Improper Integral. Part I

Noboru Endou(0)
National Institute of Technology, Gifu College
2236-2 Kamimakuwa, Motosu, Gifu, Japan

Abstract

Summary. In this article, we deal with Riemann's improper integral [1, using the Mizar system [2], 3]. Improper integrals with finite values are discussed in [5] by Yamazaki et al., but in general, improper integrals do not assume that they are finite. Therefore, we have formalized general improper integrals that does not limit the integral value to a finite value. In addition, each theorem in [5] assumes that the domain of integrand includes a closed interval, but since the improper integral should be discusses based on the half-open interval, we also corrected it.

MSC: 26A42 68V20
Keywords: Improper integrals
MML identifier: INTEGR24, version: 8.1.11 5.68.1412

1. Preliminaries

Now we state the proposition:
(1) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b, c. Suppose $a \leqslant b \leqslant c$ and $[a, c] \subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and $f \upharpoonright[b, c]$ is bounded and f is integrable on $[a, b]$ and f is integrable on $[b, c]$. Then
(i) f is integrable on $[a, c]$, and
(ii) $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$.

Let us consider a sequence s of real numbers. Now we state the propositions:
(2) If s is divergent to $+\infty$, then s is not divergent to $-\infty$ and s is not convergent.
(3) If s is divergent to $-\infty$, then s is not divergent to $+\infty$ and s is not convergent.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a real number x_{0}. Now we state the propositions:
(4) Suppose f is left convergent in x_{0} or left divergent to $+\infty$ in x_{0} or left divergent to $-\infty$ in x_{0}. Then there exists a sequence s of real numbers such that
(i) s is convergent, and
(ii) $\lim s=x_{0}$, and
(iii) $\operatorname{rng} s \subseteq \operatorname{dom} f \cap]-\infty, x_{0}[$.

Proof: Define \mathcal{F} [natural number, real number] $\equiv x_{0}-\frac{1}{\$_{1}+1}<\$_{2}<x_{0}$ and $\$_{2} \in \operatorname{dom} f$. For every element n of \mathbb{N}, there exists an element r of \mathbb{R} such that $\mathcal{F}[n, r]$. Consider s being a sequence of real numbers such that for every element n of $\mathbb{N}, \mathcal{F}[n, s(n)]$. For every natural number n, $x_{0}-\frac{1}{n+1}<s(n)<x_{0}$ and $s(n) \in \operatorname{dom} f$.
(5) Suppose f is right convergent in x_{0} or right divergent to $+\infty$ in x_{0} or right divergent to $-\infty$ in x_{0}. Then there exists a sequence s of real numbers such that
(i) s is convergent, and
(ii) $\lim s=x_{0}$, and
(iii) $\operatorname{rng} s \subseteq \operatorname{dom} f \cap] x_{0},+\infty[$.

Proof: Define \mathcal{F} [natural number, real number] $\equiv x_{0}<\$_{2}<x_{0}+\frac{1}{\$_{1}+1}$ and $\$_{2} \in \operatorname{dom} f$. For every element n of \mathbb{N}, there exists an element r of \mathbb{R} such that $\mathcal{F}[n, r]$. Consider s being a sequence of real numbers such that for every element n of $\mathbb{N}, \mathcal{F}[n, s(n)]$. For every natural number n, $x_{0}<s(n)<x_{0}+\frac{1}{n+1}$ and $s(n) \in \operatorname{dom} f$.
(6) If f is left divergent to $+\infty$ in x_{0}, then f is not left divergent to $-\infty$ in x_{0} and f is not left convergent in x_{0}. The theorem is a consequence of (4) and (2).
(7) If f is left divergent to $-\infty$ in x_{0}, then f is not left divergent to $+\infty$ in x_{0} and f is not left convergent in x_{0}. The theorem is a consequence of (4) and (3).
(8) If f is right divergent to $+\infty$ in x_{0}, then f is not right divergent to $-\infty$ in x_{0} and f is not right convergent in x_{0}. The theorem is a consequence of (5) and (2).
(9) If f is right divergent to $-\infty$ in x_{0}, then f is not right divergent to $+\infty$ in x_{0} and f is not right convergent in x_{0}. The theorem is a consequence of (5) and (3).
(10) Suppose f is right convergent in x_{0}. Then
(i) there exists a real number r such that $0<r$ and $f \upharpoonright] x_{0}, x_{0}+r[$ is lower bounded, and
(ii) there exists a real number r such that $0<r$ and $f \upharpoonright] x_{0}, x_{0}+r$ [is upper bounded.
Proof: Consider g being a real number such that for every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $x_{0}<r$ and for every real number r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$. Consider r being a real number such that $x_{0}<r$ and for every real number r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<1$. Set $R=r-x_{0}$. For every object r_{1} such that $r_{1} \in \operatorname{dom}(f \upharpoonright] x_{0}, x_{0}+R[)$ holds $-1+g<(f \upharpoonright] x_{0}, x_{0}+R[)\left(r_{1}\right)$. Consider r being a real number such that $x_{0}<r$ and for every real number r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<1$. Set $R=r-x_{0}$. For every object r_{1} such that $r_{1} \in \operatorname{dom}(f \upharpoonright] x_{0}, x_{0}+R[)$ holds $(f \upharpoonright] x_{0}, x_{0}+R[)\left(r_{1}\right)<g+1$.
(11) Suppose f is left convergent in x_{0}. Then
(i) there exists a real number r such that $0<r$ and $f \upharpoonright] x_{0}-r, x_{0}[$ is lower bounded, and
(ii) there exists a real number r such that $0<r$ and $f \upharpoonright] x_{0}-r, x_{0}[$ is upper bounded.
Proof: Consider g being a real number such that for every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $r<x_{0}$ and for every real number r_{1} such that $r<r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$. Consider r being a real number such that $r<x_{0}$ and for every real number r_{1} such that $r<r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<1$. Set $R=x_{0}-r$. For every object r_{1} such that $r_{1} \in \operatorname{dom}(f \upharpoonright] x_{0}-R, x_{0}[)$ holds $-1+g<(f \upharpoonright] x_{0}-R, x_{0}[)\left(r_{1}\right)$. Consider r being a real number such that $r<x_{0}$ and for every real number r_{1} such that $r<r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<1$. Set $R=x_{0}-r$. For every object r_{1} such that $r_{1} \in \operatorname{dom}(f \upharpoonright] x_{0}-R, x_{0}[)$ holds $(f \upharpoonright] x_{0}-R, x_{0}[)\left(r_{1}\right)<g+1$.
(12) Suppose f is right divergent to $+\infty$ in x_{0}. Then there exists a real number r such that
(i) $0<r$, and
(ii) $f \upharpoonright] x_{0}, x_{0}+r[$ is lower bounded.

