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Composed of Triangle Functions and
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Summary. IF-THEN rules in fuzzy inference is composed of multiple fuz-
zy sets (membership functions). IF-THEN rules can therefore be considered as
a pair of membership functions [7]. The evaluation function of fuzzy control is
composite function with fuzzy approximate reasoning and is functional on the
set of membership functions. We obtained continuity of the evaluation function
and compactness of the set of membership functions [12]. Therefore, we pro-
ved the existence of pair of membership functions, which maximizes (minimizes)
evaluation function and is considered IF-THEN rules, in the set of membership
functions by using extreme value theorem. The set of membership functions (fuz-
zy sets) is defined in this article to verifier our proofs before by Mizar [9], [10], [4].
Membership functions composed of triangle function, piecewise linear function
and Gaussian function used in practice are formalized using existing functions.

On the other hand, not only curve membership functions mentioned abo-
ve but also membership functions composed of straight lines (piecewise linear
function) like triangular and trapezoidal functions are formalized. Moreover, dif-
ferent from the definition in [3] formalizations of triangular and trapezoidal func-
tion composed of two straight lines, minimum function and maximum functions
are proposed. We prove, using the Mizar [2], [1] formalism, some properties of
membership functions such as continuity and periodicity [13], [8].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider real numbers a, b, c, d. Then |max(c,min(d, a))−max(c,
min(d, b))| ¬ |a− b|.

(2) Let us consider a real number x. Then | sinx| ¬ |x|.
(3) Let us consider real numbers x, y. Then | sinx − sin y| ¬ |x − y|. The

theorem is a consequence of (2).

(4) Let us consider a real number x. If expx = 1, then x = 0.

(5) Let us consider real numbers a, b, p, q. Suppose a > 0 and p > 0 and
−b
a < q

p . Then

(i) −ba < q−b
a+p <

q
p , and

(ii) a·q+b·p
a+p > 0.

(6) Let us consider real numbers a, b, p, q, s. Suppose a > 0 and p > 0 and
s−b
a = s−q

−p . Then

(i) s−b
a = q−b

a+p , and

(ii) s−q
−p = q−b

a+p .

(7) Let us consider real numbers a, b, p, q, s. Suppose a > 0 and p > 0 and
s−b
a < s−q

−p . Then s−b
a < q−b

a+p <
s−q
−p .

2. The Set of Membership Functions

Let X be a non empty set. The functor Membership-Funcs(X) yielding a set
is defined by

(Def. 1) for every object f , f ∈ it iff f is a membership function of X.

Now we state the propositions:

(8) Let us consider a non empty set X, and an object x. Suppose x ∈
Membership-Funcs(X). Then there exists a membership function f of X
such that

(i) x = f , and

(ii) dom f = X.

(9) Membership-Funcs(R) = {f , where f is a function from R into R : f is
a fuzzy set of R}. The theorem is a consequence of (8).

(10) Let us consider non empty sets A, X.
Then {χA,X} ⊆ Membership-Funcs(X).
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(11) {χ[a,b],R, where a, b are real numbers : a ¬ b} ⊆ Membership-Funcs(R).

(12) {χA,R, where A is a subset of R : A ⊆ R} ⊆ Membership-Funcs(R).

(13) {f , where f is a fuzzy set of R : there exists a subset A of R such that
f = χA,R} ⊆ Membership-Funcs(R).

(14) Let us consider functions f , g from R into R, and a real number a.
Suppose g is continuous and for every real number x, f(x) = min(a, g(x)).
Then f is continuous.
Proof: For every real number x0 such that x0 ∈ dom f holds f is conti-
nuous in x0. �

Let us consider functions F , f , g from R into R. Now we state the proposi-
tions:

(15) If f is continuous and g is continuous and for every real number x,
F (x) = min(f(x), g(x)), then F is continuous.
Proof: For every real number x0 such that x0 ∈ domF holds F is conti-
nuous in x0. �

(16) If f is continuous and g is continuous and for every real number x,
F (x) = max(f(x), g(x)), then F is continuous.
Proof: For every real number x0 such that x0 ∈ domF holds F is conti-
nuous in x0. �

(17) Let us consider functions f , g from R into R, and a real number a.
Suppose g is continuous and for every real number x, f(x) = max(a, g(x)).
Then f is continuous. The theorem is a consequence of (16).

