Relationship between the Riemann and Lebesgue Integrals

Noboru Endou(
National Institute of Technology, Gifu College
2236-2 Kamimakuwa, Motosu, Gifu, Japan

Abstract

Summary. The goal of this article is to clarify the relationship between Riemann and Lebesgue integrals. In previous article [5], we constructed a onedimensional Lebesgue measure. The one-dimensional Lebesgue measure provides a measure of any intervals, which can be used to prove the well-known relationship [6 between the Riemann and Lebesgue integrals 11. We also proved the relationship between the integral of a given measure and that of its complete measure. As the result of this work, the Lebesgue integral of a bounded real valued function in the Mizar system [2], [3] can be calculated by the Riemann integral.

MSC: 26A42 68V20
Keywords: Riemann integrals; Lebesgue integrals
MML identifier: MESFUN14, version: 8.1.11 5.68.1412

1. Preliminaries

Let us consider a non empty set X and a partial function f from X to $\overline{\mathbb{R}}$. Now we state the propositions:
(1) (i) $\operatorname{rng} \max _{+}(f) \subseteq \operatorname{rng} f \cup\{0\}$, and
(ii) rng $\max _{-}(f) \subseteq \operatorname{rng}(-f) \cup\{0\}$.
(2) If f is real-valued, then $-f$ is real-valued and $\max _{+}(f)$ is real-valued and $\max _{-}(f)$ is real-valued. The theorem is a consequence of (1).
(3) If f is without $-\infty$ and without $+\infty$, then f is a partial function from X to \mathbb{R}.
(4) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then
(i) $\max _{+}(f)$ is simple function in S, and
(ii) $\max _{-}(f)$ is simple function in S.

Proof: Consider F being a finite sequence of separated subsets of S such that $\operatorname{dom} f=\bigcup \operatorname{rng} F$ and for every natural number n and for every elements x, y of X such that $n \in \operatorname{dom} F$ and $x, y \in F(n)$ holds $f(x)=$ $f(y)$. For every natural number n and for every elements x, y of X such that $n \in \operatorname{dom} F$ and $x, y \in F(n)$ holds $\left(\max _{+}(f)\right)(x)=\left(\max _{+}(f)\right)(y)$. For every natural number n and for every elements x, y of X such that $n \in \operatorname{dom} F$ and $x, y \in F(n)$ holds $\left(\max _{-}(f)\right)(x)=\left(\max _{-}(f)\right)(y)$.
Let us consider real numbers a, b. Now we state the propositions:
(5) Suppose $a \leqslant b$. Then
(i) $(\mathrm{B}-\mathrm{Meas})([a, b])=b-a$, and
(ii) (B-Meas) $([a, b[)=b-a$, and
(iii) $(\mathrm{B}$-Meas $)(] a, b])=b-a$, and
(iv) (B-Meas) (]$a, b[)=b-a$, and
(v) $($ L-Meas $)([a, b])=b-a$, and
(vi) (L-Meas) $([a, b[)=b-a$, and
(vii) $(\mathrm{L}-\mathrm{Meas})(] a, b])=b-a$, and
(viii) $(\mathrm{L}-\mathrm{Meas})(] a, b[)=b-a$.
(6) Suppose $a>b$. Then
(i) $($ B-Meas $)([a, b])=0$, and
(ii) (B-Meas) $([a, b[)=0$, and
(iii) $($ B-Meas $)(] a, b])=0$, and
(iv) (B-Meas) (]$a, b[)=0$, and
(v) $($ L-Meas $)([a, b])=0$, and
(vi) $($ L-Meas $)([a, b[)=0$, and
(vii) $($ L-Meas $)(] a, b])=0$, and
(viii) (L-Meas) (]$a, b[)=0$.
(7) Let us consider an element A_{1} of the Borel sets, an element A_{2} of L-Field, and a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. If $A_{1}=A_{2}$ and f is A_{1}-measurable, then f is A_{2}-measurable.
(8) Let us consider real numbers a, b, and a non empty, closed interval subset A of \mathbb{R}. Suppose $a<b$ and $A=[a, b]$. Let us consider a natural number n. If $n>0$, then there exists a partition D of A such that D divides into equal n.
Let F be a finite sequence of elements of the Borel sets and n be a natural number. One can check that the functor $F(n)$ yields an extended real-membered set. Now we state the proposition:
(9) Let us consider real numbers a, b, a non empty, closed interval subset A of \mathbb{R}, and a partition D of A. Suppose $A=[a, b]$. Then there exists a finite sequence F of separated subsets of the Borel sets such that
(i) $\operatorname{dom} D=\operatorname{dom} F$, and
(ii) $\cup \operatorname{rng} F=A$, and
(iii) for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=[a, b]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=$ $\left[a, D(k)\left[\right.\right.$ and if $1<k<$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)[\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-{ }^{\prime} 1\right), D(k)\right]$.

