

Relationship between the Riemann and Lebesgue Integrals

Noboru Endou^D National Institute of Technology, Gifu College 2236-2 Kamimakuwa, Motosu, Gifu, Japan

Summary. The goal of this article is to clarify the relationship between Riemann and Lebesgue integrals. In previous article [5], we constructed a onedimensional Lebesgue measure. The one-dimensional Lebesgue measure provides a measure of any intervals, which can be used to prove the well-known relationship [6] between the Riemann and Lebesgue integrals [1]. We also proved the relationship between the integral of a given measure and that of its complete measure. As the result of this work, the Lebesgue integral of a bounded real valued function in the Mizar system [2], [3] can be calculated by the Riemann integral.

MSC: 26A42 68V20

Keywords: Riemann integrals; Lebesgue integrals

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{MESFUN14}, \ \mathrm{version:} \ \mathtt{8.1.11} \ \mathtt{5.68.1412}$

1. Preliminaries

Let us consider a non empty set X and a partial function f from X to $\overline{\mathbb{R}}$. Now we state the propositions:

(1) (i) $\operatorname{rng}\max_+(f) \subseteq \operatorname{rng} f \cup \{0\}$, and

(ii) $\operatorname{rng}\max_{-}(f) \subseteq \operatorname{rng}(-f) \cup \{0\}.$

- (2) If f is real-valued, then -f is real-valued and $\max_+(f)$ is real-valued and $\max_-(f)$ is real-valued. The theorem is a consequence of (1).
- (3) If f is without $-\infty$ and without $+\infty$, then f is a partial function from X to \mathbb{R} .

- (4) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then
 - (i) $\max_{+}(f)$ is simple function in S, and
 - (ii) $\max_{-}(f)$ is simple function in S.

PROOF: Consider F being a finite sequence of separated subsets of S such that dom $f = \bigcup \operatorname{rng} F$ and for every natural number n and for every elements x, y of X such that $n \in \operatorname{dom} F$ and $x, y \in F(n)$ holds f(x) = f(y). For every natural number n and for every elements x, y of X such that $n \in \operatorname{dom} F$ and $x, y \in F(n)$ holds $(\max_+(f))(x) = (\max_+(f))(y)$. For every natural number n and for every elements x, y of X such that $n \in \operatorname{dom} F$ and $x, y \in F(n)$ holds $(\max_+(f))(x) = (\max_+(f))(y)$. For every natural number n and for every elements x, y of X such that $n \in \operatorname{dom} F$ and $x, y \in F(n)$ holds $(\max_-(f))(x) = (\max_-(f))(y)$. \Box

Let us consider real numbers a, b. Now we state the propositions:

(5) Suppose $a \leq b$. Then

- (i) (B-Meas)([a, b]) = b a, and
- (ii) (B-Meas)([a, b]) = b a, and
- (iii) (B-Meas)(]a,b]) = b a, and
- (iv) (B-Meas)(]a, b[) = b a, and
- (v) (L-Meas)([a, b]) = b a, and
- (vi) (L-Meas)([a, b]) = b a, and
- (vii) (L-Meas)(]a,b]) = b a, and
- (viii) (L-Meas)(]a, b[) = b a.
- (6) Suppose a > b. Then
 - (i) (B-Meas)([a, b]) = 0, and
 - (ii) (B-Meas)([a, b]) = 0, and
 - (iii) (B-Meas)(]a,b]) = 0, and
 - (iv) (B-Meas)(]a, b[) = 0, and
 - (v) (L-Meas)([a, b]) = 0, and
 - (vi) (L-Meas)([a, b]) = 0, and
 - (vii) (L-Meas)(]a,b]) = 0, and
 - (viii) (L-Meas)(]a, b[) = 0.
- (7) Let us consider an element A_1 of the Borel sets, an element A_2 of L-Field, and a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. If $A_1 = A_2$ and f is A_1 -measurable, then f is A_2 -measurable.

(8) Let us consider real numbers a, b, and a non empty, closed interval subset A of R. Suppose a < b and A = [a, b]. Let us consider a natural number n. If n > 0, then there exists a partition D of A such that D divides into equal n.

Let F be a finite sequence of elements of the Borel sets and n be a natural number. One can check that the functor F(n) yields an extended real-membered set. Now we state the proposition:

- (9) Let us consider real numbers a, b, a non empty, closed interval subset A of \mathbb{R} , and a partition D of A. Suppose A = [a, b]. Then there exists a finite sequence F of separated subsets of the Borel sets such that
 - (i) $\operatorname{dom} D = \operatorname{dom} F$, and
 - (ii) $\bigcup \operatorname{rng} F = A$, and
 - (iii) for every natural number k such that $k \in \text{dom } F$ holds if len D = 1, then F(k) = [a, b] and if $\text{len } D \neq 1$, then if k = 1, then F(k) = [a, D(k)[and if 1 < k < len D, then F(k) = [D(k - 1), D(k)] and if k = len D, then F(k) = [D(k - 1), D(k)].

