
FORMALIZED MATHEMATICS

Vol. 29, No. 1, Pages 21–38, 2021
DOI: 10.2478/forma-2021-0003 https://sciendo.com/journal/forma

Miscellaneous Graph Preliminaries. Part I

Sebastian Koch
Johannes Gutenberg University

Mainz, Germany1

Summary. This article contains many auxiliary theorems which were mis-
sing in the Mizar Mathematical Library to the best of the author’s knowledge.
Most of them regard graph theory as formalized in the GLIB series and are needed
in upcoming articles.

MSC: 05C99 68V20

Keywords: graph

MML identifier: GLIBPRE1, version: 8.1.11 5.65.1394

0. Introduction

A generalized approach to graph theory as it was done in [2, 4] in contrast to
[9, 3] is rather uncommon. To avoid duplication of the same theorems in different
formalization frameworks in the Mizar Mathematical Library [1], a generalized
approach to formalization is preferable (cf. [8, 7]). However, due to the sheer
amount of “obvious facts” such an approach brings with it, it is only natural
some of them not immediately needed slip the initial formalization process. This
article, like its precedessor [5], aims to fill some of the gaps that emerged.

Many theorems in this article regard the property of a walk in a graph to
be the shortest one, which have been rather neglected in the author’s work on
graphs in Mizar until now. Another good portion is concered with theorems
about graph mappings which are missing from [7]. Further worthy of note is the
theorem that combines adding an edge or adjacent vertex with the reversal of

1The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto:
skoch02@students.uni-mainz.de

c© 2021 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)21



22 sebastian koch

the edge to be added and the two theorems noting that a connected graph is
unicyclic if and only if the connected subgraph it can be constructed from by
adding an edge is a tree.

1. Preliminaries not Directly Related to Graphs

Now we state the propositions:

(1) Let us consider sets X1, X2, X3, X4, X5, X6, X7. Then it is not true
that X1 ∈ X2 and X2 ∈ X3 and X3 ∈ X4 and X4 ∈ X5 and X5 ∈ X6 and
X6 ∈ X7 and X7 ∈ X1.

(2) Let us consider sets X1, X2, X3, X4, X5, X6, X7, X8. Then it is not true
that X1 ∈ X2 and X2 ∈ X3 and X3 ∈ X4 and X4 ∈ X5 and X5 ∈ X6 and
X6 ∈ X7 and X7 ∈ X8 and X8 ∈ X1.

One can verify that every function which is one-to-one and constant is also
trivial. Now we state the proposition:

(3) Let us consider a function f . Then f is non empty and constant if and
only if there exists an object y such that rng f = {y}.

Let X be a set. Observe that there exists a many sorted set indexed by X

which is one-to-one and there exists an X-defined function which is total and
one-to-one.

Let X be a non empty set. One can check that there exists an X-defined
function which is total, one-to-one, and non empty.

The scheme LambdaDf deals with non empty sets C, D and a unary functor
F yielding an object and states that

(Sch. 1) There exists a function f from C into D such that for every element x
of C, f(x) = F(x)

provided

• for every element x of C, F(x) ∈ D.

Now we state the proposition:

(4) Let us consider a one-to-one function f , and an object y. Suppose rng f =
{y}. Then there exists an object x such that f = x 7−→. y.

Let f be a one-to-one function. Note that f` is one-to-one. Let f be a func-
tion and g be a one-to-one function. Let us observe that 〈f, g〉 is one-to-one and
〈g, f〉 is one-to-one. Now we state the propositions:

(5) Let us consider an empty function f . Then ◦f = ∅7−→. ∅.
Let f be a one-to-one function. One can check that ◦f is one-to-one.



Miscellaneous graph preliminaries. Part I 23

(6) Let us consider a non empty, one-to-one function f , and a non emp-
ty subset X of 2dom f . Then rng(◦f�X) = the set of all f◦x where x is
an element of X.

(7) Let us consider a function f , and one-to-one functions g, h. Suppose
h = f+·g. Then h−1� rng g = g−1.

(8) Let us consider functions f , g, h. If rng f ⊆ domh, then (g+·h)·f = h·f .

(9) Let us consider a function f , and a one-to-one function g. Then (f+·g) ·
(g−1) = idrng g. The theorem is a consequence of (8).

Observe that every binary relation which is reflexive and connected is also
strongly connected. Now we state the propositions:

(10) Let us consider a set X, and a binary relation R on X. Then R is
antisymmetric if and only if R \ (idX) is asymmetric.

(11) Let us consider a set X. Suppose X is mutually-disjoint. Then X \ {∅}
is a partition of

⋃
X.

Let X be a set. Let us note that every partition of X is mutually-disjoint.

(12) Let us consider cardinal numbers M , N , and a function f . Suppose

M ⊆ dom f and for every object x such that x ∈ dom f holds N ⊆ f(x).
Then M ·N ⊆

∑
Card f .

