# Ring and Field Adjunctions, Algebraic Elements and Minimal Polynomials 

Christoph Schwarzweller (0)<br>Institute of Informatics<br>University of Gdańsk<br>Poland

Summary. In [6], [7] we presented a formalization of Kronecker's construction of a field extension of a field $F$ in which a given polynomial $p \in F[X] \backslash F$ has a root [4, [5], 3]. As a consequence for every field $F$ and every polynomial there exists a field extension $E$ of $F$ in which $p$ splits into linear factors. It is well-known that one gets the smallest such field extension - the splitting field of $p$ - by adjoining the roots of $p$ to $F$.

In this article we start the Mizar formalization [1], 2] towards splitting fields: we define ring and field adjunctions, algebraic elements and minimal polynomials and prove a number of facts necessary to develop the theory of splitting fields, in particular that for an algebraic element $a$ over $F$ a basis of the vector space $F(a)$ over $F$ is given by $a^{0}, \ldots, a^{n-1}$, where $n$ is the degree of the minimal polynomial of $a$ over $F$.

MSC: 12F05 68V20
Keywords: ring and field adjunctions; algebraic elements and minimal polynomials

MML identifier: FIELD_6, version: 8.1.10 5.64.1388

## 1. Preliminaries

Now we state the proposition:
(1) Let us consider a ring $R$. Then $R$ is degenerated if and only if the carrier of $R=\left\{0_{R}\right\}$.

Let $F$ be a field. Note that $\left\{0_{F}\right\}$-ideal is maximal.
Let $R$ be a non degenerated, non almost left invertible commutative ring. Let us note that $\left\{0_{R}\right\}$-ideal is non maximal.

Let $R$ be a ring. We say that $R$ has a subfield if and only if
(Def. 1) there exists a field $F$ such that $F$ is a subring of $R$.
Observe that there exists a ring which has a subfield.
Let $R$ be a ring which has a subfield.
A subfield of $R$ is a field defined by
(Def. 2) it is a subring of $R$.
Now we state the proposition:
(2) Let us consider a non degenerated ring $R$, and a non zero polynomial $p$ over $R$. Then $p(\operatorname{deg} p)=\operatorname{LC} p$.
Let $R$ be a non degenerated ring and $p$ be a non zero polynomial over $R$. One can verify that $\mathrm{LM}(p)$ is non zero.

Let us consider a ring $R$ and a polynomial $p$ over $R$. Now we state the propositions:
(3) $\operatorname{deg} \operatorname{LM}(p)=\operatorname{deg} p$.
(4) $\operatorname{LCLM}(p)=\mathrm{LC} p$.
(5) Let us consider a non degenerated ring $R$, and a non zero polynomial $p$ over $R$. Then $\operatorname{deg}(p-\operatorname{LM}(p))<\operatorname{deg} p$. The theorem is a consequence of (2), (3), and (4).
(6) Let us consider a ring $R$, a polynomial $p$ over $R$, and a natural number $i$. Then $\left(\left\langle 0_{R}, 1_{R}\right\rangle * p\right)(i+1)=p(i)$.
(7) Let us consider a ring $R$, and a polynomial $p$ over $R$. Then $\left(\left\langle 0_{R}, 1_{R}\right\rangle *\right.$ $p)(0)=0_{R}$.
(8) Let us consider an integral domain $R$, and a non zero polynomial $p$ over $R$. Then $\operatorname{deg}\left(\left\langle 0_{R}, 1_{R}\right\rangle * p\right)=\operatorname{deg} p+1$.
(9) Let us consider a commutative ring $R$, a polynomial $p$ over $R$, and an element $a$ of $R$. Then $\operatorname{eval}\left(\left\langle 0_{R}, 1_{R}\right\rangle * p, a\right)=a \cdot(\operatorname{eval}(p, a))$. The theorem is a consequence of (1).
(10) Let us consider a ring $R$, a ring extension $S$ of $R$, an element $p$ of the carrier of PolyRing $(R)$, an element $a$ of $R$, and an element $b$ of $S$. If $b=a$, then $\operatorname{ExtEval}(p, b)=\operatorname{eval}(p, a)$.
(11) Let us consider a field $F$, an element $p$ of the carrier of $\operatorname{PolyRing}(F)$, an extension $E$ of $F$, an $E$-extending extension $K$ of $F$, an element $a$ of $E$, and an element $b$ of $K$. If $a=b$, then $\operatorname{ExtEval}(p, a)=\operatorname{ExtEval}(p, b)$.
Let $L$ be a non empty zero structure, $a, b$ be elements of $L, f$ be a (the carrier of $L$ )-valued function, and $x, y$ be objects. Observe that $f+\cdot[x \longmapsto a, y \longmapsto b]$ is
(the carrier of $L$ )-valued.
Let $f$ be a finite-Support sequence of $L$. One can verify that $f+\cdot[x \longmapsto$ $a, y \longmapsto b]$ is finite-Support as a sequence of $L$.