PROOF: Define $\mathcal{P}[$ natural number, set $] \equiv$ if len D = 1, then $\$_2 = [a, b]$ and if len $D \neq 1$, then if $\$_1 = 1$, then $\$_2 = [a, D(\$_1)[$ and if $1 < \$_1 <$ len D, then $\$_2 = [D(\$_1 - 1), D(\$_1)[$ and if $\$_1 =$ len D, then $\$_2 = [D(\$_1 - 1), D(\$_1)].$ For every natural number k such that $k \in$ Seg len D there exists an element x of the Borel sets such that $\mathcal{P}[k, x]$ by [4, (5)]. Consider F being a finite sequence of elements of the Borel sets such that dom F = Seg len D and for every natural number k such that $k \in$ Seg len D holds $\mathcal{P}[k, F(k)]$. For every objects x, y such that $x \neq y$ holds F(x) misses F(y). For every natural number k such that $k \in$ dom F and $k \neq$ len D holds $\bigcup \operatorname{rng}(F \restriction k) = [a, D(k)[. \bigcup \operatorname{rng} F = A. \Box$

Let us consider real numbers a, b, a non empty, closed interval subset A of \mathbb{R} , a partition D of A, and a partial function f from A to \mathbb{R} . Now we state the propositions:

(10) Suppose A = [a, b]. Then there exists a finite sequence F of separated subsets of the Borel sets and there exists a partial function g from \mathbb{R} to $\overline{\mathbb{R}}$ such that dom F = dom D and $\bigcup \text{rng } F = A$ and for every natural number k such that $k \in \text{dom } F$ holds if len D = 1, then F(k) = [a, b] and if len $D \neq 1$, then if k = 1, then F(k) = [a, D(k)[and if 1 < k < len D, then F(k) = [D(k - 1), D(k)[and if k = len D, then F(k) = [D(k - 1), D(k)]and g is simple function in the Borel sets and dom g = A and for every real number x such that $x \in \text{dom } g$ there exists a natural number k such that $1 \leq k \leq \text{len } F$ and $x \in F(k)$ and $g(x) = \inf \text{rng}(f \upharpoonright \text{divset}(D, k))$. PROOF: Consider F being a finite sequence of separated subsets of the Borel sets such that dom F = dom D and $\bigcup \text{rng } F = A$ and for every natural number k such that $k \in \text{dom } F$ holds if len D = 1, then F(k) = [a, b] and if len $D \neq 1$, then if k = 1, then F(k) = [a, D(k)[and if 1 < k < len D, then F(k) = [D(k - 1), D(k)] and if k = len D, then F(k) = [D(k - 1), D(k)].

Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists a natural number } k \text{ such that } 1 \leq k \leq \text{len } F \text{ and } \$_1 \in F(k) \text{ and } \$_2 = \inf \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k)).$ Consider g being a partial function from \mathbb{R} to $\overline{\mathbb{R}}$ such that for every object $x, x \in \operatorname{dom} g$ iff $x \in \mathbb{R}$ and there exists an object y such that $\mathcal{P}[x, y]$ and for every object x such that $x \in \operatorname{dom} g$ holds $\mathcal{P}[x, g(x)]$. For every natural number k and for every elements x, y of \mathbb{R} such that $k \in \operatorname{dom} F$ and $x, y \in F(k)$ holds g(x) = g(y). \Box

(11) Suppose A = [a, b]. Then there exists a finite sequence F of separated subsets of the Borel sets and there exists a partial function g from \mathbb{R} to $\overline{\mathbb{R}}$ such that dom $F = \operatorname{dom} D$ and $\bigcup \operatorname{rng} F = A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len D = 1, then F(k) = [a, b] and if len $D \neq 1$, then if k = 1, then F(k) = [a, D(k)[and if $1 < k < \operatorname{len} D$, then F(k) = [D(k - 1), D(k)[and if $k = \operatorname{len} D$, then F(k) = [D(k - 1), D(k)] and if $k = \operatorname{len} D$, then F(k) = [D(k - 1), D(k)] and for every real number x such that $x \in \operatorname{dom} g$ there exists a natural number k such that $1 \leq k \leq \operatorname{len} F$ and $x \in F(k)$ and $g(x) = \operatorname{sup}\operatorname{rng}(f | \operatorname{divset}(D, k))$.

PROOF: Consider F being a finite sequence of separated subsets of the Borel sets such that dom F = dom D and $\bigcup \text{rng } F = A$ and for every natural number k such that $k \in \text{dom } F$ holds if len D = 1, then F(k) = [a, b] and if len $D \neq 1$, then if k = 1, then F(k) = [a, D(k)[and if 1 < k < len D, then F(k) = [D(k - 1), D(k)] and if k = len D, then F(k) = [D(k - 1), D(k)].

Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists a natural number } k \text{ such that } 1 \leq k \leq \text{len } F \text{ and } \$_1 \in F(k) \text{ and } \$_2 = \sup \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k)).$ Consider g being a partial function from \mathbb{R} to $\overline{\mathbb{R}}$ such that for every object $x, x \in \operatorname{dom} g$ iff $x \in \mathbb{R}$ and there exists an object y such that $\mathcal{P}[x, y]$ and for every object x such that $x \in \operatorname{dom} g$ holds $\mathcal{P}[x, g(x)]$. For every natural number k and for every elements x, y of \mathbb{R} such that $k \in \operatorname{dom} F$ and $x, y \in F(k)$ holds g(x) = g(y). \Box

(12) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, a finite sequence F of separated subsets of S, a finite sequence a of elements of $\overline{\mathbb{R}}$, and a natural number n. Suppose f is simple function in S and F and a are representation of f and $n \in \text{dom } F$. Then

(i) $F(n) = \emptyset$, or

(ii) a(n) is a real number.

Let A be a non empty, closed interval subset of \mathbb{R} and n be a natural number. Assume n > 0 and vol(A) > 0. The functor EqDiv(A, n) yielding a partition of A is defined by

(Def. 1) it divides into equal n.

