

Ring and Field Adjunctions, Algebraic Elements and Minimal Polynomials

Christoph Schwarzweller Institute of Informatics University of Gdańsk Poland

Summary. In [6], [7] we presented a formalization of Kronecker's construction of a field extension of a field F in which a given polynomial $p \in F[X] \setminus F$ has a root [4], [5], [3]. As a consequence for every field F and every polynomial there exists a field extension E of F in which p splits into linear factors. It is well-known that one gets the smallest such field extension – the splitting field of p – by adjoining the roots of p to F.

In this article we start the Mizar formalization [1], [2] towards splitting fields: we define ring and field adjunctions, algebraic elements and minimal polynomials and prove a number of facts necessary to develop the theory of splitting fields, in particular that for an algebraic element a over F a basis of the vector space F(a)over F is given by a^0, \ldots, a^{n-1} , where n is the degree of the minimal polynomial of a over F.

MSC: 12F05 68V20

Keywords: ring and field adjunctions; algebraic elements and minimal polynomials

MML identifier: FIELD_6, version: 8.1.10 5.64.1388

1. Preliminaries

Now we state the proposition:

(1) Let us consider a ring R. Then R is degenerated if and only if the carrier of $R = \{0_R\}$.

C 2020 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online) Let F be a field. Note that $\{0_F\}$ -ideal is maximal.

Let R be a non degenerated, non almost left invertible commutative ring. Let us note that $\{0_R\}$ -ideal is non maximal.

Let R be a ring. We say that R has a subfield if and only if

(Def. 1) there exists a field F such that F is a subring of R.

Observe that there exists a ring which has a subfield.

Let R be a ring which has a subfield.

A subfield of R is a field defined by

(Def. 2) it is a subring of R.

Now we state the proposition:

(2) Let us consider a non degenerated ring R, and a non zero polynomial p over R. Then $p(\deg p) = \operatorname{LC} p$.

Let R be a non degenerated ring and p be a non zero polynomial over R. One can verify that LM(p) is non zero.

Let us consider a ring R and a polynomial p over R. Now we state the propositions:

- (3) $\deg \operatorname{LM}(p) = \deg p.$
- (4) $\operatorname{LC}\operatorname{LM}(p) = \operatorname{LC} p.$
- (5) Let us consider a non degenerated ring R, and a non zero polynomial p over R. Then $\deg(p \operatorname{LM}(p)) < \deg p$. The theorem is a consequence of (2), (3), and (4).
- (6) Let us consider a ring R, a polynomial p over R, and a natural number i. Then $(\langle 0_R, 1_R \rangle * p)(i+1) = p(i)$.
- (7) Let us consider a ring R, and a polynomial p over R. Then $(\langle 0_R, 1_R \rangle * p)(0) = 0_R$.
- (8) Let us consider an integral domain R, and a non zero polynomial p over R. Then $\deg(\langle 0_R, 1_R \rangle * p) = \deg p + 1$.
- (9) Let us consider a commutative ring R, a polynomial p over R, and an element a of R. Then $eval(\langle 0_R, 1_R \rangle * p, a) = a \cdot (eval(p, a))$. The theorem is a consequence of (1).
- (10) Let us consider a ring R, a ring extension S of R, an element p of the carrier of PolyRing(R), an element a of R, and an element b of S. If b = a, then ExtEval(p, b) = eval<math>(p, a).
- (11) Let us consider a field F, an element p of the carrier of PolyRing(F), an extension E of F, an E-extending extension K of F, an element a of E, and an element b of K. If a = b, then ExtEval(p, a) = ExtEval(p, b).

Let L be a non empty zero structure, a, b be elements of L, f be a (the carrier of L)-valued function, and x, y be objects. Observe that $f + [x \longmapsto a, y \longmapsto b]$ is

(the carrier of L)-valued.

Let f be a finite-Support sequence of L. One can verify that $f+\cdot[x \mapsto a, y \mapsto b]$ is finite-Support as a sequence of L.

2. On Subrings and Subfields

Now we state the propositions:

- (12) Let us consider strict rings R_1 , R_2 . Suppose R_1 is a subring of R_2 and R_2 is a subring of R_1 . Then $R_1 = R_2$.
- (13) Let us consider a ring S, and subrings R_1 , R_2 of S. Then R_1 is a subring of R_2 if and only if the carrier of $R_1 \subseteq$ the carrier of R_2 .
- (14) Let us consider a ring S, and strict subrings R_1 , R_2 of S. Then $R_1 = R_2$ if and only if the carrier of R_1 = the carrier of R_2 . The theorem is a consequence of (13) and (12).