(13) Let us consider sets X, x. Suppose x ∈ X. Then (disjoint Card idX)(x) =
x × {x}.

(14) Let us consider a setX. SupposeX is mutually-disjoint. Then
∑

Card idX =⋃
X . The theorem is a consequence of (11) and (13).

(15) Let us consider a set X, and cardinal numbers M , N . Suppose X is
mutually-disjoint and M ⊆ X and for every set Y such that Y ∈ X holds
N ⊆ Y . Then M · N ⊆

⋃
X . The theorem is a consequence of (12) and

(14).

(16) Let us consider a compatible, functional set F . Suppose for every func-
tion f1 such that f1 ∈ F holds f1 is one-to-one and for every function
f2 such that f2 ∈ F and f1 6= f2 holds rng f1 misses rng f2. Then

⋃
F is

one-to-one.

2. Into GLIB 000

LetG be a non trivial graph. Observe that there exists a subset of the vertices
of G which is non empty and proper. Now we state the propositions:

(17) Let us consider a graph G, and a set X. Then G.edgesBetween(X,X) =
G.edgesBetween(X).



24 sebastian koch

(18) Let us consider a graph G. Then G is trivial if and only if the vertices
of G is trivial.

(19) Let us consider a graph G1. Then every subgraph of G1 is a subgraph of
G1 induced by the vertices of G2 and the edges of G2.

(20) Let us consider graphs G1, G2, and a spanning subgraph G3 of G1. If
G2 ≈ G3, then G2 is a spanning subgraph of G1.

(21) Let us consider a graph G, and an object e. Suppose e ∈ the edges of G.
Then e ∈ G.edgesBetween({(the source of G)(e), (the target of G)(e)}).

(22) Let us consider a graph G. Then G ≈ createGraph(the vertices of
G, the edges of G, the source of G, the target of G).

(23) Let us consider a graph G, and a vertex v of G. Then v is endvertex if
and only if v.degree() = 1.
Proof: v.inDegree() = 1 and v.outDegree() = 0 or v.inDegree() = 0 and
v.outDegree() = 1. �

(24) Let us consider a loopless graph G, and a vertex v of G. Then

(i) v.inNeighbors() ⊆ (the vertices of G) \ {v}, and

(ii) v.outNeighbors() ⊆ (the vertices of G) \ {v}, and

(iii) v.allNeighbors() ⊆ (the vertices of G) \ {v}.

(25) Let us consider a graphG. Suppose for every vertex v ofG, v.inNeighbors()
⊆ (the vertices of G) \ {v} or v.outNeighbors() ⊆ (the vertices of G) \ {v}
or v.allNeighbors() ⊆ (the vertices of G) \ {v}. Then G is loopless.

Let X be a set and G be a graph. Let us note that X 7−→ G is graph-yielding.
Let x be an object. Let us note that x 7−→. G is graph-yielding.
Let X be a set. Let us note that there exists a many sorted set indexed by

X which is graph-yielding.
Let X be a non empty set. One can verify that there exists a many sorted

set indexed by X which is non empty and graph-yielding.
Let f be a graph-yielding many sorted set indexed by X and x be an element

of X. One can verify that the functor f(x) yields a graph.

3. Into GLIB 001

Let G be a graph and P be a path of G. One can verify that
P .vertexSeq()�P .length() is one-to-one. Now we state the propositions:

(26) Let us consider a graph G, and a path P of G. Then P .length() ⊆
G.order().

(27) Let us consider a graphG, and a trail T ofG. Then T .length() ⊆ G.size().



Miscellaneous graph preliminaries. Part I 25

(28) Let us consider a graph G, and a walk W of G. Suppose lenW = 3 or
W.length() = 1. Then there exists an object e such that

(i) e joins W.first() and W.last() in G, and

(ii) W = G.walkOf(W.first(), e,W .last()).

(29) Let us consider a graph G, a walk W of G, and an object e. Suppose
e ∈ W.edges() and e /∈ G.loops() and W is circuit-like. Then there exists
an object e0 such that

(i) e0 ∈W.edges(), and

(ii) e0 6= e.

Proof: Consider n being an odd element of N such that n < lenW and
W (n+ 1) = e. lenW > 3. �

(30) Let us consider a graph G, a path P of G, and odd elements n, m of N.
Suppose n < m ¬ lenP and (n 6= 1 or m 6= lenP ). Then P .cut(n,m) is
open.

(31) Let us consider a graph G, a closed walk W of G, and an odd element n
of N. Suppose n < lenW . Then

(i) (W.cut(n+2, lenW )).append((W.cut(1, n))) is a walk from W (n+2)
to W (n), and

(ii) if W is trail-like, then (W.cut(n+2, lenW )).edges() misses (W.cut(1,

n)).edges() and ((W.cut(n+2, lenW )).append((W.cut(1, n)))).edges

() = W.edges() \ {W (n+ 1)}, and

(iii) if W is path-like, then (W.cut(n+2, lenW )).vertices()∩(W.cut(1, n))

.vertices() = {W.first()} and ifW (n+1) /∈ G.loops(), then (W.cut(n+
2, lenW )).append((W.cut(1, n))) is open and (W.cut(n+ 2, lenW ))

.append((W.cut(1, n))) is path-like.