Proof: Define \mathcal{P} [natural number, set] \equiv if len $D=1$, then $\$_{2}=[a, b]$ and if len $D \neq 1$, then if $\$_{1}=1$, then $\$_{2}=\left[a, D\left(\$_{1}\right)\left[\right.\right.$ and if $1<\$_{1}<$ len D, then $\$_{2}=\left[D\left(\$_{1}-^{\prime} 1\right), D\left(\$_{1}\right)\left[\right.\right.$ and if $\$_{1}=$ len D, then $\$_{2}=\left[D\left(\$_{1}-^{\prime} 1\right), D\left(\$_{1}\right)\right]$. For every natural number k such that $k \in \operatorname{Seg}$ len D there exists an element x of the Borel sets such that $\mathcal{P}[k, x]$ by [4, (5)]. Consider F being a finite sequence of elements of the Borel sets such that $\operatorname{dom} F=\operatorname{Seg} \operatorname{len} D$ and for every natural number k such that $k \in \operatorname{Seg}$ len D holds $\mathcal{P}[k, F(k)]$. For every objects x, y such that $x \neq y$ holds $F(x)$ misses $F(y)$. For every natural number k such that $k \in \operatorname{dom} F$ and $k \neq \operatorname{len} D$ holds $\bigcup \operatorname{rng}(F \upharpoonright k)=$ $[a, D(k)[. \cup \operatorname{rng} F=A$.
Let us consider real numbers a, b, a non empty, closed interval subset A of \mathbb{R}, a partition D of A, and a partial function f from A to \mathbb{R}. Now we state the propositions:
(10) Suppose $A=[a, b]$. Then there exists a finite sequence F of separated subsets of the Borel sets and there exists a partial function g from \mathbb{R} to $\overline{\mathbb{R}}$ such that $\operatorname{dom} F=\operatorname{dom} D$ and $\bigcup \operatorname{rng} F=A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=[a, b]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=[a, D(k)[$ and if $1<k<\operatorname{len} D$, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\left[\right.\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\right]$ and g is simple function in the Borel sets and $\operatorname{dom} g=A$ and for every real number x such that $x \in \operatorname{dom} g$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} F$ and $x \in F(k)$ and $g(x)=\inf \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k))$.

Proof: Consider F being a finite sequence of separated subsets of the Borel sets such that $\operatorname{dom} F=\operatorname{dom} D$ and $\cup \operatorname{rng} F=A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=[a, b]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=[a, D(k)[$ and if $1<k<\operatorname{len} D$, then $F(k)=\left[D\left(k-{ }^{\prime} 1\right), D(k)\left[\right.\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\right]$.

Define \mathcal{P} [object, object $] \equiv$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} F$ and $\$_{1} \in F(k)$ and $\$_{2}=\inf \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k))$. Consider g being a partial function from \mathbb{R} to $\overline{\mathbb{R}}$ such that for every object $x, x \in \operatorname{dom} g$ iff $x \in \mathbb{R}$ and there exists an object y such that $\mathcal{P}[x, y]$ and for every object x such that $x \in \operatorname{dom} g$ holds $\mathcal{P}[x, g(x)]$. For every natural number k and for every elements x, y of \mathbb{R} such that $k \in \operatorname{dom} F$ and $x, y \in F(k)$ holds $g(x)=g(y)$.
(11) Suppose $A=[a, b]$. Then there exists a finite sequence F of separated subsets of the Borel sets and there exists a partial function g from \mathbb{R} to $\overline{\mathbb{R}}$ such that $\operatorname{dom} F=\operatorname{dom} D$ and $\bigcup \operatorname{rng} F=A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=[a, b]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=[a, D(k)[$ and if $1<k<\operatorname{len} D$, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\left[\right.\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\right]$ and g is simple function in the Borel sets and $\operatorname{dom} g=A$ and for every real number x such that $x \in \operatorname{dom} g$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} F$ and $x \in F(k)$ and $g(x)=\sup \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k))$.
Proof: Consider F being a finite sequence of separated subsets of the Borel sets such that $\operatorname{dom} F=\operatorname{dom} D$ and $\bigcup \operatorname{rng} F=A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=[a, b]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=[a, D(k)[$ and if $1<k<$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\left[\right.\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\right]$.

Define \mathcal{P} [object, object $] \equiv$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} F$ and $\$_{1} \in F(k)$ and $\$_{2}=\sup \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k))$. Consider g being a partial function from \mathbb{R} to $\overline{\mathbb{R}}$ such that for every object $x, x \in \operatorname{dom} g$ iff $x \in \mathbb{R}$ and there exists an object y such that $\mathcal{P}[x, y]$ and for every object x such that $x \in \operatorname{dom} g$ holds $\mathcal{P}[x, g(x)]$. For every natural number k and for every elements x, y of \mathbb{R} such that $k \in \operatorname{dom} F$ and $x, y \in F(k)$ holds $g(x)=g(y)$.
(12) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, a finite sequence F of separated subsets of S, a finite sequence a of elements of $\overline{\mathbb{R}}$, and a natural number n. Suppose f is simple function in S and F and a are representation of f and $n \in \operatorname{dom} F$. Then
(i) $F(n)=\emptyset$, or
(ii) $a(n)$ is a real number.