Let us consider a ring S, a subring R of S, elements x, y of S, and elements x_1, y_1 of R. Now we state the propositions:

- (15) If $x = x_1$ and $y = y_1$, then $x + y = x_1 + y_1$.
- (16) If $x = x_1$ and $y = y_1$, then $x \cdot y = x_1 \cdot y_1$.
- (17) Let us consider a ring S, a subring R of S, an element x of S, and an element x_1 of R. If $x = x_1$, then $-x = -x_1$. The theorem is a consequence of (15).
- (18) Let us consider a field E, a subfield F of E, a non zero element x of E, and an element x_1 of F. If $x = x_1$, then $x^{-1} = x_1^{-1}$. The theorem is a consequence of (16).
- (19) Let us consider a ring S, a subring R of S, an element x of S, an element x_1 of R, and an element n of \mathbb{N} . If $x = x_1$, then $x^n = x_1^n$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every element } x$ of S for every element x_1 of R such that $x = x_1$ holds $x^{\$_1} = x_1^{\$_1}$. For every natural number $k, \mathcal{P}[k]$. \Box
- (20) Let us consider a ring S, a subring R of S, elements x_1 , x_2 of S, and elements y_1 , y_2 of R. Suppose $x_1 = y_1$ and $x_2 = y_2$. Then $\langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle$.
- (21) Let us consider a commutative ring R, a commutative ring extension S of R, elements x_1 , x_2 of S, elements y_1 , y_2 of R, and an element n of \mathbb{N} . Suppose $x_1 = y_1$ and $x_2 = y_2$. Then $\langle x_1, x_2 \rangle^n = \langle y_1, y_2 \rangle^n$.
- (22) Let us consider an integral domain R, a domain ring extension S of R, a non zero element n of \mathbb{N} , and an element a of S. Then ExtEval($\langle 0_R, 1_R \rangle^n, a \rangle = a^n$. The theorem is a consequence of (21).

- (23) Let us consider a ring R, a ring extension S of R, an element a of R, and an element b of S. If a = b, then $a \upharpoonright R = b \upharpoonright S$.
- (24) Let us consider a field F, an extension E of F, an element p of the carrier of PolyRing(F), and an element q of the carrier of PolyRing(E). If p = q, then NormPoly p = NormPoly q. The theorem is a consequence of (18) and (16).
- (25) Let us consider a field F, an extension E of F, an element p of the carrier of PolyRing(F), and an element a of E. Then ExtEval $(p, a) = 0_E$ if and only if ExtEval(NormPoly $p, a) = 0_E$. The theorem is a consequence of (24).
- (26) Let us consider a ring R, a ring extension S of R, an element a of S, and a polynomial p over R. Then ExtEval(-p, a) = -ExtEval(p, a). The theorem is a consequence of (17).
- (27) Let us consider a ring R, a ring extension S of R, an element a of S, and polynomials p, q over R. Then ExtEval(p q, a) = ExtEval(p, a) ExtEval(q, a). The theorem is a consequence of (26).
- (28) Let us consider a ring R, a ring extension S of R, an element a of S, and a constant polynomial p over R. Then ExtEval(p, a) = LC p.
- (29) Let us consider a non degenerated ring R, a ring extension S of R, elements a, b of S, and a non zero polynomial p over R. Suppose $b = \operatorname{LC} p$. Then ExtEval(Leading-Monomial $p, a) = b \cdot (a^{\deg p})$.

3. Ring and Field Adjunctions

Let R be a ring, S be a ring extension of R, and T be a subset of S. The functor $/\backslash(\mathbf{R},T)$ yielding a non empty subset of S is defined by the term

(Def. 3) $\{x, \text{ where } x \text{ is an element of } S : \text{ for every subring } U \text{ of } S \text{ such that } R \text{ is a subring of } U \text{ and } T \text{ is a subset of } U \text{ holds } x \in U \}.$

The functor RingAdjunction (R, T) yielding a strict double loop structure is defined by

(Def. 4) the carrier of $it = /\backslash(\mathbf{R}, T)$ and the addition of it = (the addition of $S) \upharpoonright /\backslash(\mathbf{R}, T)$ and the multiplication of it = (the multiplication of $S) \upharpoonright /\backslash(\mathbf{R}, T)$ and the one of $it = 1_S$ and the zero of $it = 0_S$.

