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Summary. In this article we formalize the Ascoli-Arzelà theorem [5], [6],
[8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equibo-
undedness of a set of continuous functions [12], [7], [3], [9]. Next, we formalized
the Ascoli-Arzelà theorem using those definitions, and proved this theorem.
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1. Equicontinuousness and Equiboundedness of Continuous
Functions

From now on S, T denote real normed spaces and F denotes a subset of
(the carrier of T )(the carrier of S).

Let X be a non empty metric space and Y be a subset of X. The functor Y
yielding a subset of X is defined by

(Def. 1) there exists a subset Z of Xtop such that Z = Y and it = Z.

Now we state the proposition:

(1) Let us consider a real normed space X, a subset Y of X, and a subset
Z of MetricSpaceNormX. If Y = Z, then Y = Z.
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Let X be a non empty metric space and H be a non empty subset of X.
Observe that H is non empty.

Now we state the propositions:

(2) Let us consider a topological space S, and a finite sequence F of elements
of 2α. Suppose for every natural number i such that i ∈ Seg lenF holds
F/i is compact. Then

⋃
rngF is compact, where α is the carrier of S.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of 2(the carrier of S) such that lenF = $1 and for every natural number
i such that i ∈ Seg lenF holds F/i is compact holds

⋃
rngF is compact.

P[0]. For every natural number i such that P[i] holds P[i+ 1]. For every
natural number n, P[n]. �

(3) Let us consider a non empty topological space S, a normed linear topo-
logical space T , a function f from S into T , and a point x of S. Then f

is continuous at x if and only if for every real number e such that 0 < e

there exists a subset H of S such that H is open and x ∈ H and for every
point y of S such that y ∈ H holds ‖f(x)− f(y)‖ < e.
Proof: For every subset G of T such that G is open and f(x) ∈ G there
exists a subset H of S such that H is open and x ∈ H and f◦H ⊆ G. �

(4) Let us consider a non empty metric space S, a non empty, compact
topological space V , a normed linear topological space T , and a function
f from V into T . Suppose V = Stop. Then f is continuous if and only if
for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every points x1, x2 of S such that ρ(x1, x2) < d holds
‖f/x1 − f/x2‖ < e.
Proof: For every point x of V , f is continuous at x. �

Let S be a non empty metric space, T be a real normed space, and F be
a subset of (the carrier of T )(the carrier of S). We say that F is equibounded if and
only if

(Def. 2) there exists a real number K such that for every function f from the car-
rier of S into the carrier of T such that f ∈ F for every element x of S,
‖f(x)‖ ¬ K.

Let x0 be a point of S. We say that F is equicontinuous at x0 if and only if

(Def. 3) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f ∈ F for every point x of S such that ρ(x, x0) < d holds
‖f(x)− f(x0)‖ < e.

We say that F is equicontinuous if and only if

(Def. 4) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
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of T such that f ∈ F for every points x1, x2 of S such that ρ(x1, x2) < d

holds ‖f(x1)− f(x2)‖ < e.

Now we state the proposition:

(5) Let us consider a non empty metric space S, a real normed space T ,
and a subset F of (the carrier of T )α. Suppose Stop is compact. Then F is
equicontinuous if and only if for every point x of S, F is equicontinuous
at x, where α is the carrier of S.
Proof: Define P[element of S, real number] ≡ 0 < $2 and for every func-
tion f from the carrier of S into the carrier of T such that f ∈ F for every
point x of S such that ρ(x, $1) < $2 holds ‖f(x) − f($1)‖ < e

2 . For every
element x0 of the carrier of S, there exists an element d of R such that
P[x0, d].

Consider D being a function from the carrier of S into R such that for
every element x0 of the carrier of S, P[x0, D(x0)]. Set C1 = the set of all
Ball(x0,

D(x0)
2 ) where x0 is an element of S. C1 ⊆ 2α, where α is the car-

rier of Stop. For every subset P of Stop such that P ∈ C1 holds P is
open. The carrier of Stop ⊆

⋃
C1. Consider G being a family of subsets

of Stop such that G ⊆ C1 and G is cover of ΩStop and finite. Define
Q[object, object] ≡ there exists a point x0 of S such that $2 = x0 and
$1 = Ball(x0,

D(x0)
2 ). For every object Z such that Z ∈ G there exists

an object x0 such that x0 ∈ the carrier of S and Q[Z, x0].
Consider H being a function from G into the carrier of S such that for

every object Z such that Z ∈ G holds Q[Z,H(Z)]. For every object Z such
that Z ∈ G holds Z = Ball(H/Z ,

D(H(Z))
2 ). Reconsider D0 = D◦(rngH)

as a finite subset of R. G 6= ∅. Consider x3 being an object such that
x3 ∈ G. Consider x3 being an object such that x3 ∈ rngH. Set d0 = inf D0.
Consider x3 being an object such that x3 ∈ domD and x3 ∈ rngH and
d0 = D(x3). For every function f from S into T such that f ∈ F for every
points x1, x2 of S such that ρ(x1, x2) < d holds ‖f(x1)− f(x2)‖ < e. �

2. Ascoli-Arzelà Theorem

From now on S, Z denote real normed spaces, T denotes a real Banach
space, and F denotes a subset of (the carrier of T )(the carrier of S).

