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Summary. In [6], [7] we presented a formalization of Kronecker’s construc-
tion of a field extension of a field F' in which a given polynomial p € F[X|\F
has a root [4], [B], [3]. As a consequence for every field F' and every polynomial
there exists a field extension E of F' in which p splits into linear factors. It is
well-known that one gets the smallest such field extension — the splitting field of
p — by adjoining the roots of p to F.

In this article we start the Mizar formalization [I], [2] towards splitting fields:
we define ring and field adjunctions, algebraic elements and minimal polynomials
and prove a number of facts necessary to develop the theory of splitting fields, in
particular that for an algebraic element a over F' a basis of the vector space F(a)

n—1

over F is given by a°,...,a" !, where n is the degree of the minimal polynomial

of a over F'.
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1. PRELIMINARIES

Now we state the proposition:

(1) Let us consider a ring R. Then R is degenerated if and only if the carrier
of R = {0 R}.

(© 2020 University of Bialystok
251 CC-BY-SA License ver. 3.0 or later
ISSN 1426-2630(Print), 1898-9934(Online)


https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0001-9587-8737
http://zbmath.org/classification/?q=cc:12F05
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/field_6.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

252 CHRISTOPH SCHWARZWELLER

Let F be a field. Note that {Op}-ideal is maximal.
Let R be a non degenerated, non almost left invertible commutative ring.
Let us note that {Og}-ideal is non maximal.
Let R be a ring. We say that R has a subfield if and only if
(Def. 1) there exists a field F' such that F' is a subring of R.
Observe that there exists a ring which has a subfield.
Let R be a ring which has a subfield.
A subfield of R is a field defined by
(Def. 2) it is a subring of R.
Now we state the proposition:

(2) Let us consider a non degenerated ring R, and a non zero polynomial p
over R. Then p(degp) = LCp.
Let R be a non degenerated ring and p be a non zero polynomial over R.
One can verify that LM(p) is non zero.
Let us consider a ring R and a polynomial p over R. Now we state the
propositions:
(3) degLM(p) = degp.
(4) LCLM(p) =LCp.
(5) Let us consider a non degenerated ring R, and a non zero polynomial p
over R. Then deg(p — LM(p)) < degp. The theorem is a consequence of
(2), (3), and (4).
(6) Let us consider a ring R, a polynomial p over R, and a natural number
i. Then ((Og,1g) *p)(i + 1) = p(4).
(7) Let us consider a ring R, and a polynomial p over R. Then ((Og, 1g) *
p)(0) = Or.
(8) Let us consider an integral domain R, and a non zero polynomial p over
R. Then deg((Ogr, 1g) *p) = degp + 1.
(9) Let us consider a commutative ring R, a polynomial p over R, and an ele-
ment a of R. Then eval((Ogr, 1gr) * p,a) = a - (eval(p,a)). The theorem is
a consequence of (1).
(10) Let us consider a ring R, a ring extension S of R, an element p of
the carrier of PolyRing(R), an element a of R, and an element b of S. If
b = a, then ExtEval(p,b) = eval(p, a).
(11) Let us consider a field F', an element p of the carrier of PolyRing(F),
an extension E of F', an F-extending extension K of F, an element a of
E, and an element b of K. If a = b, then ExtEval(p, a) = ExtEval(p, b).
Let L be a non empty zero structure, a, b be elements of L, f be a (the carrier
of L)}valued function, and z, y be objects. Observe that f+-[z — a,y —— b] is
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(the carrier of L)valued.
Let f be a finite-Support sequence of L. One can verify that f+:[z ——
a,y — b] is finite-Support as a sequence of L.

2. ON SUBRINGS AND SUBFIELDS

Now we state the propositions:

(12) Let us consider strict rings Ry, Re. Suppose R; is a subring of R and
Ry is a subring of Ry. Then R; = R».

(13) Let us consider a ring S, and subrings Ry, Ry of S. Then R; is a subring
of Ry if and only if the carrier of Ry C the carrier of Rs.

(14) Let us consider a ring S, and strict subrings Ry, Ry of S. Then Ry =
Ry if and only if the carrier of Ry = the carrier of Rs. The theorem is
a consequence of (13) and (12).

Let us consider a ring .S, a subring R of S, elements x, y of S, and elements
x1, y1 of R. Now we state the propositions:

(15) Ifx =21 and y = y1, then z +y = z1 + Y.

(16) If x =21 and y = y1, then z -y = x1 - y1.

