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Summary. In this article we further develop field theory in Mizar [1],
[2], [3] towards splitting fields. We deal with algebraic extensions [4], [5]: a field
extension E of a field F is algebraic, if every element of E is algebraic over F . We
prove amongst others that finite extensions are algebraic and that field extensions
generated by a finite set of algebraic elements are finite. From this immediately
follows that field extensions generated by roots of a polynomial over F are both
finite and algebraic. We also define the field of algebraic elements of E over F
and show that this field is an intermediate field of E|F.
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1. Preliminaries

Let L1, L2 be double loop structures. We say that L1 ≈ L2 if and only if

(Def. 1) the double loop structure of L1 = the double loop structure of L2.

One can verify that the predicate is reflexive and symmetric.
Now we state the propositions:

(1) Let us consider rings R, S. Then R ≈ S if and only if there exists
a function f from R into S such that f = idR and f is isomorphism.

(2) Let us consider strict rings R, S. Then R ≈ S if and only if R = S.

Let F1, F2 be fields. Let us note that F1 ≈ F2 if and only if the condition
(Def. 2) is satisfied.
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(Def. 2) F1 is a subfield of F2 and F2 is a subfield of F1.

Now we state the proposition:

(3) Let us consider a field F , an extension E of F , and a subset T of E.
Then FAdj(F, T ) ≈ F if and only if T is a subset of F .

Let us consider a field F and extensions E1, E2 of F . Now we state the
propositions:

(4) If E1 ≈ E2, then VecSp(E1, F ) = VecSp(E2, F ).

(5) If E1 ≈ E2, then deg(E1, F ) = deg(E2, F ). The theorem is a consequence
of (4).

Let F be a field and E be an extension of F . Note that there exists an exten-
sion of F which is E-homomorphic and there exists an extension of F which is
E-monomorphic and there exists an extension of F which is E-isomorphic.

Let R be a ring and a, b be elements of R. One can check that the functor
{a, b} yields a subset of R. Let F be a field, V be a vector space over F , and a

be an element of V . Note that the functor {a} yields a subset of V . Let a, b be
elements of V . Let us observe that the functor {a, b} yields a subset of V . Let
us note that every basis of V is linearly independent.

Now we state the proposition:

(6) Let us consider a field F , a vector space V over F , and a subset X of V .
Then X is linearly independent if and only if for every linear combinations
l1, l2 of X such that

∑
l1 =

∑
l2 holds l1 = l2.

Let F be a field and E be an extension of F . Observe that every basis of
VecSp(E,F ) is non empty and deg(E,F ) is non zero.

Let E be an F -finite extension of F . Observe that every basis of VecSp(E,F )
is finite. Let us consider a field F and an extension E of F . Now we state the
propositions:

(7) deg(E,F ) = 1 if and only if the carrier of E = the carrier of F .

(8) deg(E,F ) = 1 if and only if E ≈ F . The theorem is a consequence of
(7).

(9) deg(E,F ) = 1 if and only if {1E} is a basis of VecSp(E,F ). The theorem
is a consequence of (7).

Let F be a field and E be an extension of F . One can check that there exists
a subset of VecSp(E,F ) which is non empty, finite, and linearly independent.

Now we state the proposition:

(10) Let us consider a field F , an extension E of F , and subsets T1, T2 of E.
Suppose T1 ⊆ T2. Then FAdj(F, T1) is a subfield of FAdj(F, T2).

Let F be a field and p be a polynomial over F . The functor Coeff(p) yielding
a subset of F is defined by the term
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(Def. 3) {p(i), where i is an element of N : p(i) 6= 0F }.

Let us note that Coeff(p) is finite. Now we state the propositions:

(11) Let us consider a field F , an extension E of F , and a polynomial p over
E. Suppose Coeff(p) ⊆ the carrier of F . Then p is a polynomial over F .

(12) Let us consider a field F , an extension E of F , and a non zero polynomial
p over E. Suppose Coeff(p) ⊆ the carrier of F . Then p is a non zero
polynomial over F . The theorem is a consequence of (11).

(13) Let us consider a ring R, a ring extension S of R, an element p of
the carrier of PolyRing(R), and an element q of the carrier of PolyRing(S).
If p = q, then Roots(S, p) = Roots(q).

Let R be an integral domain and p be a non zero element of the carrier of
PolyRing(R). Note that Roots(p) is finite. Let S be a domain ring extension of R.
One can check that Roots(S, p) is finite. Let F be a field and E be an extension
of F . Let us observe that there exists an extension of E which is F -extending.
Let E be an F -finite extension of F . Note that there exists an F -extending
extension of E which is F -finite and there exists an F -extending extension of E
which is E-finite. Now we state the propositions:

(14) Let us consider a field F , an element p of the carrier of PolyRing(F ),
an extension E of F , an E-extending extension U of F , an element a of
E, and an element b of U . If a = b, then ExtEval(p, a) = ExtEval(p, b).

