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Functional Sequence in Norm Space

Hiroshi Yamazaki
Nagano Prefectural Institute of Technology

Nagano, Japan

Summary. In this article, we formalize in Mizar [1], [2] functional sequ-
ences and basic operations on functional sequences in norm space based on [5].
In the first section, we define functional sequence in norm space. In the second
section, we define pointwise convergence and prove some related theorems. In the
last section we define uniform convergence and limit of functional sequence.
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1. Preliminaries

From now on D denotes a non empty set, D1, D2, x, y, Z denote sets, n, k
denote natural numbers, p, x1, r denote real numbers, f denotes a function, Y
denotes a real normed space, and G, H, H1, H2, J denote sequences of partial
functions from D into the carrier of Y.

Now we state the proposition:

(1) f is a sequence of partial functions fromD1 intoD2 if and only if dom f =
N and for every x such that x ∈ N holds f(x) is a partial function from
D1 to D2.
Proof: If f is a sequence of partial functions from D1 into D2, then
dom f = N and for every x such that x ∈ N holds f(x) is a partial function
from D1 to D2 by [3, (46)]. �

Let us consider D. Let Y be a non empty normed structure, H be a sequence
of partial functions from D into the carrier of Y, and r be a real number. The
functor r ·H yielding a sequence of partial functions from D into the carrier of
Y is defined by

c© 2020 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)263

https://content.sciendo.com/view/journals/forma/forma-overview.xml
http://zbmath.org/classification/?q=cc:46A19
http://zbmath.org/classification/?q=cc:46A32
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/seqfunc2.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


264 hiroshi yamazaki

(Def. 1) for every natural number n, it(n) = r ·H(n).

Let Y be a real normed space. The functor −H yielding a sequence of partial
functions from D into the carrier of Y is defined by

(Def. 2) for every natural number n, it(n) = −H(n).

One can verify that the functor is involutive.
Let Y be a non empty normed structure. The functor ‖H‖ yielding a sequ-

ence of partial functions from D into R is defined by

(Def. 3) for every natural number n, it(n) = ‖H(n)‖.
Let G, H be sequences of partial functions from D into the carrier of Y. The

functor G +H yielding a sequence of partial functions from D into the carrier
of Y is defined by

(Def. 4) for every natural number n, it(n) = G(n) +H(n).

Let Y be a real normed space. The functor G − H yielding a sequence of
partial functions from D into the carrier of Y is defined by the term

(Def. 5) G+−H.

Now we state the propositions:

(2) H1 = G−H if and only if for every n, H1(n) = G(n)−H(n).
Proof: If H1 = G − H, then for every n, H1(n) = G(n) − H(n) by [7,
(25)]. �

(3) (i) G+H = H +G, and

(ii) (G+H) + J = G+ (H + J).

(4) −H = (−1) ·H.

(5) (i) r · (G+H) = r ·G+ r ·H, and

(ii) r · (G−H) = r ·G− r ·H.
The theorem is a consequence of (2).

(6) r · p ·H = r · (p ·H).

(7) 1 ·H = H.

(8) ‖r ·H‖ = |r| · ‖H‖.

2. Pointwise Convergence

In the sequel x denotes an element of D, X denotes a set, S1, S2 denote
sequences of Y, and f denotes a partial function from D to the carrier of Y.

Let us consider D. Let Y be a non empty normed structure and H be
a sequence of partial functions from D into the carrier of Y. Let us consider x.
The functor H#x yielding a sequence of the carrier of Y is defined by

(Def. 6) for every n, it(n) = H(n)/x.
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Let us consider Y, H, and X. We say that H is point-convergent on X if
and only if

(Def. 7) X is common for elements of H and there exists f such that X = dom f
and for every x such that x ∈ X for every p such that p > 0 there exists
k such that for every n such that n ­ k holds ‖H(n)/x − f/x‖ < p.

Now we state the propositions:

(9) H is point-convergent on X if and only if X is common for elements
of H and there exists f such that X = dom f and for every x such that
x ∈ X holds H#x is convergent and lim(H#x) = f(x).

(10) H is point-convergent on X if and only if X is common for elements of
H and for every x such that x ∈ X holds H#x is convergent.
Proof: Define X [set] ≡ $1 ∈ X. Define U(element ofD) = (lim(H#$1))(∈
(the carrier of Y )). Consider f such that for every x, x ∈ dom f iff X [x]
and for every x such that x ∈ dom f holds f(x) = U(x) from [4, Sch. 3].
If H is point-convergent on X, then X is common for elements of H and
for every x such that x ∈ X holds H#x is convergent. �

3. Uniform Convergence and Limit of Functional Sequence

Let us consider D, Y, H, and X. We say that H is uniform-convergent on
X if and only if

(Def. 8) X is common for elements of H and there exists f such that X = dom f
and for every p such that p > 0 there exists k such that for every n and x
such that n ­ k and x ∈ X holds ‖H(n)/x − f/x‖ < p.

