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Poland

Summary. In this paper we introduce some new definitions for sequences
of operations and extract general theorems about properties of iterative algori-
thms encoded in nominative data language [20] in the Mizar system [3], [1] in
order to simplify the process of proving algorithms in the future.

This paper continues verification of algorithms [10], [13], [12], [14] written in
terms of simple-named complex-valued nominative data [6], [8], [18], [11], [15],
[16].

The validity of the algorithm is presented in terms of semantic Floyd-Hoare
triples over such data [9]. Proofs of the correctness are based on an inference
system for an extended Floyd-Hoare logic [2], [4] with partial pre- and post-
conditions [17], [19], [7], [5].
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1. Composition Rules for Programs

Let D be a non empty set. One can verify that there exists a finite sequence
which is non empty and D-valued.

Let n be a natural number. One can verify that there exists a finite sequence
which is D-valued and n-element.

From now on D denotes a non empty set, f1, f2, f3, f4, f5, f6, f7, f8, f9,
f10 denote binominative functions of D, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11
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denote partial predicates of D, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10 denote total
partial predicates of D, n, m, N denote natural numbers, fD denotes a (D→̇D)-
valued finite sequence, fB denotes a (D→̇Boolean)-valued finite sequence, V , A
denote sets.

From now on val denotes a function, loc denotes a V-valued function, d1
denotes a non-atomic nominative data of V and A, p denotes a partial predicate
over simple-named complex-valued nominative data of V and A, d, v denote
objects, z2 denotes a non zero natural number, inp, pos denote finite sequences,
and prg denotes a non empty, (FPrg(NDSC(V,A)))-valued finite sequence.

Let us consider D, f1, f2, f3, f4, f5, f6, and f7. The functor PP-composition
(f1, f2, f3, f4, f5, f6, f7) yielding a binominative function of D is defined by the
term

(Def. 1) PP-composition(f1, f2, f3, f4, f5, f6) • f7.
Now we state the proposition:

(1) Unconditional composition rule for 7 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D and
〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and 〈p5,
f5, p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈p7, f7, p8〉
is an SFHT of D and 〈∼ p2, f2, p3〉 is an SFHT of D and 〈∼ p3, f3, p4〉
is an SFHT of D and 〈∼ p4, f4, p5〉 is an SFHT of D and 〈∼ p5, f5, p6〉
is an SFHT of D and 〈∼ p6, f6, p7〉 is an SFHT of D and 〈∼ p7, f7, p8〉
is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7), p8〉 is
an SFHT of D.

Let us consider D, f1, f2, f3, f4, f5, f6, f7, and f8. The functor PP-composit-
ion(f1, f2, f3, f4, f5, f6, f7, f8) yielding a binominative function of D is defined
by the term

(Def. 2) PP-composition(f1, f2, f3, f4, f5, f6, f7) • f8.
Now we state the proposition:

(2) Unconditional composition rule for 8 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D and
〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and 〈p5,
f5, p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈p7, f7, p8〉
is an SFHT of D and 〈p8, f8, p9〉 is an SFHT of D and 〈∼ p2, f2, p3〉 is
an SFHT of D and 〈∼ p3, f3, p4〉 is an SFHT of D and 〈∼ p4, f4, p5〉 is
an SFHT of D and 〈∼ p5, f5, p6〉 is an SFHT of D and 〈∼ p6, f6, p7〉 is
an SFHT of D and 〈∼ p7, f7, p8〉 is an SFHT of D and 〈∼ p8, f8, p9〉 is
an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7, f8), p9〉 is
an SFHT of D. The theorem is a consequence of (1).