Now we state the propositions:

- (13) Let us consider a non empty, closed interval subset A of \mathbb{R} , and a natural number n. If $\operatorname{vol}(A) > 0$ and len $\operatorname{EqDiv}(A, 2^n) = 1$, then n = 0.
- (14) Let us consider real numbers a, b, and a non empty, closed interval subset A of \mathbb{R} . Suppose a < b and A = [a, b]. Then there exists a division sequence D of A such that for every natural number n, D(n) divides into equal 2^n . PROOF: Define $\mathcal{P}[$ natural number, object $] \equiv$ there exists a partition D of A such that $D = \$_2$ and D divides into equal $2^{\$_1}$. For every element n of \mathbb{N} , there exists an element D of divs A such that $\mathcal{P}[n, D]$. Consider D being a function from \mathbb{N} into divs A such that for every element n of \mathbb{N} , $\mathcal{P}[n, D(n)]$. For every natural number n, D(n) divides into equal 2^n . \Box
- (15) Let us consider a non empty, closed interval subset A of \mathbb{R} , a partition D of A, and natural numbers n, k. Suppose D divides into equal n and $k \in \text{dom } D$. Then $\text{vol}(\text{divset}(D, k)) = \frac{\text{vol}(A)}{n}$.
- (16) Let us consider a complex number x, and a natural number r. If $x \neq 0$, then $(x^r)^{-1} = (x^{-1})^r$.
- (17) Let us consider a non empty, closed interval subset A of \mathbb{R} , and a sequence T of divs A. Suppose $\operatorname{vol}(A) > 0$ and for every natural number n, $T(n) = \operatorname{EqDiv}(A, 2^n)$. Then δ_T is 0-convergent and non-zero. PROOF: For every natural number n, $(\delta_T)(n) = 2 \cdot (\operatorname{vol}(A)) \cdot ((2^{-1})^{n+1})$. Define $S(\operatorname{natural number}) = (2^{-1})^{\$_1+1}$. Consider s being a sequence of real numbers such that for every natural number n, s(n) = S(n). For every natural number n, $(\delta_T)(n) = 2 \cdot (\operatorname{vol}(A)) \cdot s(n)$. \Box
- (18) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, an element E of S, a partial function f from X to $\overline{\mathbb{R}}$, a finite sequence F of separated subsets of S, and finite sequences a, x of elements of $\overline{\mathbb{R}}$. Suppose f is simple function in S and $E = \operatorname{dom} f$ and $M(E) < +\infty$ and F and a are representation of f and dom $x = \operatorname{dom} F$ and for every natural number i such that $i \in \operatorname{dom} x$ holds $x(i) = a(i) \cdot (M \cdot F)(i)$. Then $\int f \, \mathrm{d}M = \sum x$.

PROOF: $\max_+(f)$ is simple function in S and $\max_-(f)$ is simple function in S. Define $\mathcal{P}[$ natural number, extended real $] \equiv$ for every object x such that $x \in F(\$_1)$ holds $\$_2 = \max(f(x), 0)$. For every natural number k such that $k \in \text{Seg len } a$ there exists an element y of \mathbb{R} such that $\mathcal{P}[k, y]$. Consider a_1 being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom $a_1 = \text{Seg len } a$ and for every natural number k such that $k \in \text{Seg len } a$ holds $\mathcal{P}[k, a_1(k)]$. For every natural number k such that $k \in \text{dom } F$ for every object xsuch that $x \in F(k)$ holds $(\max_+(f))(x) = a_1(k)$. Define $\mathcal{Q}[\text{natural}$ number, extended real] $\equiv \$_2 = a_1(\$_1) \cdot (M \cdot F)(\$_1)$. Consider x_1 being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom $x_1 = \text{Seg len } F$ and for every natural number k such that $k \in \text{Seg len } F$ holds $\mathcal{Q}[k, x_1(k)]$. Reconsider $r_1 = x_1$ as a finite sequence of elements of \mathbb{R} . $\int' \max_+(f) dM = \sum x_1$.

Define $\mathcal{P}[\text{natural number}, \text{extended real}] \equiv \text{for every object } x \text{ such that } x \in F(\$_1) \text{ holds } \$_2 = \max(-f(x), 0).$ For every natural number k such that $k \in \text{Seg len } a$ there exists an element y of \mathbb{R} such that $\mathcal{P}[k, y]$. Consider a_2 being a finite sequence of elements of \mathbb{R} such that dom $a_2 = \text{Seg len } a$ and for every natural number k such that $k \in \text{Seg len } a$ holds $\mathcal{P}[k, a_2(k)]$. For every natural number k such that $k \in \text{dom } F$ for every object x such that $x \in F(k)$ holds $(\max_{-}(f))(x) = a_2(k)$. Define $\mathcal{Q}[\text{natural number}, \text{extended real}] \equiv \$_2 = a_2(\$_1) \cdot (M \cdot F)(\$_1)$. Consider x_2 being a finite sequence of elements of \mathbb{R} such that dom $x_2 = \text{Seg len } F$ and for every natural number k such that $k \in \text{Seg len } F$ holds $\mathcal{Q}[k, x_2(k)]$. Reconsider $r_2 = x_2$ as a finite sequence of elements of \mathbb{R} . $\int' \max_{-}(f) \, \mathrm{d}M = \sum x_2$. For every object k such that $k \in \text{dom } x$ holds $x(k) = (r_1 - r_2)(k)$. \Box

Let us consider a non empty, closed interval subset A of \mathbb{R} , a partial function f from A to \mathbb{R} , and a partition D of A. Now we state the propositions:

(19) Suppose f is bounded and $A \subseteq \text{dom } f$. Then there exists a finite sequence F of separated subsets of the Borel sets and there exists a partial function g from \mathbb{R} to $\overline{\mathbb{R}}$ such that dom F = dom D and $\bigcup \text{rng } F = A$ and for every natural number k such that $k \in \text{dom } F$ holds if len D = 1, then $F(k) = [\inf A, \sup A]$ and if len $D \neq 1$, then if k = 1, then $F(k) = [\inf A, D(k)[$ and if 1 < k < len D, then F(k) = [D(k - '1), D(k)] and if k = len D, then F(k) = [D(k - '1), D(k)] and g is simple function in the Borel sets and for every real number x such that $x \in \text{dom } g$ there exists a natural number k such that $1 \leq k \leq \text{len } F$ and $x \in F(k)$ and $g(x) = \inf \text{rng}(f \upharpoonright \text{divset}(D, k))$ and dom g = A and $\int g \, \text{d}$ B-Meas = lower_sum(f, D) and for every real number x such that $x \in A$ holds inf rng $f \leq g(x) \leq f(x)$.