Proof: Set W7 = W.cut(n+ 2, lenW ). Set W8 = W.cut(1, n). Set W ′ =
W7.append(W8). If W is trail-like, then W7.edges() misses W8.edges() and
W ′.edges() = W.edges() \ {W (n+ 1)}. If W (n+ 1) /∈ G.loops(), then W ′

is open. �

(32) Let us consider a graph G, a walk W1 of G, and objects e, x, y. Suppose
e joins x and y in G and e ∈W1.edges() and W1 is cycle-like. Then there
exists a path W2 of G such that

(i) W2 is a walk from x to y, and

(ii) W2.edges() = W1.edges() \ {e}, and

(iii) if e /∈ G.loops(), then W2 is open.



26 sebastian koch

The theorem is a consequence of (31).

(33) Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2.
Then lenW1 ¬ lenW2 if and only if W1.length() ¬W2.length().

(34) Let us consider a graph G, and a walk W of G. Then W.length() =
W.reverse().length().

(35) Let us consider a graph G, a walk W of G, and an object e. If e /∈
W.last().edgesInOut(), then W.addEdge(e) = W .

(36) Let us consider a graph G, a walk W of G, and objects e, x. Suppose e
joins W.last() and x in G. Then (W.addEdge(e)).length() = W.length()+
1.

(37) Let us consider a graph G1, a set E, a subgraph G2 of G1 with edges E
removed, and a walk W1 of G1. If W1.edges() misses E, then W1 is a walk
of G2.

4. Into GLIB 002

Let us consider graphs G1, G2 and a component G3 of G1. Now we state the
propositions:

(38) If G2 ≈ G3, then G2 is a component of G1.

(39) If G1 ≈ G2, then G3 is a component of G2.

Now we state the proposition:

(40) Let us consider a tree-like graph G, and a spanning subgraph H of G. If
H is connected, then G ≈ H.
Proof: The edges of G ⊆ the edges of H. �

Let G be a graph. Note that every element of G.componentSet() is non
empty and G.componentSet() is mutually-disjoint.

5. Into CHORD

Now we state the propositions:

(41) Let us consider a graph G, and vertices v, w of G. Then v and w are
adjacent if and only if w ∈ v.allNeighbors().

(42) Let us consider a graph G, a set S, and a vertex v of G. Suppose v /∈ S
and S meets G.reachableFrom(v). Then G.adjacentSet(S) 6= ∅.
Proof: Consider w being an object such that w ∈ S and w ∈ G.reachable
From(v). Consider W being a walk of G such that W is a walk from v

to w. There exists an odd natural number n such that n < lenW and
W (n) /∈ S and W (n + 2) ∈ S. Consider n being an odd natural number
such that n < lenW and W (n) /∈ S and W (n+ 2) ∈ S. �



Miscellaneous graph preliminaries. Part I 27

Let G be a non trivial, connected graph and S be a non empty, proper subset
of the vertices of G. One can check that G.adjacentSet(S) is non empty.

Now we state the propositions:

(43) Let us consider a complete graphG, and a vertex v ofG. Then (the vertices
of G) \ {v} ⊆ v.allNeighbors().

(44) Let us consider a loopless, complete graph G, and a vertex v of G. Then
v.allNeighbors() = (the vertices of G)\{v}. The theorem is a consequence
of (43).

(45) Let us consider a simple, complete graph G, and a vertex v of G. Then
v.degree() + 1 = G.order(). The theorem is a consequence of (44).

Let G be a graph. Observe that every walk of G which is trivial is also
minimum length and there exists a walk of G which is minimum length and
path-like.

Let W be a minimum length walk of G. One can check that W.reverse() is
minimum length.

Now we state the propositions:

(46) Let us consider a graph G1, a subgraph G2 of G1, a walk W1 of G1, and
a walk W2 of G2. If W1 = W2 and W1 is minimum length, then W2 is
minimum length.

(47) Let us consider a graph G, a vertex v of G, and a walk W of G. Suppose
W is a walk from v to v. Then W is minimum length if and only if
W = G.walkOf(v).

(48) Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2.
Suppose G1 ≈ G2 and W1 = W2 and W1 is minimum length. Then W2 is
minimum length.

6. Into GLIB 006

Now we state the propositions:

(49) Let us consider graphs G1, G2. Suppose the vertices of G2 ⊆ the vertices
of G1 and for every objects e, x, y such that e joins x to y in G2 holds e
joins x to y in G1. Then

(i) G2 is a subgraph of G1, and

(ii) G1 is a supergraph of G2.

