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Summary. The main aim of this article is to introduce formally two gene-
ralizations of lattices, namely weakly associative lattices and near lattices, which
can be obtained from the former by certain weakening of the usual well-known
axioms. We show selected propositions devoted to weakly associative lattices and
near lattices from Chapter 6 of [15], dealing also with alternative versions of clas-
sical axiomatizations. Some of the results were proven in the Mizar [1], [2] system
with the help of Prover9 [14] proof assistant.
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0. Introduction

Lattice theory is widely represented in the Mizar Mathematical Library,
with Żukowski’s first article [18], following Birkhoff [3] and Grätzer [11], [12]. In
parallel, the theory of partially ordered sets was developed [4] treated generally
as relational structures, even if informally the notions are quite similar [9], [7].
The review of the mechanization of lattice theory in Mizar, with the example
of the solution of the Robbins problem, is contained in [6].

Our work can be seen as a step towards a Mizar support for [15] or [16],
where original proof objects by Otter/Prover9 were used. Some preliminary
works in this direction were already done in [8] by present authors. We use
the interface ott2miz [17] which allows for the automated translation of proofs;
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these automatically generated proofs are usually quite lengthy, even after native
enhancements done by internal Mizar software for library revisions.

Weakly associative lattices were studied in [5]. In the present development,
we deal with the parts of Chap. 6 “Lattice-like algebras” of [15], pp. 111–135,
devoted to this class of lattices. In this sense, we continue the work started by
Kulesza and Grabowski in [13], devoted to the formalization of quasi-lattices.

The class of weakly associative lattices (or WA-lattices, WAL) can be cha-
racterized from the standard set of axioms for lattices (with idempotence for
the join and meet operations included), where the ordinary associative laws are
replaced by the so-called part-preservation laws. The characteristic axiom is ho-
wever W3 (or, dual W3’ – compare Def. 1 and Def. 2). Section 2 contains also
equivalent formulation of these axioms, using ordering relation on lattices. The
earlier seems to be a bit more feasible taking into account the role of equality
in the Mizar system [10] and the design of Prover9.

In Section 3 we show how described binary lattice operations can be as-
sociated with the corresponding ordering relation. Obviously, the associativity
can only be shown under some conditions for elements (see theorems (15) and
(16)). If we assume distributivity, the relation is transitive, as in usual lattices.
Section 4 contains the proof that adding the distributivity condition to the set
of usual WAL axioms, the associativity can be proven.

Then we deal with another generalization of lattices, i.e. near lattices (ab-
sorption law is weakened). Def. 6 and Def. 7 provide standard examples of these
structures which are not necessarily lattices (see Def. 10 for the definition of the
structure). The lattice operations are given by

t 0 1 2
0 0 1 0
1 1 1 2
2 0 2 2

u 0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

Associativity laws do not hold here, so this is not a lattice.
The rest of the article is devoted to alternative axiomatizations of WAL.

WAL-3 – equivalent set of axioms describing WAL is expressed in the form of
five separate attributes to make Mizar registrations mechanism working (see
Def. 11–Def. 15). It is shown that these adjectives imply the standard attributes
for lattices.

In Section 8 WAL-4 is defined (the short sigle axiom system for WAL). We
conclude with the proof if WAL-4 holds, then lattice operations are idempotent.

Some of the proofs were produced by means of Prover9, so they are de-
finitely lengthy. The enhancement of the lemmas, including their shortening,
reorganization and clustering, can be interesting and useful future work.
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1. Preliminaries

From now on L denotes a non empty lattice structure and v100, v102, v2, v1,
v0, v3, v101 denote elements of L.

Let us consider v0, v1, and v2. Now we state the propositions:

(1) Suppose for every v0, v0uv0 = v0 and for every v1 and v0, v0uv1 = v1uv0
and for every v0, v0 t v0 = v0 and for every v1 and v0, v0 t v1 = v1 t v0
and for every v2, v1, and v0, ((v0 t v1)u (v2 t v1))u v1 = v1 and for every
v2, v1, and v0, ((v0 u v1) t (v2 u v1)) t v1 = v1 and for every v1, v2, and
v0, v0 u (v1 t (v0 t v2)) = v0. Then (v0 u v1) u v2 = v0 u (v1 u v2).

