

Ascoli-Arzelà Theorem¹

Hiroshi Yamazaki Nagano Prefectural Institute of Technology Nagano, Japan

Keiichi Miyajima Ibaraki University Faculty of Engineering Hitachi, Ibaraki, Japan Yasunari Shidama Karuizawa Hotch 244-1 Nagano, Japan

Summary. In this article we formalize the Ascoli-Arzelà theorem [5], [6], [8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equiboundedness of a set of continuous functions [12], [7], [3], [9]. Next, we formalized the Ascoli-Arzelà theorem using those definitions, and proved this theorem.

MSC: 46B50 68V20

Keywords: Ascoli-Arzela's theorem; equicontinuousness of continuous functions; equiboundedness of continuous functions

 $\rm MML$ identifier: ASCOLI, version: 8.1.11 5.66.1402

1. Equicontinuousness and Equiboundedness of Continuous Functions

From now on S, T denote real normed spaces and F denotes a subset of (the carrier of T)^(the carrier of S).

Let X be a non empty metric space and Y be a subset of X. The functor \overline{Y} yielding a subset of X is defined by

(Def. 1) there exists a subset Z of X_{top} such that Z = Y and $it = \overline{Z}$. Now we state the proposition:

(1) Let us consider a real normed space X, a subset Y of X, and a subset Z of MetricSpaceNorm X. If Y = Z, then $\overline{Y} = \overline{Z}$.

¹This work was supported by JSPS KAKENHI Grant Numbers JP17K00182.

Let X be a non empty metric space and H be a non empty subset of X. Observe that \overline{H} is non empty.

Now we state the propositions:

- (2) Let us consider a topological space S, and a finite sequence F of elements of 2^α. Suppose for every natural number i such that i ∈ Seg len F holds F_i is compact. Then Urng F is compact, where α is the carrier of S. PROOF: Define P[natural number] ≡ for every finite sequence F of elements of 2^(the carrier of S) such that len F = \$1 and for every natural number i such that i ∈ Seg len F holds F_i is compact holds Urng F is compact. P[0]. For every natural number i such that P[i] holds P[i+1]. For every natural number n, P[n]. □
- (3) Let us consider a non empty topological space S, a normed linear topological space T, a function f from S into T, and a point x of S. Then f is continuous at x if and only if for every real number e such that 0 < e there exists a subset H of S such that H is open and $x \in H$ and for every point y of S such that $y \in H$ holds ||f(x) f(y)|| < e.

PROOF: For every subset G of T such that G is open and $f(x) \in G$ there exists a subset H of S such that H is open and $x \in H$ and $f^{\circ}H \subseteq G$. \Box

(4) Let us consider a non empty metric space S, a non empty, compact topological space V, a normed linear topological space T, and a function f from V into T. Suppose $V = S_{top}$. Then f is continuous if and only if for every real number e such that 0 < e there exists a real number d such that 0 < d and for every points x_1, x_2 of S such that $\rho(x_1, x_2) < d$ holds $||f_{/x_1} - f_{/x_2}|| < e$.

PROOF: For every point x of V, f is continuous at x. \Box

Let S be a non empty metric space, T be a real normed space, and F be a subset of (the carrier of T)^(the carrier of S). We say that F is equibounded if and only if

(Def. 2) there exists a real number K such that for every function f from the carrier of S into the carrier of T such that $f \in F$ for every element x of S, $||f(x)|| \leq K$.

Let x_0 be a point of S. We say that F is equicontinuous at x_0 if and only if

(Def. 3) for every real number e such that 0 < e there exists a real number d such that 0 < d and for every function f from the carrier of S into the carrier of T such that $f \in F$ for every point x of S such that $\rho(x, x_0) < d$ holds $||f(x) - f(x_0)|| < e$.

We say that F is equicontinuous if and only if

(Def. 4) for every real number e such that 0 < e there exists a real number d such that 0 < d and for every function f from the carrier of S into the carrier

of T such that $f \in F$ for every points x_1, x_2 of S such that $\rho(x_1, x_2) < d$ holds $||f(x_1) - f(x_2)|| < e$.

Now we state the proposition:

(5) Let us consider a non empty metric space S, a real normed space T, and a subset F of (the carrier of T)^{α}. Suppose S_{top} is compact. Then F is equicontinuous if and only if for every point x of S, F is equicontinuous at x, where α is the carrier of S.