Proof: Consider r being a real number such that $x_{0}<r$ and for every real number r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $1<f\left(r_{1}\right)$. Set $R=r-x_{0}$. For every object r_{1} such that $r_{1} \in \operatorname{dom}(f \upharpoonright] x_{0}, x_{0}+R[)$ holds $1<(f \upharpoonright] x_{0}, x_{0}+R[)\left(r_{1}\right)$.
(13) Suppose f is right divergent to $-\infty$ in x_{0}. Then there exists a real number r such that
(i) $0<r$, and
(ii) $f \upharpoonright] x_{0}, x_{0}+r[$ is upper bounded.

Proof: Consider r being a real number such that $x_{0}<r$ and for every real number r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<1$. Set $R=r-x_{0}$. For every object r_{1} such that $r_{1} \in \operatorname{dom}(f \upharpoonright] x_{0}, x_{0}+R[)$ holds $(f \upharpoonright] x_{0}, x_{0}+R[)\left(r_{1}\right)<1$.
(14) Suppose f is left divergent to $+\infty$ in x_{0}. Then there exists a real number r such that
(i) $0<r$, and
(ii) $f\left] x_{0}-r, x_{0}[\right.$ is lower bounded.

Proof: Consider r being a real number such that $r<x_{0}$ and for every real number r_{1} such that $r<r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $1<f\left(r_{1}\right)$. Set $R=x_{0}-r$. For every object r_{1} such that $r_{1} \in \operatorname{dom}(f \upharpoonright] x_{0}-R, x_{0}[)$ holds $1<(f \upharpoonright] x_{0}-R, x_{0}[)\left(r_{1}\right)$.
(15) Suppose f is left divergent to $-\infty$ in x_{0}. Then there exists a real number r such that
(i) $0<r$, and
(ii) $f \upharpoonright] x_{0}-r, x_{0}[$ is upper bounded.

Proof: Consider r being a real number such that $r<x_{0}$ and for every real number r_{1} such that $r<r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<1$. Set $R=x_{0}-r$. For every object r_{1} such that $r_{1} \in \operatorname{dom}(f \upharpoonright] x_{0}-R, x_{0}[)$ holds $(f \upharpoonright] x_{0}-R, x_{0}[)\left(r_{1}\right)<1$.
Let us consider partial functions f_{1}, f_{2} from \mathbb{R} to \mathbb{R} and a real number x_{0}.
(16) Suppose f_{1} is right divergent to $-\infty$ in x_{0} and for every real number r such that $x_{0}<r$ there exists a real number g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ and there exists a real number r such that $0<r$ and $\left.f_{2} \upharpoonright\right] x_{0}, x_{0}+r$ [is upper bounded. Then $f_{1}+f_{2}$ is right divergent to $-\infty$ in x_{0}.
(17) Suppose f_{1} is left divergent to $-\infty$ in x_{0} and for every real number r such that $r<x_{0}$ there exists a real number g such that $r<g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ and there exists a real number r such that $0<r$ and
$\left.f_{2} \upharpoonright\right] x_{0}-r, x_{0}$ [is upper bounded. Then $f_{1}+f_{2}$ is left divergent to $-\infty$ in x_{0}.

2. Properties of Extended Riemann Integral

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(18) Suppose $a<b$ and $[a, b] \subseteq \operatorname{dom} f$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded. Then
(i) f is left extended Riemann integrable on a, b, and
(ii) $\left(R^{<}\right) \int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$.

Proof: Reconsider $A=] a, b]$ as a non empty subset of \mathbb{R}. Define \mathcal{F} (element of $A)=\left(\int_{\$_{1}}^{b} f(x) d x\right)(\in \mathbb{R})$. Consider I_{1} being a function from A into \mathbb{R} such that for every element x of $A, I_{1}(x)=\mathcal{F}(x)$. Consider M_{0} being a real number such that for every object x such that $x \in[a, b] \cap \operatorname{dom} f$ holds $|f(x)| \leqslant M_{0}$. Reconsider $M=M_{0}+1$ as a real number. For every real number x such that $x \in[a, b]$ holds $|f(x)|<M$. For every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $a<r$ and for every real number r_{1} such that $r_{1}<r$ and $a<r_{1}$ and $r_{1} \in \operatorname{dom} I_{1}$ holds $\left|I_{1}\left(r_{1}\right)-\int_{a}^{b} f(x) d x\right|<g_{1}$. For every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} f(x) d x$. For every real number r such that $a<r$ there exists a real number g such that $g<r$ and $a<g$ and $g \in \operatorname{dom} I_{1}$.
(19) Suppose $a<b$ and $[a, b] \subseteq \operatorname{dom} f$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded. Then
(i) f is right extended Riemann integrable on a, b, and
(ii) $\left(R^{>}\right) \int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$.