PROOF: Consider a, b being real numbers such that $a \leq b$ and A = [a, b]. Consider F being a finite sequence of separated subsets of the Borel sets, g being a partial function from \mathbb{R} to $\overline{\mathbb{R}}$ such that dom F = dom D and $\bigcup \text{rng } F = A$ and for every natural number k such that $k \in \text{dom } F$ holds if len D = 1, then F(k) = [a, b] and if len $D \neq 1$, then if k = 1, then F(k) =[a, D(k)[and if 1 < k < len D, then F(k) = [D(k - 1), D(k)] and if k =len D, then F(k) = [D(k - 1), D(k)] and g is simple function in the Borel sets and dom g = A and for every real number x such that $x \in \text{dom } g$ there exists a natural number k such that $1 \leq k \leq \text{len } F$ and $x \in F(k)$ and $g(x) = \inf \text{rng}(f \upharpoonright \text{divset}(D, k))$. Define $\mathcal{H}[\text{natural number}, \text{extended}$ real] $\equiv \$_2 = \inf \text{rng}(f \upharpoonright \text{divset}(D, \$_1))$ and $\$_2$ is a real number. For every natural number k such that $k \in \text{Seg len } F$ there exists an element r of \mathbb{R} such that $\mathcal{H}[k, r]$.

Consider h being a finite sequence of elements of \mathbb{R} such that dom h =Seg len F and for every natural number k such that $k \in$ Seg len F holds $\mathcal{H}[k, h(k)]$. For every natural number k such that $k \in$ dom F for every object x such that $x \in F(k)$ holds g(x) = h(k). Define $\mathcal{Z}[$ natural number, extended real $] \equiv \$_2 = h(\$_1) \cdot ((B-Meas) \cdot F)(\$_1)$ and $\$_2$ is a real number. For every natural number k such that $k \in$ Seg len F there exists an element r of \mathbb{R} such that $\mathcal{Z}[k, r]$. Consider z being a finite sequence of elements of \mathbb{R} such that dom z = Seg len F and for every natural number k such that $k \in$ Seg len F holds $\mathcal{Z}[k, z(k)]$. $\int g \, d$ B-Meas $= \sum z$. For every object p such that $p \in$ dom z holds $z(p) = (\text{lower_volume}(f, D))(p)$. For every real number x such that $x \in A$ holds inf rng $f \leq g(x) \leq f(x)$. \Box

(20) Suppose f is bounded and $A \subseteq \text{dom } f$. Then there exists a finite sequence F of separated subsets of the Borel sets and there exists a partial function g from \mathbb{R} to $\overline{\mathbb{R}}$ such that dom F = dom D and $\bigcup \text{rng } F = A$ and for every natural number k such that $k \in \text{dom } F$ holds if len D = 1, then $F(k) = [\inf A, \operatorname{sup } A]$ and if len $D \neq 1$, then if k = 1, then $F(k) = [\inf A, D(k)[$ and if 1 < k < len D, then F(k) = [D(k - '1), D(k)] and g is simple function in the Borel sets and for every real number x such that $x \in \text{dom } g$ there exists a natural number k such that $1 \leq k \leq \text{len } F$ and $x \in F(k)$ and $g(x) = \sup \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k))$ and dom g = A and $\int g \, \mathrm{d} B$ -Meas = upper_sum(f, D) and for every real number x such that $x \in A$ holds $\sup \operatorname{rng} f \geq g(x) \geq f(x)$.

PROOF: Consider a, b being real numbers such that $a \leq b$ and A = [a, b]. Consider F being a finite sequence of separated subsets of the Borel sets, g being a partial function from \mathbb{R} to $\overline{\mathbb{R}}$ such that dom F = dom D and $\bigcup \operatorname{rng} F = A$ and for every natural number k such that $k \in \text{dom } F$ holds if len D = 1, then F(k) = [a, b] and if len $D \neq 1$, then if k = 1, then F(k) = [a, D(k)[and if 1 < k < len D, then F(k) = [D(k - 1), D(k)]and if k = len D, then F(k) = [D(k - 1), D(k)] and g is simple function in the Borel sets and dom g = A and for every real number x such that $x \in \text{dom } g$ there exists a natural number k such that $1 \leq k \leq \text{len } F$ and $x \in F(k)$ and $g(x) = \sup \operatorname{rng}(f \mid \operatorname{divset}(D, k))$. Define $\mathcal{H}[$ natural number, extended real $] \equiv \$_2 = \sup \operatorname{rng}(f \mid \operatorname{divset}(D, \$_1))$ and $\$_2$ is a real number. For every natural number k such that $k \in \text{Seg len } F$ there exists an element r of $\overline{\mathbb{R}}$ such that $\mathcal{H}[k, r]$.