(50) Let us consider a graph G1, a subgraph G3 of G1, objects v, e, w, and
a supergraph G2 of G3 extended by e between vertices v and w. If e joins
v to w in G1, then G2 is a subgraph of G1.



28 sebastian koch

(51) Let us consider a tree-like graph G, vertices v1, v2 of G, an object e, and
a supergraph H of G extended by e between vertices v1 and v2. Suppose
e /∈ the edges of G. Then

(i) H is not acyclic, and

(ii) for every walks W1, W2 of H such that W1 is cycle-like and W2 is
cycle-like holds W1.edges() = W2.edges().

Proof: e ∈ W1.edges(). e ∈ W2.edges(). Consider W3 being a path of H
such that W3 is a walk from v1 to v2 and W3.edges() = W1.edges() \ {e}
and if e /∈ H.loops(), then W3 is open. Consider W4 being a path of H
such that W4 is a walk from v1 to v2 and W4.edges() = W2.edges() \ {e}
and if e /∈ H.loops(), then W4 is open. �

(52) Let us consider a connected graph G. Suppose there exist vertices v1,
v2 of G and there exists an object e and there exists a supergraph H of
G extended by e between vertices v1 and v2 such that e /∈ the edges of
G and for every walks W1, W2 of H such that W1 is cycle-like and W2 is
cycle-like holds W1.edges() = W2.edges(). Then G is tree-like.
Proof: G is acyclic by [6, (75),(24),(105)], [8, (16)]. �

(53) Let us consider a graph G2, objects v, e, w, and a supergraph G1 of G2

extended by v, w and e between them. Then

(i) the vertices of G1 ⊆ (the vertices of G2) ∪ {v, w}, and

(ii) the edges of G1 ⊆ (the edges of G2) ∪ {e}.

(54) Let us consider a graph G2, vertices v, v2 of G2, objects e, w, a su-
pergraph G1 of G2 extended by v, w and e between them, and a ver-
tex v1 of G1. Suppose v1 = v2 and v /∈ G2.reachableFrom(v2) and e /∈
the edges of G2 and w /∈ the vertices of G2. Then G1.reachableFrom(v1) =
G2.reachableFrom(v2).

(55) Let us consider a graph G2, vertices w, v2 of G2, objects v, e, a su-
pergraph G1 of G2 extended by v, w and e between them, and a ver-
tex v1 of G1. Suppose v1 = v2 and w /∈ G2.reachableFrom(v2) and e /∈
the edges of G2 and v /∈ the vertices of G2. Then G1.reachableFrom(v1) =
G2.reachableFrom(v2).

(56) Let us consider a graph G2, a vertex v of G2, objects e, w, a supergraph
G1 of G2 extended by v, w and e between them, and a vertex v1 of G1.
Suppose v1 = v and e /∈ the edges of G2 and w /∈ the vertices of G2. Then
G1.reachableFrom(v1) = (G2.reachableFrom(v)) ∪ {w}.

(57) Let us consider a graph G2, objects v, e, a vertex w of G2, a supergraph
G1 of G2 extended by v, w and e between them, and a vertex v1 of G1.



Miscellaneous graph preliminaries. Part I 29

Suppose v1 = w and e /∈ the edges of G2 and v /∈ the vertices of G2. Then
G1.reachableFrom(v1) = (G2.reachableFrom(w)) ∪ {v}.

(58) Let us consider a graph G2, a vertex v of G2, objects e, w, and a su-
pergraph G1 of G2 extended by v, w and e between them. Suppose e /∈
the edges of G2 and w /∈ the vertices of G2. Then G1.componentSet() =
G2.componentSet() \ {G2.reachableFrom(v)} ∪ {(G2.reachableFrom(v)) ∪
{w}}. The theorem is a consequence of (54) and (56).

(59) Let us consider a graph G2, objects v, e, a vertex w of G2, and a su-
pergraph G1 of G2 extended by v, w and e between them. Suppose e /∈
the edges of G2 and v /∈ the vertices of G2. Then G1.componentSet() =
G2.componentSet()\{G2.reachableFrom(w)}∪{(G2.reachableFrom(w))∪
{v}}. The theorem is a consequence of (55) and (57).

(60) Let us consider a graph G2, objects v, e, w, a supergraph G1 of G2

extended by v, w and e between them, a walk W1 of G1, and a walk W2 of
G2. If W1 = W2 and W2 is minimum length, then W1 is minimum length.
The theorem is a consequence of (48).

(61) Let us consider a non trivial, connected graph G1, and a non spanning
subgraph G2 of G1. Then there exist objects v, e, w such that

(i) v 6= w, and

(ii) e joins v to w in G1, and

(iii) e /∈ the edges of G2, and

(iv) every supergraph of G2 extended by v, w and e between them is
a subgraph of G1, and

(v) v ∈ the vertices of G2 and w /∈ the vertices of G2 or v /∈ the vertices
of G2 and w ∈ the vertices of G2.