Let us considerD, f1, f2, f3, f4, f5, f6, f7, f8, and f9. The functor PP-composi-
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tion(f1, f2, f3, f4, f5, f6, f7, f8, f9) yielding a binominative function of D is defi-
ned by the term

(Def. 3) PP-composition(f1, f2, f3, f4, f5, f6, f7, f8) • f9.
Now we state the proposition:

(3) Unconditional composition rule for 9 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D
and 〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and
〈p5, f5, p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈p7, f7,
p8〉 is an SFHT of D and 〈p8, f8, p9〉 is an SFHT of D and 〈p9, f9, p10〉
is an SFHT of D and 〈∼ p2, f2, p3〉 is an SFHT of D and 〈∼ p3, f3, p4〉
is an SFHT of D and 〈∼ p4, f4, p5〉 is an SFHT of D and 〈∼ p5, f5, p6〉
is an SFHT of D and 〈∼ p6, f6, p7〉 is an SFHT of D and 〈∼ p7, f7, p8〉
is an SFHT of D and 〈∼ p8, f8, p9〉 is an SFHT of D and 〈∼ p9, f9, p10〉
is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9),
p10〉 is an SFHT of D. The theorem is a consequence of (2).

Let us consider D, f1, f2, f3, f4, f5, f6, f7, f8, f9, and f10. The functor
PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10) yielding a binominative func-
tion of D is defined by the term

(Def. 4) PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9) • f10.
Now we state the propositions:

(4) Unconditional composition rule for 10 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D and
〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and 〈p5, f5,
p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈p7, f7, p8〉 is
an SFHT ofD and 〈p8, f8, p9〉 is an SFHT ofD and 〈p9, f9, p10〉 is an SFHT
of D and 〈p10, f10, p11〉 is an SFHT of D and 〈∼ p2, f2, p3〉 is an SFHT of
D and 〈∼ p3, f3, p4〉 is an SFHT of D and 〈∼ p4, f4, p5〉 is an SFHT of
D and 〈∼ p5, f5, p6〉 is an SFHT of D and 〈∼ p6, f6, p7〉 is an SFHT of
D and 〈∼ p7, f7, p8〉 is an SFHT of D and 〈∼ p8, f8, p9〉 is an SFHT of
D and 〈∼ p9, f9, p10〉 is an SFHT of D and 〈∼ p10, f10, p11〉 is an SFHT
of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10), p11〉 is
an SFHT of D. The theorem is a consequence of (3).

(5) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, p2〉 is an SFHT of D.
Then 〈p1, f1 • f2, p2〉 is an SFHT of D.

(6) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, p2〉 is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3), p2〉
is an SFHT of D. The theorem is a consequence of (5).

(7) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, p2〉 is an SFHT of D. Then
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〈p1,PP-composition(f1, f2, f3, f4), p2〉 is an SFHT of D. The theorem is
a consequence of (6).

(8) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and 〈q4,
f5, p2〉 is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5), p2〉 is
an SFHT of D. The theorem is a consequence of (7).

(9) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and
〈q4, f5, q5〉 is an SFHT of D and 〈q5, f6, p2〉 is an SFHT of D. Then 〈p1,
PP-composition(f1, f2, f3, f4, f5, f6), p2〉 is an SFHT of D. The theorem is
a consequence of (8).

(10) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and 〈q4,
f5, q5〉 is an SFHT of D and 〈q5, f6, q6〉 is an SFHT of D and 〈q6, f7, p2〉
is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7), p2〉 is
an SFHT of D. The theorem is a consequence of (9).

(11) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and
〈q4, f5, q5〉 is an SFHT of D and 〈q5, f6, q6〉 is an SFHT of D and 〈q6,
f7, q7〉 is an SFHT of D and 〈q7, f8, p2〉 is an SFHT of D. Then 〈p1,
PP-composition(f1, f2, f3, f4, f5, f6, f7, f8), p2〉 is an SFHT of D. The the-
orem is a consequence of (10).

(12) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and
〈q4, f5, q5〉 is an SFHT of D and 〈q5, f6, q6〉 is an SFHT of D and 〈q6,
f7, q7〉 is an SFHT of D and 〈q7, f8, q8〉 is an SFHT of D and 〈q8, f9, p2〉
is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9),
p2〉 is an SFHT of D. The theorem is a consequence of (11).

(13) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of
D and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D
and 〈q4, f5, q5〉 is an SFHT of D and 〈q5, f6, q6〉 is an SFHT of D and
〈q6, f7, q7〉 is an SFHT of D and 〈q7, f8, q8〉 is an SFHT of D and 〈q8,
f9, q9〉 is an SFHT of D and 〈q9, f10, p2〉 is an SFHT of D. Then 〈p1,
PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10), p2〉 is an SFHT of D.
The theorem is a consequence of (12).