Let A be a non empty, closed interval subset of \mathbb{R} and n be a natural number. Assume $n>0$ and $\operatorname{vol}(A)>0$. The functor $\operatorname{EqDiv}(A, n)$ yielding a partition of A is defined by
(Def. 1) it divides into equal n.
Now we state the propositions:
(13) Let us consider a non empty, closed interval subset A of \mathbb{R}, and a natural number $n . \operatorname{If} \operatorname{vol}(A)>0$ and $\operatorname{len} \operatorname{EqDiv}\left(A, 2^{n}\right)=1$, then $n=0$.
(14) Let us consider real numbers a, b, and a non empty, closed interval subset A of \mathbb{R}. Suppose $a<b$ and $A=[a, b]$. Then there exists a division sequence D of A such that for every natural number $n, D(n)$ divides into equal 2^{n}. Proof: Define \mathcal{P} [natural number, object] \equiv there exists a partition D of A such that $D=\$_{2}$ and D divides into equal $2^{\$_{1}}$. For every element n of \mathbb{N}, there exists an element D of $\operatorname{divs} A$ such that $\mathcal{P}[n, D]$. Consider D being a function from \mathbb{N} into $\operatorname{divs} A$ such that for every element n of \mathbb{N}, $\mathcal{P}[n, D(n)]$. For every natural number $n, D(n)$ divides into equal 2^{n}.
(15) Let us consider a non empty, closed interval subset A of \mathbb{R}, a partition D of A, and natural numbers n, k. Suppose D divides into equal n and $k \in \operatorname{dom} D$. Then $\operatorname{vol}(\operatorname{divset}(D, k))=\frac{\operatorname{vol}(A)}{n}$.
(16) Let us consider a complex number x, and a natural number r. If $x \neq 0$, then $\left(x^{r}\right)^{-1}=\left(x^{-1}\right)^{r}$.
(17) Let us consider a non empty, closed interval subset A of \mathbb{R}, and a sequence T of divs A. Suppose $\operatorname{vol}(A)>0$ and for every natural number $n, T(n)=$ $\operatorname{EqDiv}\left(A, 2^{n}\right)$. Then δ_{T} is 0 -convergent and non-zero.
Proof: For every natural number $n,\left(\delta_{T}\right)(n)=2 \cdot(\operatorname{vol}(A)) \cdot\left(\left(2^{-1}\right)^{n+1}\right)$. Define \mathcal{S} (natural number) $=\left(2^{-1}\right)^{\Phi_{1}+1}$. Consider s being a sequence of real numbers such that for every natural number $n, s(n)=\mathcal{S}(n)$. For every natural number $n,\left(\delta_{T}\right)(n)=2 \cdot(\operatorname{vol}(A)) \cdot s(n)$.
(18) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, an element E of S, a partial function f from X to $\overline{\mathbb{R}}$, a finite sequence F of separated subsets of S, and finite sequences a, x of elements of $\overline{\mathbb{R}}$. Suppose f is simple function in S and $E=\operatorname{dom} f$ and $M(E)<+\infty$ and F and a are representation of f and $\operatorname{dom} x=\operatorname{dom} F$ and for every natural number i such that $i \in \operatorname{dom} x$ holds $x(i)=a(i) \cdot(M \cdot F)(i)$. Then $\int f \mathrm{~d} M=\sum x$.
Proof: $\max _{+}(f)$ is simple function in S and $\max _{-}(f)$ is simple function in S. Define \mathcal{P} [natural number, extended real] \equiv for every object x such that $x \in F\left(\$_{1}\right)$ holds $\$_{2}=\max (f(x), 0)$. For every natural number k such that $k \in \operatorname{Seg}$ len a there exists an element y of $\overline{\mathbb{R}}$ such that $\mathcal{P}[k, y]$. Consider
a_{1} being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom $a_{1}=\operatorname{Seg} \operatorname{len} a$ and for every natural number k such that $k \in \operatorname{Seg}$ len a holds $\mathcal{P}\left[k, a_{1}(k)\right]$. For every natural number k such that $k \in \operatorname{dom} F$ for every object x such that $x \in F(k)$ holds $\left(\max _{+}(f)\right)(x)=a_{1}(k)$. Define \mathcal{Q} [natural number, extended real] $\equiv \$_{2}=a_{1}\left(\$_{1}\right) \cdot(M \cdot F)\left(\$_{1}\right)$. Consider x_{1} being a finite sequence of elements of $\overline{\mathbb{R}}$ such that $\operatorname{dom} x_{1}=\operatorname{Seg} \operatorname{len} F$ and for every natural number k such that $k \in \operatorname{Seg}$ len F holds $\mathcal{Q}\left[k, x_{1}(k)\right]$. Reconsider $r_{1}=x_{1}$ as a finite sequence of elements of $\mathbb{R} . \int^{\prime} \max _{+}(f) \mathrm{d} M=\sum x_{1}$.

Define \mathcal{P} [natural number, extended real] \equiv for every object x such that $x \in F\left(\$_{1}\right)$ holds $\$_{2}=\max (-f(x), 0)$. For every natural number k such that $k \in \operatorname{Seg}$ len a there exists an element y of $\overline{\mathbb{R}}$ such that $\mathcal{P}[k, y]$. Consider a_{2} being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom $a_{2}=\operatorname{Seg}$ len a and for every natural number k such that $k \in \operatorname{Seg}$ len a holds $\mathcal{P}\left[k, a_{2}(k)\right]$. For every natural number k such that $k \in \operatorname{dom} F$ for every object x such that $x \in F(k)$ holds $\left(\max _{-}(f)\right)(x)=a_{2}(k)$. Define \mathcal{Q} natural number, extended real $\equiv \$_{2}=a_{2}\left(\$_{1}\right) \cdot(M \cdot F)\left(\$_{1}\right)$. Consider x_{2} being a finite sequence of elements of $\overline{\mathbb{R}}$ such that $\operatorname{dom} x_{2}=\operatorname{Seg} \operatorname{len} F$ and for every natural number k such that $k \in \operatorname{Seg} \operatorname{len} F$ holds $\mathcal{Q}\left[k, x_{2}(k)\right]$. Reconsider $r_{2}=x_{2}$ as a finite sequence of elements of $\mathbb{R} . \int^{\prime} \max _{-}(f) \mathrm{d} M=\sum x_{2}$. For every object k such that $k \in \operatorname{dom} x$ holds $x(k)=\left(r_{1}-r_{2}\right)(k)$.
Let us consider a non empty, closed interval subset A of \mathbb{R}, a partial function f from A to \mathbb{R}, and a partition D of A. Now we state the propositions:
(19) Suppose f is bounded and $A \subseteq \operatorname{dom} f$. Then there exists a finite sequence F of separated subsets of the Borel sets and there exists a partial function g from \mathbb{R} to $\overline{\mathbb{R}}$ such that $\operatorname{dom} F=\operatorname{dom} D$ and $\bigcup \operatorname{rng} F=A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=$ $[\inf A, \sup A]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=[\inf A, D(k)[$ and if $1<k<$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)[\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\right]$ and g is simple function in the Borel sets and for every real number x such that $x \in \operatorname{dom} g$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} F$ and $x \in F(k)$ and $g(x)=\inf \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k))$ and $\operatorname{dom} g=A$ and $\int g \mathrm{~dB}$-Meas $=\operatorname{lower} _$sum (f, D) and for every real number x such that $x \in A$ holds inf rng $f \leqslant g(x) \leqslant f(x)$.
Proof: Consider a, b being real numbers such that $a \leqslant b$ and $A=[a, b]$. Consider F being a finite sequence of separated subsets of the Borel sets, g being a partial function from \mathbb{R} to $\overline{\mathbb{R}}$ such that $\operatorname{dom} F=\operatorname{dom} D$ and $\bigcup \operatorname{rng} F=A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=[a, b]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=$ [a, D(k)[and if $1<k<$ len D, then $F(k)=\left[D\left(k-{ }^{\prime} 1\right), D(k)[\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\right]$ and g is simple function in the Borel
sets and $\operatorname{dom} g=A$ and for every real number x such that $x \in \operatorname{dom} g$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} F$ and $x \in F(k)$ and $g(x)=\inf \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k))$. Define $\mathcal{H}[$ natural number, extended real $] \equiv \$_{2}=\inf \operatorname{rng}\left(f \upharpoonright \operatorname{divset}\left(D, \$_{1}\right)\right)$ and $\$_{2}$ is a real number. For every natural number k such that $k \in \operatorname{Seg}$ len F there exists an element r of $\overline{\mathbb{R}}$ such that $\mathcal{H}[k, r]$.

