
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3. Quadratic Polynomials

Let R be a ring and p be a polynomial over R. We say that p is quadratic if
and only if

(Def. 4) deg p = 2.

Let R be a non degenerated ring. Note that there exists a polynomial over
R which is monic and quadratic and there exists an element of the carrier of
PolyRing(R) which is monic and quadratic and every quadratic polynomial over
R is non constant and every quadratic element of the carrier of PolyRing(R) is
non constant.

Let L be a non empty zero structure and a, b, c be elements of L. The functor
〈c, b, a〉 yielding a sequence of L is defined by the term

(Def. 5) ((0.L+· (0, c)) +· (1, b)) +· (2, a).

Note that 〈c, b, a〉 is finite-Support.
Let us consider a non empty zero structure L and elements a, b, c of L. Now

we state the propositions:

(16) (i) 〈c, b, a〉(0) = c, and

(ii) 〈c, b, a〉(1) = b, and

(iii) 〈c, b, a〉(2) = a, and

(iv) for every natural number n such that n  3 holds 〈c, b, a〉(n) = 0L.

(17) deg〈c, b, a〉 ¬ 2.

(18) deg〈c, b, a〉 = 2 if and only if a 6= 0L.

Let R be a non degenerated ring, a be a non zero element of R, and b, c be
elements of R. One can check that 〈c, b, a〉 is quadratic and 〈c, b, 1R〉 is quadratic
and monic.

Let R be an integral domain and a, x be non zero elements of R. Observe
that x · 〈c, b, a〉 is quadratic.

Let us consider a ring R and elements a, b, c, x of R. Now we state the
propositions:

(19) x · 〈c, b, a〉 = 〈x · c, x · b, x · a〉.
(20) eval(〈c, b, a〉, x) = c+ b · x+ a · x2.
(21) Let us consider a non degenerated ring R, and a polynomial p over R.

Then p is quadratic if and only if there exists a non zero element a of R
and there exist elements b, c of R such that p = 〈c, b, a〉.

(22) Let us consider a non degenerated ring R, and a monic polynomial p
over R. Then p is quadratic if and only if there exist elements b, c of R
such that p = 〈c, b, 1R〉. The theorem is a consequence of (21).
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(23) Let us consider a non degenerated ring R, a ring extension S of R,
elements a1, b1, c1 of R, and elements a2, b2, c2 of S. Suppose a1 = a2 and
b1 = b2 and c1 = c2. Then 〈c2, b2, a2〉 = 〈c1, b1, a1〉.

Let R be a non degenerated ring and p be a polynomial over R. We say that
p is purely quadratic if and only if

(Def. 6) there exists a non zero element a of R and there exists an element c of
R such that p = 〈c, 0R, a〉.

Let a be a non zero element of R and c be an element of R. Let us note
that 〈c, 0R, a〉 is purely quadratic and there exists a polynomial over R which
is monic and purely quadratic and every polynomial over R which is purely
quadratic is also quadratic.

Let R be a ring and a be an element of R. The functors: X2- a and X2+ a

yielding elements of the carrier of PolyRing(R) are defined by terms

(Def. 7) 〈−a, 0R, 1R〉,
(Def. 8) 〈a, 0R, 1R〉,

respectively. Let R be a non degenerated ring. One can check that every poly-
nomial over R which is linear is also non quadratic and every polynomial over
R which is quadratic is also non linear.

Let a be an element of R. One can verify that X2- a is purely quadratic, mo-
nic, and non constant and X2+ a is purely quadratic, monic, and non constant.

Now we state the propositions:

(24) Let us consider a field F , and elements b1, c1, b2, c2 of F . Then 〈c1, b1〉 ∗
〈c2, b2〉 = 〈c1 · c2, b1 · c2 + b2 · c1, b1 · b2〉. The theorem is a consequence of
(1).

(25) Let us consider a field F with non characteristic 2, a non zero element a of
F , elements b, c of F , and an element w of F . Suppose w2 = b2−(4 ? a) ·c.
Then

(i) eval(〈c, b, a〉, (−b+ w) · (2 ? a)−1) = 0F , and

(ii) eval(〈c, b, a〉, (−b− w) · (2 ? a)−1) = 0F .

The theorem is a consequence of (5), (2), (4), and (20).

(26) Let us consider a field F , a non zero element a of F , and elements b, c
of F . Suppose Roots(〈c, b, a〉) 6= ∅. Then b2 − (4 ? a) · c is a square. The
theorem is a consequence of (20), (4), and (2).