Proof: Reconsider $A=[a, b[$ as a non empty subset of \mathbb{R}. Define \mathcal{F} (element of $A)=\left(\int_{a}^{\$_{1}} f(x) d x\right)(\in \mathbb{R})$. Consider I_{1} being a function from A into \mathbb{R} such
that for every element x of $A, I_{1}(x)=\mathcal{F}(x)$. Consider M_{0} being a real number such that for every object x such that $x \in[a, b] \cap \operatorname{dom} f$ holds $|f(x)| \leqslant M_{0}$. Reconsider $M=M_{0}+1$ as a real number. For every real number x such that $x \in[a, b]$ holds $|f(x)|<M$. For every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $r<b$ and for every real number r_{1} such that $r<r_{1}<b$ and $r_{1} \in \operatorname{dom} I_{1}$ holds $\left|I_{1}\left(r_{1}\right)-\int_{a}^{b} f(x) d x\right|<g_{1}$. For every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$. For every real number r such that $r<b$ there exists a real number g such that $r<g<b$ and $g \in \operatorname{dom} I_{1}$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b, c.
(20) Suppose $a<b \leqslant c$ and $] a, c] \subseteq \operatorname{dom} f$ and $f \upharpoonright[b, c]$ is bounded and f is integrable on $[b, c]$ and f is left extended Riemann integrable on a, b. Then
(i) f is left extended Riemann integrable on a, c, and
(ii) $\left(R^{<}\right) \int_{a}^{c} f(x) d x=\left(R^{<}\right) \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$.

Proof: For every real number e such that $a<e \leqslant c$ holds f is integrable on $[e, c]$ and $f \upharpoonright[e, c]$ is bounded. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I=] a, b]$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{x}^{b} f(x) d x$ and I is right convergent in a. Reconsider $A=] a, c]$ as a non empty subset of \mathbb{R}. Define $\mathcal{F}($ element of $A)=$ $\left(\int_{\$_{1}}^{c} f(x) d x\right)(\in \mathbb{R})$. Consider I_{1} being a function from A into \mathbb{R} such that for every element x of $A, I_{1}(x)=\mathcal{F}(x)$. For every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{c} f(x) d x$.

For every real number r such that $a<r$ there exists a real number g such that $g<r$ and $a<g$ and $g \in \operatorname{dom} I_{1}$. Consider G being a real number such that for every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $a<r$ and for every real number r_{1} such that $r_{1}<r$ and $a<r_{1}$ and $r_{1} \in$ dom I holds $\left|I\left(r_{1}\right)-G\right|<g_{1}$. Set $G_{1}=G+\int_{b}^{c} f(x) d x$. For every real number g_{1} such that $0<g_{1}$ there exists a real number r
such that $a<r$ and for every real number r_{1} such that $r_{1}<r$ and $a<r_{1}$ and $r_{1} \in \operatorname{dom} I_{1}$ holds $\left|I_{1}\left(r_{1}\right)-G_{1}\right|<g_{1}$. For every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $a<r$ and for every real number r_{1} such that $r_{1}<r$ and $a<r_{1}$ and $r_{1} \in \operatorname{dom} I_{1}$ holds $\left|I_{1}\left(r_{1}\right)-\left(\left(R^{<}\right) \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x\right)\right|<g_{1}$.
(21) Suppose $a \leqslant b<c$ and $[a, c[\subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and f is integrable on $[a, b]$ and f is right extended Riemann integrable on b, c. Then
(i) f is right extended Riemann integrable on a, c, and
(ii) $\left(R^{>}\right) \int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\left(R^{>}\right) \int_{b}^{c} f(x) d x$.

Proof: For every real number e such that $a \leqslant e<c$ holds f is integrable on $[a, e]$ and $f \upharpoonright[a, e]$ is bounded. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I=[b, c[$ and for every real number x such that $x \in$ $\operatorname{dom} I$ holds $I(x)=\int_{b}^{x} f(x) d x$ and I is left convergent in c. Reconsider $A=$ $\left[a, c[\right.$ as a non empty subset of \mathbb{R}. Define \mathcal{F} (element of $A)=\left(\int_{a}^{\$_{1}} f(x) d x\right)(\epsilon$ $\mathbb{R})$. Consider I_{1} being a function from A into \mathbb{R} such that for every element x of $A, I_{1}(x)=\mathcal{F}(x)$. For every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$. For every real number r such that $r<c$ there exists a real number g such that $r<g<c$ and $g \in \operatorname{dom} I_{1}$.

Consider G being a real number such that for every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $r<c$ and for every real number r_{1} such that $r<r_{1}<c$ and $r_{1} \in \operatorname{dom} I$ holds $\left|I\left(r_{1}\right)-G\right|<g_{1}$. Set $G_{1}=G+\int_{a}^{b} f(x) d x$. For every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $r<c$ and for every real number r_{1} such that $r<r_{1}<c$ and $r_{1} \in \operatorname{dom} I_{1}$ holds $\left|I_{1}\left(r_{1}\right)-G_{1}\right|<g_{1}$. For every real number g_{1} such that $0<g_{1}$ there exists a real number r such that $r<c$ and for every real number r_{1} such that $r<r_{1}<c$ and $r_{1} \in \operatorname{dom} I_{1}$ holds $\left|I_{1}\left(r_{1}\right)-\left(\int_{a}^{b} f(x) d x+\left(R^{>}\right) \int_{b}^{c} f(x) d x\right)\right|<g_{1}$.
(22) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose $] a, b] \subseteq \operatorname{dom} f$ and f is left extended Riemann integrable on a, b. Let us consider a real number d. Suppose $a<d \leqslant b$. Then
(i) f is left extended Riemann integrable on a, d, and
(ii) $\left(R^{<}\right) \int_{a}^{b} f(x) d x=\left(R^{<}\right) \int_{a}^{d} f(x) d x+\int_{d}^{b} f(x) d x$.