Consider h being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom $h=$ Seg len F and for every natural number k such that $k \in \operatorname{Seg} \operatorname{len} F$ holds $\mathcal{H}[k, h(k)]$. For every natural number k such that $k \in \operatorname{dom} F$ for every object x such that $x \in F(k)$ holds $g(x)=h(k)$. Define \mathcal{Z} [natural number, extended real $\equiv \$_{2}=h\left(\$_{1}\right) \cdot(($ B-Meas $) \cdot F)\left(\$_{1}\right)$ and $\$_{2}$ is a real number. For every natural number k such that $k \in \operatorname{Seg}$ len F there exists an element r of $\overline{\mathbb{R}}$ such that $\mathcal{Z}[k, r]$. Consider z being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom $z=\operatorname{Seg} \operatorname{len} F$ and for every natural number k such that $k \in \operatorname{Seg}$ len F holds $\mathcal{Z}[k, z(k)] . \int g$ dB-Meas $=\sum z$. For every object p such that $p \in \operatorname{dom} z$ holds $z(p)=($ lower_volume $(f, D))(p)$. For every real number x such that $x \in A$ holds inf rng $f \leqslant g(x) \leqslant f(x)$.
(20) Suppose f is bounded and $A \subseteq \operatorname{dom} f$. Then there exists a finite sequence F of separated subsets of the Borel sets and there exists a partial function g from \mathbb{R} to $\overline{\mathbb{R}}$ such that $\operatorname{dom} F=\operatorname{dom} D$ and $\bigcup \operatorname{rng} F=A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=$ $[\inf A, \sup A]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=[\inf A, D(k)[$ and if $1<k<$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)[\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)\right]$ and g is simple function in the Borel sets and for every real number x such that $x \in \operatorname{dom} g$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} F$ and $x \in F(k)$ and $g(x)=\sup \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, k))$ and dom $g=A$ and $\int g$ dB-Meas $=\operatorname{upper}_{-} \operatorname{sum}(f, D)$ and for every real number x such that $x \in A$ holds sup $\operatorname{rng} f \geqslant g(x) \geqslant f(x)$.
Proof: Consider a, b being real numbers such that $a \leqslant b$ and $A=[a, b]$. Consider F being a finite sequence of separated subsets of the Borel sets, g being a partial function from \mathbb{R} to $\overline{\mathbb{R}}$ such that $\operatorname{dom} F=\operatorname{dom} D$ and $\bigcup \operatorname{rng} F=A$ and for every natural number k such that $k \in \operatorname{dom} F$ holds if len $D=1$, then $F(k)=[a, b]$ and if len $D \neq 1$, then if $k=1$, then $F(k)=\left[a, D(k)\left[\right.\right.$ and if $1<k<$ len D, then $F(k)=\left[D\left(k-^{\prime} 1\right), D(k)[\right.$ and if $k=$ len D, then $F(k)=\left[D\left(k-{ }^{\prime} 1\right), D(k)\right]$ and g is simple function in the Borel sets and $\operatorname{dom} g=A$ and for every real number x such that $x \in \operatorname{dom} g$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} F$ and $x \in F(k)$ and $g(x)=\sup \operatorname{rng}(f\lceil\operatorname{divset}(D, k))$. Define $\mathcal{H}[$ natural number, extended real $\equiv \$_{2}=\sup \operatorname{rng}\left(f \upharpoonright \operatorname{divset}\left(D, \$_{1}\right)\right)$ and $\$_{2}$ is a real number. For every natural number k such that $k \in \operatorname{Seg}$ len F there exists
an element r of $\overline{\mathbb{R}}$ such that $\mathcal{H}[k, r]$.
Consider h being a finite sequence of elements of $\overline{\mathbb{R}}$ such that dom $h=$ Seg len F and for every natural number k such that $k \in \operatorname{Seg} \operatorname{len} F$ holds $\mathcal{H}[k, h(k)]$. For every natural number k such that $k \in \operatorname{dom} F$ for every object x such that $x \in F(k)$ holds $g(x)=h(k)$. Define \mathcal{Z} [natural number, extended real] $\equiv \$_{2}=h\left(\$_{1}\right) \cdot($ B-Meas $\cdot F)\left(\$_{1}\right)$ and $\$_{2}$ is a real number. For every natural number k such that $k \in \operatorname{Seg}$ len F there exists an element r of $\overline{\mathbb{R}}$ such that $\mathcal{Z}[k, r]$. Consider z being a finite sequence of elements of $\overline{\mathbb{R}}$ such that $\operatorname{dom} z=\operatorname{Seg} \operatorname{len} F$ and for every natural number k such that $k \in \operatorname{Seg}$ len F holds $\mathcal{Z}[k, z(k)] . \int g$ dB-Meas $=\sum z$. For every object p such that $p \in$ dom z holds $z(p)=$ upper_volume $(f, D)(p)$. For every real number x such that $x \in A$ holds sup rng $f \geqslant g(x) \geqslant f(x)$.
Let us consider a non empty, closed interval subset A of \mathbb{R} and a partial function f from A to \mathbb{R}. Now we state the propositions:
(21) Suppose f is bounded and $A \subseteq \operatorname{dom} f$ and $\operatorname{vol}(A)>0$. Then there exists a sequence F of partial functions from \mathbb{R} into $\overline{\mathbb{R}}$ with the same dom and there exists a sequence I of extended reals such that $A=\operatorname{dom}(F(0))$ and for every natural number $n, F(n)$ is simple function in the Borel sets and $\int F(n)$ d B-Meas $=\operatorname{lower} _$sum $\left(f, \operatorname{EqDiv}\left(A, 2^{n}\right)\right)$ and for every real number x such that $x \in A$ holds inf $\operatorname{rng} f \leqslant F(n)(x) \leqslant f(x)$ and for every natural numbers n, m such that $n \leqslant m$ for every element x of \mathbb{R} such that $x \in A$ holds $F(n)(x) \leqslant F(m)(x)$ and for every element x of \mathbb{R} such that $x \in A$ holds $F \# x$ is convergent and $\lim (F \# x)=\sup (F \# x)$ and $\sup (F \# x) \leqslant$ $f(x)$ and $\lim F$ is integrable on B-Meas and for every natural number n, $I(n)=\int F(n) \mathrm{d}$ B-Meas and I is convergent and $\lim I=\int \lim F \mathrm{~d}$ B-Meas. Proof: Define \mathcal{P} [natural number, partial function from \mathbb{R} to $\overline{\mathbb{R}}] \equiv A=$ dom $\$_{2}$ and $\$_{2}$ is simple function in the Borel sets and $\int \$_{2} \mathrm{~dB}$-Meas $=$ lower_sum $\left(f, \operatorname{EqDiv}\left(A, 2^{\Phi_{1}}\right)\right)$ and for every real number x such that $x \in A$ holds inf rng $f \leqslant \$_{2}(x) \leqslant f(x)$ and there exists a finite sequence K of separated subsets of the Borel sets such that $\operatorname{dom} K=\operatorname{dom}\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)$ and $\bigcup \operatorname{rng} K=A$.