Assume H is point-convergent on X. The functor limXH yielding a partial
function from D to the carrier of Y is defined by

(Def. 9) dom it = X and for every x such that x ∈ dom it holds it(x) = lim(H#x).

Now we state the propositions:

(11) Suppose H is point-convergent on X. Then f = limXH if and only if
dom f = X and for every x such that x ∈ X for every p such that p > 0
there exists k such that for every n such that n ­ k holds ‖H(n)/x−f/x‖ <
p. The theorem is a consequence of (10).

(12) If H is uniform-convergent on X, then H is point-convergent on X.

(13) If Z ⊆ X and Z 6= ∅ and X is common for elements of H, then Z is
common for elements of H.

(14) Suppose Z ⊆ X and Z 6= ∅ and H is point-convergent on X. Then

(i) H is point-convergent on Z, and
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(ii) limXH�Z = limZH.

The theorem is a consequence of (13).

(15) If Z ⊆ X and Z 6= ∅ and H is uniform-convergent on X, then H is
uniform-convergent on Z. The theorem is a consequence of (13).

Let us consider a set x. Now we state the propositions:

(16) If X is common for elements of H, then if x ∈ X, then {x} is common
for elements of H.

(17) If H is point-convergent on X, then if x ∈ X, then {x} is common for
elements of H.

(18) Suppose {x} is common for elements of H1 and common for elements of
H2. Then

(i) H1#x+H2#x = (H1 +H2)#x, and

(ii) H1#x−H2#x = (H1 −H2)#x.

The theorem is a consequence of (2).

In the sequel x denotes an element of D.

(19) Suppose {x} is common for elements of H. Then

(i) ‖H‖#x = ‖H#x‖, and

(ii) (−H)#x = (−1) · (H#x).

(20) If {x} is common for elements of H, then (r ·H)#x = r · (H#x).

(21) Suppose X is common for elements of H1 and common for elements of
H2. If x ∈ X, then H1#x+H2#x = (H1 +H2)#x and H1#x−H2#x =
(H1 −H2)#x. The theorem is a consequence of (16) and (18).

(22) Suppose {x} is common for elements of H. Then

(i) ‖H‖#x = ‖H#x‖, and

(ii) (−H)#x = (−1) · (H#x).

Let us consider x. Now we state the propositions:

(23) If X is common for elements of H, then if x ∈ X, then (r · H)#x =
r · (H#x). The theorem is a consequence of (16) and (20).

(24) Suppose H1 is point-convergent on X and H2 is point-convergent on X.
Then if x ∈ X, then H1#x+H2#x = (H1+H2)#x and H1#x−H2#x =
(H1 −H2)#x.

(25) Suppose {x} is common for elements of H. Then

(i) ‖H‖#x = ‖H#x‖, and

(ii) (−H)#x = (−1) · (H#x).
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(26) If H is point-convergent on X, then for every x such that x ∈ X holds
(r ·H)#x = r · (H#x).

(27) If X is common for elements of H1 and common for elements of H2,
then X is common for elements of H1 +H2 and common for elements of
H1 −H2. The theorem is a consequence of (2).

(28) If X is common for elements of H, then X is common for elements of
‖H‖ and common for elements of −H.

(29) If X is common for elements of H, then X is common for elements of
r ·H.

(30) Suppose H1 is point-convergent on X and H2 is point-convergent on X.
Then

(i) H1 +H2 is point-convergent on X, and

(ii) limX(H1 +H2) = limXH1 + limXH2, and

(iii) H1 −H2 is point-convergent on X, and

(iv) limX(H1 −H2) = limXH1 − limXH2.

The theorem is a consequence of (10), (21), and (27).

(31) Suppose H is point-convergent on X. Then

(i) ‖H‖ is point-convergent on X, and

(ii) limX‖H‖ = ‖limXH‖, and

(iii) −H is point-convergent on X, and

(iv) limX(−H) = −limXH.

The theorem is a consequence of (16), (10), (19), and (28).

(32) If H is point-convergent on X, then r ·H is point-convergent on X and
limX(r ·H) = r · limXH. The theorem is a consequence of (10), (23), and
(29).

(33) H is uniform-convergent on X if and only if X is common for elements
of H and H is point-convergent on X and for every r such that 0 < r
there exists k such that for every n and x such that n ­ k and x ∈ X
holds ‖H(n)/x − (limXH)/x‖ < r. The theorem is a consequence of (12)
and (11).

From now on V , W denote real normed spaces and H denotes a sequence of
partial functions from the carrier of V into the carrier of W .

Now we state the proposition:

(34) If H is uniform-convergent on X and for every n, H(n)�X is continuous
on X, then limXH is continuous on X.
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Proof: Set l = limXH. H is point-convergent on X. For every point x0
of V such that x0 ∈ X holds l�X is continuous in x0 by [6, (62)], (33),
(11), [6, (61)]. �
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