Consider h being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom h =Seg len F and for every natural number k such that $k \in$ Seg len F holds $\mathcal{H}[k, h(k)]$. For every natural number k such that $k \in$ dom F for every ry object x such that $x \in F(k)$ holds g(x) = h(k). Define $\mathcal{Z}[$ natural number, extended real $] \equiv \$_2 = h(\$_1) \cdot (B-\text{Meas} \cdot F)(\$_1)$ and $\$_2$ is a real number. For every natural number k such that $k \in$ Seg len F there exists an element r of $\overline{\mathbb{R}}$ such that $\mathcal{Z}[k, r]$. Consider z being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom z = Seg len F and for every natural number k such that $k \in$ Seg len F holds $\mathcal{Z}[k, z(k)]$. $\int g \, dB-\text{Meas} = \sum z$. For every object p such that $p \in$ dom z holds z(p) = upper_volume(f, D)(p). For every real number x such that $x \in A$ holds sup rng $f \geq g(x) \geq f(x)$. \Box

Let us consider a non empty, closed interval subset A of \mathbb{R} and a partial function f from A to \mathbb{R} . Now we state the propositions:

Suppose f is bounded and $A \subseteq \text{dom } f$ and vol(A) > 0. Then there exists (21)a sequence F of partial functions from \mathbb{R} into $\overline{\mathbb{R}}$ with the same dom and there exists a sequence I of extended reals such that A = dom(F(0)) and for every natural number n, F(n) is simple function in the Borel sets and $\int F(n) dB$ -Meas = lower_sum(f, EqDiv(A, 2ⁿ)) and for every real number x such that $x \in A$ holds inf rng $f \leq F(n)(x) \leq f(x)$ and for every natural numbers n, m such that $n \leq m$ for every element x of \mathbb{R} such that $x \in A$ holds $F(n)(x) \leq F(m)(x)$ and for every element x of \mathbb{R} such that $x \in A$ holds F # x is convergent and $\lim(F \# x) = \sup(F \# x)$ and $\sup(F \# x) \leq$ f(x) and $\lim F$ is integrable on B-Meas and for every natural number n, $I(n) = \int F(n) \,\mathrm{d} B$ -Meas and I is convergent and $\lim I = \int \lim F \,\mathrm{d} B$ -Meas. **PROOF:** Define $\mathcal{P}[$ natural number, partial function from \mathbb{R} to $\overline{\mathbb{R}}] \equiv A =$ dom $\$_2$ and $\$_2$ is simple function in the Borel sets and $\int \$_2 dB$ -Meas = lower_sum(f, EqDiv(A, $2^{\$_1}$)) and for every real number x such that $x \in A$ holds inf rng $f \leq \$_2(x) \leq f(x)$ and there exists a finite sequence K of separated subsets of the Borel sets such that dom $K = \text{dom}(\text{EqDiv}(A, 2^{\$_1}))$ and $\bigcup \operatorname{rng} K = A$.

For every natural number k such that $k \in \text{dom } K$ holds if $\text{len EqDiv}(A, 2^{\$_1}) = 1$, then $K(k) = [\inf A, \sup A]$ and if $\text{len EqDiv}(A, 2^{\$_1}) \neq 1$, then if k = 1, then $K(k) = [\inf A, (\text{EqDiv}(A, 2^{\$_1}))(k)]$ and if $1 < k < \text{len EqDiv}(A, 2^{\$_1})$, then $K(k) = [(\text{EqDiv}(A, 2^{\$_1}))(k - 1), (\text{EqDiv}(A, 2^{\$_1}))(k)]$ and if $k = \text{len EqDiv}(A, 2^{\$_1})$, then $K(k) = [(\text{EqDiv}(A, 2^{\$_1}))(k - 1), (\text{EqDiv}(A, 2^{\$_1}))(k)]$ and for every real number x such that $x \in \text{dom } \$_2$ there exists a natural number k such that $1 \leq k \leq \text{len } K$ and $x \in K(k)$ and $\$_2(x) = \inf \text{rng}(f \mid \text{divset}(\text{EqDiv}(A, 2^{\$_1}), k))$. For every element n of \mathbb{N} , there exists an element g of $\mathbb{R} \rightarrow \mathbb{R}$ such that $\mathcal{P}[n, g]$.

Consider F being a function from \mathbb{N} into $\mathbb{R} \to \mathbb{R}$ such that for every element n of \mathbb{N} , $\mathcal{P}[n, F(n)]$. For every natural numbers $n, m, \operatorname{dom}(F(n)) =$ $\operatorname{dom}(F(m))$. For every natural number n, F(n) is simple function in the Borel sets and $\int F(n) \operatorname{dB-Meas} = \operatorname{lower_sum}(f, \operatorname{EqDiv}(A, 2^n))$ and for every real number x such that $x \in A$ holds $\operatorname{inf} \operatorname{rng} f \leq F(n)(x) \leq f(x)$. For every natural numbers n, m such that $n \leq m$ for every element x of \mathbb{R} such that $x \in A$ holds $F(n)(x) \leq F(m)(x)$. For every element x of \mathbb{R} such that $x \in A$ holds F # x is convergent and $\lim(F \# x) = \sup(F \# x)$ and $\sup(F \# x) \leq f(x)$. Consider a, b being real numbers such that $a \leq b$ and A = [a, b]. Reconsider $K = \max(|\inf \operatorname{rng} f|, |\sup \operatorname{rng} f|)$ as a real number. For every natural number n and for every set x such that $x \in \operatorname{dom}(F(0))$ holds $|F(n)(x)| \leq K$. \Box

