FORMALIZED MATHEMATICS 13 .
Vol. 29, No. 2, Pages 87 04, 2021 G sciendo

DOI: 10.2478/forma-2021-0009 https://sciendo.com/journal/forma

Ascoli-Arzela Theorem!

Hiroshi Yamazaki
Nagano Prefectural Institute of Technology
Nagano, Japan

Keiichi Miyajima Yasunari Shidama
Ibaraki University Faculty of Engineering Karuizawa Hotch 244-1
Hitachi, Ibaraki, Japan Nagano, Japan

Summary. In this article we formalize the Ascoli-Arzela theorem [5], [6],
[8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equibo-
undedness of a set of continuous functions [12], [7], [3], [9]. Next, we formalized
the Ascoli-Arzela theorem using those definitions, and proved this theorem.
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1. EQUICONTINUOUSNESS AND EQUIBOUNDEDNESS OF CONTINUOUS
FUNCTIONS

From now on S, T" denote real normed spaces and F' denotes a subset of

(the carrier of 7T")(the carrier of S)
Let X be a non empty metric space and Y be a subset of X. The functor Y

yielding a subset of X is defined by
(Def. 1) there exists a subset Z of Xiop such that Z =Y and it = Z.
Now we state the proposition:
(1) Let us consider a real normed space X, a subset Y of X, and a subset
Z of MetricSpaceNorm X. If Y = Z, then Y = Z.
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Let X be a non empty metric space and H be a non empty subset of X.
Observe that H is non empty.
Now we state the propositions:

(2) Let us consider a topological space S, and a finite sequence F of elements
of 2%, Suppose for every natural number i such that ¢ € Seglen F' holds
Fy; is compact. Then (Jrng F' is compact, where « is the carrier of 5.
PROOF: Define P[natural number] = for every finite sequence F of ele-
ments of 2(the carrier of 8) o3ch that len F' = $; and for every natural number
i such that i € Seglen F' holds F); is compact holds (Jrng F' is compact.
P[0]. For every natural number ¢ such that P[i] holds P[i + 1]. For every
natural number n, P[n]. O

(3) Let us consider a non empty topological space S, a normed linear topo-
logical space T, a function f from S into T, and a point = of S. Then f
is continuous at x if and only if for every real number e such that 0 < e
there exists a subset H of S such that H is open and x € H and for every
point y of S such that y € H holds || f(z) — f(y)|| <e.
PROOF: For every subset G of T such that G is open and f(z) € G there
exists a subset H of S such that H is open and z € H and f°H C G. U

(4) Let us consider a non empty metric space S, a non empty, compact
topological space V', a normed linear topological space T', and a function
f from V into T'. Suppose V' = Siop. Then f is continuous if and only if
for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every points x1, xg of S such that p(z1,2z2) < d holds
Hf/acl - f/l’g” <e.
PRrROOF: For every point z of V, f is continuous at z. [
Let S be a non empty metric space, T be a real normed space, and F' be
a subset of (the carrier of T')(the carrier of S) \Wo gay that F' is equibounded if and
only if
(Def. 2) there exists a real number K such that for every function f from the car-
rier of S into the carrier of T such that f € F for every element x of S,
[f ()]l < K.
Let ¢ be a point of S. We say that F' is equicontinuous at z¢ if and only if

(Def. 3) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f € F for every point z of S such that p(x,z) < d holds
1f(2) = fzo)ll <e.

We say that F' is equicontinuous if and only if

(Def. 4) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
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of T such that f € F for every points x1, 2 of S such that p(x1,x2) < d
holds || f(z1) — f(a2)|| <e.
Now we state the proposition:

(5) Let us consider a non empty metric space S, a real normed space T,
and a subset F' of (the carrier of T')“. Suppose Sop is compact. Then F is
equicontinuous if and only if for every point x of S, F' is equicontinuous
at x, where « is the carrier of S.

PROOF: Define Plelement of S, real number] = 0 < $2 and for every func-
tion f from the carrier of S into the carrier of T such that f € F for every
point = of S such that p(z,$1) < $2 holds ||f(z) — f($1)]| < §. For every
element x( of the carrier of S, there exists an element d of R such that
P[xo, d]

Consider D being a function from the carrier of S into R such that for
every element x( of the carrier of S, Plxg, D(z0)]. Set C; = the set of all

Ball(x, D(;O)) where xg is an element of S. C; C 2%, where « is the car-
rier of Siop. For every subset P of Sio, such that P € Cp holds P is
open. The carrier of Siop, € |JC1. Consider G being a family of subsets
of Siop such that G C C; and G is cover of g, and finite. Define
Qlobject, object] = there exists a point z¢ of S such that $2 = z¢ and
$; = Ball(xy, w) For every object Z such that Z € G there exists
an object zg such that z¢ € the carrier of S and Q[Z, x¢].