(15) Let us consider a field F , an element p of the carrier of PolyRing(F ),
an extension E of F , and an element q of the carrier of PolyRing(E).
Suppose q = p. Let us consider an E-extending extension U of F , and
an element a of U . Then ExtEval(q, a) = ExtEval(p, a).

Let R be a ring, S be a ring extension of R, and a be an element of R. The
functor @(a, S) yielding an element of S is defined by the term

(Def. 4) a.

Let a be an element of S. We say that a is R-membered if and only if

(Def. 5) a ∈ the carrier of R.

One can verify that there exists an element of S which is R-membered.
Let a be an element of S. Assume a is R-membered. The functor @(R, a)

yielding an element of R is defined by the term

(Def. 6) a.

Let a be an R-membered element of S. Let us observe that @(R, a) reduces
to a. Let F be a field and E be an extension of F . One can check that there
exists an element of E which is non zero and F-algebraic.

Let a be an element of F . One can check that @(a,E) is F-algebraic.
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Let K be an E-extending extension of F and a be an F-algebraic element of
E. Note that @(a,K) is F-algebraic.

2. More on Finite Extensions

Now we state the propositions:

(16) Let us consider a field F , an extension E of F , and an E-extending
extension K of F . Then every linear combination of VecSp(K,F ) is a linear
combination of VecSp(K,E).

(17) Let us consider a field F , an extension E of F , an E-extending extension
K of F , a subset BE of VecSp(K,E), and a subset BF of VecSp(K,F ).
Suppose BF ⊆ BE . Then every linear combination of BF is a linear com-
bination of BE . The theorem is a consequence of (16).

(18) Let us consider a field F , an extension E of F , an E-extending exten-
sion K of F , a finite subset BE of VecSp(K,E), a finite subset BF of
VecSp(K,F ), a linear combination l1 of BF , and a linear combination l2
of BE . If l1 = l2 and BF ⊆ BE , then

∑
l1 =

∑
l2.

Proof: by induction on card(the support of l1).

Let F be a field, E be an extension of F , K be an F -extending extension
of E, BE be a subset of VecSp(E,F ), and BK be a subset of VecSp(K,E). The
functor Base(BE , BK) yielding a subset of VecSp((K qua extension of F ), F )
is defined by the term

(Def. 7) {a · b, where a, b are elements of K : a ∈ BE and b ∈ BK}.

Let BE be a non empty subset of VecSp(E,F ) and BK be a non empty
subset of VecSp(K,E). One can verify that Base(BE , BK) is non empty.

Now we state the propositions:

(19) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, a linearly independent subset BE of VecSp(E,F ), a linearly
independent subset BK of VecSp(K,E), and elements a1, a2, b1, b2 of K.
Suppose a1, a2 ∈ BE and b1, b2 ∈ BK . If a1 · b1 = a2 · b2, then a1 = a2 and
b1 = b2.

(20) Let us consider a field F , an extension E of F , an F -extending extension
K of E, a non empty, linearly independent subset BE of VecSp(E,F ),
and a non empty, linearly independent subset BK of VecSp(K,E). Then

Base(BE , BK) = BE ×BK .
Proof: Define P[object, object] ≡ there exist elements a, b of K such
that a ∈ BE and b ∈ BK and $1 = a · b and $2 = 〈〈a, b〉〉. Consider f being
a function from Base(BE , BK) into BE × BK such that for every object
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x such that x ∈ Base(BE , BK) holds P[x, f(x)]. rng f = BE × BK . f is
one-to-one. �

(21) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, a non empty, finite, linearly independent subset BE of
VecSp(E,F ), and a non empty, finite, linearly independent subset BK of

VecSp(K,E). Then Base(BE , BK) = BE · BK . The theorem is a conse-
quence of (20).

Let F be a field, E be an extension of F , K be an F -extending extension
of E, BE be a non empty, finite, linearly independent subset of VecSp(E,F ),
and BK be a non empty, finite, linearly independent subset of VecSp(K,E).
Observe that Base(BE , BK) is finite.

Let BK be a non empty, linearly independent subset of VecSp(K,E), l be
a linear combination of Base(BE , BK), and b be an element of K. The functor
down(l, b) yielding a linear combination of BE is defined by

(Def. 8) for every element a of K such that a ∈ BE and b ∈ BK holds it(a) =
l(a · b) and for every element a of E such that a /∈ BE or b /∈ BK holds
it(a) = 0F .