## 2. On Subrings and Subfields

Now we state the propositions:
(12) Let us consider strict rings $R_{1}, R_{2}$. Suppose $R_{1}$ is a subring of $R_{2}$ and $R_{2}$ is a subring of $R_{1}$. Then $R_{1}=R_{2}$.
(13) Let us consider a ring $S$, and subrings $R_{1}, R_{2}$ of $S$. Then $R_{1}$ is a subring of $R_{2}$ if and only if the carrier of $R_{1} \subseteq$ the carrier of $R_{2}$.
(14) Let us consider a ring $S$, and strict subrings $R_{1}, R_{2}$ of $S$. Then $R_{1}=$ $R_{2}$ if and only if the carrier of $R_{1}=$ the carrier of $R_{2}$. The theorem is a consequence of (13) and (12).
Let us consider a ring $S$, a subring $R$ of $S$, elements $x, y$ of $S$, and elements $x_{1}, y_{1}$ of $R$. Now we state the propositions:
(15) If $x=x_{1}$ and $y=y_{1}$, then $x+y=x_{1}+y_{1}$.
(16) If $x=x_{1}$ and $y=y_{1}$, then $x \cdot y=x_{1} \cdot y_{1}$.
(17) Let us consider a ring $S$, a subring $R$ of $S$, an element $x$ of $S$, and an element $x_{1}$ of $R$. If $x=x_{1}$, then $-x=-x_{1}$. The theorem is a consequence of (15).
(18) Let us consider a field $E$, a subfield $F$ of $E$, a non zero element $x$ of $E$, and an element $x_{1}$ of $F$. If $x=x_{1}$, then $x^{-1}=x_{1}^{-1}$. The theorem is a consequence of (16).
(19) Let us consider a ring $S$, a subring $R$ of $S$, an element $x$ of $S$, an element $x_{1}$ of $R$, and an element $n$ of $\mathbb{N}$. If $x=x_{1}$, then $x^{n}=x_{1}{ }^{n}$.
Proof: Define $\mathcal{P}$ [natural number] $\equiv$ for every element $x$ of $S$ for every element $x_{1}$ of $R$ such that $x=x_{1}$ holds $x^{\$_{1}}=x_{1}{ }^{\$_{1}}$. For every natural number $k, \mathcal{P}[k]$.
(20) Let us consider a ring $S$, a subring $R$ of $S$, elements $x_{1}, x_{2}$ of $S$, and elements $y_{1}, y_{2}$ of $R$. Suppose $x_{1}=y_{1}$ and $x_{2}=y_{2}$. Then $\left\langle x_{1}, x_{2}\right\rangle=$ $\left\langle y_{1}, y_{2}\right\rangle$.
(21) Let us consider a commutative ring $R$, a commutative ring extension $S$ of $R$, elements $x_{1}, x_{2}$ of $S$, elements $y_{1}, y_{2}$ of $R$, and an element $n$ of $\mathbb{N}$. Suppose $x_{1}=y_{1}$ and $x_{2}=y_{2}$. Then $\left\langle x_{1}, x_{2}\right\rangle^{n}=\left\langle y_{1}, y_{2}\right\rangle^{n}$.
(22) Let us consider an integral domain $R$, a domain ring extension $S$ of $R$, a non zero element $n$ of $\mathbb{N}$, and an element $a$ of $S$.
Then $\operatorname{ExtEval}\left(\left\langle 0_{R}, 1_{R}\right\rangle^{n}, a\right)=a^{n}$. The theorem is a consequence of (21).
(23) Let us consider a ring $R$, a ring extension $S$ of $R$, an element $a$ of $R$, and an element $b$ of $S$. If $a=b$, then $a \upharpoonright R=b \upharpoonright S$.
(24) Let us consider a field $F$, an extension $E$ of $F$, an element $p$ of the carrier of PolyRing $(F)$, and an element $q$ of the carrier of PolyRing $(E)$. If $p=q$, then NormPoly $p=$ NormPoly $q$. The theorem is a consequence of (18) and (16).
(25) Let us consider a field $F$, an extension $E$ of $F$, an element $p$ of the carrier of PolyRing $(F)$, and an element $a$ of $E$. Then $\operatorname{ExtEval}(p, a)=0_{E}$ if and only if $\operatorname{ExtEval}($ NormPoly $p, a)=0_{E}$. The theorem is a consequence of (24).
(26) Let us consider a ring $R$, a ring extension $S$ of $R$, an element $a$ of $S$, and a polynomial $p$ over $R$. Then $\operatorname{ExtEval}(-p, a)=-\operatorname{Ext} \operatorname{Eval}(p, a)$. The theorem is a consequence of (17).
(27) Let us consider a ring $R$, a ring extension $S$ of $R$, an element $a$ of $S$, and polynomials $p, q$ over $R$. Then $\operatorname{ExtEval}(p-q, a)=\operatorname{ExtEval}(p, a)-$ $\operatorname{ExtEval}(q, a)$. The theorem is a consequence of (26).
(28) Let us consider a ring $R$, a ring extension $S$ of $R$, an element $a$ of $S$, and a constant polynomial $p$ over $R$. Then $\operatorname{ExtEval}(p, a)=\mathrm{LC} p$.
(29) Let us consider a non degenerated ring $R$, a ring extension $S$ of $R$, elements $a, b$ of $S$, and a non zero polynomial $p$ over $R$. Suppose $b=\mathrm{LC} p$. Then ExtEval(Leading-Monomial $p, a)=b \cdot\left(a^{\operatorname{deg} p}\right)$.