(2) Suppose for every v0, v0uv0 = v0 and for every v1 and v0, v0uv1 = v1uv0
and for every v0, v0 t v0 = v0 and for every v1 and v0, v0 t v1 = v1 t v0
and for every v2, v1, and v0, ((v0 t v1)u (v2 t v1))u v1 = v1 and for every
v2, v1, and v0, ((v0 u v1) t (v2 u v1)) t v1 = v1 and for every v1, v2, and
v0, v0 u (v1 t (v0 t v2)) = v0. Then (v0 t v1) t v2 = v0 t (v1 t v2).

Let us consider v1 and v2. Now we state the propositions:

(3) Suppose for every v0, v0t v0 = v0 and for every v1, v2, and v0, v0u (v1t
(v0 t v2)) = v0. Then v1 u (v1 t v2) = v1.

(4) Suppose for every v1 and v0, v0uv1 = v1uv0 and for every v0, v0tv0 = v0
and for every v1 and v0, v0 t v1 = v1 t v0 and for every v2, v1, and v0,
((v0 u v1) t (v2 u v1)) t v1 = v1. Then v1 t (v1 u v2) = v1.

2. Definition of Attributes

Let L be a non empty lattice structure. We say that L is satisfying W3 if
and only if

(Def. 1) for every elements v2, v1, v0 of L, ((v0 t v1) u (v2 t v1)) u v1 = v1.

We say that L is satisfying W3’ if and only if

(Def. 2) for every elements v2, v1, v0 of L, ((v0 u v1) t (v2 u v1)) t v1 = v1.

Let L be a meet-absorbing, join-absorbing, meet-commutative, non empty
lattice structure. Let us note that L is satisfying W3 if and only if the condition
(Def. 3) is satisfied.

(Def. 3) for every elements v2, v1, v0 of L, v1 v (v0 t v1) u (v2 t v1).
Let us consider L. Observe that L is satisfying W3’ if and only if the condi-

tion (Def. 4) is satisfied.

(Def. 4) for every v2, v1, and v0, (v0 u v1) t (v2 u v1) v v1.
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Let us note that every non empty lattice structure which is meet-commutative,
join-idempotent, join-commutative, and satisfying W3’ is also quasi-meet-absorbi-
ng and every non empty lattice structure which is meet-commutative, meet-
idempotent, join-commutative, and satisfying W3 is also join-absorbing and
every non empty lattice structure which is trivial is also satisfying W3’ and the-
re exists a non empty lattice structure which is satisfying W3, satisfying W3’,
join-idempotent, meet-idempotent, join-commutative, and meet-commutative.

A weakly associative lattice is a join-idempotent, meet-idempotent, join-
commutative, meet-commutative, satisfying W3, satisfying W3’, non empty
lattice structure.

A WA-lattice is a weakly associative lattice. Note that every join-associative,
meet-absorbing lattice is satisfying W3’.

Let L be a non empty lattice structure. We say that L is satisfying WA if
and only if

(Def. 5) for every elements x, y, z of L, x u (y t (x t z)) = x.

3. On the Ordering Relation Generated by Weakly Associated
Lattices

Let us note that every non empty lattice structure which is quasi-meet-
absorbing, meet-commutative, and join-commutative is also meet-absorbing and
every WA-lattice is meet-absorbing.

From now on L denotes a WA-lattice and x, y, z, u denote elements of L.
Now we state the propositions:

(5) x t y = y if and only if x v y.
(6) x u y = x if and only if x v y.
(7) x v x.
(8) If x v y and y v x, then x = y.

(9) x v x t y.
(10) x u y v x.
(11) If x v z and y v z, then x t y v z.
(12) There exists z such that

(i) x v z, and

(ii) y v z, and

(iii) for every u such that x v u and y v u holds z v u.
The theorem is a consequence of (11) and (9).

(13) If z v x and z v y, then z v x u y.
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(14) There exists z such that

(i) z v x, and

(ii) z v y, and

(iii) for every u such that u v x and u v y holds u v z.
The theorem is a consequence of (13) and (10).