Suppose f is bounded and $A \subseteq \text{dom } f$ and vol(A) > 0. Then there exists (22)a sequence F of partial functions from \mathbb{R} into $\overline{\mathbb{R}}$ with the same dom and there exists a sequence I of extended reals such that A = dom(F(0)) and for every natural number n, F(n) is simple function in the Borel sets and $\int F(n) dB$ -Meas = upper_sum $(f, EqDiv(A, 2^n))$ and for every real number x such that $x \in A$ holds sup rng $f \ge F(n)(x) \ge f(x)$ and for every natural numbers n, m such that $n \leq m$ for every element x of \mathbb{R} such that $x \in A$ holds $F(n)(x) \ge F(m)(x)$ and for every element x of \mathbb{R} such that $x \in A$ holds F # x is convergent and $\lim(F \# x) = \inf(F \# x)$ and $\inf(F \# x) \ge$ f(x) and $\lim F$ is integrable on B-Meas and for every natural number n, $I(n) = \int F(n) \,\mathrm{d} B$ -Meas and I is convergent and $\lim I = \int \lim F \,\mathrm{d} B$ -Meas. PROOF: Define \mathcal{P} [natural number, partial function from \mathbb{R} to $\overline{\mathbb{R}}$] $\equiv A =$ dom $\$_2$ and $\$_2$ is simple function in the Borel sets and $\int \$_2 dB$ -Meas = upper_sum $(f, EqDiv(A, 2^{\$_1}))$ and for every real number x such that $x \in A$ holds sup rng $f \ge \$_2(x) \ge f(x)$ and there exists a finite sequence K of separated subsets of the Borel sets such that dom $K = \text{dom}(\text{EqDiv}(A, 2^{\$_1}))$ and $\bigcup \operatorname{rng} K = A$.

For every natural number k such that $k \in \text{dom } K$ holds if $\text{len EqDiv}(A, 2^{\$_1}) = 1$, then $K(k) = [\inf A, \sup A]$ and if $\text{len EqDiv}(A, 2^{\$_1}) \neq 1$, then if k = 1, then $K(k) = [\inf A, (\text{EqDiv}(A, 2^{\$_1}))(k)]$ and if $1 < k < \text{len EqDiv}(A, 2^{\$_1})$, then $K(k) = [(\text{EqDiv}(A, 2^{\$_1}))(k - 1), (\text{EqDiv}(A, 2^{\$_1}))(k)]$ and if $k = \text{len EqDiv}(A, 2^{\$_1})$, then $K(k) = [(\text{EqDiv}(A, 2^{\$_1}))(k - 1), (\text{EqDiv}(A, 2^{\$_1}))(k)]$ and for every real number x such that $x \in \text{dom } \$_2$ there exists a natural number k such that $1 \leq k \leq \text{len } K$ and $x \in K(k)$ and $\$_2(x) = \sup \operatorname{rng}(f \mid \operatorname{divset}(\text{EqDiv}(A, 2^{\$_1}), k)).$

For every element n of \mathbb{N} , there exists an element g of $\mathbb{R} \to \overline{\mathbb{R}}$ such that $\mathcal{P}[n,g]$. Consider F being a function from \mathbb{N} into $\mathbb{R} \to \overline{\mathbb{R}}$ such that for every element n of \mathbb{N} , $\mathcal{P}[n, F(n)]$. For every natural numbers n, m,

dom(F(n)) = dom(F(m)). For every natural number n, F(n) is simple function in the Borel sets and $\int F(n) \, d$ B-Meas = upper_sum $(f, \text{EqDiv}(A, 2^n))$ and for every real number x such that $x \in A$ holds $\sup \operatorname{rng} f \geq F(n)(x) \geq f(x)$. For every natural numbers n, m such that $n \leq m$ for every element x of \mathbb{R} such that $x \in A$ holds $F(n)(x) \geq F(m)(x)$. For every element x of \mathbb{R} such that $x \in A$ holds F#x is convergent and $\lim(F\#x) = \inf(F\#x)$ and $\inf(F\#x) \geq f(x)$ by [7, (7),(36)]. Consider a, b being real numbers such that $a \leq b$ and A = [a, b]. Set $K = \max(|\inf \operatorname{rng} f|, |\sup \operatorname{rng} f|)$. For every natural number n and for every set x such that $x \in \operatorname{dom}(F(0))$ holds $|F(n)(x)| \leq K$. \Box

2. Properties of Complete Measure Space

Now we state the propositions:

- (23) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, an element E of S, and a natural number n. Suppose E = dom f and f is non-negative and E-measurable and $\int f \, dM = 0$. Then $M(E \cap \text{GTE-dom}(f, \frac{1}{n+1})) = 0$.
- (24) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and an element E of S. Suppose $E = \operatorname{dom} f$ and f is non-negative and E-measurable and $\int f \, \mathrm{d}M = 0$. Then $M(E \cap \operatorname{GT-dom}(f, 0)) = 0$. PROOF: Define $\mathcal{P}[\operatorname{natural number}, \operatorname{object}] \equiv \$_2 = E \cap \operatorname{GTE-dom}(f, \frac{1}{\$_1+1})$. For every element n of N, there exists an element y of S such that $\mathcal{P}[n, y]$. Consider F being a function from N into S such that for every element n of N, $\mathcal{P}[n, F(n)]$. For every element n of N, $(M \cdot F)(n) = 0$. \Box
- (25) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, a partial function f from X to \mathbb{R} , and an element E of S. Suppose E = dom f and f is non-negative and E-measurable and $\int f \, dM = 0$. Then $f =_{\text{a.e.}}^{M} (X \longmapsto 0) \upharpoonright E$. The theorem is a consequence of (24).
- (26) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, partial functions f, g from X to \mathbb{R} , and an element E_1 of S. Suppose M is complete and f is E_1 -measurable and $f = {}^M_{\text{a.e.}} g$ and $E_1 = \text{dom } f$. Then g is E_1 -measurable. PROOF: Consider E being an element of S such that M(E) = 0 and

 $f \upharpoonright E^{c} = g \upharpoonright E^{c}$. For every real number $r, E_{1} \cap \text{LE-dom}(\overline{\mathbb{R}}(g), r) \in S$. \Box

(27) Let us consider a set X, a σ -field S of subsets of X, and a σ -measure M on S. Then every element of S is an element of COM(S, M).