(27) Let us consider a field F with non characteristic 2, a non zero element a of
F , elements b, c of F , and an element w of F . Suppose w2 = b2−(4 ? a) ·c.
Then Roots(〈c, b, a〉) = {(−b + w) · (2 ? a)−1, (−b − w) · (2 ? a)−1}. The
theorem is a consequence of (5), (20), (4), (2), and (25).
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(28) Let us consider a field F with non characteristic 2, a non zero element a of
F , elements b, c of F , and an element w of F . Suppose w2 = b2−(4 ? a) ·c.
Let us consider elements r1, r2 of F . Suppose r1 = (−b+w) · (2 ? a)−1 and
r2 = (−b− w) · (2 ? a)−1. Then 〈c, b, a〉 = a · (X- r1 ∗X- r2).
Proof: 〈a ·r1 ·r2, a · (−(r1 + r2)), a · (1F )〉 = a · (rpoly(1, r1)∗ rpoly(1, r2)).
2 ? a 6= 0F and 4 ? a 6= 0F and a 6= 0F . a · r1 · r2 = c by [9, (5),(9)].
a · (−(r1 + r2)) = b by [10, (2)],(3). �

Let R be a non degenerated ring and p be a quadratic polynomial over R.
The functor Discriminant(p) yielding an element of R is defined by

(Def. 9) there exists a non zero element a of R and there exist elements b, c of R
such that p = 〈c, b, a〉 and it = b2 − (4 ? a) · c.

We introduce the notation DC(p) as a synonym of Discriminant(p).
Let p be a monic, quadratic polynomial over R. Observe that the functor

Discriminant(p) is defined by

(Def. 10) there exist elements b, c of R such that p = 〈c, b, 1R〉 and it = b2 − 4 ? c.

Let p be a monic, purely quadratic polynomial over R. One can check that
the functor Discriminant(p) is defined by

(Def. 11) there exists an element c of R such that p = 〈c, 0R, 1R〉 and it = −4 ? c.

Let us consider a field F with non characteristic 2 and a quadratic polynomial
p over F . Now we state the propositions:

(29) Roots(p) 6= ∅ if and only if DC(p) is a square. The theorem is a conse-
quence of (21), (25), and (26).

(30) Roots(p) = 1 if and only if DC(p) = 0F . The theorem is a consequence
of (21), (27), (5), and (29).

(31) Roots(p) = 2 if and only if DC(p) is non zero and a square. The theorem
is a consequence of (21), (5), (29), and (27).

(32) Let us consider a field F with non characteristic 2, and a quadratic
element p of the carrier of PolyRing(F ). Then p is reducible if and only if
DC(p) is a square. The theorem is a consequence of (21), (28), and (19).

(33) Let us consider a field F with non characteristic 2, and an element a
of F . Then X2- a is reducible if and only if a is a square. The theorem is
a consequence of (5), (6), and (32).
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4. Quadratic Polynomials over Z/2

Now we state the propositions:

(34) The carrier of Z/2 = {0Z/2, 1Z/2}.
(35) −1Z/2 = 1Z/2.

One can verify that Z/2 is polynomial-disjoint and every element of Z/2 is
a square and every non zero polynomial over Z/2 is monic and every non zero
element of the carrier of PolyRing(Z/2) is monic.

The functors: X2, X2 + 1, X2 + X, and X2 + X + 1 yielding quadratic ele-
ments of the carrier of PolyRing(Z/2) are defined by terms

(Def. 12) 〈0Z/2, 0Z/2, 1Z/2〉,
(Def. 13) 〈1Z/2, 0Z/2, 1Z/2〉,
(Def. 14) 〈0Z/2, 1Z/2, 1Z/2〉,
(Def. 15) 〈1Z/2, 1Z/2, 1Z/2〉,

respectively. The functors: X- and X-1 yielding linear elements of the carrier of
PolyRing(Z/2) are defined by terms

(Def. 16) 〈0Z/2, 1Z/2〉,
(Def. 17) 〈1Z/2, 1Z/2〉,

respectively. Now we state the propositions:

(36) the set of all p where p is a quadratic polynomial over Z/2 =
{X2,X2 + 1,X2 + X,X2 + X + 1}. The theorem is a consequence of (22)
and (34).

(37) the set of all p where p is a quadratic polynomial over Z/2 = 4. The the-
orem is a consequence of (36).

(38) Let us consider a quadratic polynomial p over Z/2. Then DC(p) is a squ-
are.

(39) (i) X2 = X- ∗X-, and

(ii) Roots(X2) = {0Z/2}.
(40) (i) X2 + 1 = X-1 ∗X-1, and

(ii) Roots(X2 + 1) = {1Z/2}.
The theorem is a consequence of (35).

(41) (i) X2 + X = X- ∗X-1, and

(ii) Roots(X2 + X) = {0Z/2, 1Z/2}.
The theorem is a consequence of (35).

