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Summary. In this article, using the Mizar system [1], [2], first we give
a definition of a functional space which is constructed from all continuous func-
tions defined on a compact topological space [5]. We prove that this functional
space is a Banach space [3]. Next, we give a definition of a function space which is
constructed from all continuous functions with bounded support. We also prove
that this function space is a normed space.

MSC: 46E10 68V20
Keywords: continuous function space; compact topological space; Banach space

MML identifier: COSP3, version: 8.1.11 5.65.1394

1. REAL VECTOR SPACE OF CONTINUOUS FUNCTIONS

From now on S denotes a non empty topological space, T' denotes a linear
topological space, and X denotes a non empty subset of the carrier of S.
Now we state the propositions:

(1) Let us consider a non empty topological space X, a non empty linear
topological space S, functions f, g from X into S, and a point x of X.
Suppose f is continuous at x and ¢ is continuous at z. Then f + ¢ is
continuous at x.

PROOF: For every neighbourhood G of (f + g)(x), there exists a neighbo-
urhood H of x such that (f +¢)°H C G. O
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(2) Let us consider a non empty topological space X, a non empty linear
topological space S, a function f from X into .S, a point x of X, and a real
number a. If f is continuous at x, then a - f is continuous at x.

PROOF: For every neighbourhood G of (a - f)(z), there exists a neighbo-
urhood H of z such that (a- f)°H C G. O

(3) Let us consider a non empty topological space X, a non empty linear
topological space S, and functions f, g from X into S. If f is continuous
and g is continuous, then f 4 g is continuous.

PROOF: For every point x of X, f + ¢ is continuous at x. [

(4) Let us consider a non empty topological space X, a non empty linear
topological space S, a function f from X into S, and a real number a. If
f is continuous, then a - f is continuous. The theorem is a consequence of
(2).
Let S be a non empty topological space and T be a non empty linear
topological space. The continuous functions of S and T yielding a subset of
RealVectSpace((the carrier of S),T') is defined by the term

(Def. 1) {f, where f is a function from the carrier of S into the carrier of T : f
is continuous}.

Let us observe that the continuous functions of S and T is non empty and
functional.

Let us consider a non empty topological space S and a non empty linear
topological space T. Now we state the propositions:

(5) The continuous functions of S and T is linearly closed.
PROOF: Set W = the continuous functions of S and T'. For every vectors v,
u of RealVectSpace((the carrier of S),T') such that v, u € the continuous
functions of S and 7" holds v+u € the continuous functions of S and 7'. For
every real number a and for every vector v of RealVectSpace((the carrier
of S),T) such that v € W holds a-v € W. O

(6) (the continuous functions of S and T, Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S),T)), Add(the continuous
functions of S and T, RealVectSpace((the carrier of S),T')), Mult(the con-
tinuous functions of S and T, RealVectSpace((the carrier of 5),T))) is
a subspace of RealVectSpace((the carrier of S),T).

Let S be a non empty topological space and 7" be a non empty linear topo-
logical space.

One can verify that (the continuous functions of S and 7', Zero(the continuous
functions of S and T', RealVectSpace((the carrier of S),T")), Add(the continuous
functions of S and T', RealVectSpace((the carrier of S), T)), Mult(the continuous
functions of S and T, RealVectSpace((the carrier of S),T))) is Abelian, add-



FUNCTIONAL SPACE CONSISTED BY CONTINUOUS FUNCTIONS ON ... ol

associative, right zeroed, right complementable, vector distributive, scalar di-
stributive, scalar associative, and scalar unital.

The R-vector space of continuous functions of S and T yielding a strict real
linear space is defined by the term

(Def. 2) (the continuous functions of S and T, Zero(the continuous functions
of S and T, RealVectSpace((the carrier of S),T)), Add(the continuous
functions of S and T, RealVectSpace((the carrier of S),T")), Mult(the con-
tinuous functions of S and 7', RealVectSpace((the carrier of S),T))).