(18) Let us consider functions f , g from R into R, and real numbers a, b.
Suppose g is continuous and for every real number x, f(x) = max(a,min(b,
g(x))). Then f is continuous.
Proof: Define H(element of R) = (min(b, g($1)))(∈ R). Consider h being
a function from R into R such that for every element x of R, h(x) = H(x).
For every real number x, h(x) = min(b, g(x)). h is continuous. For every
real number x, f(x) = max(a, h(x)). �

(19) Let us consider functions f , g from R into R. Suppose g is continu-
ous and for every real number x, f(x) = max(0,min(1, g(x))). Then f is
continuous.

Let us consider a function f from R into R and real numbers a, b. Now we
state the propositions:

(20) If for every real number t1, f(t1) = 1
2 · (sin(a · t1 + b)) + 1

2 , then f is
continuous.
Proof: For every real number x0 such that x0 ∈ dom f holds f is conti-
nuous in x0. �
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(21) If for every real number x, f(x) = 1
2 · (sin(a · x + b)) + 1

2 , then f is
continuous.

(22) Let us consider real numbers r, s, and a function f from R into R.
Suppose for every real number x, f(x) = max(r,min(s, x)). Then f is
Lipschitzian. The theorem is a consequence of (1).

(23) Let us consider a function g from R into R. Then {f , where f is a function
from R into R : for every real number x, f(x) = min(1,max(0, g(x)))} ⊆
Membership-Funcs(R).
Proof: Consider f being a function from R into R such that f0 = f and
for every real number x, f(x) = min(1,max(0, g(x))). rng f ⊆ [0, 1]. �

(24) {f , where f, g are functions from R into R : for every real number x, f(x)
= max(0,min(1, g(x)))} ⊆ Membership-Funcs(R).

Let us consider functions f , g from R into R. Now we state the propositions:

(25) If for every real number x, f(x) = max(0,min(1, g(x))), then f is a fuzzy
set of R.

(26) If for every real number x, f(x) = min(1,max(0, g(x))), then f is a fuzzy
set of R. The theorem is a consequence of (23).

(27) {f , where f is a function from R into R : there exist real numbers a, b
such that for every real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2} ⊆

Membership-Funcs(R).
Proof: Consider f being a function from R into R such that x = f

and there exist real numbers a, b such that for every real number t1,
f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2 . rng f ⊆ [0, 1]. �

(28) {f , where f is a function from R into R, a, b are real numbers : for every
real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2} ⊆ Membership-Funcs(R).

Proof: Consider f being a function from R into R, a, b being real numbers
such that x = f and for every real number t1, f(t1) = 1

2 ·(sin(a·t1+b))+ 12 .
rng f ⊆ [0, 1]. �

(29) Let us consider real numbers a, b, and a function f from R into R.
Suppose for every real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2 . Then f

is a fuzzy set of R. The theorem is a consequence of (28).

(30) {f , where f is a function from R into R : there exist real numbers a, b
such that for every real number t1, f(t1) = 1

2 · (cos(a · t1 + b)) + 1
2} ⊆

Membership-Funcs(R).
Proof: Consider f being a function from R into R such that x = f

and there exist real numbers a, b such that for every real number t1,
f(t1) = 1

2 · (cos(a · t1 + b)) + 1
2 . rng f ⊆ [0, 1]. �

(31) Let us consider real numbers a, b, and a function f from R into R.
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Suppose for every real number t1, f(t1) = 1
2 · (cos(a · t1 + b)) + 12 . Then f

is a fuzzy set of R. The theorem is a consequence of (30).

(32) Let us consider real numbers a, b, and a fuzzy set f of R. Suppose a 6= 0
and for every real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2 . Then f is

normalized.
Proof: There exists an element x of R such that f(x) = 1. �

(33) Let us consider a fuzzy set f of R. Suppose f ∈ {f , where f is a function
from R into R : there exist real numbers a, b such that a 6= 0 and for every
real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2}. Then f is normalized.

Proof: Consider f2 being a function from R into R such that f = f2 and
there exist real numbers a, b such that a 6= 0 and for every real number
t1, f2(t1) = 1

2 · (sin(a · t1 + b)) + 12 . Consider a, b being real numbers such
that a 6= 0 and for every real number t1, f2(t1) = 1

2 · (sin(a · t1 + b)) + 1
2 .