(17) Let us consider a ring S, a subring R of S, an element z of S, and an ele-
ment z1 of R. If x = x1, then —z = —x1. The theorem is a consequence
of (15).

(18) Let us consider a field E, a subfield F' of E, a non zero element x of

1

E, and an element z1 of F. If x = x1, then 27! = 217 !. The theorem is

a consequence of (16).

(19) Let us consider a ring S, a subring R of S, an element = of S, an element
x1 of R, and an element n of N. If z = z1, then 2" = x1™.
PROOF: Define P[natural number| = for every element = of S for every
element x1 of R such that x = z1 holds % = a:1$1. For every natural
number k, P[k]. O

(20) Let us consider a ring S, a subring R of S, elements z1, x2 of S, and
elements y1, y2 of R. Suppose x1 = y; and xo = yo. Then (x1,x9) =
(y1,Y2)-

(21) Let us consider a commutative ring R, a commutative ring extension S
of R, elements x1, xo of S, elements y;, yo of R, and an element n of N.
Suppose x1 = y; and xy = yo. Then (x1,22)" = (y1, y2)".

(22) Let us consider an integral domain R, a domain ring extension S of R,
a non zero element n of N, and an element a of S.

Then ExtEval({Ogr, 1g)™, a) = a™. The theorem is a consequence of (21).



254 CHRISTOPH SCHWARZWELLER

(23) Let us consider a ring R, a ring extension S of R, an element a of R,
and an element b of S. If ¢ = b, then a[R = b[S.

(24) Let us consider a field F', an extension E of F', an element p of the carrier
of PolyRing(F), and an element ¢ of the carrier of PolyRing(FE). If p = ¢,
then NormPoly p = NormPoly q. The theorem is a consequence of (18)
and (16).

(25) Let us consider a field F', an extension E of F', an element p of the carrier
of PolyRing(F'), and an element a of E. Then ExtEval(p,a) = Og if and
only if ExtEval(NormPolyp,a) = 0g. The theorem is a consequence of
(24).

(26) Let us consider a ring R, a ring extension S of R, an element a of S,
and a polynomial p over R. Then ExtEval(—p,a) = —ExtEval(p,a). The
theorem is a consequence of (17).

(27) Let us consider a ring R, a ring extension S of R, an element a of S,
and polynomials p, ¢ over R. Then ExtEval(p — ¢,a) = ExtEval(p,a) —
ExtEval(g, a). The theorem is a consequence of (26).

(28) Let us consider a ring R, a ring extension S of R, an element a of S, and
a constant polynomial p over R. Then ExtEval(p,a) = LCp.

(29) Let us consider a non degenerated ring R, a ring extension S of R,

elements a, b of S, and a non zero polynomial p over R. Suppose b = LC p.
Then ExtEval(Leading-Monomial p,a) = b - (a9°8?).

3. RING AND FIELD ADJUNCTIONS

Let R be a ring, S be a ring extension of R, and 7" be a subset of S. The
functor /\(R,T) yielding a non empty subset of S is defined by the term
(Def. 3) {z, where z is an element of S : for every subring U of S such that R is
a subring of U and T is a subset of U holds = € U}.

The functor RingAdjunction(R,T) yielding a strict double loop structure is
defined by

(Def. 4) the carrier of it = /\(R,T) and the addition of it = (the addition of
S) T /\(R,T) and the multiplication of ¢t = (the multiplication of S) |
/\(R,T) and the one of it = 1g and the zero of it = Og.

We introduce the notation RAdj(R, T') as a synonym of RingAdjunction(R, T).

One can check that RAdj(R,T') is non empty.

Let R be a non degenerated ring. Let us observe that RAdj(R,T") is non
degenerated.
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Let R be a ring. Observe that RAdj(R,T) is Abelian, add-associative, right
zeroed, and right complementable.

Let R be a commutative ring and S be a commutative ring extension of R.
One can check that RAdj(R,T) is commutative.

Let R be a ring and S be a ring extension of R. Let us observe that
RAdj(R,T) is associative, well unital, and distributive.

Now we state the propositions:

(30) Let us consider a ring R, and a ring extension S of R. Then every subset
T of S is a subset of RAdj(R,T).

(31) Let us consider a ring R, a ring extension S of R, and a subset T" of S.
Then R is a subring of RAdj(R,T).

(32) Let us consider a ring R, a ring extension S of R, a subset T" of S, and
a subring U of S. Suppose R is a subring of U and T is a subset of U.
Then RAdj(R,T) is a subring of U.