Proof: Set S = the vertices ofG2. Set v0 = the element ofG1.adjacentSet
(S). Consider w0 being a vertex of G1 such that w0 ∈ S and v0 and w0

are adjacent. Consider e being an object such that e joins v0 and w0 in
G1. e /∈ the edges of G2. �

(62) Let us consider a graphG2, a vertex v ofG2, objects e, w, x, a supergraph
G1 of G2 extended by v, w and e between them, a walk W1 of G1, and
a walk W2 of G2. Suppose W1 = W2 and W2 is minimum length and a walk
from x to v and e /∈ the edges of G2. Then W1.addEdge(e) is minimum
length. The theorem is a consequence of (60) and (35).

(63) Let us consider a graphG2, objects v, e, x, a vertex w ofG2, a supergraph
G1 of G2 extended by v, w and e between them, a walk W1 of G1, and
a walk W2 of G2. Suppose W1 = W2 and W2 is minimum length and a walk



30 sebastian koch

from x to w and e /∈ the edges of G2. Then W1.addEdge(e) is minimum
length. The theorem is a consequence of (60) and (35).

Observe that there exists a graph-yielding function which is non empty,
non non-directed-multi, and non non-multi and there exists a graph-yielding
function which is non empty, non acyclic, and non connected and there exists
a graph-yielding function which is non empty and non edgeless and there exists
a graph-yielding function which is non empty and non loopfull.

7. Into GLIB 007

Now we state the propositions:

(64) Let us consider graphs G2, G3, sets V , E, a supergraph G1 of G3 exten-
ded by the vertices from V , and a graph G4 given by reversing directions
of the edges E of G3. Then G2 is a graph given by reversing directions of
the edges E of G1 if and only if G2 is a supergraph of G4 extended by the
vertices from V . The theorem is a consequence of (49).

(65) Let us consider graphs G2, G3, objects v, e, w, and a supergraph G1 of
G3 extended by e between vertices v and w. Suppose e /∈ the edges of G3.
Then G2 is a graph given by reversing directions of the edges {e} of G1

if and only if G2 is a supergraph of G3 extended by e between vertices w
and v. The theorem is a consequence of (49).

(66) Let us consider graphs G2, G3, objects v, e, w, and a supergraph G1 of
G3 extended by v, w and e between them. Suppose e /∈ the edges of G3.
Then G2 is a graph given by reversing directions of the edges {e} of G1

if and only if G2 is a supergraph of G3 extended by w, v and e between
them. The theorem is a consequence of (65).

(67) Let us consider a graph G1, a set E, a graph G2 given by reversing
directions of the edges E of G1, a walk W1 of G1, and a walk W2 of G2. If
W1 = W2, then W1 is minimum length iff W2 is minimum length.

8. Into GLIB 008

Now we state the proposition:

(68) Let us consider an edgeless graph G1, and a graph G2. Then G1 is a sub-
graph of G2 if and only if the vertices of G1 ⊆ the vertices of G2.

One can check that there exists a graph which is loopless and non edgeless.



Miscellaneous graph preliminaries. Part I 31

9. Into GLIB 009

Let G be a graph. Note that there exists a subgraph of G which is plain,
spanning, and acyclic and there exists a subgraph of G which is plain and tree-
like and there exists a component of G which is plain.

Now we state the proposition:

(69) Let us consider a plain graph G. Then G = createGraph(the vertices of
G, the edges of G, the source of G, the target of G).

Let us consider a graph G and a subgraph H of G with loops removed. Now
we state the propositions:

(70) the edges of G = G.loops() if and only if H is edgeless.

(71) Every loopless subgraph of G is a subgraph of H.
Proof: (The edges of H ′) ∩G.loops() = ∅. �

(72) Let us consider a graph G1, and a subgraph G2 of G1 with loops removed.
Then every minimum length walk of G1 is a walk of G2. The theorem is
a consequence of (37).

(73) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
a walk W1 of G1, and a walk W2 of G2. If W1 = W2, then W1 is minimum
length iff W2 is minimum length. The theorem is a consequence of (46),
(37), and (47).

(74) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
vertices v1, w1 of G1, and vertices v2, w2 of G2. Suppose v1 = v2 and
w1 = w2 and v1 6= w1. Then v1 and w1 are adjacent if and only if v2 and
w2 are adjacent. The theorem is a consequence of (41).

(75) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, vertices v1, w1 of G1, and vertices v2, w2 of G2. Suppose v1 = v2

and w1 = w2. Then v1 and w1 are adjacent if and only if v2 and w2 are
adjacent. The theorem is a consequence of (41).

(76) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, vertices v1, w1 of G1, and vertices v2, w2 of G2. Suppose
v1 = v2 and w1 = w2. Then v1 and w1 are adjacent if and only if v2 and
w2 are adjacent. The theorem is a consequence of (41).