The theorem is a consequence of (20).
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and real numbers c, d. Now we state the propositions:
(23) Suppose $] a, b] \subseteq \operatorname{dom} f$ and f is left extended Riemann integrable on a, b. Then suppose $a \leqslant c<d \leqslant b$. Then
(i) f is left extended Riemann integrable on c, d, and
(ii) if $a<c$, then $\left(R^{<}\right) \int_{c}^{d} f(x) d x=\int_{c}^{d} f(x) d x$.

The theorem is a consequence of (22).
(24) Suppose $] a, b] \subseteq \operatorname{dom} f$ and f is left extended Riemann integrable on a, b. Then if $a<c<d \leqslant b$, then f is right extended Riemann integrable on c, d and $\left(R^{>}\right) \int_{c}^{d} f(x) d x=\int_{c}^{d} f(x) d x$. The theorem is a consequence of (19).
(25) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose $[a, b[\subseteq \operatorname{dom} f$ and f is right extended Riemann integrable on a, b. Let us consider a real number c. Suppose $a \leqslant c<b$. Then
(i) f is right extended Riemann integrable on c, b, and
(ii) $\left(R^{>}\right) \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\left(R^{>}\right) \int_{c}^{b} f(x) d x$.

The theorem is a consequence of (21).
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and real numbers c, d. Now we state the propositions:
(26) Suppose $[a, b[\subseteq \operatorname{dom} f$ and f is right extended Riemann integrable on a, b. Then suppose $a \leqslant c<d \leqslant b$. Then
(i) f is right extended Riemann integrable on c, d, and
(ii) if $d<b$, then $\left(R^{>}\right) \int_{c}^{d} f(x) d x=\int_{c}^{d} f(x) d x$.

The theorem is a consequence of (25).
(27) Suppose $[a, b[\subseteq \operatorname{dom} f$ and f is right extended Riemann integrable on a, b. Then if $a \leqslant c<d<b$, then f is left extended Riemann integrable on c, d and $\left(R^{<}\right) \int_{c}^{d} f(x) d x=\int_{c}^{d} f(x) d x$. The theorem is a consequence of (18).

Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} and real numbers a, b.
(28) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and $] a, b] \subseteq \operatorname{dom} g$ and f is left extended Riemann integrable on a, b and g is left extended Riemann integrable on a, b. Then
(i) $f+g$ is left extended Riemann integrable on a, b, and
(ii) $\left(R^{<}\right) \int_{a}^{b}(f+g)(x) d x=\left(R^{<}\right) \int_{a}^{b} f(x) d x+\left(R^{<}\right) \int_{a}^{b} g(x) d x$.

Proof: Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that dom $\left.\left.I_{2}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{2}$ holds $I_{2}(x)=\int_{x}^{b} g(x) d x$ and I_{2} is right convergent in a and $\left(R^{<}\right) \int_{a}^{b} g(x) d x=$ $\lim _{a^{+}} I_{2}$. Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_{1}=$] $a, b]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=$ $\int_{x}^{b} f(x) d x$ and I_{1} is right convergent in a and $\left(R^{<}\right) \int_{a}^{b} f(x) d x=\lim _{a^{+}} I_{1}$. $\left.\left.\stackrel{x}{\text { Set }} I_{3}=I_{1}+I_{2} . \operatorname{dom} I_{3}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{x}^{b}(f+g)(x) d x$. For every real number r such that $a<r$ there exists a real number g such that $g<r$ and $a<g$ and $g \in \operatorname{dom}\left(I_{1}+I_{2}\right)$. For every real number d such that $a<d \leqslant b$ holds $f+g$ is integrable on $[d, b]$ and $(f+g) \upharpoonright[d, b]$ is bounded.
(29) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and $[a, b[\subseteq \operatorname{dom} g$ and f is right extended Riemann integrable on a, b and g is right extended Riemann integrable on a, b. Then
(i) $f+g$ is right extended Riemann integrable on a, b, and
(ii) $\left(R^{>}\right) \int_{a}^{b}(f+g)(x) d x=\left(R^{>}\right) \int_{a}^{b} f(x) d x+\left(R^{>}\right) \int_{a}^{b} g(x) d x$.

Proof: Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that
dom $I_{2}=\left[a, b\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} I_{2}$ holds $I_{2}(x)=\int_{a}^{x} g(x) d x$ and I_{2} is left convergent in b and $\left(R^{>}\right) \int_{a}^{b} g(x) d x=\lim _{b^{-}} I_{2}$. Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_{1}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$ and I_{1} is left convergent in b and $\left(R^{>}\right) \int_{a}^{b} f(x) d x=\lim _{b^{-}} I_{1}$. Set $I_{3}=I_{1}+I_{2}$. dom $I_{3}=\left[a, b\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{a}^{x}(f+g)(x) d x$. For every real number r such that $r<b$ there exists a real number g such that $r<g<b$ and $g \in \operatorname{dom}\left(I_{1}+I_{2}\right)$. For every real number d such that $a \leqslant d<b$ holds $f+g$ is integrable on $[a, d]$ and $(f+g) \upharpoonright[a, d]$ is bounded.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and a real number r. Now we state the propositions:
(30) Suppose $] a, b] \subseteq \operatorname{dom} f$ and f is left extended Riemann integrable on a, b. Then
(i) $r \cdot f$ is left extended Riemann integrable on a, b, and
(ii) $\left(R^{<}\right) \int_{a}^{b}(r \cdot f)(x) d x=r \cdot\left(\left(R^{<}\right) \int_{a}^{b} f(x) d x\right)$.