There exists an element x of R such that f(x) = 1. �

(34) Let us consider a fuzzy set f of R, and real numbers a, b. Suppose a 6= 0
and for every real number t1, f(t1) = 1

2 · (cos(a · t1 + b)) + 1
2 . Then f is

normalized.
Proof: There exists an element x of R such that f(x) = 1. �

(35) Let us consider a fuzzy set f of R. Suppose f ∈ {f , where f is a function
from R into R : there exist real numbers a, b such that a 6= 0 and for every
real number t1, f(t1) = 1

2 · (cos(a · t1+ b)) + 12}. Then f is normalized. The
theorem is a consequence of (34).

(36) Let us consider a function F from R into R, real numbers a, b, c, d,
and an integer i. Suppose a 6= 0 and i 6= 0 and for every real number x,
F (x) = max(0,min(1, c · (sin(a · x+ b)) + d)). Then F is (2·πa · i)-periodic.
Proof: For every real number x such that x ∈ domF holds x + 2·π

a · i,
x− 2·πa · i ∈ domF and F (x) = F (x+ 2·π

a · i). �

(37) Let us consider a function F from R into R, and real numbers a, b, c,
d. Suppose for every real number x, F (x) = max(0,min(1, c · (sin(a · x +
b)) + d)). Then F is periodic.
Proof: There exists a real number t such that F is t-periodic by (36), [6,
(1)]. �

(38) {f , where f is a function from R into R : there exist real numbers a, b
such that for every real number t1, f(t1) = max(0, sin(a · t1 + b))} ⊆

Membership-Funcs(R).
Proof: Consider f being a function from R into R such that x = f

and there exist real numbers a, b such that for every real number t1,
f(t1) = max(0, sin(a · t1 + b)). rng f ⊆ [0, 1] by [5, (4)]. �

(39) Let us consider real numbers a, b, and a function f from R into R.
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Suppose for every real number x, f(x) = max(0, sin(a · x+ b)). Then f is
a fuzzy set of R. The theorem is a consequence of (38).

(40) {f , where f is a function from R into R : there exist real numbers a, b
such that for every real number x, f(x) = max(0, cos(a·x+b))} ⊆ Mem−

bership-Funcs(R).
Proof: Consider f being a function from R into R such that x = f

and there exist real numbers a, b such that for every real number t1,
f(t1) = max(0, cos(a · t1 + b)). rng f ⊆ [0, 1]. �

(41) Let us consider real numbers a, b, and a function f from R into R.
Suppose for every real number x, f(x) = max(0, cos(a · x+ b)). Then f is
a fuzzy set of R. The theorem is a consequence of (40).

(42) {f , where f is a function from R into R, a, b, c, d are real numbers : for
every real number x, f(x) = max(0,min(1, c · (sin(a · x + b)) + d))} ⊆
{f , where f, g are functions from R into R : for every real number x, f(x) =
max(0,min(1, g(x)))}.

(43) {f , where f is a function from R into R, a, b, c, d are real numbers : for
every real number x, f(x) = max(0,min(1, c · (sin(a · x + b)) + d))} ⊆
Membership-Funcs(R).
Proof: Consider f being a function from R into R, a, b, c, d being
real numbers such that f = g and for every real number x, f(x) =
max(0,min(1, c · (sin(a · x+ b)) + d)). f is a fuzzy set of R. �

(44) Let us consider a function f from R into R, and real numbers a, b, c, d.
Suppose for every real number x, f(x) = max(0,min(1, c · (sin(a ·x+ b)) +
d)). Then f is a fuzzy set of R. The theorem is a consequence of (43).

(45) {f , where f is a function from R into R, a, b, c, d are real numbers : for
every real number x, f(x) = max(0,min(1, c · (arctan(a · x + b)) + d))} ⊆
{f , where f, g are functions from R into R : for every real number x, f(x) =
max(0,min(1, g(x)))}.

(46) {f , where f is a function from R into R, a, b, c, d are real numbers : for
every real number x, f(x) = max(0,min(1, c · (arctan(a · x + b)) + d))} ⊆
Membership-Funcs(R).

(47) Let us consider a function f from R into R, and real numbers a, b, c, d.
Suppose for every real number x, f(x) = max(0,min(1, c · (arctan(a · x+
b)) +d)). Then f is a fuzzy set of R. The theorem is a consequence of (68)
and (24).