We introduce the notation $\operatorname{RAdj}(R, T)$ as a synonym of $\operatorname{RingAdjunction}(R, T)$. One can check that $\operatorname{RAdj}(R, T)$ is non empty.

Let R be a non degenerated ring. Let us observe that $\operatorname{RAdj}(R,T)$ is non degenerated.

Let R be a ring. Observe that $\operatorname{RAdj}(R,T)$ is Abelian, add-associative, right zeroed, and right complementable.

Let R be a commutative ring and S be a commutative ring extension of R. One can check that $\operatorname{RAdj}(R,T)$ is commutative.

Let R be a ring and S be a ring extension of R. Let us observe that $\operatorname{RAdj}(R,T)$ is associative, well unital, and distributive.

Now we state the propositions:

- (30) Let us consider a ring R, and a ring extension S of R. Then every subset T of S is a subset of RAdj(R, T).
- (31) Let us consider a ring R, a ring extension S of R, and a subset T of S. Then R is a subring of RAdj(R, T).
- (32) Let us consider a ring R, a ring extension S of R, a subset T of S, and a subring U of S. Suppose R is a subring of U and T is a subset of U. Then $\operatorname{RAdj}(R, T)$ is a subring of U.
- (33) Let us consider a strict ring R, a ring extension S of R, and a subset T of S. Then $\operatorname{RAdj}(R,T) = R$ if and only if T is a subset of R. The theorem is a consequence of (30).

Let R be a ring, S be a ring extension of R, and T be a subset of S. Let us note that the functor $\operatorname{RAdj}(R,T)$ yields a strict subring of S. One can check that $\operatorname{RAdj}(R,T)$ is R-extending.

Let F be a field, R be a ring extension of F, and T be a subset of R. Let us note that $\operatorname{RAdj}(F,T)$ has a subfield.

Now we state the proposition:

(34) Let us consider a field F, a ring extension R of F, and a subset T of R. Then F is a subfield of $\operatorname{RAdj}(F,T)$. The theorem is a consequence of (31).

Let F be a field, E be an extension of F, and T be a subset of E. The functor $/\backslash(\mathbf{F}, T)$ yielding a non empty subset of E is defined by the term

(Def. 5) $\{x, \text{ where } x \text{ is an element of } E : \text{ for every subfield } U \text{ of } E \text{ such that } F \text{ is a subfield of } U \text{ and } T \text{ is a subset of } U \text{ holds } x \in U \}.$

The functor FieldAdjunction(F, T) yielding a strict double loop structure is defined by

(Def. 6) the carrier of $it = /\backslash(\mathbf{F}, T)$ and the addition of it = (the addition of $E) \upharpoonright /\backslash(\mathbf{F}, T)$ and the multiplication of it = (the multiplication of $E) \upharpoonright /\backslash(\mathbf{F}, T)$ and the one of $it = 1_E$ and the zero of $it = 0_E$.

We introduce the notation $\operatorname{FAdj}(F,T)$ as a synonym of FieldAdjunction(F,T). One can check that $\operatorname{FAdj}(F,T)$ is non degenerated and $\operatorname{FAdj}(F,T)$ is Abelian, add-associative, right zeroed, and right complementable and FieldAdjunction(F,T). T) is commutative, associative, well unital, distributive, and almost left invertible.

Now we state the propositions:

- (35) Let us consider a field F, and an extension E of F. Then every subset T of E is a subset of FAdj(F, T).
- (36) Let us consider a field F, an extension E of F, and a subset T of E. Then F is a subfield of FAdj(F, T).
- (37) Let us consider a field F, an extension E of F, a subset T of E, and a subfield U of E. Suppose F is a subfield of U and T is a subset of U. Then FAdj(F,T) is a subfield of U.
- (38) Let us consider a strict field F, an extension E of F, and a subset T of E. Then FAdj(F,T) = F if and only if T is a subset of F. The theorem is a consequence of (35).

Let F be a field, E be an extension of F, and T be a subset of E. Let us observe that the functor FAdj(F,T) yields a strict subfield of E. Let us note that FAdj(F,T) is F-extending.

Let us consider a field F, an extension E of F, and a subset T of E. Now we state the propositions:

- (39) RAdj(F, T) is a subring of FAdj(F, T).
- (40) $\operatorname{RAdj}(F,T) = \operatorname{FAdj}(F,T)$ if and only if $\operatorname{RAdj}(F,T)$ is a field. The theorem is a consequence of (31), (30), (37), (39), and (12).