(33) Let us consider a strict ring R, a ring extension S of R, and a subset T’
of S. Then RAdj(R,T) = R if and only if T is a subset of R. The theorem
is a consequence of (30).

Let R be a ring, S be a ring extension of R, and T be a subset of S. Let
us note that the functor RAdj(R, T) yields a strict subring of S. One can check
that RAdj(R,T) is R-extending.

Let F be a field, R be a ring extension of F', and 7" be a subset of R. Let us
note that RAdj(F,T') has a subfield.

Now we state the proposition:

(34) Let us consider a field F, a ring extension R of F, and a subset T' of R.
Then F'is a subfield of RAdj(F,T"). The theorem is a consequence of (31).

Let F be a field, E¥ be an extension of F', and T be a subset of E. The functor
/\(F,T) yielding a non empty subset of E is defined by the term

(Def. 5) {z, where z is an element of E : for every subfield U of E such that F'
is a subfield of U and T is a subset of U holds z € U}.

The functor FieldAdjunction(F, T') yielding a strict double loop structure is
defined by

(Def. 6) the carrier of it = /\(F,T") and the addition of it = (the addition of
E) | /\(F,T) and the multiplication of it = (the multiplication of E) [
/\(F,T) and the one of it = 1g and the zero of it = Of.

We introduce the notation FAdj(F, T) as a synonym of Field Adjunction(F, T").
One can check that FAdj(F,T) is non degenerated and FAdj(F,T) is Abelian,
add-associative, right zeroed, and right complementable and Field Adjunction(F,
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T) is commutative, associative, well unital, distributive, and almost left in-
vertible.
Now we state the propositions:

(35) Let us consider a field F', and an extension E of F. Then every subset
T of E is a subset of FAdj(F,T).

(36) Let us consider a field F', an extension E of F, and a subset T of E.
Then F' is a subfield of FAdj(F,T).

(37) Let us consider a field F', an extension E of F', a subset T" of F, and
a subfield U of E. Suppose F' is a subfield of U and T is a subset of U.
Then FAdj(F,T) is a subfield of U.

(38) Let us consider a strict field F, an extension F of F, and a subset T of
E. Then FAdj(F,T) = F if and only if T is a subset of F'. The theorem is
a consequence of (35).

Let F' be a field, E be an extension of F', and T be a subset of E. Let us
observe that the functor FAdj(F,T) yields a strict subfield of E. Let us note
that FAdj(F,T) is F-extending.

Let us consider a field F', an extension E of F, and a subset T" of E. Now

we state the propositions:
(39) RAdj(F,T) is a subring of FAdj(F,T).
(40) RAdj(F,T) = FAdj(F,T) if and only if RAdj(F,T) is a field. The the-
orem is a consequence of (31), (30), (37), (39), and (12).

4. ALGEBRAIC ELEMENTS

Let R be a non degenerated commutative ring, S be a commutative ring
extension of R, and a be an element of S. Observe that HomExtEval(a, R)
is additive, multiplicative, and unity-preserving and every commutative ring
extension of R is (PolyRing(R))-homomorphic.

Let F be a field. Let us note that there exists an extension of F' which is
(PolyRing(F'))-homomorphic.

Let E be an extension of F' and a be an element of E. We say that a is
Falgebraic if and only if

(Def. 7)  ker HomExtEval(a, F') # {OpolyRing(F) }-

We introduce the notation a is F-transcendental as an antonym for a is
Fralgebraic. Now we state the proposition:

(41) Let us consider a ring R, a ring extension S of R, and an element a of
S. Then AnnPoly(a, R) = ker HomExtEval(a, R).
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Let us consider a field F', an extension F of F, and an element a of E. Now
we state the propositions:
(42) a is Fralgebraic if and only if a is integral over F'. The theorem is a con-
sequence of (25).
(43) a is Fralgebraic if and only if there exists a non zero polynomial p over
F such that ExtEval(p,a) = 0. The theorem is a consequence of (42).
Let F be a field and E be an extension of F'. Note that there exists an element
of ¥ which is F-algebraic.
Let us consider a field F', a (PolyRing(F'))-homomorphic extension E of F,
and an element a of . Now we state the propositions:
(44) RAdj(F,{a}) = Im HomExtEval(a, F'). The theorem is a consequence of
(20), (32), and (14).
(45) The carrier of RAdj(F,{a}) = the set of all ExtEval(p,a) where p is
a polynomial over F'. The theorem is a consequence of (44).