Proof: For every real number $r, r \cdot f$ is left extended Riemann integrable on a, b and $\left(R^{<}\right) \int_{a}^{b}(r \cdot f)(x) d x=r \cdot\left(\left(R^{<}\right) \int_{a}^{b} f(x) d x\right)$.
(31) Suppose $[a, b[\subseteq \operatorname{dom} f$ and f is right extended Riemann integrable on a, b. Then
(i) $r \cdot f$ is right extended Riemann integrable on a, b, and
(ii) $\left(R^{>}\right) \int_{a}^{b}(r \cdot f)(x) d x=r \cdot\left(\left(R^{>}\right) \int_{a}^{b} f(x) d x\right)$.

Proof: For every real number $r, r \cdot f$ is right extended Riemann integrable on a, b and $\left(R^{>}\right) \int_{a}^{b}(r \cdot f)(x) d x=r \cdot\left(\left(R^{>}\right) \int_{a}^{b} f(x) d x\right)$.

3. Definition of Improper Integral

Let f be a partial function from \mathbb{R} to \mathbb{R} and a, b be real numbers. We say that f is left improper integrable on a and b if and only if
(Def. 1) for every real number d such that $a<d \leqslant b$ holds f is integrable on $[d, b]$ and $f\left\lceil[d, b]\right.$ is bounded and there exists a partial function I_{1} from \mathbb{R} to \mathbb{R} such that dom $\left.\left.I_{1}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} f(x) d x$ and (I_{1} is right convergent in a or right divergent to $+\infty$ in a or I_{1} is right divergent to $-\infty$ in a).
We say that f is right improper integrable on a and b if and only if
(Def. 2) for every real number d such that $a \leqslant d<b$ holds f is integrable on $[a, d]$ and $f \upharpoonright[a, d]$ is bounded and there exists a partial function I_{1} from \mathbb{R} to \mathbb{R} such that dom $I_{1}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$ and (I_{1} is left convergent in b or left divergent to $+\infty$ in b or I_{1} is left divergent to $-\infty$ in b).
Assume f is left improper integrable on a and b. The functor left-improper$\operatorname{integral}(f, a, b)$ yielding an extended real is defined by
(Def. 3) there exists a partial function I_{1} from \mathbb{R} to \mathbb{R} such that dom $\left.\left.I_{1}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} f(x) d x$ and (I_{1} is right convergent in a and $i t=\lim _{a^{+}} I_{1}$ or I_{1} is right divergent to $+\infty$ in a and it $=+\infty$ or I_{1} is right divergent to $-\infty$ in a and $\left.i t=-\infty\right)$.
Assume f is right improper integrable on a and b. The functor right-improper$\operatorname{integral}(f, a, b)$ yielding an extended real is defined by
(Def. 4) there exists a partial function I_{1} from \mathbb{R} to \mathbb{R} such that dom $I_{1}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$ and (I_{1} is left convergent in b and $i t=\lim _{b^{-}} I_{1}$ or I_{1} is left divergent to $+\infty$ in b and $i t=+\infty$ or I_{1} is left divergent to $-\infty$ in b and $\left.i t=-\infty\right)$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(32) If f is left extended Riemann integrable on a, b, then f is left improper integrable on a and b.
(33) If f is right extended Riemann integrable on a, b, then f is right improper integrable on a and b.
(34) Suppose f is left improper integrable on a and b. Then
(i) f is left extended Riemann integrable on a, b and left-improper-integral

$$
(f, a, b)=\left(R^{<}\right) \int_{a}^{b} f(x) d x, \text { or }
$$

(ii) f is not left extended Riemann integrable on a, b and left-improper$\operatorname{integral}(f, a, b)=+\infty$, or
(iii) f is not left extended Riemann integrable on a, b and left-improper$\operatorname{integral}(f, a, b)=-\infty$.
The theorem is a consequence of (8) and (9).
(35) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose there exists a partial function I_{1} from \mathbb{R} to \mathbb{R} such that dom $\left.\left.I_{1}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} f(x) d x$ and I_{1} is right divergent to $+\infty$ in a or right divergent to $-\infty$ in a. Then f is not left extended Riemann integrable on a, b. The theorem is a consequence of (8) and (9).
(36) Let us consider partial functions f, I_{1} from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose f is left improper integrable on a and b and $\left.\left.\operatorname{dom} I_{1}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} f(x) d x$ and I_{1} is right convergent in a. Then left-improper-integral $(f, a, b)=\lim _{a^{+}} I_{1}$. The theorem is a consequence of (34).
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b, c.
(37) Suppose $a<b \leqslant c$ and $] a, c] \subseteq \operatorname{dom} f$ and f is left improper integrable on a and c. Then
(i) f is left improper integrable on a and b, and
(ii) if left-improper-integral $(f, a, c)=\left(R^{<}\right) \int_{a}^{c} f(x) d x$, then left-improper$\operatorname{integral}(f, a, b)=\left(R^{<}\right) \int_{a}^{b} f(x) d x$, and
(iii) if left-improper-integral $(f, a, c)=+\infty$, then left-improper-integral $(f, a, b)=+\infty$, and
(iv) if left-improper-integral $(f, a, c)=-\infty$, then left-improper-integral $(f, a, b)=-\infty$.