Let BK be a non empty, finite, linearly independent subset of VecSp(K,E).
The functor down l yielding a linear combination of BK is defined by

(Def. 9) for every element b of K such that b ∈ BK holds it(b) =
∑

down(l, b).

Let E be an F -finite extension of F , BE be a basis of VecSp(E,F ), and l1
be a linear combination of BK . The functor lift(l1, BE) yielding a linear combi-
nation of Base(BE , BK) is defined by

(Def. 10) for every element b of K such that b ∈ BK there exists a linear combi-
nation l2 of BE such that

∑
l2 = l1(b) and for every element a of K such

that a ∈ BE and a · b ∈ Base(BE , BK) holds it(a · b) = l2(a).

Now we state the propositions:

(22) Let us consider a field F , an F -finite extension E of F , an E-finite, F -
extending extension K of E, a basis BE of VecSp(E,F ), a basis BK of
VecSp(K,E), and a linear combination l of Base(BE , BK). Then lift(down l,
BE) = l. The theorem is a consequence of (6).

(23) Let us consider a field F , an F -finite extension E of F , an E-finite, F -
extending extension K of E, a basis BE of VecSp(E,F ), a basis BK of
VecSp(K,E), and a linear combination l of BK . Then down lift(l, BE) = l.

(24) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, a non empty, finite, linearly independent subset BE of
VecSp(E,F ), a non empty, finite, linearly independent subset BK of
VecSp(K,E), and linear combinations l, l1, l2 of Base(BE , BK). Suppo-
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se l = l1 + l2. Let us consider an element b of K. Then down(l, b) =
down(l1, b) + down(l2, b).

(25) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, a non empty, finite, linearly independent subset BE of
VecSp(E,F ), a non empty, finite, linearly independent subset BK of
VecSp(K,E), and linear combinations l, l1, l2 of Base(BE , BK). If l =
l1 + l2, then down l = down l1 + down l2. The theorem is a consequence of
(24).

Let us consider a field F , an F -finite extension E of F , an E-finite, F -
extending extension K of E, a basis BE of VecSp(E,F ), a basis BK of VecSp(K,
E), and a linear combination l of Base(BE , BK). Now we state the propositions:

(26)
∑
l =

∑
down l.

Proof: by induction on card(the support of l).

(27) If
∑
l = 0VecSp((K qua extension of F ),F ), then the support of l = ∅. The

theorem is a consequence of (26).

Let us consider a field F , an F -finite extension E of F , an E-finite, F -
extending extension K of E, a basis BE of VecSp(E,F ), and a basis BK of
VecSp(K,E). Now we state the propositions:

(28) Lin(Base(BE , BK)) = the vector space structure of VecSp((K qua exten-
sion of F ), F ). The theorem is a consequence of (23) and (26).

(29) Base(BE , BK) is a basis of VecSp((K qua extension of F ), F ). The the-
orem is a consequence of (27) and (28).

(30) Let us consider a field F , an F -finite extension E of F , and an E-finite, F -
extending extension K of E. Then deg(K,F ) = (deg(K,E)) · (deg(E,F )).
The theorem is a consequence of (29) and (21).

(31) Let us consider a field F , an extension E of F , and an E-extending
extension K of F . Suppose K is F -finite. Then

(i) E is F -finite, and

(ii) deg(E,F ) ¬ deg(K,F ), and

(iii) K is E-finite, and

(iv) deg(K,E) ¬ deg(K,F ).

Proof: Set BF = the basis of VecSp(K,F ). Reconsider BE = BF as
a finite subset of VecSp(K,E). Lin(BE) = VecSp(K,E). Consider I being
a subset of VecSp(K,E) such that I ⊆ BE and I is linearly independent
and Lin(I) = VecSp(K,E). �

Let F be a field and E be an F -finite extension of F . One can check that
every E-finite, F -extending extension of E is F -finite.
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3. Algebraic Extensions

Let F be a field and E be an extension of F . We say that E is F-algebraic
if and only if

(Def. 11) every element of E is F-algebraic.

One can verify that every extension of F which is F -finite is also F-algebraic.
Let E be an F-algebraic extension of F . Note that every element of E is

F-algebraic. Now we state the propositions:

(32) Let us consider a field F , and an extension E of F . Then E is F-algebraic
if and only if for every element a of E, FAdj(F, {a}) is F -finite.

(33) Let us consider a field F , an extension E of F , and an element a of E.
Then a is F-algebraic if and only if there exists an F -finite extension B of
F such that E is B-extending and a ∈ B.