5. ON LINEAR COMBINATIONS AND POLYNOMIALS

Now we state the propositions:
(46) Let us consider a field F, a vector space V over F', a subspace W of V|
and a linear combination I; of W. Then there exists a linear combination
l5 of V such that

(i) the support of ly = the support of /3, and
(ii) for every element v of V' such that v € the support of I holds l2(v) =

ll(v).

ProOF: Consider f being a function such that I; = f and dom f =
the carrier of W and rng f C the carrier of F. Define Plelement of
V,element of F] = $; € the support of 1 and $2 = f($;1) or $; ¢
the support of I; and $5 = Op. For every element z of the carrier of V,
there exists an element y of the carrier of F' such that P[z,y]. Consider
g being a function from V into F such that for every element x of V,
Plz, g(z)]. O

(47) Let us consider a field F, an extension E of F, an element a of F,
an element n of N, and a linear combination ! of VecSp(E, F'). Then there
exists a polynomial p over F' such that

(i) degp < n, and
(i) for every element i of N such that i < n holds p(i) = I(a?).
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PRrROOF: Define Plobject, object] = there exists a natural number ¢ such
that i < n and $; =i and $2 = [(a’) or there exists a natural number i
such that ¢ > n and $; = 7 and $5 = Op. For every element x of N, there
exists an element y of the carrier of F' such that P[x,y]. Consider p being
a function from N into the carrier of F' such that for every element x of N,
P[z, p(x)]. For every natural number i such that i < n holds p(i) = I(a’).
For every natural number i such that ¢ > n + 1 holds p(i) = 0p. O

(48) Let us consider a field F', an extension E of F, an element a of E,
an element n of N, a linear combination [ of VecSp(E, F'), and a non
zero polynomial p over F. Suppose [(a%°8P) = LCp and the support of
I = {a%°&P}, Then 3" = ExtEval(LM(p), a). The theorem is a consequence
of (35) and (29).

(49) Let us consider a field F, an extension E of F', an element a of F, an ele-
ment n of N, and a subset M of VecSp(E, F). Suppose M = {a’, where
i is an element of N : ¢ < n} and for every elements i, j of N such that
i < j <nholds a’ # a’. Let us consider a linear combination [ of M, and
a polynomial p over F. Suppose degp < n and for every element ¢ of N
such that ¢ < n holds p(i) = I(a’). Then ExtEval(p,a) = 3.
PROOF: Define P[natural number| = for every linear combination [ of M

such that the support of [ = $; for every polynomial p over F' such that
degp < n and for every element i of N such that i < n holds p(i) = I(a)
holds 1 = ExtEval(p, a). P[0] by [8, (13)]. For every natural number k,
P[k]. Consider n being a natural number such that @ = n, where « is
the support of {. O

6. MINIMAL POLYNOMIALS

Let F be a field, ' be an extension of F', and a be an F-algebraic element
of E. We introduce the notation MinPoly(a, F') as a synonym of the minimal
polynomial of a over F'.

Note that MinPoly(a, F') is monic and irreducible.

Let us consider a field F', an extension E of F', an F-algebraic element a of F,
and an element p of the carrier of PolyRing(F'). Now we state the propositions:

(50) p = MinPoly(a, F') if and only if p is monic and irreducible and ker Hom-
ExtEval(a, F') = {p}-ideal. The theorem is a consequence of (42) and (41).

(51) p = MinPoly(a, F) if and only if p is monic and ExtEval(p,a) = 0 and
for every non zero polynomial ¢ over F' such that ExtEval(q,a) = Og holds
deg p < degq. The theorem is a consequence of (42) and (50).

(52) p = MinPoly(a, F') if and only if p is monic and irreducible and ExtEval(p,
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a) = 0. The theorem is a consequence of (42) and (50).

(53) ExtEval(p,a) = Og if and only if MinPoly(a, ') | p. The theorem is
a consequence of (50) and (51).

(54) Let us consider a field F', an extension E of F', and an F-algebraic element
a of E. Then MinPoly(a, F') = rpoly(1,a) if and only if a € the carrier of
F'. The theorem is a consequence of (10), (52), and (17).

(55) Let us consider a field F', an extension E of F'; an Fralgebraic element a
of E, and elements i, j of N. If i < j < deg MinPoly(a, F), then a’ # a’.
The theorem is a consequence of (7), (6), (17), (52), and (53).

(56) Let us consider a field F', a (PolyRing(F'))-homomorphic extension E of
F', and an element a of E. Then a is Fralgebraic if and only if FAdj(F, {a}) =
RAdj(F,{a}). The theorem is a consequence of (50), (44), and (40).