4. Algebraic Elements

Let R be a non degenerated commutative ring, S be a commutative ring extension of R, and a be an element of S. Observe that HomExtEval(a, R)is additive, multiplicative, and unity-preserving and every commutative ring extension of R is (PolyRing(R))-homomorphic.

Let F be a field. Let us note that there exists an extension of F which is $(\operatorname{PolyRing}(F))$ -homomorphic.

Let E be an extension of F and a be an element of E. We say that a is F-algebraic if and only if

(Def. 7) ker HomExtEval $(a, F) \neq \{0_{\text{PolyRing}(F)}\}$.

We introduce the notation a is F-transcendental as an antonym for a is F-algebraic. Now we state the proposition:

(41) Let us consider a ring R, a ring extension S of R, and an element a of S. Then AnnPoly $(a, R) = \ker \operatorname{HomExtEval}(a, R)$.

Let us consider a field F, an extension E of F, and an element a of E. Now we state the propositions:

- (42) a is *F*-algebraic if and only if a is integral over *F*. The theorem is a consequence of (25).
- (43) *a* is *F*-algebraic if and only if there exists a non zero polynomial *p* over *F* such that $\text{ExtEval}(p, a) = 0_E$. The theorem is a consequence of (42).

Let F be a field and E be an extension of F. Note that there exists an element of E which is F-algebraic.

Let us consider a field F, a (PolyRing(F))-homomorphic extension E of F, and an element a of E. Now we state the propositions:

- (44) $\operatorname{RAdj}(F, \{a\}) = \operatorname{Im} \operatorname{HomExtEval}(a, F)$. The theorem is a consequence of (20), (32), and (14).
- (45) The carrier of $\operatorname{RAdj}(F, \{a\}) = \operatorname{the set} \operatorname{of} \operatorname{all} \operatorname{ExtEval}(p, a)$ where p is a polynomial over F. The theorem is a consequence of (44).

5. On Linear Combinations and Polynomials

Now we state the propositions:

- (46) Let us consider a field F, a vector space V over F, a subspace W of V, and a linear combination l_1 of W. Then there exists a linear combination l_2 of V such that
 - (i) the support of l_2 = the support of l_1 , and
 - (ii) for every element v of V such that $v \in$ the support of l_2 holds $l_2(v) = l_1(v)$.

PROOF: Consider f being a function such that $l_1 = f$ and dom f = the carrier of W and rng $f \subseteq$ the carrier of F. Define $\mathcal{P}[\text{element of } V, \text{element of } F] \equiv \$_1 \in$ the support of l_1 and $\$_2 = f(\$_1)$ or $\$_1 \notin$ the support of l_1 and $\$_2 = 0_F$. For every element x of the carrier of V, there exists an element y of the carrier of F such that $\mathcal{P}[x, y]$. Consider g being a function from V into F such that for every element x of V, $\mathcal{P}[x, g(x)]$. \Box

- (47) Let us consider a field F, an extension E of F, an element a of E, an element n of \mathbb{N} , and a linear combination l of $\operatorname{VecSp}(E, F)$. Then there exists a polynomial p over F such that
 - (i) deg $p \leq n$, and
 - (ii) for every element i of \mathbb{N} such that $i \leq n$ holds $p(i) = l(a^i)$.

PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists a natural number } i \text{ such that } i \leq n \text{ and } \$_1 = i \text{ and } \$_2 = l(a^i) \text{ or there exists a natural number } i \text{ such that } i > n \text{ and } \$_1 = i \text{ and } \$_2 = 0_F.$ For every element $x \text{ of } \mathbb{N}$, there exists an element y of the carrier of F such that $\mathcal{P}[x, y]$. Consider p being a function from \mathbb{N} into the carrier of F such that for every element x of \mathbb{N} , $\mathcal{P}[x, p(x)]$. For every natural number i such that $i \leq n$ holds $p(i) = l(a^i)$. For every natural number i such that $i \geq n+1$ holds $p(i) = 0_F$. \Box