The theorem is a consequence of (34).
(38) Suppose $a<b \leqslant c$ and $] a, c] \subseteq \operatorname{dom} f$ and $f \upharpoonright[b, c]$ is bounded and f is left improper integrable on a and b and f is integrable on $[b, c]$. Then
(i) f is left improper integrable on a and c, and
(ii) if left-improper-integral $(f, a, b)=\left(R^{<}\right) \int_{a}^{b} f(x) d x$, then left-improper$\operatorname{integral}(f, a, c)=\operatorname{left-improper-integral}(f, a, b)+\int_{b}^{c} f(x) d x$, and
(iii) if left-improper-integral $(f, a, b)=+\infty$, then left-improper-integral $(f, a, c)=+\infty$, and
(iv) if left-improper-integral $(f, a, b)=-\infty$, then left-improper-integral $(f, a, c)=-\infty$.
The theorem is a consequence of (34).
(39) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose f is right improper integrable on a and b. Then
(i) f is right extended Riemann integrable on a, b and right-improper$\operatorname{integral}(f, a, b)=\left(R^{>}\right) \int_{a}^{b} f(x) d x$, or
(ii) f is not right extended Riemann integrable on a, b and right-improper$\operatorname{integral}(f, a, b)=+\infty$, or
(iii) f is not right extended Riemann integrable on a, b and right-improper$\operatorname{integral}(f, a, b)=-\infty$.
The theorem is a consequence of (6) and (7).
(40) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose there exists a partial function I_{1} from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I_{1}=\left[a, b\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$ and I_{1} is left divergent to $+\infty$ in b or left divergent to $-\infty$ in b. Then f is not right extended Riemann integrable on a, b. The theorem is a consequence of (6) and (7).
(41) Let us consider partial functions f, I_{1} from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose f is right improper integrable on a and b and dom $I_{1}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$ and
I_{1} is left convergent in b. Then right-improper-integral $(f, a, b)=\lim _{b^{-}} I_{1}$. The theorem is a consequence of (39).
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b, c.
(42) Suppose $a \leqslant b<c$ and $[a, c[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and c. Then
(i) f is right improper integrable on b and c, and
(ii) if right-improper-integral $(f, a, c)=\left(R^{>}\right) \int_{a}^{c} f(x) d x$, then right-improper-integral $(f, b, c)=\left(R^{>}\right) \int_{b}^{c} f(x) d x$, and
(iii) if right-improper-integral $(f, a, c)=+\infty$, then right-improper$\operatorname{integral}(f, b, c)=+\infty$, and
(iv) if right-improper-integral $(f, a, c)=-\infty$, then right-improper$\operatorname{integral}(f, b, c)=-\infty$.
The theorem is a consequence of (39).
(43) Suppose $a \leqslant b<c$ and [$a, c[\subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and f is right improper integrable on b and c and f is integrable on $[a, b]$. Then
(i) f is right improper integrable on a and c, and
(ii) if right-improper-integral $(f, b, c)=\left(R^{>}\right) \int_{b}^{c} f(x) d x$, then right-$\operatorname{improper}-\operatorname{integral}(f, a, c)=\operatorname{right-improper-integral}(f, b, c)+$ $\int_{a}^{b} f(x) d x$, and
(iii) if right-improper-integral $(f, b, c)=+\infty$, then right-improper$\operatorname{integral}(f, a, c)=+\infty$, and
(iv) if right-improper-integral $(f, b, c)=-\infty$, then right-improper$\operatorname{integral}(f, a, c)=-\infty$.
The theorem is a consequence of (39).
Let f be a partial function from \mathbb{R} to \mathbb{R} and a, c be real numbers. We say that f is improper integrable on a and c if and only if
(Def. 5) there exists a real number b such that $a<b<c$ and f is left improper integrable on a and b and f is right improper integrable on b and c and it is not true that left-improper-integral $(f, a, b)=-\infty$ and right-improper-integral $(f, b, c)=+\infty$ and it is not true that left-improper-
$\operatorname{integral}(f, a, b)=+\infty$ and right-improper-integral $(f, b, c)=-\infty$.
Now we state the propositions:
(44) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, c. Suppose f is improper integrable on a and c. Then there exists a real number b such that
(i) $a<b<c$, and
(ii) left-improper-integral $(f, a, b)=\left(R^{<}\right) \int_{a}^{b} f(x) d x$ and right-improper-

$$
\begin{aligned}
& \operatorname{integral}(f, b, c)=\left(R^{>}\right) \int_{b}^{c} f(x) d x \text { or left-improper-integral }(f, a, b) \\
& +\operatorname{right-improper-integral}(f, b, c)=+\infty \text { or left-improper-integral } \\
& (f, a, b)+\operatorname{right-improper-integral}(f, b, c)=-\infty
\end{aligned}
$$