(42) Roots(X2 + X + 1) = ∅. The theorem is a consequence of (34) and (20).

Let us note that X2 is reducible and X2 + 1 is reducible and X2 + X is
reducible and X2 + X + 1 is irreducible. Now we state the propositions:
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(43) Z/2 is a splitting field of X2.

(44) Z/2 is a splitting field of X2 + 1.

(45) Z/2 is a splitting field of X2 + X.

The functor α yielding an element of embField(canHomP(X2 + X + 1)) is
defined by the term

(Def. 18) KrRootP(X2 + X + 1).

The functor α− 1 yielding an element of embField(canHomP(X2 + X + 1))
is defined by the term

(Def. 19) α− 1embField(canHomP(X2+X+1)).

Let us observe that α is non zero and (Z/2)-algebraic.
Now we state the propositions:

(46) (i) −α = α, and

(ii) (α)−1 = α− 1, and

(iii) (α)−1 6= α.

(47) X2 + X + 1 = X-α ∗X-(α)−1 = X-α ∗X-α− 1.

(48) Roots(FAdj(Z/2, {α}),X2 + X + 1) = {α, α− 1}. The theorem is a con-
sequence of (46).

(49) Roots(FAdj(Z/2, {α}),X2 + X + 1) = 2.

(50) MinPoly(α,Z/2) = X2 + X + 1.

(51) deg(FAdj(Z/2, {α}),Z/2) = 2. The theorem is a consequence of (50) and
(18).

(52) FAdj(Z/2, {α}) is a splitting field of X2 + X + 1. The theorem is a con-
sequence of (48).

5. Fields with Non Squares

Let R be a ring. We say that R is quadratic complete if and only if

(Def. 20) the carrier of R ⊆ SQ(R).

Let us observe that −1RF is non square and −1FQ is non square and every non
degenerated ring which is algebraic closed is also quadratic complete and every
non degenerated ring which is preordered is also non quadratic complete and FQ
is non quadratic complete and RF is non quadratic complete and CF is quadratic
complete and there exists a field which is non quadratic complete, polynomial-
disjoint, and strict and there exists a field which is quadratic complete and strict
and every ring which is non quadratic complete is also non degenerated.

Let R be a non quadratic complete ring. One can check that there exists
an element of R which is non square and there exists a field which is strict,
polynomial-disjoint, and non quadratic complete and has not characteristic 2.
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Let F be a non quadratic complete field without characteristic 2. Let us
note that there exists an element of the carrier of PolyRing(F ) which is monic,
quadratic, and irreducible.

Let F be a field with non characteristic 2 and a be square element of F . One
can verify that X2- a is reducible.

Let F be a non quadratic complete field without characteristic 2 and a be
a non square element of F . Note that X2- a is irreducible.

Let F be a non quadratic complete, polynomial-disjoint field without cha-
racteristic 2. The functor

√
a yielding an element of embField(canHomP(X2- a))

is defined by the term

(Def. 21) KrRootP(X2- a).

One can verify that
√
a is non zero and F-algebraic and embField(canHomP

(X2- a)) is (FAdj(F, {
√
a}))-extending and

√
a is (FAdj(F, {

√
a}))-membered

and non F -membered.
From now on F denotes a non quadratic complete, polynomial-disjoint field

without characteristic 2.
Let us consider a non square element a of F . Now we state the propositions:

(53)
√
a ·
√
a = a. The theorem is a consequence of (20).

(54) MinPoly(
√
a, F ) = X2- a.

(55) deg(FAdj(F, {
√
a}), F ) = 2.

(56) X-
√
a ∗X+

√
a = X2- a. The theorem is a consequence of (53).

(57) Roots(FAdj(F, {
√
a}),X2- a) = {

√
a,−
√
a}. The theorem is a consequ-

ence of (56).

(58) FAdj(F, {
√
a}) is a splitting field of X2- a. The theorem is a consequence

of (56) and (57).

(59) {1F ,
√
a} is a basis of VecSp(FAdj(F, {

√
a}), F ).

(60) The carrier of FAdj(F, {
√
a}) = the set of all y+(@

√
a)·z where y, z are

F -membered elements of FAdj(F, {
√
a}).

(61) Let us consider a non square element a of F , and F -membered elements
a1, a2, b1, b2 of FAdj(F, {

√
a}). Suppose a1 + (@

√
a) · b1 = a2 + (@

√
a) · b2.

Then

(i) a1 = a2, and

(ii) b1 = b2.
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6. Splittingfields for Quadratic Polynomials

Let F be a field with non characteristic 2 and p be a quadratic element of
the carrier of PolyRing(F ). We say that p is DC-square if and only if

(Def. 22) DC(p) is a square.

Note that there exists a quadratic element of the carrier of PolyRing(F )
which is monic and DC-square.