## 3. Ring and Field Adjunctions

Let $R$ be a ring, $S$ be a ring extension of $R$, and $T$ be a subset of $S$. The functor $\triangle(\mathrm{R}, T)$ yielding a non empty subset of $S$ is defined by the term
(Def. 3) $\quad\{x$, where $x$ is an element of $S$ : for every subring $U$ of $S$ such that $R$ is a subring of $U$ and $T$ is a subset of $U$ holds $x \in U\}$.
The functor RingAdjunction $(R, T)$ yielding a strict double loop structure is defined by
(Def. 4) the carrier of $i t=/ \backslash(\mathrm{R}, T)$ and the addition of $i t=$ (the addition of $S) \upharpoonright / \backslash(\mathrm{R}, T)$ and the multiplication of $i t=($ the multiplication of $S) \upharpoonright$ $/ \backslash(\mathrm{R}, T)$ and the one of $i t=1_{S}$ and the zero of $i t=0_{S}$.
We introduce the notation $\operatorname{RAdj}(R, T)$ as a synonym of $\operatorname{RingAdjunction}(R, T)$.
One can check that $\operatorname{RAdj}(R, T)$ is non empty.
Let $R$ be a non degenerated ring. Let us observe that $\operatorname{RAdj}(R, T)$ is non degenerated.

Let $R$ be a ring. Observe that $\operatorname{RAdj}(R, T)$ is Abelian, add-associative, right zeroed, and right complementable.

Let $R$ be a commutative ring and $S$ be a commutative ring extension of $R$. One can check that $\operatorname{RAdj}(R, T)$ is commutative.

Let $R$ be a ring and $S$ be a ring extension of $R$. Let us observe that $\operatorname{RAdj}(R, T)$ is associative, well unital, and distributive.