(77) Let us consider a graph G1, a simple graph G2 of G1, vertices v1, w1 of
G1, and vertices v2, w2 of G2. Suppose v1 = v2 and w1 = w2 and v1 6= w1.
Then v1 and w1 are adjacent if and only if v2 and w2 are adjacent. The
theorem is a consequence of (75) and (74).

(78) Let us consider a graph G1, a directed-simple graph G2 of G1, vertices
v1, w1 of G1, and vertices v2, w2 of G2. Suppose v1 = v2 and w1 = w2



32 sebastian koch

and v1 6= w1. Then v1 and w1 are adjacent if and only if v2 and w2 are
adjacent. The theorem is a consequence of (76) and (74).

10. Into GLIB 010

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
a vertex v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(79) If v2 = (FV)(v1) and F is total, then (FV)◦(G1.reachableFrom(v1)) ⊆
G2.reachableFrom(v2).

(80) Suppose v1 ∈ dom(FV) and v2 = (FV)(v1) and F is one-to-one and onto.
Then G2.reachableFrom(v2) ⊆ (FV)◦(G1.reachableFrom(v1)).

(81) If v2 = (FV)(v1) and F is isomorphism, then (FV)◦(G1.reachableFrom(v1))
= G2.reachableFrom(v2). The theorem is a consequence of (79) and (80).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(82) Suppose F is isomorphism. Then G2.componentSet() = the set of all
(FV)◦C where C is an element ofG1.componentSet(). The theorem is a con-
sequence of (81).

(83) If F is isomorphism, thenG1.numComponents() = G2.numComponents().
The theorem is a consequence of (6) and (82).

LetG be a loopless graph. Let us note that every graph which isG-isomorphic
is also loopless. Now we state the proposition:

(84) Let us consider graphs G1, G2, G3, G4, an empty partial graph mapping
F1 from G1 to G2, and an empty partial graph mapping F2 from G3 to
G4. Then F1 = F2.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(85) (i) F � domF = F , and

(ii) rngF �F = F .
The theorem is a consequence of (84).

(86) If F is total, then rngF �F is total. The theorem is a consequence of
(85).

(87) If F is onto, then F � domF is onto. The theorem is a consequence of
(85).

Let us consider graphs G1, G2. Now we state the propositions:

(88) Every partial graph mapping from G1 to G2 is a partial graph mapping
from G1 to rngF . The theorem is a consequence of (85).



Miscellaneous graph preliminaries. Part I 33

(89) Every partial graph mapping from G1 to G2 is a partial graph mapping
from domF to G2. The theorem is a consequence of (85).

(90) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and subsets X, Y of the vertices of G1. Suppose F is total. Then
(FE)◦(G1.edgesBetween(X,Y )) ⊆ G2.edgesBetween((FV)◦X, (FV)◦Y ).
Proof: Set f = FE�G1.edgesBetween(X,Y ). For every object y such that
y ∈ rng f holds y ∈ G2.edgesBetween((FV)◦X, (FV)◦Y ). �

(91) Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a set V . Then (FE)◦(G1.edgesBetween(V )) ⊆ G2.edgesBetween((FV)◦V ).

(92) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and subsets X, Y of the vertices of G1. Suppose F is weak subgraph
embedding and onto.
Then (FE)◦(G1.edgesBetween(X,Y )) = G2.edgesBetween((FV)◦X, (FV)◦Y ).
The theorem is a consequence of (90).

(93) Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a set V . Suppose F is continuous. Then (FE)◦(G1.edgesBetween(V )) =
G2.edgesBetween((FV)◦V ). The theorem is a consequence of (91).

Let us consider graphs G1, G2, a non empty, one-to-one partial graph map-
ping F from G1 to G2, and an F-valued walk W2 of G2. Now we state the
propositions:

(94) (F−1(W2)).vertices() = (FV)−1(W2.vertices()).

(95) (F−1(W2)).edges() = (FE)−1(W2.edges()).

(96) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, an F-valued walk W2 of G2, and objects v,
w. Suppose W2 is a walk from v to w. Then F−1(W2) is a walk from
(F−1

V)(v) to (F−1
V)(w).

(97) Let us consider graphs G1, G2, a one-to-one partial graph mapping F

from G1 to G2, a vertex v1 of G1, and a vertex v2 of G2. Suppose v2 =
(FV)(v1) and F is isomorphism. Then (FV)−1(G2.reachableFrom(v2)) =
G1.reachableFrom(v1). The theorem is a consequence of (81).

(98) Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a subgraphH ofG2. Then (FE)−1(the edges ofH) ⊆ G1.edgesBetween
((FV)−1(the vertices of H)).

(99) Let us consider graphs G1, G2, a non empty partial graph mapping
F from G1 to G2, a subgraph H2 of rngF , and a subgraph H1 of G1

induced by (FV)−1(the vertices of H2) and (FE)−1(the edges of H2). Then
rng(F �H1) ≈ H2. The theorem is a consequence of (98).