Observe that the R-vector space of continuous functions of .S and T is consti-
tuted functions. Let f be a vector of the R-vector space of continuous functions
of S and T and v be an element of S. Let us note that the functor f(v) yields
a vector of T. Now we state the propositions:

(7) Let us consider a non empty topological space S, a non empty linear
topological space T', and vectors f, g, h of the R-vector space of continuous
functions of S and T'. Then h = f + g if and only if for every element x of
S, h(z) = f(z) + g(z). The theorem is a consequence of (5).

(8) Let us consider a non empty topological space S, a non empty linear
topological space T', vectors f, h of the R-vector space of continuous func-
tions of S and T, and a real number a. Then h = a - f if and only if for
every element x of S, h(z) = a - f(z). The theorem is a consequence of
().

(9) Let us consider a non empty topological space S, and a non empty
linear topological space T'. Then 0, = (the carrier of S) —— O, where «
is the R-vector space of continuous functions of S and 7T". The theorem is
a consequence of (5).

Let S be a non empty topological space and 17" be a non empty linear topo-
logical space. Let us note that the carrier of the R-vector space of continuous
functions of S and T is functional.

2. REAL VECTOR SPACE OF CONTINUOUS FUNCTIONS (NORM SPACE
VERSION)

In the sequel S, T denote real normed spaces and X denotes a non empty
subset of the carrier of S.
Now we state the proposition:
(10) Let us consider a point = of T. Then (the carrier of S) — x is continuous
on the carrier of S.
Let S, T be real normed spaces. The continuous functions of S and T yielding
a subset of RealVectSpace((the carrier of S),T') is defined by the term
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(Def. 3) {f, where f is a function from the carrier of S into the carrier of T : f
is continuous on the carrier of S}.

One can check that the continuous functions of S and 7" is non empty and
functional.
Let us consider real normed spaces S, T. Now we state the propositions:

(11) The continuous functions of S and T is linearly closed.
PROOF: Set W = the continuous functions of S and T'. For every vectors v,
u of RealVectSpace((the carrier of S),T") such that v, u € the continuous
functions of S and T holds v+u € the continuous functions of S and T'. For
every real number a and for every vector v of RealVectSpace((the carrier
of S),T) such that v € W holds a-v € W by [4, (27)]. O

(12) (the continuous functions of S and T, Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S),T")), Add(the continuous
functions of S and T, RealVectSpace((the carrier of S),T")), Mult(the con-
tinuous functions of S and T, RealVectSpace((the carrier of S),T))) is
a subspace of RealVectSpace((the carrier of S),T).

Let S, T be real normed spaces. Observe that (the continuous functions of S
and T, Zero(the continuous functions of S and 7', RealVectSpace((the carrier of
S),T)), Add(the continuous functions of S and 7', RealVectSpace((the carrier of
S),T)), Mult(the continuous functions of S and T, RealVectSpace((the carrier
of S),T))) is Abelian, add-associative, right zeroed, right complementable, vec-
tor distributive, scalar distributive, scalar associative, and scalar unital.

The R-vector space of continuous functions of S and T yielding a strict real
linear space is defined by the term

(Def. 4)  (the continuous functions of S and T, Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S),T")), Add(the continuous
functions of S and T, RealVectSpace((the carrier of S),T")), Mult(the con-
tinuous functions of S and T', RealVectSpace((the carrier of S),T))).

Note that the R-vector space of continuous functions of S and T is consti-
tuted functions.

Let f be a vector of the R-vector space of continuous functions of S and T’
and v be an element of S. One can check that the functor f(v) yields a vector
of T. Now we state the propositions:

(13) Let us consider real normed spaces S, T, and vectors f, g, h of the R-
vector space of continuous functions of S and 7. Then h = f + ¢ if and
only if for every element x of S, h(z) = f(z) + g(z). The theorem is
a consequence of (11).

(14) Let us consider real normed spaces S, T, vectors f, h of the R-vector
space of continuous functions of S and T, and a real number a. Then
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h = a- f if and only if for every element z of S, h(z) = a - f(z). The
theorem is a consequence of (11).