Now we state the propositions:
(30) Let us consider a ring $R$, and a ring extension $S$ of $R$. Then every subset $T$ of $S$ is a subset of $\operatorname{RAdj}(R, T)$.
(31) Let us consider a ring $R$, a ring extension $S$ of $R$, and a subset $T$ of $S$. Then $R$ is a subring of $\operatorname{RAdj}(R, T)$.
(32) Let us consider a ring $R$, a ring extension $S$ of $R$, a subset $T$ of $S$, and a subring $U$ of $S$. Suppose $R$ is a subring of $U$ and $T$ is a subset of $U$. Then $\operatorname{RAdj}(R, T)$ is a subring of $U$.
(33) Let us consider a strict ring $R$, a ring extension $S$ of $R$, and a subset $T$ of $S$. Then $\operatorname{RAdj}(R, T)=R$ if and only if $T$ is a subset of $R$. The theorem is a consequence of (30).
Let $R$ be a ring, $S$ be a ring extension of $R$, and $T$ be a subset of $S$. Let us note that the functor $\operatorname{RAdj}(R, T)$ yields a strict subring of $S$. One can check that $\operatorname{RAdj}(R, T)$ is $R$-extending.

Let $F$ be a field, $R$ be a ring extension of $F$, and $T$ be a subset of $R$. Let us note that $\operatorname{RAdj}(F, T)$ has a subfield.

Now we state the proposition:
(34) Let us consider a field $F$, a ring extension $R$ of $F$, and a subset $T$ of $R$. Then $F$ is a subfield of $\operatorname{RAdj}(F, T)$. The theorem is a consequence of (31).
Let $F$ be a field, $E$ be an extension of $F$, and $T$ be a subset of $E$. The functor $/ \backslash(\mathrm{F}, T)$ yielding a non empty subset of $E$ is defined by the term
(Def. 5) $\quad\{x$, where $x$ is an element of $E$ : for every subfield $U$ of $E$ such that $F$ is a subfield of $U$ and $T$ is a subset of $U$ holds $x \in U\}$.
The functor FieldAdjunction $(F, T)$ yielding a strict double loop structure is defined by
(Def. 6) the carrier of $i t=/ \backslash(\mathrm{F}, T)$ and the addition of $i t=$ (the addition of $E) \upharpoonright / \backslash(\mathrm{F}, T)$ and the multiplication of $i t=($ the multiplication of $E) \upharpoonright$ $/ \backslash(\mathrm{F}, T)$ and the one of $i t=1_{E}$ and the zero of $i t=0_{E}$.
We introduce the notation $\operatorname{FAdj}(F, T)$ as a synonym of FieldAdjunction $(F, T)$. One can check that $\operatorname{FAdj}(F, T)$ is non degenerated and $\operatorname{FAdj}(F, T)$ is Abelian, add-associative, right zeroed, and right complementable and FieldAdjunction ( $F$,
$T)$ is commutative, associative, well unital, distributive, and almost left invertible.

Now we state the propositions:
(35) Let us consider a field $F$, and an extension $E$ of $F$. Then every subset $T$ of $E$ is a subset of $\operatorname{FAdj}(F, T)$.
(36) Let us consider a field $F$, an extension $E$ of $F$, and a subset $T$ of $E$. Then $F$ is a subfield of $\operatorname{FAdj}(F, T)$.
(37) Let us consider a field $F$, an extension $E$ of $F$, a subset $T$ of $E$, and a subfield $U$ of $E$. Suppose $F$ is a subfield of $U$ and $T$ is a subset of $U$. Then $\operatorname{FAdj}(F, T)$ is a subfield of $U$.
(38) Let us consider a strict field $F$, an extension $E$ of $F$, and a subset $T$ of $E$. Then $\operatorname{FAdj}(F, T)=F$ if and only if $T$ is a subset of $F$. The theorem is a consequence of (35).
Let $F$ be a field, $E$ be an extension of $F$, and $T$ be a subset of $E$. Let us observe that the functor $\operatorname{FAdj}(F, T)$ yields a strict subfield of $E$. Let us note that $\operatorname{FAdj}(F, T)$ is $F$-extending.