Let F be a non quadratic complete field without characteristic 2. One can
check that there exists a quadratic element of the carrier of PolyRing(F ) which
is monic and non DC-square.

Let p be a non DC-square, quadratic element of the carrier of PolyRing(F ).
One can verify that DC(p) is non square and X2- DC(p) is irreducible.

Let F be a field with non characteristic 2 and p be a DC-square, quadra-
tic element of the carrier of PolyRing(F ). One can verify that X2- DC(p) is
reducible.

Now we state the proposition:

(62) Let us consider a field F with non characteristic 2, and a quadratic
element p of the carrier of PolyRing(F ). Then F is a splitting field of p if
and only if DC(p) is a square. The theorem is a consequence of (21), (28),
and (26).

Let F be a non quadratic complete, polynomial-disjoint field without cha-
racteristic 2 and p be a non DC-square, quadratic element of the carrier of
PolyRing(F ). Observe that

√
DC(p) is non zero and F-algebraic.

The functor RootDC(p) yielding an element of FAdj(F, {
√

DC(p)}) is defined
by the term

(Def. 23)
√

DC(p).

The functors: Root1(p) and Root2(p) yielding elements of FAdj(F, {
√

DC(p)})
are defined by terms

(Def. 24) (−(@(p(1),FAdj(F, {
√

DC(p)})))+
RootDC(p)) · (2 ?(@(p(2),FAdj(F, {

√
DC(p)}))))−1,

(Def. 25) (−(@(p(1),FAdj(F, {
√

DC(p)})))−
RootDC(p)) · (2 ?(@(p(2),FAdj(F, {

√
DC(p)}))))−1,

respectively. In the sequel p denotes a non DC-square, quadratic element of
the carrier of PolyRing(F ).

Now we state the propositions:

(63) RootDC(p) ·RootDC(p) = DC(p). The theorem is a consequence of (53).

(64) Let us consider a non zero element a of FAdj(F, {
√

DC(p)}), and ele-
ments b, c of FAdj(F, {

√
DC(p)}). Suppose p = 〈c, b, a〉. Then
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(i) Root1(p) = (−b+ RootDC(p)) · (2 ? a)−1, and

(ii) Root2(p) = (−b− RootDC(p)) · (2 ? a)−1.

(65) p = (@(LC p,FAdj(F, {
√

DC(p)}))) · (X- Root1(p) ∗ X- Root2(p)). The
theorem is a consequence of (28), (21), (23), (64), (63), and (7).

(66) Roots(FAdj(F, {
√

DC(p)}), p) = {Root1(p),Root2(p)}. The theorem is
a consequence of (65).

(67) Root1(p) 6= Root2(p). The theorem is a consequence of (21), (23), (5),
and (64).

(68) deg(FAdj(F, {
√

DC(p)}), F ) = 2.

(69) FAdj(F, {
√

DC(p)}) is a splitting field of p. The theorem is a consequence
of (65), (66), (21), (5), (23), (64), and (7).

7. Quadratic Extensions

Let F be a field and E be an extension of F . We say that E is F -quadratic
if and only if

(Def. 26) deg(E,F ) = 2.

Let F be a non quadratic complete, polynomial-disjoint field without charac-
teristic 2. Let us observe that there exists an extension of F which is F -quadratic.

Let F be a field. One can check that every extension of F which is F -
quadratic is also F -finite.

Let F be a non quadratic complete, polynomial-disjoint field without charac-
teristic 2 and a be a non square element of F . Let us observe that FAdj(F, {

√
a})

is F -quadratic.
Now we state the propositions:

(70) Let us consider a field F , and elements a, b of F . If b2 = a, then
eval(X2- a, b) = 0F .

(71) Let us consider a field F with non characteristic 2, an extension E of F ,
and an element a of F . Suppose there exists no element b of F such that
a = b2. Let us consider an element b of E. Suppose b2 = a. Then

(i) FAdj(F, {b}) is a splitting field of X2- a, and

(ii) deg(FAdj(F, {b}), F ) = 2.

The theorem is a consequence of (9), (70), and (33).

(72) Let us consider a field F with non characteristic 2, and an extension E

of F . Then deg(E,F ) = 2 if and only if there exists an element a of F
such that there exists no element b of F such that a = b2 and there exists
an element b of E such that a = b2 and E ≈ FAdj(F, {b}). The theorem
is a consequence of (22), (23), (7), (26), (27), (5), (8), and (71).
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(73) Let us consider an extension E of F . Then E is F -quadratic if and only
if there exists a non square element a of F such that E and FAdj(F, {

√
a})

are isomorphic over F . The theorem is a consequence of (22), (23), (7),
(26), (27), (5), (8), (58), and (71).
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