- (28) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, and partial functions f, g from X to \mathbb{R} . If $f =_{\text{a.e.}}^{M} g$, then $f =_{\text{a.e.}}^{\text{COM}(M)} g$. The theorem is a consequence of (27).
- (29) Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} . Suppose $f =_{\text{a.e.}}^{\text{B-Meas}} g$. Then $f =_{\text{a.e.}}^{\text{L-Meas}} g$.
- (30) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, an element E_1 of S, an element E_2 of COM(S, M), and a partial function f from X to $\overline{\mathbb{R}}$. If $E_1 = E_2$ and f is E_1 -measurable, then f is E_2 -measurable. The theorem is a consequence of (27).
- (31) Let us consider an element E_1 of the Borel sets, an element E_2 of L-Field, and a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. If $E_1 = E_2$ and f is E_1 -measurable, then f is E_2 -measurable.
- (32) Let us consider a set X, a σ -field S of subsets of X, and a σ -measure M on S. Then every finite sequence of separated subsets of S is a finite sequence of separated subsets of COM(S, M). The theorem is a consequence of (27).
- (33) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. If f is simple function in S, then f is simple function in $\operatorname{COM}(S, M)$. The theorem is a consequence of (32).
- (34) Let us consider a set X, a σ -field S of subsets of X, and a σ -measure M on S. Then \emptyset is a set with measure zero w.r.t. M.
- (35) Let us consider a set X, a σ -field S of subsets of X, a σ -measure M on S, and an element E of S. Then M(E) = COM(M)(E). The theorem is a consequence of (34).
- (36) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and f is non-negative. Then $\int_{f} M(x) dx = \int_{f} \operatorname{COM}(M)(x) dx$.

PROOF: Consider F being a finite sequence of separated subsets of S, a, x being finite sequences of elements of $\overline{\mathbb{R}}$ such that F and a are representation of f and $a(1) = 0_{\overline{\mathbb{R}}}$ and for every natural number n such that $2 \leq n$ and $n \in \text{dom } a$ holds $0_{\overline{\mathbb{R}}} < a(n) < +\infty$ and dom x = dom F and for every natural number n such that $n \in \text{dom } x$ holds $x(n) = a(n) \cdot (M \cdot F)(n)$ and $\int_{f} M(x) dx = \sum x$. f is simple function in COM(S, M). Reconsider $F_1 = F$ as a finite sequence of separated subsets of COM(S, M). For every natural number n such that $n \in \text{dom } x$ holds $x(n) = a(n) \cdot (\text{COM}(M) \cdot \text{COM}(M)$.

 $F_1(n)$. \Box

(37) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and an element E of S. Suppose E = dom f and f is E-measurable and non-negative. Then $\int^+ f \, dM = \int^+ f \, d\text{COM}(M)$.

PROOF: Consider F being a sequence of partial functions from X into $\overline{\mathbb{R}}$ such that for every natural number n, F(n) is simple function in S and dom(F(n)) = dom f and for every natural number n, F(n) is non-negative and for every natural numbers n, m such that $n \leq m$ for every element x of X such that $x \in \text{dom } f$ holds $F(n)(x) \leq F(m)(x)$ and for every element x of X such that $x \in \text{dom } f$ holds F # x is convergent and $\lim(F \# x) = f(x)$. Reconsider g = F(0) as a partial function from X to $\overline{\mathbb{R}}$. For every element x of X such that $x \in \text{dom } g$ holds F # x is convergent and $g(x) \leq \lim(F \# x)$.

Consider K being a sequence of extended reals such that for every natural number $n, K(n) = \int' F(n) \, dM$ and K is convergent and $\sup \operatorname{rng} K = \lim K$ and $\int' g \, dM \leq \lim K$. Reconsider $E_1 = E$ as an element of COM(S, M). f is E_1 -measurable. For every natural number n, F(n) is simple function in COM(S, M) and dom(F(n)) = dom f. For every natural number $n, K(n) = \int' F(n) \operatorname{dCOM}(M)$. \Box

- (38) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M. Then
 - (i) f is integrable on COM(M), and
 - (ii) $\int f \, \mathrm{d}M = \int f \, \mathrm{dCOM}(M)$.

The theorem is a consequence of (27), (37), and (30).

3. Relation Between Riemann and Lebesgue Integrals

Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, an element E of S, and partial functions f, g from X to \mathbb{R} . Now we state the propositions:

- (39) If $(E = \operatorname{dom} f \text{ or } E = \operatorname{dom} g)$ and $f =_{a.e.}^{M} g$, then $f g =_{a.e.}^{M} (X \longmapsto 0) \upharpoonright E$. PROOF: Consider A being an element of S such that M(A) = 0 and $f \upharpoonright A^{c} = g \upharpoonright A^{c}$. For every element x of X such that $x \in \operatorname{dom}((f - g) \upharpoonright A^{c})$ holds $((f - g) \upharpoonright A^{c})(x) = (((X \longmapsto 0) \upharpoonright E) \upharpoonright A^{c})(x)$. \Box
- (40) If $E = \operatorname{dom}(f g)$ and $f g \stackrel{M}{=}_{a.e.} (X \longmapsto 0) \upharpoonright E$, then $f \upharpoonright E \stackrel{M}{=}_{a.e.} g \upharpoonright E$.