Let us consider D and fD. Assume 0 < len fD. The functor PP-composition-
Seq(fD) yielding a finite sequence of elements of D→̇D is defined by

(Def. 5) len it = len fD and it(1) = fD(1) and for every natural number n such
that 1 ¬ n < len fD holds it(n+ 1) = it(n) • fD(n+ 1).
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The functor PP-composition(fD) yielding a binominative function of D is
defined by the term

(Def. 6) (PP-compositionSeq(fD))(len PP-compositionSeq(fD)).

Let us consider fB. We say that fD and fB are composable if and only if

(Def. 7) 1 ¬ len fD and len fB = len fD + 1 and for every n such that 1 ¬ n ¬
len fD holds 〈fB(n), fD(n), fB(n + 1)〉 is an SFHT of D and for every n
such that 2 ¬ n ¬ len fD holds 〈∼ fB(n), fD(n), fB(n+ 1)〉 is an SFHT of
D.

Now we state the proposition:

(14) Composition rule for sequences of programs:
Suppose fD and fB are composable. Then 〈fB(1),PP-composition(fD),
fB(len fB)〉 is an SFHT of D.
Proof: Set G = PP-compositionSeq(fD). Define P[natural number] ≡ if
1 ¬ $1 ¬ len fD, then 〈fB(1), G($1), fB($1 + 1)〉 is an SFHT of D. For
every natural number k such that P[k] holds P[k + 1]. For every natural
number k, P[k]. �

2. Values and Locations Validation

Let us consider V and A. Let val be a finite sequence. The functor ⇒
(V,A, val) yielding a finite sequence of elements of NDSC(V,A)→̇NDSC(V,A) is
defined by

(Def. 8) len it = len val and for every natural number n such that 1 ¬ n ¬ len it
holds it(n) = val(n)⇒a.

Let us consider loc. Assume len val > 0. Let p be a partial predicate over
simple-named complex-valued nominative data of V andA. The functor ScPsuper-
posSeq(loc, val, p) yielding a finite sequence of elements of NDSC(V,A)→̇Boolean
is defined by

(Def. 9) len it = len val and it(1) = SP(p, val(len val) ⇒a, loc/ len val) and for
every natural number n such that 1 ¬ n < len it holds it(n + 1) =
SP(it(n), val(len val − n)⇒a, loc/ len val−n).

Now we state the proposition:

(15) Let us consider a non zero natural number z2, and a z2-element finite
sequence val. Suppose loc, val and z2 are correct w.r.t. d1 and 1 ¬ n ¬
len LocalOverlapSeq(A, loc, val, d1, z2) and 1 ¬ m ¬ len LocalOverlapSeq
(A, loc, val, d1, z2). Then (LocalOverlapSeq(A, loc, val, d1, z2))(n) ∈ dom
(val(m)⇒a).
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Let us consider V , A, inp, and d. Let val be a finite sequence. We say that
inp is a valid input of V , A, val and d if and only if

(Def. 10) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and val is valid w.r.t. d1 and for every natural number n such that
1 ¬ n ¬ len inp holds d1(val(n)) = inp(n).

The functor ValInp(V,A, val, inp) yielding a partial predicate over simple-
named complex-valued nominative data of V and A is defined by

(Def. 11) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if inp is a valid input of V , A, val and d, then it(d) = true and if inp is
not a valid input of V , A, val and d, then it(d) = false.

Observe that ValInp(V,A, val, inp) is total.
Let us consider d. Let Z, res be finite sequences. We say that res is a valid

output of V , A, Z and d if and only if

(Def. 12) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and Z is valid w.r.t. d1 and for every natural number n such that
1 ¬ n ¬ lenZ holds d1(Z(n)) = res(n).

Let Z, res be objects. The functor ValOut(V,A,Z, res) yielding a partial
predicate over simple-named complex-valued nominative data of V and A is
defined by

(Def. 13) dom it = {d, where d is a nominative data with simple names from V
and complex values from A : d ∈ dom(Z ⇒a)} and for every object d such
that d ∈ dom it holds if 〈res〉 is a valid output of V , A, 〈Z〉 and d, then
it(d) = true and if 〈res〉 is not a valid output of V , A, 〈Z〉 and d, then
it(d) = false.