Let us consider real normed spaces S, T. Now we state the propositions:

(15) The R-vector space of continuous functions of S and T is a subspace of
RealVectSpace((the carrier of S),T).

(16) 0, = (the carrier of S) —— Op, where « is the R-vector space of conti-
nuous functions of S and T'. The theorem is a consequence of (11).

Let S, T be real normed spaces and f be an object. Assume f € the continuous
functions of S and T'. The functor PartFuncs(f, S,7T) yielding a function from
S into T' is defined by

(Def. 5) it = f and it is continuous on the carrier of S.

3. NORMED TOPOLOGICAL LINEAR SPACE

We consider normed real linear topological structures which extend real li-
near topological structures and normed structures and are systems

(a carrier, a zero, an addition, an external multiplication,

a topology, a norm )

where the carrier is a set, the zero is an element of the carrier, the addition
is a binary operation on the carrier, the external multiplication is a function
from R X (the carrier) into the carrier, the topology is a family of subsets of
the carrier, the norm is a function from the carrier into R.

Let X be a non empty set, O be an element of X, F' be a binary operation
on X, G be a function from R x X into X, T be a family of subsets of X, and
N be a function from X into R. Observe that (X, O, F,G,T, N) is non empty
and there exists a normed real linear topological structure which is strict and
non empty.

Let X be a non empty normed real linear topological structure. We say that
X is normed structure if and only if

(Def. 6) there exists a real normed space R such that R = the normed structure
of X and the topology of X = the topology of TopSpaceNorm R.

One can verify that there exists a non empty normed real linear topological
structure which is strict, add-continuous, mult-continuous, topological space-
like, Abelian, add-associative, right zeroed, right complementable, vector distri-
butive, scalar distributive, scalar associative, scalar unital, discernible, reflexive,
real normed space-like, normed structure, and 75.
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A normed linear topological space is a strict, add-continuous, mult-continuo-
us, topological space-like, Abelian, add-associative, right zeroed, right com-
plementable, vector distributive, scalar distributive, scalar associative, scalar
unital, discernible, reflexive, real normed space-like, normed structure, 75,
non empty normed real linear topological structure. Now we state the proposi-
tions:

(17) Every normed linear topological space is a linear topological space.
(18) Every normed linear topological space is a real normed space.

(19) Let us consider a normed linear topological space X, and a real normed
space R. Suppose R = the normed structure of X. Let us consider points
x, y of X, points x1, y1 of R, and a real number a. Suppose x1 = x and
y1 = y. Then

(i) x+y =1+ y1, and
(ii) a-x =a-z1, and
(iii) 2 —y = z1 — y1, and
(i) [zl = llz1].

Let us consider a normed linear topological space X, a sequence S of X, and
a point z of X. Now we state the propositions:

(20) S is convergent to z if and only if for every real number r such that
0 < r there exists a natural number m such that for every natural number
n such that m < n holds ||S(n) — z|| < r. The theorem is a consequence
of (19).

(21) S is convergent and x = lim S if and only if for every real number r
such that 0 < r there exists a natural number m such that for every
natural number n such that m < n holds ||S(n) — z|| < r. The theorem is
a consequence of (20).

(22) Let us consider a normed linear topological space X, and a sequence S
of X. Suppose S is convergent. Let us consider a real number r. Suppose
0 < r. Then there exists a natural number m such that for every natural
number n such that m < n holds ||S(n) — lim S|| < r. The theorem is
a consequence of (20).

(23) Let us consider a normed linear topological space X, and a subset V' of
X. Then V is open if and only if for every point x of X such that z € V
there exists a real number r such that » > 0 and {y, where y is a point
of X : ||z —y|| <r} C V. The theorem is a consequence of (19).

Let us consider a normed linear topological space X, a point x of X, a real
number 7, and a subset V of X. Now we state the propositions:
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(24) If V = {y, where y is a point of X : ||z — y|| < r}, then V is open. The
theorem is a consequence of (19).