The theorem is a consequence of (34) and (39).
(45) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b, c. Suppose $] a, c[\subseteq \operatorname{dom} f$ and $a<b<c$ and f is left improper integrable on a and b and f is right improper integrable on b and c and it is not true that left-improper-integral $(f, a, b)=-\infty$ and right-improper-integral $(f, b, c)=$ $+\infty$ and it is not true that left-improper-integral $(f, a, b)=+\infty$ and $\operatorname{right-improper-integral}(f, b, c)=-\infty$. Let us consider a real number b_{1}. Suppose $a<b_{1} \leqslant b$. Then left-improper-integral $(f, a, b)+$ right-improper$\operatorname{integral}(f, b, c)=$ left-improper-integral $\left(f, a, b_{1}\right)+$ right-improper-integral $\left(f, b_{1}, c\right)$. The theorem is a consequence of (34) and (39).
(46) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b, c. Suppose $] a, c[\subseteq \operatorname{dom} f$ and $a<b<c$ and f is left improper integrable on a and b and f is right improper integrable on b and c and it is not true that left-improper-integral $(f, a, b)=-\infty$ and right-improper-integral $(f, b, c)=$ $+\infty$ and it is not true that left-improper-integral $(f, a, b)=+\infty$ and $\operatorname{right-improper-integral}(f, b, c)=-\infty$. Let us consider a real number b_{2}. Suppose $b \leqslant b_{2}<c$. Then left-improper-integral $(f, a, b)+$ right-improper$\operatorname{integral}(f, b, c)=$ left-improper-integral $\left(f, a, b_{2}\right)+$ right-improper-integral $\left(f, b_{2}, c\right)$. The theorem is a consequence of (39) and (34).
(47) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, c. Suppose $] a, c[\subseteq \operatorname{dom} f$ and f is improper integrable on a and c. Let us consider real numbers b_{1}, b_{2}. Suppose $a<b_{1}<c$ and $a<b_{2}<c$. Then left-improper-integral $\left(f, a, b_{1}\right)+\operatorname{right-improper-integral}\left(f, b_{1}, c\right)=$ left-improper-integral $\left(f, a, b_{2}\right)$ + right-improper-integral $\left(f, b_{2}, c\right)$. The theorem is a consequence of (45) and (46).

Let f be a partial function from \mathbb{R} to \mathbb{R} and a, b be real numbers. Assume $] a, b[\subseteq \operatorname{dom} f$ and f is improper integrable on a and b. The functor improper-integral (f, a, b) yielding an extended real is defined by
(Def. 6) there exists a real number c such that $a<c<b$ and f is left improper integrable on a and c and f is right improper integrable on c and b and it $=\operatorname{left-improper-integral}(f, a, c)+\operatorname{right-improper-integral}(f, c, b)$.
Now we state the proposition:
(48) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, c. Suppose $] a, c[\subseteq \operatorname{dom} f$ and f is improper integrable on a and c. Let us consider a real number b. Suppose $a<b<c$. Then
(i) f is left improper integrable on a and b, and
(ii) f is right improper integrable on b and c, and
(iii) improper-integral $(f, a, c)=\operatorname{left-improper-integral}(f, a, b)+\operatorname{right}-$ improper-integral (f, b, c).

The theorem is a consequence of (37), (43), (47), (38), and (42).

4. Linearity of Improper Integral

Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and a partial function I_{1} from \mathbb{R} to \mathbb{R}. Now we state the propositions:
(49) Suppose f is left improper integrable on a and b and left-improper-integral $(f, a, b)=+\infty$. Then suppose $\left.\left.\operatorname{dom} I_{1}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} f(x) d x$. Then I_{1} is right divergent to $+\infty$ in a.
(50) Suppose f is left improper integrable on a and b and left-improper-integral $(f, a, b)=-\infty$. Then suppose $\left.\left.\operatorname{dom} I_{1}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} f(x) d x$. Then I_{1} is right divergent to $-\infty$ in a.
(51) Suppose f is right improper integrable on a and b and right-improper$\operatorname{integral}(f, a, b)=+\infty$. Then suppose $\operatorname{dom} I_{1}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$. Then I_{1} is left divergent to $+\infty$ in b.
(52) Suppose f is right improper integrable on a and b and right-improper$\operatorname{integral}(f, a, b)=-\infty$. Then suppose $\operatorname{dom} I_{1}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} f(x) d x$. Then I_{1} is left divergent to $-\infty$ in b.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b, r.
(53) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and f is left improper integrable on a and b. Then
(i) $r \cdot f$ is left improper integrable on a and b, and
(ii) left-improper-integral $(r \cdot f, a, b)=r \cdot \operatorname{left-improper-integral}(f, a, b)$.

Proof: For every real number d such that $a<d \leqslant b$ holds $r \cdot f$ is integrable on $[d, b]$ and $(r \cdot f) \upharpoonright[d, b]$ is bounded.
(54) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and b. Then
(i) $r \cdot f$ is right improper integrable on a and b, and
(ii) right-improper-integral $(r \cdot f, a, b)=r \cdot \operatorname{right-improper-integral}(f, a, b)$.

Proof: For every real number d such that $a \leqslant d<b$ holds $r \cdot f$ is integrable on $[a, d]$ and $(r \cdot f) \upharpoonright[a, d]$ is bounded.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b.
(55) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and f is left improper integrable on a and b. Then
(i) $-f$ is left improper integrable on a and b, and
(ii) left-improper-integral $(-f, a, b)=-$ left-improper-integral (f, a, b).

The theorem is a consequence of (53).
(56) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and b. Then
(i) $-f$ is right improper integrable on a and b, and
(ii) right-improper-integral $(-f, a, b)=-\operatorname{right-improper-integral}(f, a, b)$.