For every natural number k such that $k \in \operatorname{dom} K$ holds if len $\operatorname{EqDiv}(A$, $\left.2^{\$_{1}}\right)=1$, then $K(k)=[\inf A$, sup $A]$ and if $\operatorname{len} \operatorname{EqDiv}\left(A, 2^{\$_{1}}\right) \neq 1$, then if $k=1$, then $K(k)=\left[\inf A,\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)(k)[\right.$ and if $1<k<\operatorname{len} \operatorname{EqDiv}(A$, $\left.2^{\$_{1}}\right)$, then $K(k)=\left[\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)\left(k-^{\prime} 1\right),\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)(k)[\right.$ and if $k=$ len $\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)$, then $K(k)=\left[\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)\left(k-^{\prime} 1\right),\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)(k)\right]$ and for every real number x such that $x \in \operatorname{dom} \$_{2}$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} K$ and $x \in K(k)$ and $\$_{2}(x)=$ $\inf \operatorname{rng}\left(f \upharpoonright \operatorname{divset}\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right), k\right)\right)$. For every element n of \mathbb{N}, there exists an element g of $\mathbb{R} \rightarrow \overline{\mathbb{R}}$ such that $\mathcal{P}[n, g]$.

Consider F being a function from \mathbb{N} into $\mathbb{R} \dot{\rightarrow} \overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, \mathcal{P}[n, F(n)]$. For every natural numbers $n, m, \operatorname{dom}(F(n))=$ $\operatorname{dom}(F(m))$. For every natural number $n, F(n)$ is simple function in the Borel sets and $\int F(n)$ d B-Meas $=$ lower_sum $\left(f, \operatorname{EqDiv}\left(A, 2^{n}\right)\right)$ and for every real number x such that $x \in A$ holds inf $\operatorname{rng} f \leqslant F(n)(x) \leqslant f(x)$. For every natural numbers n, m such that $n \leqslant m$ for every element x of \mathbb{R} such that $x \in A$ holds $F(n)(x) \leqslant F(m)(x)$. For every element x of \mathbb{R} such that $x \in A$ holds $F \# x$ is convergent and $\lim (F \# x)=\sup (F \# x)$ and $\sup (F \# x) \leqslant f(x)$. Consider a, b being real numbers such that $a \leqslant b$ and $A=[a, b]$. Reconsider $K=\max (|\inf \operatorname{rng} f|,|\sup r n g f|)$ as a real number. For every natural number n and for every set x such that $x \in \operatorname{dom}(F(0))$ holds $|F(n)(x)| \leqslant K$.
(22) Suppose f is bounded and $A \subseteq \operatorname{dom} f$ and $\operatorname{vol}(A)>0$. Then there exists a sequence F of partial functions from \mathbb{R} into $\overline{\mathbb{R}}$ with the same dom and there exists a sequence I of extended reals such that $A=\operatorname{dom}(F(0))$ and for every natural number $n, F(n)$ is simple function in the Borel sets and $\int F(n)$ d B-Meas $=\operatorname{upper}_{\operatorname{sum}}\left(f, \operatorname{EqDiv}\left(A, 2^{n}\right)\right)$ and for every real number x such that $x \in A$ holds sup rng $f \geqslant F(n)(x) \geqslant f(x)$ and for every natural numbers n, m such that $n \leqslant m$ for every element x of \mathbb{R} such that $x \in A$ holds $F(n)(x) \geqslant F(m)(x)$ and for every element x of \mathbb{R} such that $x \in A$ holds $F \# x$ is convergent and $\lim (F \# x)=\inf (F \# x)$ and $\inf (F \# x) \geqslant$ $f(x)$ and $\lim F$ is integrable on B-Meas and for every natural number n, $I(n)=\int F(n) \mathrm{d}$ B-Meas and I is convergent and $\lim I=\int \lim F \mathrm{~d}$ B-Meas. Proof: Define \mathcal{P} [natural number, partial function from \mathbb{R} to $\overline{\mathbb{R}}] \equiv A=$ dom $\$_{2}$ and $\$_{2}$ is simple function in the Borel sets and $\int \$_{2} \mathrm{~dB}$-Meas $=$ $\operatorname{upper} _\operatorname{sum}\left(f, \operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)$ and for every real number x such that $x \in A$ holds sup rng $f \geqslant \$_{2}(x) \geqslant f(x)$ and there exists a finite sequence K of separated subsets of the Borel sets such that $\operatorname{dom} K=\operatorname{dom}\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)$ and $\bigcup \operatorname{rng} K=A$.