(25) Suppose V = {y, where y is a point of X : ||z — y|| < r}. Then V is
closed. The theorem is a consequence of (19).

Now we state the propositions:

(26) Let us consider a normed linear topological space X, a real normed space
R, a sequence t of X, and a sequence s of R. Suppose R = the normed
structure of X and ¢ = s and t is convergent. Then

(i) s is convergent, and
(ii) lims = lim¢.
The theorem is a consequence of (22) and (19).

(27) Let us consider a normed linear topological space X, a real normed space
R, a sequence s of X, and a sequence t of R. Suppose R = the normed
structure of X and s = ¢. Then s is convergent if and only if £ is convergent.
The theorem is a consequence of (26), (19), and (21).

(28) Let us consider a normed linear topological space X, and a subset V'
of X. Then V is closed if and only if for every sequence s; of X such
that rngs; € V and s; is convergent holds lims; € V. The theorem is
a consequence of (26) and (27).

(29) Let us consider a normed linear topological space X, a real normed
space R, a subset V of X, and a subset W of R. Suppose R = the normed
structure of X and the topology of X = the topology of TopSpaceNorm R
and V = W. Then V is closed if and only if W is closed. The theorem is
a consequence of (27), (26), and (28).

(30) Let us consider a normed linear topological space X, a subset V' of X,
and a point z of X. Then V is a neighbourhood of z if and only if there
exists a real number r such that » > 0 and {y, where y is a point of
X :|ly — z|| < r} C V. The theorem is a consequence of (23) and (24).

(31) Let us consider a normed linear topological space X, and a subset V' of
X. Then V is compact if and only if for every sequence s; of X such that
rng s; C V there exists a sequence so of X such that ss is subsequence of
s1 and convergent and lim sy € V. The theorem is a consequence of (27)
and (26).

(32) Let us consider a normed linear topological space X, a real normed
space R, a subset V of X, and a subset W of R. Suppose R = the normed
structure of X and the topology of X = the topology of TopSpaceNorm R
and V = W. Then V is compact if and only if W is compact. The theorem
is a consequence of (31), (26), and (27).



56 HIROSHI YAMAZAKI, KEIICHI MIYAJIMA, AND YASUNARI SHIDAMA

4. REAL NORM SPACE OF CONTINUOUS FUNCTIONS

Now we state the propositions:

(33) Let us consider sets X, X7, a real normed space S, and a partial function
f from S to R. Suppose f is continuous on X and X; C X. Then f is
continuous on Xj.

Proor: f]X; is continuous in r. [J

(34) Let us consider a non empty, compact topological space S, a normed
linear topological space T, and a set x. Suppose x € the continuous
functions of S and T'. Then = € BdFuncs((the carrier of S),T).

(35) Let us consider a non empty, compact topological space S, and a normed
linear topological space T'. Then the R-vector space of continuous func-
tions of S and T is a subspace of the set of bounded real sequences from
the carrier of S into T'. The theorem is a consequence of (34) and (5).

Let S be a non empty, compact topological space and T be a normed linear
topological space. The continuous functions norm of S and T yielding a function
from the continuous functions of S and 7" into R is defined by the term

(Def. 7) BdFuncsNorm((the carrier of S),T)[(the continuous functions of S and
T).
The R-norm space of continuous functions of S and T yielding a strict nor-
med structure is defined by the term

(Def. 8) (the continuous functions of S and T\, Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S),T)), Add(the continuous
functions of S and T, RealVectSpace((the carrier of S),T')), Mult(the con-
tinuous functions of S and 7', RealVectSpace((the carrier of S),T')), the co-
ntinuous functions norm of S and T').

One can check that the R-norm space of continuous functions of .S and T is
non empty.
Now we state the propositions:

(36) Let us consider a non empty, compact topological space S, a normed
linear topological space T, a point x of the R-norm space of continuous
functions of S and 7', and a point y of the real normed space of bounded
functions from the carrier of S into 7. If z =y, then ||z|| = ||y||.