(15) If x v z and y v z, then (x t y) t z = x t (y t z).
(16) If z v x and z v y, then (x u y) u z = x u (y u z).
(17) If L is distributive and x v y v z, then x v z.

4. Distributivity Implies Associativity

From now on L denotes a non empty lattice structure and v0, v1, v2 denote
elements of L.

Now we state the proposition:

(18) Suppose for every v0, v0uv0 = v0 and for every v1 and v0, v0uv1 = v1uv0
and for every v0, v0 t v0 = v0 and for every v1 and v0, v0 t v1 = v1 t v0
and for every v2, v1, and v0, ((v0 t v1) u (v2 t v1)) u v1 = v1 and for
every v2, v1, and v0, ((v0 u v1) t (v2 u v1)) t v1 = v1 and for every v1
and v0, v0 u (v0 t v1) = v0 and for every v0, v2, and v1, v0 t (v1 u v2) =
(v0 t v1) u (v0 t v2). (v0 t v1) t v2 = v0 t (v1 t v2).

Observe that every WA-lattice which is distributive’ is also join-associative.

5. Near Lattices

Let x, y be elements of {0, 1, 2}. The functors: xuNL y and xtNL y yielding
elements of {0, 1, 2} are defined by terms

(Def. 6)

{
2, if x = 0 and y = 2 or x = 2 and y = 0,
min(x, y), otherwise,

(Def. 7)

{
0, if x = 0 and y = 2 or x = 2 and y = 0,
max(x, y), otherwise,

respectively. The functors: tNL and uNL yielding binary operations on {0, 1, 2}
are defined by conditions

(Def. 8) for every elements x, y of {0, 1, 2}, tNL(x, y) = x tNL y,
(Def. 9) for every elements x, y of {0, 1, 2}, uNL(x, y) = x uNL y,

respectively.
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6. Examples of Near Lattices

The functor ExNearLattice yielding a non empty lattice structure is defined
by the term

(Def. 10) 〈{0, 1, 2},tNL,uNL〉.
One can check that ExNearLattice is non join-associative and non meet-

associative and every non empty lattice structure which is trivial is also meet-
idempotent, join-commutative, quasi-meet-absorbing, and join-absorbing.

A near lattice is a join-idempotent, meet-idempotent, join-commutative,
meet-commutative, quasi-meet-absorbing, join-absorbing, non empty lattice
structure.

One can check that ExNearLattice is join-commutative, meet-commutative,
join-idempotent, meet-idempotent, join-absorbing, and meet-absorbing and eve-
ry join-commutative, meet-commutative, non empty lattice structure which is
meet-absorbing is also quasi-meet-absorbing and every join-commutative, meet-
commutative, non empty lattice structure which is quasi-meet-absorbing is also
meet-absorbing.

Now we state the proposition:

(19) (i) ExNearLattice is a near lattice, and

(ii) ExNearLattice is not a lattice.

7. Alternative Axioms for WAL

From now on L denotes a non empty lattice structure and v101, v100, v2, v1,
v0, v102, v103, v3 denote elements of L.

Now we state the proposition:

(20) Suppose for every v1 and v0, (v0 u v1) t (v0 u (v0 t v1)) = v0 and for
every v0 and v1, (v0 u v0) t (v1 u (v0 t v0)) = v0 and for every v1 and v0,
(v0uv1)t(v1u(v0tv1)) = v1 and for every v2, v1, and v0, ((v0tv1)u(v2t
v0))u v0 = v0 and for every v2, v1, and v0, ((v0 u v1)t (v2 u v0))t v0 = v0.
v0 t v0 = v0.

Let us consider v0 and v1. Now we state the propositions:

(21) Suppose for every v1 and v0, (v0 u v1) t (v0 u (v0 t v1)) = v0 and for
every v0 and v1, (v0 u v0) t (v1 u (v0 t v0)) = v0 and for every v1 and v0,
(v0uv1)t(v1u(v0tv1)) = v1 and for every v2, v1, and v0, ((v0tv1)u(v2t
v0))u v0 = v0 and for every v2, v1, and v0, ((v0 u v1)t (v2 u v0))t v0 = v0.
Then v0 u v1 = v1 u v0. The theorem is a consequence of (24).
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(22) Suppose for every v1 and v0, (v0 u v1) t (v0 u (v0 t v1)) = v0 and for
every v0 and v1, (v0 u v0) t (v1 u (v0 t v0)) = v0 and for every v1 and v0,
(v0uv1)t(v1u(v0tv1)) = v1 and for every v2, v1, and v0, ((v0tv1)u(v2t
v0))u v0 = v0 and for every v2, v1, and v0, ((v0 u v1)t (v2 u v0))t v0 = v0.
Then v0 t v1 = v1 t v0. The theorem is a consequence of (24) and (21).