(48) Let us consider a function f from R into R, and real numbers a, b, c, d,
r, s. Suppose for every real number x, f(x) = max(r,min(s, c · (sin(a · x+
b)) + d)). Then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
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numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

(49) Let us consider a function f from R into R, and real numbers a, b, c, d.
Suppose for every real number x, f(x) = max(0,min(1, c · (sin(a ·x+ b)) +
d)). Then f is Lipschitzian.

Let us consider real numbers a, b and a function f from R into R. Now we
state the propositions:

(50) If b 6= 0 and for every real number x, f(x) = exp(− (x−a)
2

2·b2 ), then f is
a fuzzy set of R.
Proof: rng f ⊆ [0, 1]. �

(51) If b 6= 0 and for every real number x, f(x) = exp(− (x−a)
2

2·b2 ), then f is
a fuzzy set of R.

Proof: For every real number x, f(x) = exp(− (x−a)
2

2·b2 ). �

(52) Let us consider real numbers a, b. Suppose b 6= 0. Then {f , where f is
a function from R into R : for every real number x, f(x) = exp(− (x−a)

2

2·b2 )}
⊆ Membership-Funcs(R). The theorem is a consequence of (51).

Let us consider real numbers a, b and a fuzzy set f of R. Now we state the
propositions:

(53) If for every real number x, f(x) = exp(− (x−a)
2

2·b2 ), then f is normalized.
Proof: There exists an element x of R such that f(x) = 1. �

(54) If b 6= 0 and for every real number x, f(x) = exp(− (x−a)
2

2·b2 ), then f is
strictly normalized.
Proof: There exists an element x of R such that f(x) = 1 and for every
element y of R such that f(y) = 1 holds y = x by [11, (20)], (4). �

(55) Let us consider real numbers a, b, and a function f from R into R.
Suppose b 6= 0 and for every real number x, f(x) = exp(− (x−a)

2

2·b2 ). Then f
is continuous.
Proof: Set h = AffineMap(1,−a). f = (the function exp) · (( −12·b2 · h) · h).
�

(56) Let us consider real numbers a, b, c, r, s, and a function f from R into
R. Suppose b 6= 0 and for every real number x, f(x) =

max(r,min(s, exp(− (x−a)
2

2·b2 ) + c)). Then f is continuous.

Proof: DefineH(element of R) = (exp(− ($1−a)
2

2·b2 ))(∈ R). Consider h being
a function from R into R such that for every element x of R, h(x) = H(x).
For every real number x0 such that x0 ∈ dom f holds f is continuous in
x0. �
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Let us consider real numbers a, b, c and a function f from R into R. Now
we state the propositions:

(57) Suppose b 6= 0 and for every real number x, f(x) =

max(0,min(1, exp(− (x−a)
2

2·b2 ) + c)). Then f is continuous.

(58) Suppose b 6= 0 and for every real number x, f(x) =

max(0,min(1, exp(− (x−a)
2

2·b2 )+ c)). Then f is a fuzzy set of R. The theorem
is a consequence of (25).

(59) {f , where f is a function from R into R, a, b, c are real numbers : b 6=
0 and for every real number x, f(x) = max(0,min(1, exp(− (x−a)

2

2·b2 ) + c))}
⊆ Membership-Funcs(R). The theorem is a consequence of (58).

(60) Let us consider a function f from R into R, and real numbers a, b, r, s.
Suppose for every real number x, f(x) =
max(r,min(s, (AffineMap(a, b))(x))). Then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

Let us consider a function f from R into R and real numbers a, b. Now we
state the propositions:

(61) If for every real number x, f(x) = max(0,min(1, (AffineMap(a, b))(x))),
then f is Lipschitzian.

(62) If for every real number x, f(x) = max(0,min(1, (AffineMap(a, b))(x))),
then f is a fuzzy set of R.

(63) {f , where f is a function from R into R, a, b are real numbers : for every
real number x, f(x) = max(0,min(1, (AffineMap(a, b))(x)))} ⊆
Membership-Funcs(R). The theorem is a consequence of (25).