(37) Let us consider a non empty, compact topological space S, a normed
linear topological space T', a point f of the R-norm space of continuous
functions of S and 7', and a function g from .S into T". Suppose f = g. Let us
consider a point ¢ of S. Then ||g(¢)|| < ||f]|. The theorem is a consequence
of (34).
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(38) Let us consider a non empty, compact topological space S, a normed
linear topological space T', points x1, x5 of the R-norm space of continuous
functions of S and T, and points y1, y2 of the real normed space of bounded
functions from the carrier of S into T. If 1 = y; and zo = yo, then
x1 + x2 = y1 + y2. The theorem is a consequence of (5).

(39) Let us consider a non empty, compact topological space S, a normed
linear topological space T, a real number a, a point x of the R-norm space
of continuous functions of S and T, and a point y of the real normed
space of bounded functions from the carrier of S into T. If x = y, then
a-x = a-y. The theorem is a consequence of (5).

Let S be a non empty, compact topological space and T be a normed linear
topological space. One can verify that the R-norm space of continuous functions
of S and T is non empty, right complementable, Abelian, add-associative, ri-
ght zeroed, vector distributive, scalar distributive, scalar associative, and scalar
unital.

Let us consider a non empty, compact topological space S and a normed
linear topological space T. Now we state the propositions:

(40) (The carrier of S) —— 07 = 0,, where « is the R-norm space of conti-
nuous functions of S and T'. The theorem is a consequence of (9).
(41) 04 = 0g, where « is the R-norm space of continuous functions of S and
T and [ is the real normed space of bounded functions from the carrier of
S into T. The theorem is a consequence of (40).
Let us consider a non empty, compact topological space S, a normed linear
topological space T, and a point F' of the R-norm space of continuous functions
of S and T. Now we state the propositions:

(42) 0 < ||F||. The theorem is a consequence of (34).
(43) If F = 04, then 0 = ||F||, where « is the R-norm space of continuous
functions of S and 7T'. The theorem is a consequence of (34) and (40).
(44) Let us consider a non empty, compact topological space S, a normed
linear topological space T', points F', G, H of the R-norm space of conti-
nuous functions of S and T, and functions f, g, h from S into T'. Suppose
f=Fand g=G and h = H. Then H = F + G if and only if for every
element x of S, h(z) = f(z) + g(z). The theorem is a consequence of (7).

(45) Let us consider a real number a, a non empty, compact topological space
S, a normed linear topological space T', points F', G of the R-norm space
of continuous functions of S and T, and functions f, g from S into T.
Suppose f = F and g = G. Then G = a- F if and only if for every element
z of S, g(z) = a- f(z). The theorem is a consequence of (8).

(46) Let us consider a real number a, a non empty, compact topological space
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S, a normed linear topological space T, and points F, G of the R-norm
space of continuous functions of S and T'. Then

(i) |F|| =0 iff F = 0,, and
(ii) fla- F[| = la| - [|[F||, and
(iti) [|[F'+ G| <[[F[ + [|G]],

where « is the R-norm space of continuous functions of S and T. The
theorem is a consequence of (34), (38), (36), (41), and (39).

Let S be a non empty, compact topological space and T be a normed linear
topological space. Let us observe that the R-norm space of continuous functions
of S and T is reflexive, discernible, and real normed space-like.

Now we state the propositions:

(47) Let us consider a non empty, compact topological space S, a normed
linear topological space T', points x1, x5 of the R-norm space of continuous
functions of S and T, and points y1, y2 of the real normed space of bounded
functions from the carrier of S into 7. If 1 = y; and z2 = yo, then
x1 — x2 = y1 — Y2. The theorem is a consequence of (39) and (38).