PROOF: Define $\mathcal{P}[\text{element of } S, \text{real number}] \equiv 0 < \$_2$ and for every function f from the carrier of S into the carrier of T such that $f \in F$ for every point x of S such that $\rho(x, \$_1) < \$_2$ holds $||f(x) - f(\$_1)|| < \frac{e}{2}$. For every element x_0 of the carrier of S, there exists an element d of \mathbb{R} such that $\mathcal{P}[x_0, d]$.

Consider D being a function from the carrier of S into \mathbb{R} such that for every element x_0 of the carrier of S, $\mathcal{P}[x_0, D(x_0)]$. Set $C_1 =$ the set of all $\operatorname{Ball}(x_0, \frac{D(x_0)}{2})$ where x_0 is an element of S. $C_1 \subseteq 2^{\alpha}$, where α is the carrier of S_{top} . For every subset P of S_{top} such that $P \in C_1$ holds P is open. The carrier of $S_{\text{top}} \subseteq \bigcup C_1$. Consider G being a family of subsets of S_{top} such that $G \subseteq C_1$ and G is cover of $\Omega_{S_{\text{top}}}$ and finite. Define $\mathcal{Q}[\text{object}, \text{object}] \equiv$ there exists a point x_0 of S such that $\$_2 = x_0$ and $\$_1 = \operatorname{Ball}(x_0, \frac{D(x_0)}{2})$. For every object Z such that $Z \in G$ there exists an object x_0 such that $x_0 \in$ the carrier of S and $\mathcal{Q}[Z, x_0]$.

Consider H being a function from G into the carrier of S such that for every object Z such that $Z \in G$ holds $\mathcal{Q}[Z, H(Z)]$. For every object Z such that $Z \in G$ holds $Z = \text{Ball}(H_{/Z}, \frac{D(H(Z))}{2})$. Reconsider $D_0 = D^{\circ}(\operatorname{rng} H)$ as a finite subset of \mathbb{R} . $G \neq \emptyset$. Consider x_3 being an object such that $x_3 \in G$. Consider x_3 being an object such that $x_3 \in \operatorname{rng} H$. Set $d_0 = \inf D_0$. Consider x_3 being an object such that $x_3 \in \operatorname{dom} D$ and $x_3 \in \operatorname{rng} H$ and $d_0 = D(x_3)$. For every function f from S into T such that $f \in F$ for every points x_1, x_2 of S such that $\rho(x_1, x_2) < d$ holds $||f(x_1) - f(x_2)|| < e$. \Box

2. Ascoli-Arzelà Theorem

From now on S, Z denote real normed spaces, T denotes a real Banach space, and F denotes a subset of (the carrier of T)^(the carrier of S).

Now we state the proposition:

(6) Let us consider a real normed space Z. Then Z is complete if and only if MetricSpaceNorm Z is complete.

PROOF: For every sequence s of Z such that s is Cauchy sequence by norm holds s is convergent by $[10, (8)], [4, (5)]. \square$

Let us consider a real normed space Z and a non empty subset H of MetricSpaceNorm Z. Now we state the propositions:

- (7) If Z is complete, then MetricSpaceNorm $Z \upharpoonright \overline{H}$ is complete. PROOF: Reconsider F = H as a non empty subset of Z. $\overline{F} = \overline{H}$. Set N =MetricSpaceNorm $Z \upharpoonright \overline{H}$. For every sequence S_2 of N such that S_2 is Cauchy holds S_2 is convergent. \Box
- (8) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded if and only if MetricSpaceNorm $Z \upharpoonright \overline{H}$ is totally bounded. PROOF: Reconsider F = H as a non empty subset of Z. Consider D being a subset of (MetricSpaceNorm Z)_{top} such that D = H and $\overline{H} = \overline{D}$. $\overline{F} = \overline{H}$. MetricSpaceNorm $Z \upharpoonright H$ is totally bounded. \Box
- (9) Let us consider a real normed space Z, a non empty subset F of Z, and a non empty subset H of MetricSpaceNorm Z. Suppose Z is complete and H = F and MetricSpaceNorm $Z \upharpoonright H$ is totally bounded. Then
 - (i) \overline{H} is sequentially compact, and
 - (ii) MetricSpaceNorm $Z \upharpoonright \overline{H}$ is compact, and
 - (iii) \overline{F} is compact.

The theorem is a consequence of (1), (7), and (8).

- (10) Let us consider a real normed space Z, a non empty subset F of Z, a non empty subset H of MetricSpaceNorm Z, and a subset T of TopSpaceNorm Z. Suppose Z is complete and H = F and H = T. Then
 - (i) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff \overline{H} is sequentially compact, and
 - (ii) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff MetricSpaceNorm $Z \upharpoonright \overline{H}$ is compact, and
 - (iii) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff \overline{F} is compact, and
 - (iv) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff \overline{T} is compact.