(64) Let us consider real numbers a, b, and a function f from R into R.
Suppose for every real number x, f(x) = max(0, 1 − |x−ab |). Then f is
a fuzzy set of R.
Proof: rng f ⊆ [0, 1]. �

(65) Let us consider real numbers a, b. Suppose b > 0. Let us consider a real
number x. Then (TriangularFS((a− b), a, (a+ b)))(x) = max(0, 1−|x−ab |).
Proof: Set f1 = (AffineMap(0, 0))�R \ ]a− b, a+ b[.
Set f2 = (AffineMap( 1

a−(a−b) ,−
a−b

a−(a−b)))�[a− b, a].

Set f3 = (AffineMap(− 1
a+b−a ,

a+b
a+b−a))�[a, a + b]. Set F = (f1+·f2)+·f3.

F (x) = max(0, 1− |x−ab |). �

Let us consider real numbers a, b and a fuzzy set f of R. Now we state the
propositions:
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(66) If b > 0 and for every real number x, f(x) = max(0, 1 − |x−ab |), then f

is triangular. The theorem is a consequence of (65).

(67) If b > 0 and for every real number x, f(x) = max(0, 1 − |x−ab |), then f

is strictly normalized.
Proof: There exists an element x of R such that f(x) = 1 and for every
element y of R such that f(y) = 1 holds y = x. �

(68) Let us consider a function f from R into R, and real numbers a, b, c.
Suppose for every real number x, f(x) = max(0,min(1, c · (1 − |x−ab |))).
Then f is a fuzzy set of R. The theorem is a consequence of (25).

(69) Let us consider a function f from R into R, and real numbers a, b.
Suppose b > 0 and for every real number x, f(x) = max(0, 1 − |x−ab |).
Then f is continuous.
Proof: f = TriangularFS((a− b), a, (a+ b)). �

(70) Let us consider a function f from R into R, and real numbers a, b, c,
r, s. Suppose b 6= 0 and for every real number x, f(x) = max(r,min(s, c ·
(1− |x−ab |))). Then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

(71) Let us consider a function f from R into R, and real numbers a, b, c.
Suppose b 6= 0 and for every real number x, f(x) = max(0,min(1, c · (1−
|x−ab |))). Then f is Lipschitzian.

(72) {f , where f is a function from R into R, a, b are real numbers : b >

0 and for every real number x, f(x) = max(0, 1−|x−ab |)} ⊆ Membership-
Funcs(R).
Proof: {f , where f is a function from R into R, a, b are real numbers :
b > 0 and for every real number x, f(x) = max(0, 1− |x−ab |)} ⊆
{TriangularFS(a, b, c), where a, b, c are real numbers : a < b < c}. �

(73) {f , where f is a function from R into R, a, b, c, d are real numbers : b 6=
0 and for every real number x, f(x) = max(0,min(1, c · (1 − |x−ab |)))} ⊆
Membership-Funcs(R). The theorem is a consequence of (68).

(74) Let us consider real numbers a, b, p, q, s.
Then (AffineMap(a, b))�]−∞, s[+·(AffineMap(p, q))�[s,+∞[ is a function
from R into R.

(75) Let us consider real numbers a, b, p, q, and a function f from R into R.
Suppose for every real number x, f(x) =
max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba−p [+·(AffineMap(p, q))�[ q−ba−p ,

+∞[)(x))). Then f is a fuzzy set of R. The theorem is a consequence of
(74) and (25).
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(76) Let us consider real numbers a, b, c. Suppose a < b < c. Then

(i) (TriangularFS(a, b, c))(a) = 0, and

(ii) (TriangularFS(a, b, c))(b) = 1, and

(iii) (TriangularFS(a, b, c))(c) = 0.

(77) Let us consider real numbers a, b, c, d. Suppose a < b < c < d. Then

(i) (TrapezoidalFS(a, b, c, d))(a) = 0, and

(ii) (TrapezoidalFS(a, b, c, d))(b) = 1, and

(iii) (TrapezoidalFS(a, b, c, d))(c) = 1, and

(iv) (TrapezoidalFS(a, b, c, d))(d) = 0.

Let us consider real numbers a, b, p, q and a real number x. Now we state
the propositions:

(78) Suppose a > 0 and p > 0 and −ba < q
p and 1−ba = 1−q

−p . Then (TriangularFS

(−ba ,
1−b
a , qp))(x) = max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(Affine−

Map(−p, q))�[ q−ba+p ,+∞[)(x))).