Let us consider a field $F$, an extension $E$ of $F$, and a subset $T$ of $E$. Now we state the propositions:
(39) $\operatorname{RAdj}(F, T)$ is a subring of $\operatorname{FAdj}(F, T)$.
(40) $\operatorname{RAdj}(F, T)=\operatorname{FAdj}(F, T)$ if and only if $\operatorname{RAdj}(F, T)$ is a field. The theorem is a consequence of $(31),(30),(37),(39)$, and (12).

## 4. Algebraic Elements

Let $R$ be a non degenerated commutative ring, $S$ be a commutative ring extension of $R$, and $a$ be an element of $S$. Observe that $\operatorname{HomExt} \operatorname{Eval}(a, R)$ is additive, multiplicative, and unity-preserving and every commutative ring extension of $R$ is $(\operatorname{PolyRing}(R))$-homomorphic.

Let $F$ be a field. Let us note that there exists an extension of $F$ which is (PolyRing $(F)$ )-homomorphic.

Let $E$ be an extension of $F$ and $a$ be an element of $E$. We say that $a$ is $F$-algebraic if and only if
(Def. 7) ker HomExtEval $(a, F) \neq\left\{0_{\text {PolyRing }}(F)\right\}$.
We introduce the notation $a$ is $F$-transcendental as an antonym for $a$ is $F$-algebraic. Now we state the proposition:
(41) Let us consider a ring $R$, a ring extension $S$ of $R$, and an element $a$ of $S$. Then $\operatorname{AnnPoly}(a, R)=$ ker $\operatorname{HomExtEval}(a, R)$.

Let us consider a field $F$, an extension $E$ of $F$, and an element $a$ of $E$. Now we state the propositions:
(42) $a$ is $F$-algebraic if and only if $a$ is integral over $F$. The theorem is a consequence of (25).
(43) $a$ is $F$-algebraic if and only if there exists a non zero polynomial $p$ over $F$ such that $\operatorname{ExtEval}(p, a)=0_{E}$. The theorem is a consequence of (42).
Let $F$ be a field and $E$ be an extension of $F$. Note that there exists an element of $E$ which is $F$-algebraic.

Let us consider a field $F$, a ( $\operatorname{PolyRing}(F)$ )-homomorphic extension $E$ of $F$, and an element $a$ of $E$. Now we state the propositions:
(44) $\operatorname{RAdj}(F,\{a\})=\operatorname{Im} \operatorname{HomExtEval}(a, F)$. The theorem is a consequence of (20), (32), and (14).
(45) The carrier of $\operatorname{RAdj}(F,\{a\})=$ the set of all $\operatorname{ExtEval}(p, a)$ where $p$ is a polynomial over $F$. The theorem is a consequence of (44).

## 5. On Linear Combinations and Polynomials

Now we state the propositions:
(46) Let us consider a field $F$, a vector space $V$ over $F$, a subspace $W$ of $V$, and a linear combination $l_{1}$ of $W$. Then there exists a linear combination $l_{2}$ of $V$ such that
(i) the support of $l_{2}=$ the support of $l_{1}$, and
(ii) for every element $v$ of $V$ such that $v \in$ the support of $l_{2}$ holds $l_{2}(v)=$ $l_{1}(v)$.

Proof: Consider $f$ being a function such that $l_{1}=f$ and $\operatorname{dom} f=$ the carrier of $W$ and $\operatorname{rng} f \subseteq$ the carrier of $F$. Define $\mathcal{P}$ [element of $V$, element of $F] \equiv \$_{1} \in$ the support of $l_{1}$ and $\$_{2}=f\left(\$_{1}\right)$ or $\$_{1} \notin$ the support of $l_{1}$ and $\$_{2}=0_{F}$. For every element $x$ of the carrier of $V$, there exists an element $y$ of the carrier of $F$ such that $\mathcal{P}[x, y]$. Consider $g$ being a function from $V$ into $F$ such that for every element $x$ of $V$, $\mathcal{P}[x, g(x)]$.
(47) Let us consider a field $F$, an extension $E$ of $F$, an element $a$ of $E$, an element $n$ of $\mathbb{N}$, and a linear combination $l$ of $\operatorname{VecSp}(E, F)$. Then there exists a polynomial $p$ over $F$ such that
(i) $\operatorname{deg} p \leqslant n$, and
(ii) for every element $i$ of $\mathbb{N}$ such that $i \leqslant n$ holds $p(i)=l\left(a^{i}\right)$.