The theorem is a consequence of (1), (7), and (8).

(11) Let us consider a non empty, compact topological space S, and a normed linear topological space T. Suppose T is complete. Let us consider a non empty subset H of MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and T).

Then \overline{H} is sequentially compact if and only if MetricSpaceNorm(the \mathbb{R} norm space of continuous functions of S and T) $\upharpoonright H$ is totally bounded. The
theorem is a consequence of (7) and (8).

(12) Let us consider a non empty, compact topological space S, and a normed linear topological space T. Suppose T is complete. Let us consider a non

empty subset F of the \mathbb{R} -norm space of continuous functions of S and T, and a non empty subset H of MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and T). Suppose H = F. Then \overline{F} is compact if and only if MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and T) $\upharpoonright H$ is totally bounded. The theorem is a consequence of (1) and (11).

Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a subset G of (the carrier of T)^(the carrier of M), and a non empty subset H of MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and T). Now we state the propositions:

(13) Suppose $S = M_{top}$ and T is complete. Then suppose G = H and MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded. Then G is equibounded and equicontinuous. PROOF: Set Z = the \mathbb{R} -norm space of continuous functions of S and T. Set $M_1 =$ MetricSpaceNorm $Z \upharpoonright H$. Consider L being a family of subsets of M_1 such that L is finite and the carrier of $M_1 = \bigcup L$ and for every

of M_1 such that L is finite and the carrier of $M_1 = \bigcup L$ and for every subset C of M_1 such that $C \in L$ there exists an element w of M_1 such that C = Ball(w, 1).

Define $\mathcal{Q}[\text{object}, \text{object}] \equiv \text{there exists a point } w \text{ of } M_1 \text{ such that } \$_2 = w \text{ and } \$_1 = \text{Ball}(w, 1).$ For every object D such that $D \in L$ there exists an object w such that $w \in \text{the carrier of } M_1 \text{ and } \mathcal{Q}[D, w]$. Consider U being a function from L into the carrier of M_1 such that for every object D such that $D \in L$ holds $\mathcal{Q}[D, U(D)]$. For every object D such that $D \in L$ holds $\mathcal{Q}[D, U(D)]$. For every object D such that $D \in L$ holds $D = \text{Ball}(U_{/D}, 1)$. Set $N_1 = \text{the norm of } Z$. Reconsider $N_2 = N_1^{\circ}(\operatorname{rng} U)$ as a finite subset of \mathbb{R} . Consider x_3 being an object such that $x_3 \in L$. Consider x_3 being an object such that $x_3 \in \operatorname{rng} U$. Set $d_0 = \sup N_2$. Set $K = d_0 + 1$.

For every function f from the carrier of M into the carrier of T such that $f \in G$ for every element x of M, $||f(x)|| \leq K$. For every real number e such that 0 < e there exists a real number d such that 0 < d and for every function f from the carrier of M into the carrier of T such that $f \in G$ for every points x_1, x_2 of M such that $\rho(x_1, x_2) < d$ holds $||f(x_1) - f(x_2)|| < e$. \Box

- (14) Suppose $S = M_{top}$ and T is complete. Then suppose G = H and MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded. Then
 - (i) for every point x of S and for every non empty subset H_2 of MetricSpaceNorm T such that $H_2 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in H\}$ holds MetricSpaceNorm $T \upharpoonright H_2$ is totally bounded, and

(ii) G is equicontinuous.

PROOF: For every point x of S and for every non empty subset H_2 of MetricSpaceNorm T such that $H_2 = \{f(x), \text{ where } f \text{ is a function from } S$ into $T : f \in H\}$ holds MetricSpaceNorm $T \upharpoonright H_2$ is totally bounded. \Box

- (15) Let us consider a normed linear topological space T, and a real normed space R. Suppose R = the normed structure of T and the topology of T = the topology of TopSpaceNorm R. Then
 - (i) the distance by norm of R = the distance by norm of T, and
 - (ii) MetricSpaceNorm R = MetricSpaceNorm T, and
 - (iii) TopSpaceNorm T =TopSpaceNorm R.

PROOF: For every points x, y of R, (the distance by norm of T)(x, y) = ||x - y|| by [11, (19)]. \Box

Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a subset G of (the carrier of T)^(the carrier of M), and a non empty subset H of MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and T). Now we state the propositions:

(16) Suppose $S = M_{top}$ and T is complete and G = H. Then MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded if and only if G is equicontinuous and for every point xof S and for every non empty subset H_2 of MetricSpaceNorm T such that $H_2 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in H\}$ holds MetricSpaceNorm $T \upharpoonright \overline{H_2}$ is compact.