(100) Let us consider graphs G1, G2, a non empty partial graph mapping F



34 sebastian koch

from G1 to G2, a non empty subset V2 of the vertices of rngF , and a sub-
graph H of rngF induced by V2. Suppose G1.edgesBetween((FV)−1(the
vertices of H)) ⊆ dom(FE). Then (FE)−1(the edges of H) = G1.edges
Between((FV)−1(the vertices of H)). The theorem is a consequence of (98).

(101) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, a non empty subset V2 of the vertices of rngF , a sub-
graph H2 of rngF induced by V2, and a subgraph H1 of G1 induced by
(FV)−1(the vertices ofH2). SupposeG1.edgesBetween((FV)−1(the vertices
of H2)) ⊆ dom(FE). Then rng(F �H1) ≈ H2. The theorem is a consequence
of (100).

(102) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, a non empty subset V of the vertices of domF , and a sub-
graph H of G1 induced by V . Suppose F is continuous. Then rng(F �H)
is a subgraph of G2 induced by (FV)◦V . The theorem is a consequence of
(93).

(103) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, a subgraph H2 of rngF , and a subgraph H1 of G1 induced
by (FV)−1(the vertices of H2) and (FE)−1(the edges of H2). Then every
walk of H1 is an F -defined walk of G1.
Proof: the vertices of H1 = (FV)−1(the vertices of H2) and the edges of
H1 = (FE)−1(the edges of H2). �

(104) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, a subgraph H2 of rngF , a subgraph H1 of G1 induced by
(FV)−1(the vertices of H2) and (FE)−1(the edges of H2), and an F -defined
walk W1 of G1. If W1 is a walk of H1, then F ◦W1 is a walk of H2.
Proof: the vertices of H1 = (FV)−1(the vertices of H2) and the edges
of H1 = (FE)−1(the edges of H2). (F ◦W1).vertices() ⊆ the vertices of H2.
(F ◦W1).edges() ⊆ the edges of H2. �

(105) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, and a subgraph H of rngF . Then every walk of H is
an F-valued walk of G2.

(106) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, a subgraph H2 of rngF , a subgraph H1 of G1

induced by (FV)−1(the vertices of H2) and (FE)−1(the edges of H2), and
an F-valued walk W2 of G2. If W2 is a walk of H2, then F−1(W2) is a walk
of H1.
Proof: the vertices of H1 = (FV)−1(the vertices of H2) and the edges of
H1 = (FE)−1(the edges of H2). (F−1(W2)).vertices() ⊆ the vertices of H1.
(F−1(W2)).edges() ⊆ the edges of H1. �



Miscellaneous graph preliminaries. Part I 35

(107) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an acyclic subgraph H2 of rngF . Then eve-
ry subgraph of G1 induced by (FV)−1(the vertices of H2) and (FE)−1(the
edges of H2) is acyclic. The theorem is a consequence of (103) and (104).

(108) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and a connected subgraph H2 of rngF . Then
every subgraph ofG1 induced by (FV)−1(the vertices ofH2) and (FE)−1(the
edges of H2) is connected. The theorem is a consequence of (98), (105),
(106), and (96).

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
a subgraph H of G1, and a partial graph mapping F ′ from H to rng(F �H). Now
we state the propositions:

(109) Suppose F ′ = F �H. Then

(i) if F ′ is not empty, then F ′ is onto, and

(ii) if F is total, then F ′ is total, and

(iii) if F is one-to-one, then F ′ is one-to-one, and

(iv) if F is directed, then F ′ is directed, and

(v) if F is semi-continuous, then F ′ is semi-continuous, and

(vi) if F is continuous and FE is one-to-one, then F ′ is continuous, and

(vii) if F is semi-directed-continuous, then F ′ is semi-directed-continuous,
and

(viii) if F is directed-continuous and FE is one-to-one, then F ′ is directed-
continuous.

The theorem is a consequence of (85) and (86).

(110) Suppose F ′ = F �H. Then

(i) if F is weak subgraph embedding, then F ′ is weak subgraph embed-
ding, and

(ii) if F is strong subgraph embedding, then F ′ is isomorphism, and

(iii) if F is directed and strong subgraph embedding, then F ′ is directed-
isomorphism.

The theorem is a consequence of (109).



36 sebastian koch

11. Into GLIB 013

Now we state the propositions:

(111) Let us consider a vertex-finite, directed-simple graph G1, a directed
graph complement G2 of G1, a vertex v1 of G1, and a vertex v2 of G2.
Suppose v1 = v2. Then

(i) v2.inDegree() = G1.order()− (v1.inDegree() + 1), and

(ii) v2.outDegree() = G1.order()− (v1.outDegree() + 1), and

(iii) v2.degree() = 2 · (G1.order())− (v1.degree() + 2).

(112) Let us consider a vertex-finite, simple graph G1, a graph complement
G2 of G1, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v2.degree() = G1.order()− (v1.degree() + 1).