(48) Let us consider a non empty, compact topological space S, a normed
linear topological space T, points F', G, H of the R-norm space of conti-
nuous functions of S and T, and functions f, g, h from S into T". Suppose
f=Fand g =G and h = H. Then H = F — G if and only if for every
element x of S, h(x) = f(x) — g(x). The theorem is a consequence of (44).

(49) Let us consider a non empty topological space S, a normed linear to-
pological space T, a sequence H of partial functions from the carrier of
S into the carrier of T, and a function L; from S into T. Suppose H is
uniform-convergent on the carrier of S and for every natural number n,
there exists a function Hy from S into 7" such that H; = H(n) and H; is
continuous and L; = lim, H. Then L, is continuous, where « is the carrier
of S.
PRrROOF: For every point x of S, L; is continuous at = by (30), [7, (33),(11)].
O

(50) Let us consider a non empty, compact topological space S, a normed
linear topological space T, and a subset Y of the carrier of the real normed
space of bounded functions from the carrier of S into 7T'. Suppose ¥ =
the continuous functions of S and 7. Then Y is closed. The theorem is
a consequence of (49).

(51) Let us consider a non empty, compact topological space S, and a nor-
med linear topological space T'. Suppose T is complete. Let us consider
a sequence sz of the R-norm space of continuous functions of S and T.
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If s3 is Cauchy sequence by norm, then sz is convergent. The theorem is
a consequence of (34), (47), (36), and (50).

(52) Let us consider a non empty, compact topological space S, and a nor-
med linear topological space T'. Suppose 1" is complete. Then the R-norm
space of continuous functions of S and T is complete. The theorem is
a consequence of (51).

5. SOME PROPERTIES OF SUPPORT

Let X be a zero structure and f be a (the carrier of X }valued function. The

functor support f yielding a set is defined by
(Def. 9) for every object z, x € it iff ¥ € dom f and f/, # Ox.

Now we state the proposition:

(53) Let us consider a zero structure X, and a (the carrier of X }valued func-
tion f. Then support f C dom f.

Let X be a non empty topological space, T be a real linear space, and f
be a function from X into 7. One can verify that the functor support f yields
a subset of X. Now we state the propositions:

(54) Let us consider a non empty topological space X, a real linear space T,
and functions f, g from X into 7. Then support(f 4+ g) C support f U
support g.

(55) Let us consider a non empty topological space X, a real linear space T,
a function f from X into 7', and a real number a. Then support(a - f) C
support f.

6. SPACE OF REAL-VALUED CONTINUOUS FUNCTIONALS WITH BOUNDED
SUPPORT

Let X be a non empty topological space and 7" be a normed linear topo-
logical space. The functor CoFunctions(X,T') yielding a non empty subset of
RealVectSpace((the carrier of X),T') is defined by the term

(Def. 10) {f, where f is a function from the carrier of X into the carrier of T : f
is continuous and there exists a non empty subset Y of X such that Y is
compact and support f C Y'}.

Now we state the propositions:

(56) Let us consider a non empty topological space X, a normed linear topo-
logical space T', and elements v, u of RealVectSpace((the carrier of X),T').
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Suppose v, u € CoFunctions(X,T). Then v +u € CoFunctions(X,T). The
theorem is a consequence of (5) and (54).

(57) Let us consider a non empty topological space X, a normed linear topolo-
gical space T', a real number a, and an element u of RealVectSpace((the car-
rier of X'), T'). Suppose u € CoFunctions(X,T"). Then a-u € CoFunctions(X,
T). The theorem is a consequence of (5) and (55).

(58) Let us consider a non empty topological space X, and a normed linear
topological space T. Then CoFunctions(X,T') is linearly closed.

Let X be a non empty topological space and T" be a normed linear topological
space. Let us note that CoFunctions(X,T) is non empty and linearly closed.

The functor RVgpCoFunctions(X,T') yielding a real linear space is defined
by the term

(Def. 11)  (CoFunctions(X,T'), Zero(CoFunctions(X, T'), RealVectSpace((the carrier
of X),T)), Add(CoFunctions(X, T"), RealVectSpace((the carrier of X),T)),
Mult(CoFunctions(X, T'), RealVectSpace((the carrier of X),T))).