Now we state the propositions:

(16) Let us consider a z2-element finite sequence val. Suppose loc, val and z2
are correct w.r.t. d1 and d = (LocalOverlapSeq(A, loc, val, d1, z2))(z2 − 1)

and 2 ¬ n + 1 < z2 and d∇(loc/ len val)a (val(len val) ⇒a)(d) ∈ dom p. Then

(LocalOverlapSeq(A, loc, val, d1, z2))(z2−n−1)∇(loc/ len val−n)a (val(len val−
n)⇒a)((LocalOverlapSeq(A, loc, val, d1, z2))(z2−n−1)) ∈ dom((ScPsuper
posSeq(loc, val, p))(n)).
Proof: Set S = ScPsuperposSeq(loc, val, p). Set L = LocalOverlapSeq(A,

loc, val, d1, z2). Define F(natural number) = L(z2 − $1 − 1)∇(loc/ len val−$1 )a

(val(len val − $1) ⇒a)(L(z2 − $1 − 1)). Define P[natural number] ≡ if
2 ¬ $1 + 1 < z2, then F($1) ∈ dom(S($1)). For every natural number k
such that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(17) Let us consider a z2-element finite sequence val. Suppose loc, val and z2
are correct w.r.t. d1 and d = (LocalOverlapSeq(A, loc, val, d1, z2))(z2 −
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1) and d∇(loc/ len val)a (val(len val) ⇒a)(d) ∈ dom p. Let us consider na-
tural numbers m, n. Suppose 1 ¬ m < z2 and 1 ¬ n < z2. Then
((ScPsuperposSeq(loc, val, p))(m))((LocalOverlapSeq(A, loc, val, d1, z2))
(z2 −m)) = (ScPsuperposSeq(loc, val, p))(n)((LocalOverlapSeq(A, loc,
val, d1, z2))(z2 − n)).
Proof: Set S = ScPsuperposSeq(loc, val, p). Set L = LocalOverlapSeq(A,
loc, val, d1, z2). Define P[natural number] ≡ if 1 ¬ $1 < z2, then (S(m))(L
(z2−m)) = S($1)(L(z2− $1)). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(18) Let us consider a z2-element finite sequence val, objects d4, d5, and
a natural number N1. Suppose N1 = z2 − 2. Suppose loc, val and z2 are
correct w.r.t. d1 and d4 = (LocalOverlapSeq(A, loc, val, d1, z2))(z2−1) and

d4∇
(loc/ len val)
a (val(len val)⇒a)(d4) ∈ dom p and d5 = (LocalOverlapSeq(A,

loc, val, d1, z2))(N1)∇
(loc/N1+1)
a (val(N1 + 1)⇒a)((LocalOverlapSeq(A, loc,

val, d1, z2))(N1)) and d5∇
(loc/ len val)
a (val(len val) ⇒a)(d5) ∈ dom p. Then

((ScPsuperposSeq(loc, val, p))(1))((LocalOverlapSeq(A, loc, val, d1, z2))(z2−
1)) = p((LocalOverlapSeq(A, loc, val, d1, z2))(z2)). The theorem is a con-
sequence of (15).

(19) Let us consider a z2-element finite sequence val, and a partial predicate
over simple-named complex-valued nominative data p of V and A. Suppose
3 ¬ z2 and loc, val and z2 are correct w.r.t. d1 and (LocalOverlapSeq(A, loc,

val, d1, z2))(z2 − 1)∇(loc/ len val)a (val(len val)⇒a)((LocalOverlapSeq(A, loc,

val, d1, z2))(z2−1)) ∈ dom p and d1∇
(loc/1)
a (val(1)⇒a)(d1) ∈ dom((ScPsu-

perposSeq(loc, val, p))(z2−1)). Then ((ScPsuperposSeq(loc, val, p))(len Sc-
PsuperposSeq(loc, val, p)))(d1) = (SP((ScPsuperposSeq(loc, val, p))(z2 −
2), val(2) ⇒a, loc/2))((LocalOverlapSeq(A, loc, val, d1, z2))(1)). The the-
orem is a consequence of (16) and (17).