PROOF: Set Z = the \mathbb{R} -norm space of continuous functions of S and T. Set $M_1 =$ MetricSpaceNorm $Z \upharpoonright H$. For every real number e such that e > 0 there exists a family L of subsets of M_1 such that L is finite and the carrier of $M_1 = \bigcup L$ and for every subset C of M_1 such that $C \in L$ there exists an element w of M_1 such that C = Ball(w, e). \Box

(17) Suppose $S = M_{top}$ and T is complete and G = H. Then \overline{H} is sequentially compact if and only if G is equicontinuous and for every point x of S and for every non empty subset H_2 of MetricSpaceNorm T such that $H_2 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in H\}$ holds MetricSpaceNorm $T \mid \overline{H_2}$ is compact. The theorem is a consequence of (11) and (16).

Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a non empty subset Fof the \mathbb{R} -norm space of continuous functions of S and T, and a subset G of (the carrier of T)^(the carrier of M). Now we state the propositions:

- (18) Suppose $S = M_{top}$ and T is complete and G = F. Then \overline{F} is compact if and only if G is equicontinuous and for every point x of S and for every non empty subset F_1 of MetricSpaceNorm T such that $F_1 = \{f(x), where$ f is a function from S into $T : f \in F\}$ holds MetricSpaceNorm $T | \overline{F_1}$ is compact. The theorem is a consequence of (12) and (16).
- (19) Suppose $S = M_{top}$ and T is complete and G = F. Then \overline{F} is compact if and only if for every point x of M, G is equicontinuous at x and for every point x of S and for every non empty subset F_1 of MetricSpaceNorm Tsuch that $F_1 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in F\}$ holds MetricSpaceNorm $T \upharpoonright \overline{F_1}$ is compact. The theorem is a consequence of (18) and (5).
- (20) Let us consider a normed linear topological space T. Then T is compact if and only if TopSpaceNorm T is compact. The theorem is a consequence of (15).
- (21) Let us consider a normed linear topological space T, and a set X. Then X is a compact subset of T if and only if X is a compact subset of TopSpaceNorm T. The theorem is a consequence of (15).
- (22) Let us consider a normed linear topological space T. If T is compact, then T is complete. The theorem is a consequence of (20) and (6).

Let us observe that every normed linear topological space which is compact is also complete.

Now we state the proposition:

- (23) Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a compact subset U of T, a non empty subset F of the \mathbb{R} -norm space of continuous functions of S and T, and a subset G of (the carrier of T)^{α}. Suppose $S = M_{top}$ and T is complete and G = F and for every function f such that $f \in F$ holds rng $f \subseteq U$. Then
 - (i) if \overline{F} is compact, then G is equibounded and equicontinuous, and
 - (ii) if G is equicontinuous, then \overline{F} is compact,

where α is the carrier of M.

PROOF: Reconsider H = F as a non empty subset of MetricSpaceNorm(the \mathbb{R} -norm space of continuous functions of S and T). Set Z = the \mathbb{R} -norm space of continuous functions of S and T. MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff \overline{F} is compact. For every point x of S and for every non empty subset F_1 of MetricSpaceNorm T such that $F_1 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in F\}$ holds MetricSpaceNorm $T \upharpoonright \overline{F_1}$ is compact. \Box

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Bruce K. Driver. Analysis Tools with Applications. Springer, Berlin, 2003.
- [4] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire's category theorem and some spaces generated from real normed space. Formalized Mathematics, 14(4): 213–219, 2006. doi:10.2478/v10037-006-0024-x.
- [5] Serge Lang. Real and Functional Analysis (Texts in Mathematics). Springer-Verlag, 1993.
- [6] Kazuo Matsuzaka. Sets and Topology (Introduction to Mathematics). IwanamiShoten, 2000.
- [7] Tohru Ozawa. Ascoli-Arzelà theorem. 2012.
- [8] Michael Read and Barry Simon. Functional Analysis (Methods of Modern Mathematical Physics). Academic Press, 1980.
- [9] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
- [10] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences. *Formalized Mathematics*, 11(4):377–380, 2003.
- [11] Hiroshi Yamazaki, Keiichi Miyajima, and Yasunari Shidama. Functional space consisted by continuous functions on topological space. *Formalized Mathematics*, 29(1):49–62, 2021. doi:10.2478/forma-2021-0005.
- [12] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted June 30, 2021