- (48) Let us consider a field F, an extension E of F, an element a of E, an element n of \mathbb{N} , a linear combination l of $\operatorname{VecSp}(E, F)$, and a non zero polynomial p over F. Suppose $l(a^{\deg p}) = \operatorname{LC} p$ and the support of $l = \{a^{\deg p}\}$. Then $\sum l = \operatorname{ExtEval}(\operatorname{LM}(p), a)$. The theorem is a consequence of (35) and (29).
- (49) Let us consider a field F, an extension E of F, an element a of E, an element n of \mathbb{N} , and a subset M of $\operatorname{VecSp}(E, F)$. Suppose $M = \{a^i, \text{ where } i \text{ is an element of } \mathbb{N} : i \leq n\}$ and for every elements i, j of \mathbb{N} such that $i < j \leq n$ holds $a^i \neq a^j$. Let us consider a linear combination l of M, and a polynomial p over F. Suppose deg $p \leq n$ and for every element i of \mathbb{N} such that $i \leq n$ holds $p(i) = l(a^i)$. Then $\operatorname{ExtEval}(p, a) = \sum l$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{ for every linear combination } l$ of M

such that the support of $\overline{l} = \$_1$ for every polynomial p over F such that $\operatorname{deg} p \leq n$ and for every element i of \mathbb{N} such that $i \leq n$ holds $p(i) = l(a^i)$ holds $\sum l = \operatorname{ExtEval}(p, a)$. $\mathcal{P}[0]$ by [\$, (13)]. For every natural number k, $\mathcal{P}[k]$. Consider n being a natural number such that $\overline{\alpha} = n$, where α is the support of l. \Box

6. MINIMAL POLYNOMIALS

Let F be a field, E be an extension of F, and a be an F-algebraic element of E. We introduce the notation MinPoly(a, F) as a synonym of the minimal polynomial of a over F.

Note that MinPoly(a, F) is monic and irreducible.

Let us consider a field F, an extension E of F, an F-algebraic element a of E, and an element p of the carrier of PolyRing(F). Now we state the propositions:

- (50) p = MinPoly(a, F) if and only if p is monic and irreducible and ker Hom-ExtEval $(a, F) = \{p\}$ -ideal. The theorem is a consequence of (42) and (41).
- (51) p = MinPoly(a, F) if and only if p is monic and $\text{ExtEval}(p, a) = 0_E$ and for every non zero polynomial q over F such that $\text{ExtEval}(q, a) = 0_E$ holds deg $p \leq \deg q$. The theorem is a consequence of (42) and (50).
- (52) $p = \operatorname{MinPoly}(a, F)$ if and only if p is monic and irreducible and $\operatorname{ExtEval}(p,$

 $a) = 0_E$. The theorem is a consequence of (42) and (50).

- (53) ExtEval $(p, a) = 0_E$ if and only if MinPoly $(a, F) \mid p$. The theorem is a consequence of (50) and (51).
- (54) Let us consider a field F, an extension E of F, and an F-algebraic element a of E. Then MinPoly $(a, F) = \operatorname{rpoly}(1, a)$ if and only if $a \in$ the carrier of F. The theorem is a consequence of (10), (52), and (17).
- (55) Let us consider a field F, an extension E of F, an F-algebraic element a of E, and elements i, j of \mathbb{N} . If $i < j < \deg \operatorname{MinPoly}(a, F)$, then $a^i \neq a^j$. The theorem is a consequence of (7), (6), (17), (52), and (53).
- (56) Let us consider a field F, a (PolyRing(F))-homomorphic extension E of F, and an element a of E. Then a is F-algebraic if and only if FAdj $(F, \{a\}) =$ RAdj $(F, \{a\})$. The theorem is a consequence of (50), (44), and (40).
- (57) Let us consider a field F, a (PolyRing(F))-homomorphic extension E of F, and a non zero element a of E. Then a is F-algebraic if and only if $a^{-1} \in \operatorname{RAdj}(F, \{a\})$. The theorem is a consequence of (56), (35), (18), (45), (17), (28), and (43).
- (58) Let us consider a field F, an extension E of F, and an element a of E. Then a is F-transcendental if and only if $\operatorname{RAdj}(F, \{a\})$ and $\operatorname{PolyRing}(F)$ are isomorphic. The theorem is a consequence of (44) and (56).
- (59) Let us consider a field F, a (PolyRing(F))-homomorphic extension E of F, and an F-algebraic element a of E.
 Then PolyRing(F)/{MinPoly(a, F)}-ideal and FAdj(F, {a}) are isomorphic. The theorem is a consequence of (50), (44), and (56).
 - 7. A BASIS OF THE VECTOR SPACE $\operatorname{VecSp}(\operatorname{FAdj}(F, \{a\}), F)$

Let F be a field, E be an extension of F, and a be an F-algebraic element of E. The functor Base(a) yielding a non empty subset of $VecSp(FAdj(F, \{a\}), F)$ is defined by the term

(Def. 8) $\{a^n, \text{ where } n \text{ is an element of } \mathbb{N} : n < \deg \operatorname{MinPoly}(a, F)\}.$