Proof: Define $\mathcal{P}$ [object, object] $\equiv$ there exists a natural number $i$ such that $i \leqslant n$ and $\$_{1}=i$ and $\$_{2}=l\left(a^{i}\right)$ or there exists a natural number $i$ such that $i>n$ and $\$_{1}=i$ and $\$_{2}=0_{F}$. For every element $x$ of $\mathbb{N}$, there exists an element $y$ of the carrier of $F$ such that $\mathcal{P}[x, y]$. Consider $p$ being a function from $\mathbb{N}$ into the carrier of $F$ such that for every element $x$ of $\mathbb{N}$, $\mathcal{P}[x, p(x)]$. For every natural number $i$ such that $i \leqslant n$ holds $p(i)=l\left(a^{i}\right)$. For every natural number $i$ such that $i \geqslant n+1$ holds $p(i)=0_{F}$.
(48) Let us consider a field $F$, an extension $E$ of $F$, an element $a$ of $E$, an element $n$ of $\mathbb{N}$, a linear combination $l$ of $\operatorname{VecSp}(E, F)$, and a non zero polynomial $p$ over $F$. Suppose $l\left(a^{\operatorname{deg} p}\right)=\operatorname{LC} p$ and the support of $l=\left\{a^{\operatorname{deg} p}\right\}$. Then $\sum l=\operatorname{ExtEval}(\operatorname{LM}(p), a)$. The theorem is a consequence of (35) and (29).
(49) Let us consider a field $F$, an extension $E$ of $F$, an element $a$ of $E$, an element $n$ of $\mathbb{N}$, and a subset $M$ of $\operatorname{VecSp}(E, F)$. Suppose $M=\left\{a^{i}\right.$, where $i$ is an element of $\mathbb{N}: i \leqslant n\}$ and for every elements $i, j$ of $\mathbb{N}$ such that $i<j \leqslant n$ holds $a^{i} \neq a^{j}$. Let us consider a linear combination $l$ of $M$, and a polynomial $p$ over $F$. Suppose $\operatorname{deg} p \leqslant n$ and for every element $i$ of $\mathbb{N}$ such that $i \leqslant n$ holds $p(i)=l\left(a^{i}\right)$. Then $\operatorname{ExtEval}(p, a)=\sum l$.
Proof: Define $\mathcal{P}$ [natural number] $\equiv$ for every linear combination $l$ of $M$ such that $\overline{\overline{\text { the support of } l}}=\$_{1}$ for every polynomial $p$ over $F$ such that $\operatorname{deg} p \leqslant n$ and for every element $i$ of $\mathbb{N}$ such that $i \leqslant n$ holds $p(i)=l\left(a^{i}\right)$ holds $\sum l=\operatorname{ExtEval}(p, a) . \mathcal{P}[0]$ by [8, (13)]. For every natural number $k$, $\mathcal{P}[k]$. Consider $n$ being a natural number such that $\overline{\bar{\alpha}}=n$, where $\alpha$ is the support of $l$.

## 6. Minimal Polynomials

Let $F$ be a field, $E$ be an extension of $F$, and $a$ be an $F$-algebraic element of $E$. We introduce the notation $\operatorname{MinPoly}(a, F)$ as a synonym of the minimal polynomial of $a$ over $F$.