For every natural number k such that $k \in \operatorname{dom} K$ holds if len $\operatorname{EqDiv}(A$, $\left.2^{\$_{1}}\right)=1$, then $K(k)=[\inf A$, sup $A]$ and if $\operatorname{len} \operatorname{EqDiv}\left(A, 2^{\$_{1}}\right) \neq 1$, then if $k=1$, then $K(k)=\left[\inf A,\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)(k)[\right.$ and if $1<k<\operatorname{len} \operatorname{EqDiv}(A$, $\left.2^{\$_{1}}\right)$, then $K(k)=\left[\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)\left(k-^{\prime} 1\right),\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)(k)[\right.$ and if $k=$ len $\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)$, then $K(k)=\left[\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)\left(k-^{\prime} 1\right),\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right)\right)(k)\right]$ and for every real number x such that $x \in \operatorname{dom} \$_{2}$ there exists a natural number k such that $1 \leqslant k \leqslant \operatorname{len} K$ and $x \in K(k)$ and $\$_{2}(x)=$ $\sup \operatorname{rng}\left(f \upharpoonright \operatorname{divset}\left(\operatorname{EqDiv}\left(A, 2^{\$_{1}}\right), k\right)\right)$.

For every element n of \mathbb{N}, there exists an element g of $\mathbb{R} \rightarrow \overline{\mathbb{R}}$ such that $\mathcal{P}[n, g]$. Consider F being a function from \mathbb{N} into $\mathbb{R} \rightarrow \overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, \mathcal{P}[n, F(n)]$. For every natural numbers n, m,
$\operatorname{dom}(F(n))=\operatorname{dom}(F(m))$. For every natural number $n, F(n)$ is simple function in the Borel sets and $\int F(n) \mathrm{dB}$-Meas $=\operatorname{upper}^{\prime} \operatorname{sum}(f, \operatorname{EqDiv}(A$, $\left.2^{n}\right)$) and for every real number x such that $x \in A$ holds sup rng $f \geqslant$ $F(n)(x) \geqslant f(x)$. For every natural numbers n, m such that $n \leqslant m$ for every element x of \mathbb{R} such that $x \in A$ holds $F(n)(x) \geqslant F(m)(x)$. For every element x of \mathbb{R} such that $x \in A$ holds $F \# x$ is convergent and $\lim (F \# x)=\inf (F \# x)$ and $\inf (F \# x) \geqslant f(x)$ by [7, (7),(36)]. Consider a, b being real numbers such that $a \leqslant b$ and $A=[a, b]$. Set $K=$ $\max (|\inf \operatorname{rng} f|,|\sup \operatorname{rng} f|)$. For every natural number n and for every set x such that $x \in \operatorname{dom}(F(0))$ holds $|F(n)(x)| \leqslant K$.