Consider H being a function from G into the carrier of S such that for
every object Z such that Z € G holds Q[Z, H(Z)]. For every object Z such
that Z € G holds Z = Ball(H y, W) Reconsider Dy = D°(rng H)
as a finite subset of R. G # (). Consider x3 being an object such that
x3 € G. Consider x3 being an object such that xs € rng H. Set dy = inf Dy.
Consider x3 being an object such that x3 € dom D and z3 € rng H and
dp = D(z3). For every function f from S into 7" such that f € F for every
points x1, x2 of S such that p(z1,22) < d holds || f(z1) — f(z2)|| <e. O

2. ASCOLI-ARZELA THEOREM

From now on S, Z denote real normed spaces, T' denotes a real Banach
space, and F' denotes a subset of (the carrier of T)(the carrier of 5)

Now we state the proposition:
(6) Let us consider a real normed space Z. Then Z is complete if and only
if MetricSpaceNorm Z is complete.

PROOF: For every sequence s of Z such that s is Cauchy sequence by norm
holds s is convergent by [10, (8)], [4, (5)]. O
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Let us consider a real normed space Z and a non empty subset H of
MetricSpaceNorm Z. Now we state the propositions:

(7) If Z is complete, then MetricSpaceNorm Z | H is complete.
PRrROOF: Reconsider ' = H as a non empty subset of Z. ' = H. Set
N = MetricSpaceNorm Z | H. For every sequence Sz of N such that Ss is
Cauchy holds S2 is convergent. [

(8) MetricSpaceNorm Z[H is totally bounded if and only if
MetricSpaceNorm Z | H is totally bounded.
PROOF: Reconsider F' = H as a non empty subset of Z. Consider D being
a subset of (MetricSpaceNorm Z)op such that D = Hand H = D. F = H.
MetricSpaceNorm Z [ H is totally bounded. [J

(9) Let us consider a real normed space Z, a non empty subset F' of Z, and

a non empty subset H of MetricSpaceNorm Z. Suppose Z is complete and
H = F and MetricSpaceNorm Z[H is totally bounded. Then

(i) H is sequentially compact, and
(ii) MetricSpaceNorm Z[H is compact, and
(iii) F is compact.
The theorem is a consequence of (1), (7), and (8).

(10) Let us consider a real normed space Z, a non empty subset F' of Z, a non
empty subset H of MetricSpaceNorm Z, and a subset T of TopSpaceNorm Z.
Suppose Z is complete and H = F and H = T. Then

(i) MetricSpaceNorm Z| H is totally bounded iff H is sequentially com-
pact, and

(ii) MetricSpaceNorm Z[H is totally bounded iff MetricSpaceNorm Z [ H
is compact, and

(iii) MetricSpaceNorm Z|H is totally bounded iff F is compact, and
(iv) MetricSpaceNorm Z| H is totally bounded iff T' is compact.

The theorem is a consequence of (1), (7), and (8).

(11) Let us consider a non empty, compact topological space S, and a normed
linear topological space T'. Suppose T is complete. Let us consider a non
empty subset H of MetricSpaceNorm(the R-norm space of continuous
functions of S and T').

Then H is sequentially compact if and only if MetricSpaceNorm(the R-
norm space of continuous functions of S and T') [ H is totally bounded. The
theorem is a consequence of (7) and (8).

(12) Let us consider a non empty, compact topological space S, and a normed
linear topological space T'. Suppose T is complete. Let us consider a non
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empty subset F' of the R-norm space of continuous functions of S and
T, and a non empty subset H of MetricSpaceNorm (the R-norm space of
continuous functions of S and T'). Suppose H = F. Then F is compact if
and only if MetricSpaceNorm(the R-norm space of continuous functions
of S and T)[H is totally bounded. The theorem is a consequence of (1)
and (11).

Let us consider a non empty metric space M, a non empty, compact topolo-
gical space S, a normed linear topological space T', a subset G of (the carrier of
T)(the carrier of M) “and a non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T'). Now we state the propositions:

(13) Suppose S = M, and T is complete. Then suppose G = H and
MetricSpaceNorm(the R-norm space of continuous functions of S and
T)[H is totally bounded. Then G is equibounded and equicontinuous.
PROOF: Set Z = the R-norm space of continuous functions of .S and 7.
Set M} = MetricSpaceNorm Z[H. Consider L being a family of subsets
of Mj such that L is finite and the carrier of M; = |JL and for every
subset C' of M; such that C € L there exists an element w of M; such
that C' = Ball(w, 1).

Define Q[object, object] = there exists a point w of M; such that
$2 = w and $; = Ball(w,1). For every object D such that D € L there
exists an object w such that w € the carrier of M; and Q[D, w]. Consider
U being a function from L into the carrier of M; such that for every
object D such that D € L holds Q[D,U(D)]. For every object D such
that D € L holds D = Ball(U,p, 1). Set N1 = the norm of Z. Reconsider
Ny = Ni°(rngU) as a finite subset of R. Consider x3 being an object
such that x3 € L. Consider x3 being an object such that x3 € rngU. Set
do = sup No. Set K = dg + 1.