Note that $\operatorname{MinPoly}(a, F)$ is monic and irreducible.
Let us consider a field $F$, an extension $E$ of $F$, an $F$-algebraic element $a$ of $E$, and an element $p$ of the carrier of $\operatorname{PolyRing}(F)$. Now we state the propositions:
(50) $\quad p=\operatorname{MinPoly}(a, F)$ if and only if $p$ is monic and irreducible and ker Hom$\operatorname{ExtEval}(a, F)=\{p\}$-ideal. The theorem is a consequence of (42) and (41).
(51) $p=\operatorname{MinPoly}(a, F)$ if and only if $p$ is monic and $\operatorname{ExtEval}(p, a)=0_{E}$ and for every non zero polynomial $q$ over $F$ such that $\operatorname{ExtEval}(q, a)=0_{E}$ holds $\operatorname{deg} p \leqslant \operatorname{deg} q$. The theorem is a consequence of (42) and (50).
(52) $\quad p=\operatorname{MinPoly}(a, F)$ if and only if $p$ is monic and irreducible and $\operatorname{ExtEval}(p$,
$a)=0_{E}$. The theorem is a consequence of (42) and (50).
(53) $\operatorname{Ext} \operatorname{Eval}(p, a)=0_{E}$ if and only if $\operatorname{MinPoly}(a, F) \mid p$. The theorem is a consequence of (50) and (51).
(54) Let us consider a field $F$, an extension $E$ of $F$, and an $F$-algebraic element $a$ of $E$. Then $\operatorname{MinPoly}(a, F)=\operatorname{rpoly}(1, a)$ if and only if $a \in$ the carrier of $F$. The theorem is a consequence of (10), (52), and (17).
(55) Let us consider a field $F$, an extension $E$ of $F$, an $F$-algebraic element $a$ of $E$, and elements $i, j$ of $\mathbb{N}$. If $i<j<\operatorname{deg} \operatorname{MinPoly}(a, F)$, then $a^{i} \neq a^{j}$. The theorem is a consequence of (7), (6), (17), (52), and (53).
(56) Let us consider a field $F$, a (PolyRing $(F)$ )-homomorphic extension $E$ of $F$, and an element $a$ of $E$. Then $a$ is $F$-algebraic if and only if $\operatorname{FAdj}(F,\{a\})=$ $\operatorname{RAdj}(F,\{a\})$. The theorem is a consequence of (50), (44), and (40).
(57) Let us consider a field $F$, a ( $\operatorname{PolyRing}(F)$ )-homomorphic extension $E$ of $F$, and a non zero element $a$ of $E$. Then $a$ is $F$-algebraic if and only if $a^{-1} \in \operatorname{RAdj}(F,\{a\})$. The theorem is a consequence of $(56),(35),(18)$, (45), (17), (28), and (43).
(58) Let us consider a field $F$, an extension $E$ of $F$, and an element $a$ of $E$. Then $a$ is $F$-transcendental if and only if $\operatorname{RAdj}(F,\{a\})$ and $\operatorname{PolyRing}(F)$ are isomorphic. The theorem is a consequence of (44) and (56).
(59) Let us consider a field $F$, a ( $\operatorname{PolyRing}(F)$ )-homomorphic extension $E$ of $F$, and an $F$-algebraic element $a$ of $E$.
Then PolyRing $(F) /\{\operatorname{MinPoly}(a, F)\}$-ideal and $\operatorname{FAdj}(F,\{a\})$ are isomorphic. The theorem is a consequence of (50), (44), and (56).

## 7. A Basis of the Vector $\operatorname{Space} \operatorname{VecSp}(\operatorname{FAdj}(F,\{a\}), F)$

Let $F$ be a field, $E$ be an extension of $F$, and $a$ be an $F$-algebraic element of $E$. The functor $\operatorname{Base}(a)$ yielding a non empty subset of $\operatorname{VecSp}(\operatorname{FAdj}(F,\{a\}), F)$ is defined by the term
(Def. 8) $\quad\left\{a^{n}\right.$, where $n$ is an element of $\left.\mathbb{N}: n<\operatorname{deg} \operatorname{MinPoly}(a, F)\right\}$.
One can verify that $\operatorname{Base}(a)$ is finite. Now we state the propositions:
(60) Let us consider a field $F$, an extension $E$ of $F$, an $F$-algebraic element $a$ of $E$, and a polynomial $p$ over $F$. Then $\operatorname{ExtEval}(p, a) \in \operatorname{Lin}(\operatorname{Base}(a))$. The theorem is a consequence of (51).
(61) Let us consider a field $F$, an extension $E$ of $F$, an $F$-algebraic element $a$ of $E$, and a linear combination $l$ of $\operatorname{Base}(a)$. Then there exists a polynomial $p$ over $F$ such that
(i) $\operatorname{deg} p<\operatorname{deg} \operatorname{MinPoly}(a, F)$, and
(ii) for every element $i$ of $\mathbb{N}$ such that $i<\operatorname{deg} \operatorname{MinPoly}(a, F)$ holds $p(i)=$ $l\left(a^{i}\right)$.