Let F be a field, E be an extension of F , and T be a subset of E. We say
that T is F-algebraic if and only if

(Def. 12) for every element a of E such that a ∈ T holds a is F-algebraic.

One can verify that there exists a subset of E which is finite and F-algebraic.
Now we state the propositions:

(34) Let us consider a field F , an extension E of F , an element b of E, a subset
T of E, an extension E1 of FAdj(F, T ), and an element b1 of E1. Suppose
E1 = E and b1 = b. Then FAdj(F, {b} ∪ T ) = FAdj(FAdj(F, T ), {b1}).
Proof: {b} ∪ T ⊆ the carrier of FAdj(FAdj(F, T ), {b1}) by [6, (35),(36)].
FAdj(F, T ) is a subfield of FAdj(F, {b} ∪ T ). �

(35) Let us consider a field F , an extension E of F , an element b of E, a subset
T of E, an extension E1 of FAdj(F, {b}), and a subset T1 of E1. Suppose
E1 = E and T1 = T . Then FAdj(F, {b} ∪ T ) = FAdj(FAdj(F, {b}), T1).
Proof: {b} ∪ T ⊆ the carrier of FAdj(FAdj(F, {b}), T1) by [6, (35),(36)].
FAdj(F, {b}) is a subfield of FAdj(F, {b} ∪ T ). �

Let F be a field, E be an extension of F , and T be a finite, F-algebraic
subset of E. One can verify that FAdj(F, T ) is F -finite.

Now we state the propositions:

(36) Let us consider a field F , an extension E of F , and an F-algebraic ele-
ment a of E. Then E ≈ FAdj(F, {a}) if and only if deg MinPoly(a, F ) =
deg(E,F ). The theorem is a consequence of (5), (31), (30), and (8).

(37) Let us consider a field F , and an extension E of F . Then E is F -finite
if and only if there exists a finite, F-algebraic subset T of E such that
E ≈ FAdj(F, T ).
Proof: by induction on deg(E,F ).
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Let F be a field, E be an extension of F , and p be a non zero element of
the carrier of PolyRing(F ). Note that Roots(E, p) is F-algebraic.

Now we state the proposition:

(38) Let us consider a field F , an extension E of F , and a non zero element p
of the carrier of PolyRing(F ). Then FAdj(F,Roots(E, p)) is F-algebraic.

Let us consider a field F , an extension E of F , and an E-extending extension
K of F . Now we state the propositions:

(39) If K is E-algebraic and E is F-algebraic, then K is F-algebraic. The
theorem is a consequence of (12), (15), and (33).

(40) If K is F-algebraic, then K is E-algebraic and E is F-algebraic. The
theorem is a consequence of (15).

4. The Field of Algebraic Elements

Let F be a field, E be an extension of F , and a, b be F-algebraic elements
of E. Observe that FAdj(F, {a, b}) is F -finite and 0E is F-algebraic and 1E is
F-algebraic.

Let a, b be F-algebraic elements of E. One can verify that a+b is F-algebraic
and a− b is F-algebraic and a · b is F-algebraic.

Let a be an F-algebraic element of E. Let us note that −a is F-algebraic.
Let a be a non zero, F-algebraic element of E. Let us observe that a−1 is

F-algebraic.
The functor Alg-Elem(E) yielding a subset of E is defined by the term

(Def. 13) the set of all a where a is an F-algebraic element of E.

The functor Field-Alg-Elem(E) yielding a strict double loop structure is
defined by

(Def. 14) the carrier of it = Alg-Elem(E) and the addition of it = (the addition of
E) � (the carrier of it) and the multiplication of it = (the multiplication
of E) � (the carrier of it) and the one of it = 1E and the zero of it = 0E .

We introduce the notation F-Alg(E) as a synonym of Field-Alg-Elem(E).
Observe that F-Alg(E) is non degenerated and F-Alg(E) is Abelian, add-

associative, right zeroed, and right complementable and F-Alg(E) is commutati-
ve, associative, well unital, distributive, and almost left invertible and F-Alg(E)
is F -extending and F-Alg(E) is F-algebraic. Now we state the propositions:

(41) Let us consider a field F , and an extension E of F . Then F-Alg(E) is
an extension of F .

(42) Let us consider a field F , and an extension E of F . Then E is an extension
of F-Alg(E).
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(43) Let us consider a field F , an extension E of F , and an extension K of
E. Then F-Alg(K) is an extension of F-Alg(E).

(44) Let us consider a field F , and an F-algebraic extension E of F . Then
F-Alg(E) ≈ E.
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