For every function f from the carrier of M into the carrier of T such
that f € G for every element x of M, || f(z)|| < K. For every real number e
such that 0 < e there exists a real number d such that 0 < d and for every
function f from the carrier of M into the carrier of T' such that f € G for
every points x1, z2 of M such that p(z1,22) < d holds || f(z1)— f(x2)]] < e.
O

(14) Suppose S = Mo, and T is complete. Then suppose G = H and
MetricSpaceNorm(the R-norm space of continuous functions of S and
T)|H is totally bounded. Then

(i) for every point x of S and for every non empty subset Hy of MetricSpa—
ceNorm 7" such that Hy = {f(z), where f is a function from S into
T : f € H} holds MetricSpaceNorm T'[ Hs is totally bounded, and
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(ii) G is equicontinuous.

PRrOOF: For every point z of S and for every non empty subset Hs of
MetricSpaceNorm 7" such that Hy = {f(z), where f is a function from S
into T : f € H} holds MetricSpaceNorm T'[ Hy is totally bounded. O

(15) Let us consider a normed linear topological space T', and a real normed
space R. Suppose R = the normed structure of T" and the topology of
T = the topology of TopSpaceNorm R. Then

(i) the distance by norm of R = the distance by norm of 7', and
(ii) MetricSpaceNorm R = MetricSpaceNorm 7', and
(iii) TopSpaceNorm T = TopSpaceNorm R.

PRrROOF: For every points z, y of R, (the distance by norm of T')(z,y) =
[l =yl by [11, (19)]. O

Let us consider a non empty metric space M, a non empty, compact topolo-
gical space S, a normed linear topological space T', a subset G of (the carrier of
T) (the carrier of M) "4 q a non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T'). Now we state the propositions:

(16) Suppose S = Mo, and T' is complete and G = H. Then MetricSpaceNo—
rm(the R-norm space of continuous functions of S and T)[H is total-
ly bounded if and only if G is equicontinuous and for every point =z
of S and for every non empty subset Hy of MetricSpaceNorm T such
that Hy = {f(z), where f is a function from S into T : f € H} holds
MetricSpaceNorm T'| H is compact.

PROOF: Set Z = the R-norm space of continuous functions of S and

T. Set M1 = MetricSpaceNorm Z[H. For every real number e such that
e > 0 there exists a family L of subsets of M; such that L is finite and
the carrier of M} = |JL and for every subset C' of M; such that C' € L
there exists an element w of M; such that C' = Ball(w,e). O

(17) Suppose S = Mo, and T is complete and G = H. Then H is sequ-
entially compact if and only if G is equicontinuous and for every point
x of S and for every non empty subset Hy of MetricSpaceNorm T such
that Hy = {f(x), where f is a function from S into T': f € H} holds
MetricSpaceNorm T'[ Hy is compact. The theorem is a consequence of (11)
and (16).

Let us consider a non empty metric space M, a non empty, compact to-
pological space S, a normed linear topological space T, a non empty subset F
of the R-norm space of continuous functions of S and 7', and a subset G of
(the carrier of 7T")(the carrier of M) Now we state the propositions:
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(18) Suppose S = M, and T is complete and G = F. Then F is compact if
and only if G is equicontinuous and for every point z of S and for every
non empty subset F; of MetricSpaceNorm T such that Fy = {f(x), where
f is a function from S into T': f € F} holds MetricSpaceNorm T'| F} is
compact. The theorem is a consequence of (12) and (16).

(19) Suppose S = M;op and T is complete and G = F. Then F is compact if
and only if for every point x of M, G is equicontinuous at x and for every
point = of S and for every non empty subset F; of MetricSpaceNorm T’
such that Fy; = {f(x), where f is a function from S into 7" : f € F'} holds
MetricSpaceNorm T'| F; is compact. The theorem is a consequence of (18)
and (5).

(20) Let us consider a normed linear topological space T'. Then T is compact
if and only if TopSpaceNorm 7" is compact. The theorem is a consequence
of (15).

(21) Let us consider a normed linear topological space T, and a set X. Then
X is a compact subset of T if and only if X is a compact subset of
TopSpaceNorm 7. The theorem is a consequence of (15).

(22) Let us consider a normed linear topological space T. If T' is compact,
then T is complete. The theorem is a consequence of (20) and (6).

Let us observe that every normed linear topological space which is compact
is also complete.
Now we state the proposition:

(23) Let us consider a non empty metric space M, a non empty, compact
topological space S, a normed linear topological space T', a compact subset
U of T', a non empty subset F' of the R-norm space of continuous functions
of S and T, and a subset G of (the carrier of T')*. Suppose S = M;,p and
T is complete and G = F' and for every function f such that f € F holds
rng f C U. Then

(i) if F is compact, then G is equibounded and equicontinuous, and
(ii) if G is equicontinuous, then F is compact,

where « is the carrier of M.

PROOF: Reconsider H = F' as a non empty subset of MetricSpaceNorm (the
R-norm space of continuous functions of S and T'). Set Z = the R-norm
space of continuous functions of S and T. MetricSpaceNorm Z[H is to-
tally bounded iff F' is compact. For every point x of S and for every non
empty subset F; of MetricSpaceNormT' such that F} = {f(z), where
f is a function from S into T : f € F} holds MetricSpaceNorm T'| F} is
compact. [
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