Now we state the propositions:

(59) Let us consider a non empty topological space X, and a normed li-
near topological space T'. Then RVgp(CoFunctions(X,T') is a subspace of
RealVectSpace((the carrier of X),T).

(60) Let us consider a non empty topological space X, a normed linear to-
pological space T', and a set x. Suppose & € CoFunctions(X, 7). Then
x € BdFuncs((the carrier of X)), T).
PRrOOF: Consider f being a function from the carrier of X into the carrier
of T such that f = x and f is continuous and there exists a non empty
subset Y of X such that Y is compact and support f C Y. Consider Y
being a non empty subset of X such that Y is compact and support f C Y.
Consider K being a real number such that 0 < K and for every point x
of X such that x € Y holds ||f(z)|| < K. For every element x of X,
[f(@)] < K. O

Let X be a non empty topological space and 1" be a normed linear to-
pological space. The functor Norm(CoFunctions(X,T) yielding a function from
CoFunctions(X,T') into R is defined by the term

(Def. 12) BdFuncsNorm((the carrier of X),T")[ CoFunctions(X,T).

The functor NormSp, Functions(X,T') yielding a normed structure is defi-
ned by the term

(Def. 13)  (CoFunctions(X,T), Zero(CoFunctions(X, T'), RealVectSpace((the carrier
of X),T)), Add(CoFunctions(X, T"), RealVectSpace((the carrier of X),T)),
Mult(CoFunctions(X, T'), RealVectSpace((the carrier of X),T)),
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NormCpFunctions(X, T')).
Let us note that NormSp, Functions(X,T') is strict and non empty.
Now we state the proposition:

(61) Let us consider a non empty topological space X, a normed linear to-
pological space T, and a set x. Suppose & € CoFunctions(X,T'). Then
x € the continuous functions of X and T
Let us consider a non empty topological space X and a normed linear topo-
logical space T. Now we state the propositions:

(62) ORVSpCoFunctions(X,T) =X+ Or.

(63) ONormSpCOFunCtionS(X,T) = X +— Op. The theorem is a consequence of
(62).

(64) Let us consider a non empty topological space X, a normed linear to-
pological space T', points 1, 2 of NormSp Functions(X,T'), and points
Y1, y2 of the real normed space of bounded functions from the carrier of
X into T. If 1 = y1 and x2 = yo, then 1 + 9 = y1 + yo.

(65) Let us consider a non empty topological space X, a normed linear topo-
logical space T', a real number a, a point x of NormSp¢, Functions(X, T'),
and a point y of the real normed space of bounded functions from the car-
rier of X intoT. If x =y, thena-x =a-y.

(66) Let us consider a real number a, a non empty topological space X, a nor-
med linear topological space T', and points F', G of NormSp, Functions(X,
T). Then

(1) HF” =0iff F' = ONormSpCOFunctions(X,T)7 and
(i) lla- F[| = la| - [|F|], and
(i) [|[F+ G| <[F[+ G

PROOF: HFH = 0iff FF = ONormSpcoFunctions(X,T)' Ha ' FH - ‘a’ : HFH
|F+ G| < [|F[|+ |G|l by (60), (64) [6, (21)]. T
(67) Let us consider a non empty topological space X, and a normed linear

topological space T'. Then NormSp, Functions(X, 7T') is real normed space-
like.

Let X be a non empty topological space and T' be a normed linear topological
space. Let us note that NormSp, Functions(X,T') is reflexive, discernible, real
normed space-like, vector distributive.

And let us observe that NormSpg, Functions(X,T') is scalar distributive,
scalar associative, scalar unital, Abelian, add-associative, right zeroed, and right
complementable.

Now we state the proposition:
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(68) Let us consider a non empty topological space X, and a normed linear
topological space 7. Then NormSp Functions(X,T) is a real normed
space.
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