2. Properties of Complete Measure Space

Now we state the propositions:
(23) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, an element E of S, and a natural number n. Suppose $E=\operatorname{dom} f$ and f is non-negative and E-measurable and $\int f \mathrm{~d} M=0$. Then $M\left(E \cap \operatorname{GTE}-\operatorname{dom}\left(f, \frac{1}{n+1}\right)\right)=0$.
(24) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and an element E of S. Suppose $E=\operatorname{dom} f$ and f is non-negative and E-measurable and $\int f \mathrm{~d} M=0$. Then $M(E \cap \operatorname{GT}-\operatorname{dom}(f, 0))=0$.
Proof: Define \mathcal{P} [natural number, object] $\equiv \$_{2}=E \cap \operatorname{GTE}-\operatorname{dom}\left(f, \frac{1}{\$_{1}+1}\right)$. For every element n of \mathbb{N}, there exists an element y of S such that $\mathcal{P}[n, y]$. Consider F being a function from \mathbb{N} into S such that for every element n of $\mathbb{N}, \mathcal{P}[n, F(n)]$. For every element n of $\mathbb{N},(M \cdot F)(n)=0$.
(25) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R}, and an element E of S. Suppose $E=\operatorname{dom} f$ and f is non-negative and E-measurable and $\int f \mathrm{~d} M=0$. Then $f={ }_{\text {a.e. }}^{M}(X \longmapsto 0) \upharpoonright E$. The theorem is a consequence of (24).
(26) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, partial functions f, g from X to \mathbb{R}, and an element E_{1} of S. Suppose M is complete and f is E_{1}-measurable and $f={ }_{\text {a.e. }}^{M} g$ and $E_{1}=\operatorname{dom} f$. Then g is E_{1}-measurable.
Proof: Consider E being an element of S such that $M(E)=0$ and $f \upharpoonright E^{c}=g \upharpoonright E^{c}$. For every real number $r, E_{1} \cap \operatorname{LE}-\operatorname{dom}(\overline{\mathbb{R}}(g), r) \in S . \square$
(27) Let us consider a set X, a σ-field S of subsets of X, and a σ-measure M on S. Then every element of S is an element of $\operatorname{COM}(S, M)$.
(28) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and partial functions f, g from X to \mathbb{R}. If $f={ }_{\text {a.e. }}^{M} g$, then $f={ }_{\text {a.e. }}^{\operatorname{COM}(M)} g$. The theorem is a consequence of (27).
(29) Let us consider partial functions f, g from \mathbb{R} to \mathbb{R}. Suppose $f={ }_{\text {a.e. }}^{\mathrm{B}-\mathrm{Meas}} g$. Then $f={ }_{\text {a.e. }}^{\text {L-Meas }} g$.
(30) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, an element E_{1} of S, an element E_{2} of $\operatorname{COM}(S, M)$, and a partial function f from X to $\overline{\mathbb{R}}$. If $E_{1}=E_{2}$ and f is E_{1}-measurable, then f is E_{2}-measurable. The theorem is a consequence of (27).
(31) Let us consider an element E_{1} of the Borel sets, an element E_{2} of L-Field, and a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. If $E_{1}=E_{2}$ and f is E_{1}-measurable, then f is E_{2}-measurable.
(32) Let us consider a set X, a σ-field S of subsets of X, and a σ-measure M on S. Then every finite sequence of separated subsets of S is a finite sequence of separated subsets of $\operatorname{COM}(S, M)$. The theorem is a consequence of (27).
(33) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. If f is simple function in S, then f is simple function in $\operatorname{COM}(S, M)$. The theorem is a consequence of (32).
(34) Let us consider a set X, a σ-field S of subsets of X, and a σ-measure M on S. Then \emptyset is a set with measure zero w.r.t. M.
(35) Let us consider a set X, a σ-field S of subsets of X, a σ-measure M on S, and an element E of S. Then $M(E)=\operatorname{COM}(M)(E)$. The theorem is a consequence of (34).
(36) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and f is non-negative. Then $\int_{f} M(x) d x=\int_{f} \operatorname{COM}(M)(x) d x$. Proof: Consider F being a finite sequence of separated subsets of S, a, x being finite sequences of elements of $\overline{\mathbb{R}}$ such that F and a are representation of f and $a(1)=0_{\overline{\mathbb{R}}}$ and for every natural number n such that $2 \leqslant n$ and $n \in \operatorname{dom} a$ holds $0_{\overline{\mathbb{R}}}<a(n)<+\infty$ and $\operatorname{dom} x=\operatorname{dom} F$ and for every natural number n such that $n \in \operatorname{dom} x$ holds $x(n)=a(n) \cdot(M \cdot F)(n)$ and $\int_{f} M(x) d x=\sum x . f$ is simple function in $\operatorname{COM}(S, M)$. Reconsider $F_{1}=F$ as a finite sequence of separated subsets of $\operatorname{COM}(S, M)$. For every natural number n such that $n \in \operatorname{dom} x$ holds $x(n)=a(n) \cdot(\operatorname{COM}(M)$.
$\left.F_{1}\right)(n)$.
(37) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and an element E of S. Suppose $E=\operatorname{dom} f$ and f is E-measurable and non-negative. Then $\int^{+} f \mathrm{~d} M=\int^{+} f \mathrm{dCOM}(M)$.
Proof: Consider F being a sequence of partial functions from X into $\overline{\mathbb{R}}$ such that for every natural number $n, F(n)$ is simple function in S and $\operatorname{dom}(F(n))=\operatorname{dom} f$ and for every natural number $n, F(n)$ is nonnegative and for every natural numbers n, m such that $n \leqslant m$ for every element x of X such that $x \in \operatorname{dom} f$ holds $F(n)(x) \leqslant F(m)(x)$ and for every element x of X such that $x \in \operatorname{dom} f$ holds $F \# x$ is convergent and $\lim (F \# x)=f(x)$. Reconsider $g=F(0)$ as a partial function from X to $\overline{\mathbb{R}}$. For every element x of X such that $x \in \operatorname{dom} g$ holds $F \# x$ is convergent and $g(x) \leqslant \lim (F \# x)$.

Consider K being a sequence of extended reals such that for every natural number $n, K(n)=\int^{\prime} F(n) \mathrm{d} M$ and K is convergent and sup rng $K=$ $\lim K$ and $\int^{\prime} g \mathrm{~d} M \leqslant \lim K$. Reconsider $E_{1}=E$ as an element of $\operatorname{COM}(S$, $M) . f$ is E_{1}-measurable. For every natural number $n, F(n)$ is simple function in $\operatorname{COM}(S, M)$ and $\operatorname{dom}(F(n))=\operatorname{dom} f$. For every natural number $n, K(n)=\int^{\prime} F(n) \operatorname{dCOM}(M)$.
(38) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M. Then
(i) f is integrable on $\operatorname{COM}(M)$, and
(ii) $\int f \mathrm{~d} M=\int f \mathrm{dCOM}(M)$.

The theorem is a consequence of (27), (37), and (30).

3. Relation Between Riemann and Lebesgue Integrals

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure M on S, an element E of S, and partial functions f, g from X to \mathbb{R}. Now we state the propositions:
(39) If $(E=\operatorname{dom} f$ or $E=\operatorname{dom} g)$ and $f={ }_{\text {a.e. }}^{M} g$, then $f-g={ }_{\text {a.e. }}^{M}(X \longmapsto 0) \upharpoonright E$. Proof: Consider A being an element of S such that $M(A)=0$ and $f\left\lceil A^{\mathrm{c}}=g \upharpoonright A^{\mathrm{c}}\right.$. For every element x of X such that $x \in \operatorname{dom}\left((f-g) \upharpoonright A^{\mathrm{c}}\right)$ holds $\left((f-g) \upharpoonright A^{\mathrm{c}}\right)(x)=\left(((X \longmapsto 0) \upharpoonright E) \upharpoonright A^{\mathrm{c}}\right)(x)$.
(40) If $E=\operatorname{dom}(f-g)$ and $f-g=_{\text {a.e. }}^{M}(X \longmapsto 0) \upharpoonright E$, then $f \upharpoonright E={ }_{\text {a.e. }}^{M} g \upharpoonright E$.