Proof: For every real number x, (TriangularFS(−ba ,
1−b
a , qp))(x) =

max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,

+∞[)(x))). �

(79) Suppose a > 0 and p > 0 and 1−ba < 1−q−p .

Then (TrapezoidalFS(−ba ,
1−b
a , 1−q−p ,

q
p))(x) =

max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,

+∞[)(x))).
Proof: Set f4 = (AffineMap(a, b))�]−∞, q−ba+p [.

Set f5 = (AffineMap(−p, q))�[ q−ba+p ,+∞[.

For every real number x, (TrapezoidalFS(−ba ,
1−b
a , 1−q−p ,

q
p))(x) =

max(0,min(1, (f4+·f5)(x))). �

(80) Let us consider real numbers a, b, p, q, and a function f from R into R.
Suppose a > 0 and p > 0 and f = (AffineMap(a, b))�]−∞, q−ba+p [+·(Affine−
Map(−p, q))�[ q−ba+p ,+∞[. Then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

(81) Let us consider real numbers a, b, p, q. Suppose a > 0 and p > 0. Then
there exists a real number r such that

(i) 0 < r, and
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(ii) for every real numbers x1, x2 such that x1, x2 ∈
dom((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,+∞[)

holds |((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,+∞[)

(x1)−((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,+∞[)

(x2)| ¬ r · |x1 − x2|.

The theorem is a consequence of (74) and (80).

(82) Let us consider real numbers a, b, p, q, r, s, and a function f from R
into R. Suppose a > 0 and p > 0 and for every real number x, f(x) =
max(r,min(s, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,

+∞[)(x))). Then f is Lipschitzian. The theorem is a consequence of (74),
(81), and (1).

(83) Let us consider real numbers a, b, c. Suppose a < b < c. Let us consider
a real number x. Then (TriangularFS(a, b, c))(x) =
max(0,min(1, ((AffineMap( 1b−a ,−

a
b−a))�]−∞,

b[+·(AffineMap(− 1
c−b ,

c
c−b))�[b,+∞[)(x))). The theorem is a consequence

of (78).

(84) Let us consider real numbers a, b, c, d. Suppose a < b < c < d.
Let us consider a real number x. Then (TrapezoidalFS(a, b, c, d))(x) =
max(0,min(1, ((AffineMap( 1b−a ,−

a
b−a))�]−∞, b·d−a·c

d−c+b−a [+·(AffineMap

(− 1
d−c ,

d
d−c))�[

b·d−a·c
d−c+b−a ,+∞[)(x))). The theorem is a consequence of (79).

(85) Let us consider real numbers a, b, p, q, and a function f from R in-
to R. Suppose a > 0 and p > 0 and for every real number x, f(x) =
max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,

+∞[)(x))). Then f is Lipschitzian.

(86) Let us consider real numbers a, b, c. If a < b < c, then TriangularFS(a, b, c)
is Lipschitzian. The theorem is a consequence of (83) and (82).

(87) Let us consider real numbers a, b, c, d. If a < b < c < d, then Trapezoidal−
FS(a, b, c, d) is Lipschitzian. The theorem is a consequence of (84) and (82).

Let us consider real numbers a, b, p, q and a fuzzy set f of R. Now we state
the propositions:

(88) Suppose a > 0 and p > 0 and −ba < q
p and 1−ba = 1−q

−p and for every real

number x, f(x) = max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(Affine−
Map(−p, q))�[ q−ba+p ,+∞[)(x))). Then f is triangular and strictly normali-
zed. The theorem is a consequence of (78).

(89) Suppose a > 0 and p > 0 and 1−b
a < 1−q

−p and for every real num-

ber x, f(x) = max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap
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(−p, q))�[ q−ba+p ,+∞[)(x))). Then f is trapezoidal and normalized. The the-
orem is a consequence of (79).

(90) {f , where f is a fuzzy set of R : f is triangular} ⊆ Membership-Funcs(R).

(91) {TriangularFS(a, b, c), where a, b, c are real numbers : a < b < c} ⊆
Membership-Funcs(R).

(92) {f , where f is a fuzzy set of R : f is trapezoidal} ⊆ Membership-Funcs(R).

(93) {TrapezoidalFS(a, b, c, d), where a, b, c, d are real numbers : a < b < c <

d} ⊆ Membership-Funcs(R).
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