3. Sequences of Local Overlappings

Let us consider V , A, loc, d1, and pos. Let prg be a (FPrg(NDSC(V,A)))-
valued finite sequence. Assume len prg > 0. The functor PrgLocOverlapSeq(A,
loc, d1, prg, pos) yielding a finite sequence of elements of NDSC(V,A) is defined
by

(Def. 14) len it = len prg and it(1) = d1∇
(loc/pos(1))
a prg(1)(d1) and for every natural

number n such that:
1 ¬ n < len it holds it(n+ 1) = it(n)∇(loc/pos(n+1))a prg(n+ 1)(it(n)).

Let us consider prg. Note that PrgLocOverlapSeq(A, loc, d1, prg, pos) is (V,A)-
nonatomicND yielding.
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Let us consider n. One can verify that (PrgLocOverlapSeq(A, loc, d1, prg, pos))
(n) is function-like and relation-like.
We say that prg is domain closed w.r.t. loc, d1 and pos if and only if

(Def. 15) for every natural number n such that 1 ¬ n < len prg holds
(PrgLocOverlapSeq(A, loc, d1, prg, pos))(n) ∈ dom(prg(n+ 1)).

Now we state the proposition:

(20) Suppose 1 ¬ n ¬ len prg and (PrgLocOverlapSeq(A, loc, d1, prg, pos))(m)
∈ dom(prg(n)). Then prg(n)((PrgLocOverlapSeq(A, loc, d1, prg, pos))(m))
is a nominative data with simple names from V and complex values from
A.

Let us consider a natural number n. Now we state the propositions:

(21) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A. Then suppose 1 ¬ n < len prg and (PrgLocOverlapSeq(A, loc, d1,
prg, pos))(n) ∈ dom(prg(n+1)). Then dom((PrgLocOverlapSeq(A, loc, d1,
prg, pos))(n+1)) = {loc/pos(n+1)}∪dom((PrgLocOverlapSeq(A, loc, d1, prg,
pos))(n)). The theorem is a consequence of (20).

(22) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A. Then suppose 1 ¬ n < len prg and (PrgLocOverlapSeq(A, loc, d1,
prg, pos))(n) ∈ dom(prg(n+1)). Then dom((PrgLocOverlapSeq(A, loc, d1,
prg, pos))(n)) ⊆ dom((PrgLocOverlapSeq(A, loc, d1, prg, pos))(n+1)). The
theorem is a consequence of (21).

(23) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and dom(PrgLocOverlapSeq(A, loc, d1, prg, pos)) ⊆ dom prg and
d1 ∈ dom(prg(1)) and prg is domain closed w.r.t. loc, d1 and pos. Then if
1 ¬ n ¬ len prg, then dom d1 ⊆ dom((PrgLocOverlapSeq(A, loc, d1, prg,
pos))(n)).
Proof: Set F = PrgLocOverlapSeq(A, loc, d1, prg, pos). Define P[natural
number] ≡ if 1 ¬ $1 ¬ len prg, then dom d1 ⊆ dom(F ($1)). For every
natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

Let us consider natural numbers m, n. Now we state the propositions:

(24) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and prg is domain closed w.r.t. loc, d1 and pos. Then suppose 1 ¬
n ¬ m ¬ len prg. Then dom((PrgLocOverlapSeq(A, loc, d1, prg, pos))(n)) ⊆
dom((PrgLocOverlapSeq(A, loc, d1, prg, pos))(m)). The theorem is a con-
sequence of (22).

(25) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and dom(PrgLocOverlapSeq(A, loc, d1, prg, pos)) ⊆ dom prg and
d1 ∈ dom(prg(1)) and prg is domain closed w.r.t. loc, d1 and pos. Then if
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1 ¬ n ¬ m ¬ len prg, then loc/pos(n) ∈ dom((PrgLocOverlapSeq(A, loc, d1,
prg, pos))(m)). The theorem is a consequence of (24).
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