(57) Let us consider a field F, a (PolyRing(F'))-homomorphic extension E
of F', and a non zero element a of . Then a is Fralgebraic if and only
if a=! € RAdj(F,{a}). The theorem is a consequence of (56), (35), (18),
(45), (17), (28), and (43).

(58) Let us consider a field F', an extension E of F, and an element a of E.
Then a is F-transcendental if and only if RAdj(F, {a}) and PolyRing(F")
are isomorphic. The theorem is a consequence of (44) and (56).

(59) Let us consider a field F', a (PolyRing(F’))-homomorphic extension E of
F', and an Fralgebraic element a of E.

Then PolyRing(F')/{MinPoly(a, F')}-ideal and FAdj(F,{a}) are isomor-
phic. The theorem is a consequence of (50), (44), and (56).

7. A BASIS OF THE VECTOR SPACE VecSp(FAdj(F,{a}), F)

Let F be a field, F be an extension of F', and a be an Fralgebraic element of
E. The functor Base(a) yielding a non empty subset of VecSp(FAdj(F,{a}), F)
is defined by the term
(Def. 8) {a™, where n is an element of N : n < deg MinPoly(a, F')}.
One can verify that Base(a) is finite. Now we state the propositions:

(60) Let us consider a field F', an extension E of F, an F-algebraic element a
of E, and a polynomial p over F'. Then ExtEval(p, a) € Lin(Base(a)). The
theorem is a consequence of (51).

(61) Let us consider a field F', an extension E of F', an Fralgebraic element a
of E, and a linear combination [ of Base(a). Then there exists a polynomial
p over F' such that

(i) degp < degMinPoly(a, F), and
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(ii) for every element ¢ of N such that ¢ < deg MinPoly(a, F) holds p(i) =
I(a?).
The theorem is a consequence of (46) and (47).

(62) Let us consider a field F, an extension F of F', an F-algebraic element
a of F, a linear combination ! of Base(a), and a non zero polynomial p
over F. Suppose [(a9°8P) = LCp and the support of I = {a%®&P}. Then
> 1 = ExtEval(LM(p),a). The theorem is a consequence of (35), (36),
(19), and (29).

(63) Let us consider a field F, an extension E of F', an F-algebraic element
a of E, a linear combination [ of Base(a), and a polynomial p over F.
Suppose degp < deg MinPoly(a, F') and for every element i of N such that
i < deg MinPoly(a, F') holds p(i) = I(a’). Then 3" = ExtEval(p, a).
PROOF: Define Plnatural number| = for every linear combination [ of

Base(a) such that the support of [ = $; for every polynomial p over F
such that degp < degMinPoly(a, F') and for every element ¢ of N such
that i < deg MinPoly(a, F) holds p(i) = I(a*) holds "1 = ExtEval(p,a).
P|0]. For every natural number k, P[k]. Consider n being a natural number
such that @ = n, where « is the support of [. J

(64) Let us consider a field F, an extension E of F', an F-algebraic element

a of E, and a linear combination [ of Base(a). Suppose Y I = Op. Then

! = OLCy,csppaai(r.(ap),r) - The theorem is a consequence of (61), (63), and
(53).

(65) Let us consider a field F, a (PolyRing(F'))-homomorphic extension E
of F, and an Fralgebraic element a of E. Then Base(a) is a basis of
VecSp(FAdj(F, {a}), F'). The theorem is a consequence of (64), (56), (45),
and (60).

Let us consider a field F', an extension F of F, and an F-algebraic element
a of E. Now we state the propositions:

(66) Base(a) = deg MinPoly(a, F).
PROOF: Set m = deg MinPoly(a, F'). Define P[object, object] = there exi-
sts an element x of Segm and there exists an element y of N such that
$ = x and y = x — 1 and $2 = a¥. Consider f being a function such
that dom f = Segm and for every object x such that x € Segm holds
Plz, f(2)]. O

(67) deg(FAdj(F,{a}), F) = deg MinPoly(a, F'). The theorem is a consequen-
ce of (66) and (65).

Let F be a field, ¥ be an extension of F', and a be an F-algebraic element
of E. Let us note that FAdj(F, {a}) is F-finite.
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Now we state the proposition:

(68) Let us consider a field F', an extension E of F', and an element a of E.

(1]

Then a is F-algebraic if and only if FAdj(F, {a}) is F-finite. The theorem
is a consequence of (27), (22), (43), (35), (19), (47), (11), and (49).
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