Now we state the proposition:

(6) Let us consider a real normed space Z. Then Z is complete if and only
if MetricSpaceNormZ is complete.
Proof: For every sequence s of Z such that s is Cauchy sequence by norm
holds s is convergent by [10, (8)], [4, (5)]. �
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Let us consider a real normed space Z and a non empty subset H of
MetricSpaceNormZ. Now we state the propositions:

(7) If Z is complete, then MetricSpaceNormZ�H is complete.
Proof: Reconsider F = H as a non empty subset of Z. F = H. Set
N = MetricSpaceNormZ�H. For every sequence S2 of N such that S2 is
Cauchy holds S2 is convergent. �

(8) MetricSpaceNormZ�H is totally bounded if and only if
MetricSpaceNormZ�H is totally bounded.
Proof: Reconsider F = H as a non empty subset of Z. Consider D being
a subset of (MetricSpaceNormZ)top such that D = H and H = D. F = H.
MetricSpaceNormZ�H is totally bounded. �

(9) Let us consider a real normed space Z, a non empty subset F of Z, and
a non empty subset H of MetricSpaceNormZ. Suppose Z is complete and
H = F and MetricSpaceNormZ�H is totally bounded. Then

(i) H is sequentially compact, and

(ii) MetricSpaceNormZ�H is compact, and

(iii) F is compact.

The theorem is a consequence of (1), (7), and (8).

(10) Let us consider a real normed space Z, a non empty subset F of Z, a non
empty subsetH of MetricSpaceNormZ, and a subset T of TopSpaceNormZ.
Suppose Z is complete and H = F and H = T . Then

(i) MetricSpaceNormZ�H is totally bounded iff H is sequentially com-
pact, and

(ii) MetricSpaceNormZ�H is totally bounded iff MetricSpaceNormZ�H
is compact, and

(iii) MetricSpaceNormZ�H is totally bounded iff F is compact, and

(iv) MetricSpaceNormZ�H is totally bounded iff T is compact.

The theorem is a consequence of (1), (7), and (8).

(11) Let us consider a non empty, compact topological space S, and a normed
linear topological space T . Suppose T is complete. Let us consider a non
empty subset H of MetricSpaceNorm(the R-norm space of continuous
functions of S and T ).

Then H is sequentially compact if and only if MetricSpaceNorm(the R-
norm space of continuous functions of S and T )�H is totally bounded. The
theorem is a consequence of (7) and (8).

(12) Let us consider a non empty, compact topological space S, and a normed
linear topological space T . Suppose T is complete. Let us consider a non
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empty subset F of the R-norm space of continuous functions of S and
T , and a non empty subset H of MetricSpaceNorm(the R-norm space of
continuous functions of S and T ). Suppose H = F . Then F is compact if
and only if MetricSpaceNorm(the R-norm space of continuous functions
of S and T )�H is totally bounded. The theorem is a consequence of (1)
and (11).

Let us consider a non empty metric space M , a non empty, compact topolo-
gical space S, a normed linear topological space T , a subset G of (the carrier of
T )(the carrier of M), and a non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T ). Now we state the propositions:

(13) Suppose S = Mtop and T is complete. Then suppose G = H and
MetricSpaceNorm(the R-norm space of continuous functions of S and
T )�H is totally bounded. Then G is equibounded and equicontinuous.
Proof: Set Z = the R-norm space of continuous functions of S and T .
Set M1 = MetricSpaceNormZ�H. Consider L being a family of subsets
of M1 such that L is finite and the carrier of M1 =

⋃
L and for every

subset C of M1 such that C ∈ L there exists an element w of M1 such
that C = Ball(w, 1).

Define Q[object, object] ≡ there exists a point w of M1 such that
$2 = w and $1 = Ball(w, 1). For every object D such that D ∈ L there
exists an object w such that w ∈ the carrier of M1 and Q[D,w]. Consider
U being a function from L into the carrier of M1 such that for every
object D such that D ∈ L holds Q[D,U(D)]. For every object D such
that D ∈ L holds D = Ball(U/D, 1). Set N1 = the norm of Z. Reconsider
N2 = N1

◦(rngU) as a finite subset of R. Consider x3 being an object
such that x3 ∈ L. Consider x3 being an object such that x3 ∈ rngU . Set
d0 = supN2. Set K = d0 + 1.