Proof: Consider A being an element of S such that $M(A)=0$ and $(f-g) \upharpoonright A^{\mathrm{c}}=((X \longmapsto 0) \upharpoonright E) \upharpoonright A^{\mathrm{c}}$. For every element x of X such that $x \in \operatorname{dom}\left((f \upharpoonright E) \upharpoonright A^{\mathrm{c}}\right)$ holds $\left((f \upharpoonright E) \upharpoonright A^{\mathrm{c}}\right)(x)=\left((g \upharpoonright E) \upharpoonright A^{\mathrm{c}}\right)(x)$.
(41) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, an element E of S, and a partial function f from X to \mathbb{R}. Suppose $E=\operatorname{dom} f$ and $M(E)<+\infty$ and f is bounded and E measurable. Then f is integrable on M.
(42) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and partial functions f, g from X to \mathbb{R}. Then $f={ }_{\text {a.e. }}^{M} g$ if and only if $\max _{+}(f)={ }_{\text {a.e. }}^{M} \max _{+}(g)$ and $\max _{-}(f)==_{\text {a.e. }}^{M} \max _{-}(g)$.
Proof: Consider E_{1} being an element of S such that $M\left(E_{1}\right)=0$ and $\max _{+}(f) \upharpoonright E_{1}{ }^{\mathrm{c}}=\max _{+}(g) \upharpoonright E_{1}{ }^{\mathrm{c}}$. Consider E_{2} being an element of S such that $M\left(E_{2}\right)=0$ and $\max _{-}(f) \upharpoonright E_{2}{ }^{\mathrm{c}}=\max _{-}(g) \upharpoonright E_{2}{ }^{\mathrm{c}}$. Set $E=E_{1} \cup E_{2}$. For every element x of X such that $x \in \operatorname{dom}\left(f \upharpoonright E^{\mathrm{c}}\right)$ holds $\left(f \upharpoonright E^{\mathrm{c}}\right)(x)=$ $\left(g \upharpoonright E^{\mathrm{c}}\right)(x)$.
(43) Let us consider a non empty set X, and a partial function f from X to \mathbb{R}. Then
(i) $\max _{+}(\overline{\mathbb{R}}(f))=\overline{\mathbb{R}}\left(\max _{+}(f)\right)$, and
(ii) $\max _{-}(\overline{\mathbb{R}}(f))=\overline{\mathbb{R}}\left(\max _{-}(f)\right)$.
(44) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, partial functions f, g from X to \mathbb{R}, and an element E of S. Suppose M is complete and f is integrable on M and $f={ }_{\text {a.e. }}^{M} g$ and $E=\operatorname{dom} f$ and $E=\operatorname{dom} g$. Then
(i) g is integrable on M, and
(ii) $\int f \mathrm{~d} M=\int g \mathrm{~d} M$.

The theorem is a consequence of (26), (43), and (42).
(45) Let us consider a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$, and a real number a. Suppose $a \in \operatorname{dom} f$. Then there exists an element A of the Borel sets such that
(i) $A=\{a\}$, and
(ii) f is A-measurable, and
(iii) $f \upharpoonright A$ is integrable on B-Meas, and
(iv) $\int f \upharpoonright A \mathrm{~d} \mathrm{~B}-\mathrm{Meas}=0$.
(46) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number a. Suppose $a \in \operatorname{dom} f$. Then there exists an element A of the Borel sets such that
(i) $A=\{a\}$, and
(ii) f is A-measurable, and
(iii) $f \upharpoonright A$ is integrable on B-Meas, and
(iv) $\int f \upharpoonright A \mathrm{~d}$ B-Meas $=0$.

The theorem is a consequence of (45).
(47) Let us consider a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. Suppose f is integrable on B-Meas. Then
(i) f is integrable on L-Meas, and
(ii) $\int f \mathrm{~d}$ B-Meas $=\int f \mathrm{~d}$ L-Meas.
(48) Let us consider a partial function f from \mathbb{R} to \mathbb{R}. Suppose f is integrable on B-Meas. Then
(i) f is integrable on L-Meas, and
(ii) $\int f \mathrm{~d}$ B-Meas $=\int f \mathrm{~d}$ L-Meas.

The theorem is a consequence of (38).
(49) Let us consider a non empty, closed interval subset A of \mathbb{R}, an element A_{1} of L-Field, and a partial function f from \mathbb{R} to \mathbb{R}. Suppose $A=A_{1}$ and $A \subseteq \operatorname{dom} f$ and $f \upharpoonright A$ is bounded and f is integrable on A. Then
(i) f is A_{1}-measurable, and
(ii) $f \upharpoonright A_{1}$ is integrable on L-Meas, and
(iii) integral $f \upharpoonright A=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of $(46),(30),(48),(21),(22),(17),(3),(25)$, (29), (40), (26), (41), (38), and (44).
(50) Let us consider real numbers a, b, and a partial function f from \mathbb{R} to \mathbb{R}. Suppose $a \leqslant b$ and $[a, b] \subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and f is integrable on $[a, b]$. Then $\int_{a}^{b} f(x) d x=\int f \upharpoonright[a, b] \mathrm{d}$ L-Meas. The theorem is a consequence of (49).

References

[1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi $10.1007 / 978-3-319-20615-8 _17$.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[4] Noboru Endou. Product pre-measure. Formalized Mathematics, 24(1):69-79, 2016. doi:10.1515/forma-2016-0006.
[5] Noboru Endou. Reconstruction of the one-dimensional Lebesgue measure. Formalized Mathematics, 28(1):93-104, 2020. doi 10.2478/forma-2020-0008
[6] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2nd edition, 1999.
[7] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi 10.2478/v10037-007-0026-3.

Accepted September 30, 2021