(113) Let us consider a vertex-finite, directed-simple graph G, and a vertex v
of G. Then

(i) v.inDegree() < G.order(), and

(ii) v.outDegree() < G.order().

(114) Let us consider a vertex-finite, simple graph G, and a vertex v of G.
Then v.degree() < G.order().

One can check that every graph which is 1-edge is also non-multi.

12. Into GLIB 014

Let S be a ∪-tolerating, graph-membered set. Observe that every subset of
S is ∪-tolerating.

Now we state the proposition:

(115) Let us consider graph-membered sets S1, S2. Suppose S1 ⊆ S2. Then

(i) the vertices of S1 ⊆ the vertices of S2, and

(ii) the edges of S1 ⊆ the edges of S2, and

(iii) the source of S1 ⊆ the source of S2, and

(iv) the target of S1 ⊆ the target of S2.

Let us consider a graph union set S, a graph union G of S, and objects e,
v, w. Now we state the propositions:

(116) If e joins v to w in G, then there exists an element H of S such that e
joins v to w in H.

(117) If e joins v and w in G, then there exists an element H of S such that e
joins v and w in H. The theorem is a consequence of (116).



Miscellaneous graph preliminaries. Part I 37

Let us consider graph union sets S1, S2, a graph union G1 of S1, and a graph
union G2 of S2. Now we state the propositions:

(118) If for every element H2 of S2, there exists an element H1 of S1 such that
H2 is a subgraph of H1, then G2 is a subgraph of G1. The theorem is
a consequence of (116).

(119) If S2 ⊆ S1, then G2 is a subgraph of G1. The theorem is a consequence
of (118).

Let us consider graphs G1, G2 and a graph union G of G1 and G2. Now we
state the propositions:

(120) If G1 toleratesG2 and the vertices of G1 misses the vertices of G2, then
G.order() = G1.order() +G2.order().

(121) If G1 toleratesG2 and the edges of G1 misses the edges of G2, then
G.size() = G1.size() +G2.size().

(122) Let us consider connected graphs G1, G2, and a graph union G of G1

and G2. If the vertices of G1 meets the vertices of G2, then G is connected.

(123) Let us consider graphs G1, G2, a graph union G of G1 and G2, and a walk
W of G. Suppose G1 toleratesG2 and the vertices of G1 misses the vertices
of G2. Then W is a walk of G1 or a walk of G2.

(124) Let us consider graphs G1, G2, a graph union G of G1 and G2, a vertex v1

of G1, and a vertex v of G. Suppose the vertices of G1 misses the vertices
of G2. If v = v1, then G.reachableFrom(v) = G1.reachableFrom(v1). The
theorem is a consequence of (123).

(125) Let us consider graphs G1, G2, a graph union G of G1 and G2, a vertex
v2 of G2, and a vertex v of G. Suppose G1 toleratesG2 and the vertices
of G1 misses the vertices of G2. If v = v2, then G.reachableFrom(v) =
G2.reachableFrom(v2). The theorem is a consequence of (123).

(126) Let us consider graphs G1, G2, and a graph union G of G1 and G2.
Suppose G1 toleratesG2 and the vertices of G1 misses the vertices of G2.
Then

(i) G.componentSet() = G1.componentSet() ∪G2.componentSet(), and

(ii) G.numComponents() = G1.numComponents()+G2.numComponents().

The theorem is a consequence of (124) and (125).



38 sebastian koch

13. Into GLUNIR00

Let us consider a non empty set V and a binary relation E on V . Now we
state the propositions:

(127) createGraph(V,E).loops() = E ∩ idV .

(128) createGraph(V,E \(idV )) is a subgraph of createGraph(V,E) with loops
removed. The theorem is a consequence of (127).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[2] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics,
244. Springer, New York, 2008. ISBN 978-1-84628-969-9.

[3] Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms. Oxford Lecture Series
in Mathematics and Its Applications; 28. Oxford University Press, Oxford, 2004. ISBN
0-19-852817-5.

[4] Ulrich Knauer. Algebraic graph theory: morphisms, monoids and matrices, volume 41 of
De Gruyter Studies in Mathematics. Walter de Gruyter, 2011.

[5] Sebastian Koch. Miscellaneous graph preliminaries. Formalized Mathematics, 28(1):23–39,
2020. doi:10.2478/forma-2020-0003.

[6] Sebastian Koch. About supergraphs. Part I. Formalized Mathematics, 26(2):101–124, 2018.
doi:10.2478/forma-2018-0009.

[7] Sebastian Koch. About graph mappings. Formalized Mathematics, 27(3):261–301, 2019.
doi:10.2478/forma-2019-0024.

[8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,
13(2):235–252, 2005.

[9] Robin James Wilson. Introduction to Graph Theory. Oliver & Boyd, Edinburgh, 1972.
ISBN 0-05-002534-1.

Accepted March 30, 2021