For every function f from the carrier of M into the carrier of T such
that f ∈ G for every element x of M , ‖f(x)‖ ¬ K. For every real number e
such that 0 < e there exists a real number d such that 0 < d and for every
function f from the carrier of M into the carrier of T such that f ∈ G for
every points x1, x2 of M such that ρ(x1, x2) < d holds ‖f(x1)−f(x2)‖ < e.
�

(14) Suppose S = Mtop and T is complete. Then suppose G = H and
MetricSpaceNorm(the R-norm space of continuous functions of S and
T )�H is totally bounded. Then

(i) for every point x of S and for every non empty subsetH2 of MetricSpa−
ceNormT such that H2 = {f(x), where f is a function from S into
T : f ∈ H} holds MetricSpaceNormT �H2 is totally bounded, and
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(ii) G is equicontinuous.

Proof: For every point x of S and for every non empty subset H2 of
MetricSpaceNormT such that H2 = {f(x), where f is a function from S

into T : f ∈ H} holds MetricSpaceNormT �H2 is totally bounded. �

(15) Let us consider a normed linear topological space T , and a real normed
space R. Suppose R = the normed structure of T and the topology of
T = the topology of TopSpaceNormR. Then

(i) the distance by norm of R = the distance by norm of T , and

(ii) MetricSpaceNormR = MetricSpaceNormT , and

(iii) TopSpaceNormT = TopSpaceNormR.

Proof: For every points x, y of R, (the distance by norm of T )(x, y) =
‖x− y‖ by [11, (19)]. �

Let us consider a non empty metric space M , a non empty, compact topolo-
gical space S, a normed linear topological space T , a subset G of (the carrier of
T )(the carrier of M), and a non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T ). Now we state the propositions:

(16) Suppose S = Mtop and T is complete andG = H. Then MetricSpaceNo−
rm(the R-norm space of continuous functions of S and T )�H is total-
ly bounded if and only if G is equicontinuous and for every point x

of S and for every non empty subset H2 of MetricSpaceNormT such
that H2 = {f(x), where f is a function from S into T : f ∈ H} holds
MetricSpaceNormT �H2 is compact.
Proof: Set Z = the R-norm space of continuous functions of S and
T . Set M1 = MetricSpaceNormZ�H. For every real number e such that
e > 0 there exists a family L of subsets of M1 such that L is finite and
the carrier of M1 =

⋃
L and for every subset C of M1 such that C ∈ L

there exists an element w of M1 such that C = Ball(w, e). �

(17) Suppose S = Mtop and T is complete and G = H. Then H is sequ-
entially compact if and only if G is equicontinuous and for every point
x of S and for every non empty subset H2 of MetricSpaceNormT such
that H2 = {f(x), where f is a function from S into T : f ∈ H} holds
MetricSpaceNormT �H2 is compact. The theorem is a consequence of (11)
and (16).

Let us consider a non empty metric space M , a non empty, compact to-
pological space S, a normed linear topological space T , a non empty subset F
of the R-norm space of continuous functions of S and T , and a subset G of
(the carrier of T )(the carrier of M). Now we state the propositions:



Ascoli-Arzelà theorem 93

(18) Suppose S = Mtop and T is complete and G = F . Then F is compact if
and only if G is equicontinuous and for every point x of S and for every
non empty subset F1 of MetricSpaceNormT such that F1 = {f(x), where
f is a function from S into T : f ∈ F} holds MetricSpaceNormT �F1 is
compact. The theorem is a consequence of (12) and (16).

(19) Suppose S = Mtop and T is complete and G = F . Then F is compact if
and only if for every point x of M , G is equicontinuous at x and for every
point x of S and for every non empty subset F1 of MetricSpaceNormT

such that F1 = {f(x), where f is a function from S into T : f ∈ F} holds
MetricSpaceNormT �F1 is compact. The theorem is a consequence of (18)
and (5).

(20) Let us consider a normed linear topological space T . Then T is compact
if and only if TopSpaceNormT is compact. The theorem is a consequence
of (15).

(21) Let us consider a normed linear topological space T , and a set X. Then
X is a compact subset of T if and only if X is a compact subset of
TopSpaceNormT . The theorem is a consequence of (15).

(22) Let us consider a normed linear topological space T . If T is compact,
then T is complete. The theorem is a consequence of (20) and (6).

Let us observe that every normed linear topological space which is compact
is also complete.

Now we state the proposition:

(23) Let us consider a non empty metric space M , a non empty, compact
topological space S, a normed linear topological space T , a compact subset
U of T , a non empty subset F of the R-norm space of continuous functions
of S and T , and a subset G of (the carrier of T )α. Suppose S = Mtop and
T is complete and G = F and for every function f such that f ∈ F holds
rng f ⊆ U . Then

(i) if F is compact, then G is equibounded and equicontinuous, and

(ii) if G is equicontinuous, then F is compact,

where α is the carrier of M .
Proof: ReconsiderH = F as a non empty subset of MetricSpaceNorm(the
R-norm space of continuous functions of S and T ). Set Z = the R-norm
space of continuous functions of S and T . MetricSpaceNormZ�H is to-
tally bounded iff F is compact. For every point x of S and for every non
empty subset F1 of MetricSpaceNormT such that F1 = {f(x), where
f is a function from S into T : f ∈ F} holds MetricSpaceNormT �F1 is
compact. �
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