PROOF: Consider A being an element of S such that M(A) = 0 and $(f - g) \upharpoonright A^{c} = ((X \longmapsto 0) \upharpoonright E) \upharpoonright A^{c}$. For every element x of X such that $x \in \operatorname{dom}((f \upharpoonright E) \upharpoonright A^{c})$ holds $((f \upharpoonright E) \upharpoonright A^{c})(x) = ((g \upharpoonright E) \upharpoonright A^{c})(x)$. \Box

- (41) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, an element E of S, and a partial function f from X to \mathbb{R} . Suppose E = dom f and $M(E) < +\infty$ and f is bounded and E-measurable. Then f is integrable on M.
- (42) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, and partial functions f, g from X to \mathbb{R} . Then $f =_{\text{a.e.}}^{M} g$ if and only if $\max_{+}(f) =_{\text{a.e.}}^{M} \max_{+}(g)$ and $\max_{-}(f) =_{\text{a.e.}}^{M} \max_{-}(g)$. PROOF: Consider E_1 being an element of S such that $M(E_1) = 0$ and $\max_{+}(f) \upharpoonright E_1^c = \max_{+}(g) \upharpoonright E_1^c$. Consider E_2 being an element of S such that $M(E_2) = 0$ and $\max_{-}(f) \upharpoonright E_2^c = \max_{-}(g) \upharpoonright E_2^c$. Set $E = E_1 \cup E_2$. For every element x of X such that $x \in \text{dom}(f \upharpoonright E^c)$ holds $(f \upharpoonright E^c)(x) = (g \upharpoonright E^c)(x)$. \Box
- (43) Let us consider a non empty set X, and a partial function f from X to \mathbb{R} . Then
 - (i) $\max_{+}(\overline{\mathbb{R}}(f)) = \overline{\mathbb{R}}(\max_{+}(f))$, and
 - (ii) $\max_{-}(\overline{\mathbb{R}}(f)) = \overline{\mathbb{R}}(\max_{-}(f)).$
- (44) Let us consider a non empty set X, a σ -field S of subsets of X, a σ measure M on S, partial functions f, g from X to \mathbb{R} , and an element E of S. Suppose M is complete and f is integrable on M and $f = {}^{M}_{\text{a.e.}} g$ and E = dom f and E = dom g. Then
 - (i) g is integrable on M, and
 - (ii) $\int f \, \mathrm{d}M = \int g \, \mathrm{d}M.$

The theorem is a consequence of (26), (43), and (42).

- (45) Let us consider a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$, and a real number a. Suppose $a \in \text{dom } f$. Then there exists an element A of the Borel sets such that
 - (i) $A = \{a\}$, and
 - (ii) f is A-measurable, and
 - (iii) $f \upharpoonright A$ is integrable on B-Meas, and
 - (iv) $\int f \upharpoonright A \, \mathrm{d} \operatorname{B-Meas} = 0.$
- (46) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number a. Suppose $a \in \text{dom } f$. Then there exists an element A of the Borel sets such that

- (i) $A = \{a\}$, and
- (ii) f is A-measurable, and
- (iii) $f \upharpoonright A$ is integrable on B-Meas, and
- (iv) $\int f \upharpoonright A \, \mathrm{d} \operatorname{B-Meas} = 0.$

The theorem is a consequence of (45).

- (47) Let us consider a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. Suppose f is integrable on B-Meas. Then
 - (i) f is integrable on L-Meas, and
 - (ii) $\int f \, d B$ -Meas = $\int f \, d L$ -Meas.
- (48) Let us consider a partial function f from \mathbb{R} to \mathbb{R} . Suppose f is integrable on B-Meas. Then
 - (i) f is integrable on L-Meas, and
 - (ii) $\int f \, d B$ -Meas = $\int f \, d L$ -Meas.

The theorem is a consequence of (38).

- (49) Let us consider a non empty, closed interval subset A of \mathbb{R} , an element A_1 of L-Field, and a partial function f from \mathbb{R} to \mathbb{R} . Suppose $A = A_1$ and $A \subseteq \text{dom } f$ and $f \upharpoonright A$ is bounded and f is integrable on A. Then
 - (i) f is A_1 -measurable, and
 - (ii) $f \upharpoonright A_1$ is integrable on L-Meas, and
 - (iii) integral $f \upharpoonright A = \int f \upharpoonright A \, \mathrm{d} \, \mathrm{L}$ -Meas.

The theorem is a consequence of (46), (30), (48), (21), (22), (17), (3), (25), (29), (40), (26), (41), (38), and (44).

(50) Let us consider real numbers a, b, and a partial function <math>f from \mathbb{R} to \mathbb{R} . Suppose $a \leq b$ and $[a,b] \subseteq \text{dom } f$ and $f \upharpoonright [a,b]$ is bounded and f is integrable on [a,b]. Then $\int_{a}^{b} f(x)dx = \int f \upharpoonright [a,b] \, \mathrm{d} \, \mathrm{L}$ -Meas. The theorem is a consequence of (49).

References

- [1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Čarette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.

- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [4] Noboru Endou. Product pre-measure. Formalized Mathematics, 24(1):69–79, 2016. doi:10.1515/forma-2016-0006.
- [5] Noboru Endou. Reconstruction of the one-dimensional Lebesgue measure. Formalized Mathematics, 28(1):93–104, 2020. doi:10.2478/forma-2020-0008.
- [6] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2nd edition, 1999.
- [7] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. *Formalized Mathematics*, 15(4):231–236, 2007. doi:10.2478/v10037-007-0026-3.

Accepted September 30, 2021