The theorem is a consequence of (54).
Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} and real numbers a, b.
(57) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and $] a, b] \subseteq \operatorname{dom} g$ and f is left improper integrable on a and b and g is left improper integrable on a and b and it is not true that left-improper-integral $(f, a, b)=+\infty$ and left-improper-integral $(g, a, b)=-\infty$ and it is not true that left-improper$\operatorname{integral}(f, a, b)=-\infty$ and left-improper-integral $(g, a, b)=+\infty$. Then
(i) $f+g$ is left improper integrable on a and b, and
(ii) left-improper-integral $(f+g, a, b)=\operatorname{left-improper-integral}(f, a, b)+$ left-improper-integral (g, a, b).
Proof: For every real number d such that $a<d \leqslant b$ holds $f+g$ is integrable on $[d, b]$ and $(f+g) \upharpoonright[d, b]$ is bounded.
(58) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and $[a, b[\subseteq \operatorname{dom} g$ and f is right improper integrable on a and b and g is right improper integrable on a and b and it is not true that right-improper-integral $(f, a, b)=$ $+\infty$ and right-improper-integral $(g, a, b)=-\infty$ and it is not true that $\operatorname{right-improper-integral}(f, a, b)=-\infty$ and $\operatorname{right-improper-integral}(g, a, b)=$ $+\infty$. Then
(i) $f+g$ is right improper integrable on a and b, and
(ii) right-improper-integral $(f+g, a, b)=\operatorname{right-improper-integral}(f, a, b)+$ right-improper-integral (g, a, b).

Proof: For every real number d such that $a \leqslant d<b$ holds $f+g$ is integrable on $[a, d]$ and $(f+g) \upharpoonright[a, d]$ is bounded by [4, (11)].
(59) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and $] a, b] \subseteq \operatorname{dom} g$ and f is left improper integrable on a and b and g is left improper integrable on a and b and it is not true that left-improper-integral $(f, a, b)=+\infty$ and left-improper-integral $(g, a, b)=+\infty$ and it is not true that left-improper$\operatorname{integral}(f, a, b)=-\infty$ and left-improper-integral $(g, a, b)=-\infty$. Then
(i) $f-g$ is left improper integrable on a and b, and
(ii) left-improper-integral $(f-g, a, b)=\operatorname{left-improper-integral}(f, a, b)-$ left-improper-integral (g, a, b).
The theorem is a consequence of (55) and (57).
(60) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and $[a, b[\subseteq \operatorname{dom} g$ and f is right improper integrable on a and b and g is right improper integrable on a and b and it is not true that right-improper-integral $(f, a, b)=$ $+\infty$ and right-improper-integral $(g, a, b)=+\infty$ and it is not true that $\operatorname{right-improper-integral}(f, a, b)=-\infty$ and $\operatorname{right-improper-integral}(g, a, b)=$ $-\infty$. Then
(i) $f-g$ is right improper integrable on a and b, and
(ii) right-improper-integral $(f-g, a, b)=\operatorname{right-improper-integral}(f, a, b)-$ right-improper-integral (g, a, b).
The theorem is a consequence of (56) and (58).
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b, r.
(61) Suppose $] a, b[\subseteq \operatorname{dom} f$ and f is improper integrable on a and b. Then
(i) $r \cdot f$ is improper integrable on a and b, and
(ii) improper-integral $(r \cdot f, a, b)=r \cdot \operatorname{improper}-\operatorname{integral}(f, a, b)$.

The theorem is a consequence of (48), (53), and (54).
(62) Suppose $] a, b[\subseteq \operatorname{dom} f$ and f is improper integrable on a and b. Then
(i) $-f$ is improper integrable on a and b, and
(ii) improper-integral $(-f, a, b)=-\operatorname{improper}-\operatorname{integral}(f, a, b)$.

The theorem is a consequence of (61).
Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} and real numbers a, b.
(63) Suppose $] a, b[\subseteq \operatorname{dom} f$ and $] a, b[\subseteq \operatorname{dom} g$ and f is improper integrable on a and b and g is improper integrable on a and b and it is not true that $\operatorname{improper}-\operatorname{integral}(f, a, b)=+\infty$ and improper-integral $(g, a, b)=-\infty$ and it is not true that improper-integral $(f, a, b)=-\infty$ and improper-integral $(g$, $a, b)=+\infty$. Then
(i) $f+g$ is improper integrable on a and b, and
(ii) improper-integral $(f+g, a, b)=$ improper-integral $(f, a, b)+$ improper$\operatorname{integral}(g, a, b)$.
The theorem is a consequence of $(37),(38),(43),(42),(48),(57)$, and (58).
(64) Suppose $] a, b[\subseteq \operatorname{dom} f$ and $] a, b[\subseteq \operatorname{dom} g$ and f is improper integrable on a and b and g is improper integrable on a and b and it is not true that $\operatorname{improper}-\operatorname{integral}(f, a, b)=+\infty$ and improper-integral $(g, a, b)=+\infty$ and it is not true that improper-integral $(f, a, b)=-\infty$ and improper-integral $(g$, $a, b)=-\infty$. Then
(i) $f-g$ is improper integrable on a and b, and
(ii) improper-integral $(f-g, a, b)=\operatorname{improper}-\operatorname{integral}(f, a, b)$-improper$\operatorname{integral}(g, a, b)$.
The theorem is a consequence of (62) and (63).

References

[1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ s10817-017-9440-6
[4] Noboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from \mathbb{R} into \mathbb{R}. Formalized Mathematics, 14(4):207-212, 2006. doi: $10.2478 / \mathrm{v} 10037-006-0023-\mathrm{y}$
[5] Masahiko Yamazaki, Hiroshi Yamazaki, and Yasunari Shidama. Extended Riemann integral of functions of real variable and one-sided Laplace transform. Formalized Mathematics, 16(4):311-317, 2008. doi 10.2478/v10037-008-0038-7

Accepted September 30, 2021