One can verify that Base(a) is finite. Now we state the propositions:

- (60) Let us consider a field F, an extension E of F, an F-algebraic element a of E, and a polynomial p over F. Then $\text{ExtEval}(p, a) \in \text{Lin}(\text{Base}(a))$. The theorem is a consequence of (51).
- (61) Let us consider a field F, an extension E of F, an F-algebraic element a of E, and a linear combination l of Base(a). Then there exists a polynomial p over F such that
 - (i) $\deg p < \deg \operatorname{MinPoly}(a, F)$, and

(ii) for every element i of \mathbb{N} such that $i < \deg \operatorname{MinPoly}(a, F)$ holds $p(i) = l(a^i)$.

The theorem is a consequence of (46) and (47).

- (62) Let us consider a field F, an extension E of F, an F-algebraic element a of E, a linear combination l of Base(a), and a non zero polynomial p over F. Suppose $l(a^{\deg p}) = \operatorname{LC} p$ and the support of $l = \{a^{\deg p}\}$. Then $\sum l = \operatorname{ExtEval}(\operatorname{LM}(p), a)$. The theorem is a consequence of (35), (36), (19), and (29).
- (63) Let us consider a field F, an extension E of F, an F-algebraic element a of E, a linear combination l of Base(a), and a polynomial p over F. Suppose deg p < deg MinPoly(a, F) and for every element i of \mathbb{N} such that i < deg MinPoly(a, F) holds $p(i) = l(a^i)$. Then $\sum l = \text{ExtEval}(p, a)$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every linear combination l of Base(a) such that $\overline{\text{the support of } l} = \$_1$ for every polynomial p over F such that deg p < deg MinPoly(a, F) and for every element i of \mathbb{N} such that i < deg MinPoly(a, F) holds $p(i) = l(a^i)$ holds $\sum l = \text{ExtEval}(p, a)$. $\mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $\overline{\alpha} = n$, where α is the support of l. \Box
- (64) Let us consider a field F, an extension E of F, an F-algebraic element a of E, and a linear combination l of Base(a). Suppose $\sum l = 0_F$. Then $l = \mathbf{0}_{\text{LC}_{\text{VecSp}(\text{FAdj}(F,\{a\}),F)}$. The theorem is a consequence of (61), (63), and (53).
- (65) Let us consider a field F, a (PolyRing(F))-homomorphic extension E of F, and an F-algebraic element a of E. Then Base(a) is a basis of VecSp $(FAdj(F, \{a\}), F)$. The theorem is a consequence of (64), (56), (45), and (60).

Let us consider a field F, an extension E of F, and an F-algebraic element a of E. Now we state the propositions:

- (66) $\overline{\text{Base}(a)} = \deg \text{MinPoly}(a, F).$ PROOF: Set $m = \deg \text{MinPoly}(a, F)$. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists}$ an element x of Seg m and there exists an element y of \mathbb{N} such that $\$_1 = x$ and y = x - 1 and $\$_2 = a^y$. Consider f being a function such that dom f = Seg m and for every object x such that $x \in \text{Seg } m$ holds $\mathcal{P}[x, f(x)].$
- (67) $\deg(\operatorname{FAdj}(F, \{a\}), F) = \deg \operatorname{MinPoly}(a, F)$. The theorem is a consequence of (66) and (65).

Let F be a field, E be an extension of F, and a be an F-algebraic element of E. Let us note that $FAdj(F, \{a\})$ is F-finite.

Now we state the proposition:

(68) Let us consider a field F, an extension E of F, and an element a of E. Then a is F-algebraic if and only if $FAdj(F, \{a\})$ is F-finite. The theorem is a consequence of (27), (22), (43), (35), (19), (47), (11), and (49).

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8-17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
- [4] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.
- [5] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
- [6] Christoph Schwarzweller. Renamings and a condition-free formalization of Kronecker's construction. Formalized Mathematics, 28(2):129–135, 2020. doi:10.2478/forma-2020-0012.
- [7] Christoph Schwarzweller. Representation matters: An unexpected property of polynomial rings and its consequences for formalizing abstract field theory. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, *Proceedings of the 2018 Federated Conference on Computer Science and Information Systems*, volume 15 of *Annals of Computer Science and Information Systems*, pages 67–72. IEEE, 2018. doi:10.15439/2018F88.
- [8] Yasushige Watase. Algebraic numbers. Formalized Mathematics, 24(4):291–299, 2016. doi:10.1515/forma-2016-0025.

Accepted September 25, 2020