Let L be a non empty lattice structure. We say that L is satisfying WAL-31
if and only if

(Def. 11) for every elements v1, v0 of L, (v0 u v1) t (v0 u (v0 t v1)) = v0.

We say that L is satisfying WAL-32 if and only if

(Def. 12) for every elements v0, v1 of L, (v0 u v0) t (v1 u (v0 t v0)) = v0.

We say that L is satisfying WAL-33 if and only if

(Def. 13) for every elements v1, v0 of L, (v0 u v1) t (v1 u (v0 t v1)) = v1.

We say that L is satisfying WAL-34 if and only if

(Def. 14) for every elements v2, v1, v0 of L, ((v0 t v1) u (v2 t v0)) u v0 = v0.

We say that L is satisfying WAL-35 if and only if

(Def. 15) for every elements v2, v1, v0 of L, ((v0 u v1) t (v2 u v0)) t v0 = v0.

Let us note that every non empty lattice structure which is trivial is also
satisfying WAL-31, satisfying WAL-32, satisfying WAL-33, satisfying WAL-34,
and satisfying WAL-35 and every non empty lattice structure which is satisfying
WAL-31, satisfying WAL-32, satisfying WAL-33, satisfying WAL-34, and satis-
fying WAL-35 is also join-idempotent, meet-idempotent, join-commutative, and
meet-commutative.

8. Short Single Axiom for WAL

Let L be a non empty lattice structure. We say that L is satisfying WAL-4
if and only if

(Def. 16) for every elements v2, v0, v5, v4, v3, v1 of L, (((v0uv1)t(v1u(v0tv1)))u
v2)t (((v0 u (((v1 u v3)t (v4 u v1))t v1))t (((v1 u (((v1 t v3)u (v4 t v1))u
v1)) t (v5 u (v1 t (((v1 t v3) u (v4 t v1)) u v1)))) u (v0 t (((v1 u v3) t (v4 u
v1)) t v1)))) u (((v0 u v1) t (v1 u (v0 t v1))) t v2)) = v1.

From now on L denotes a non empty lattice structure and v108, v107, v106,
v101, v10, v9, v8, v7, v6, v105, v102, v100, v104, v103, v5, v4, v3, v2, v1, v0 denote
elements of L.

Let us consider v0. Now we state the propositions:

(23) Suppose for every v2, v0, v5, v4, v3, and v1, (((v0uv1)t (v1u (v0tv1)))u
v2)t (((v0 u (((v1 u v3)t (v4 u v1))t v1))t (((v1 u (((v1 t v3)u (v4 t v1))u
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v1)) t (v5 u (v1 t (((v1 t v3) u (v4 t v1)) u v1)))) u (v0 t (((v1 u v3) t (v4 u
v1))t v1))))u (((v0 u v1)t (v1 u (v0 t v1)))t v2)) = v1. Then v0 u v0 = v0.

(24) Suppose for every v2, v0, v5, v4, v3, and v1, (((v0uv1)t (v1u (v0tv1)))u
v2)t (((v0 u (((v1 u v3)t (v4 u v1))t v1))t (((v1 u (((v1 t v3)u (v4 t v1))u
v1)) t (v5 u (v1 t (((v1 t v3) u (v4 t v1)) u v1)))) u (v0 t (((v1 u v3) t (v4 u
v1))t v1))))u (((v0 u v1)t (v1 u (v0 t v1)))t v2)) = v1. Then v0 t v0 = v0.
The theorem is a consequence of (23).

One can check that every non empty lattice structure which is trivial is
also satisfying WAL-4 and every non empty lattice structure which is satisfying
WAL-4 is also join-idempotent and meet-idempotent.
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