The theorem is a consequence of (46) and (47).
(62) Let us consider a field $F$, an extension $E$ of $F$, an $F$-algebraic element $a$ of $E$, a linear combination $l$ of $\operatorname{Base}(a)$, and a non zero polynomial $p$ over $F$. Suppose $l\left(a^{\operatorname{deg} p}\right)=\mathrm{LC} p$ and the support of $l=\left\{a^{\operatorname{deg} p}\right\}$. Then $\sum l=\operatorname{ExtEval}(\operatorname{LM}(p), a)$. The theorem is a consequence of (35), (36), (19), and (29).
(63) Let us consider a field $F$, an extension $E$ of $F$, an $F$-algebraic element $a$ of $E$, a linear combination $l$ of $\operatorname{Base}(a)$, and a polynomial $p$ over $F$. Suppose $\operatorname{deg} p<\operatorname{deg} \operatorname{MinPoly}(a, F)$ and for every element $i$ of $\mathbb{N}$ such that $i<\operatorname{deg} \operatorname{MinPoly}(a, F)$ holds $p(i)=l\left(a^{i}\right)$. Then $\sum l=\operatorname{ExtEval}(p, a)$.
Proof: Define $\mathcal{P}$ [natural number] $\equiv$ for every linear combination $l$ of Base (a) such that the support of $l=\$_{1}$ for every polynomial $p$ over $F$ such that $\operatorname{deg} p<\operatorname{deg} \operatorname{MinPoly}(a, F)$ and for every element $i$ of $\mathbb{N}$ such that $i<\operatorname{deg} \operatorname{MinPoly}(a, F)$ holds $p(i)=l\left(a^{i}\right)$ holds $\sum l=\operatorname{ExtEval}(p, a)$. $\mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$. Consider $n$ being a natural number such that $\overline{\bar{\alpha}}=n$, where $\alpha$ is the support of $l$.
(64) Let us consider a field $F$, an extension $E$ of $F$, an $F$-algebraic element $a$ of $E$, and a linear combination $l$ of $\operatorname{Base}(a)$. Suppose $\sum l=0_{F}$. Then $l=\mathbf{0}_{\mathrm{LC}_{\mathrm{VecSp}(\operatorname{FAdj}(F,\{a\}), F)}}$. The theorem is a consequence of $(61),(63)$, and (53).
(65) Let us consider a field $F$, a (PolyRing $(F)$ )-homomorphic extension $E$ of $F$, and an $F$-algebraic element $a$ of $E$. Then $\operatorname{Base}(a)$ is a basis of $\operatorname{VecSp}(\operatorname{FAdj}(F,\{a\}), F)$. The theorem is a consequence of $(64),(56),(45)$, and (60).
Let us consider a field $F$, an extension $E$ of $F$, and an $F$-algebraic element $a$ of $E$. Now we state the propositions:
(66) $\overline{\overline{\operatorname{Base}(a)}}=\operatorname{deg} \operatorname{MinPoly}(a, F)$.

Proof: Set $m=\operatorname{deg} \operatorname{MinPoly}(a, F)$. Define $\mathcal{P}[$ object, object $] \equiv$ there exists an element $x$ of $\operatorname{Seg} m$ and there exists an element $y$ of $\mathbb{N}$ such that $\$_{1}=x$ and $y=x-1$ and $\$_{2}=a^{y}$. Consider $f$ being a function such that $\operatorname{dom} f=\operatorname{Seg} m$ and for every object $x$ such that $x \in \operatorname{Seg} m$ holds $\mathcal{P}[x, f(x)]$.
(67) $\operatorname{deg}(\operatorname{FAdj}(F,\{a\}), F)=\operatorname{deg} \operatorname{MinPoly}(a, F)$. The theorem is a consequence of (66) and (65).
Let $F$ be a field, $E$ be an extension of $F$, and $a$ be an $F$-algebraic element of $E$. Let us note that $\operatorname{FAdj}(F,\{a\})$ is $F$-finite.

Now we state the proposition:
(68) Let us consider a field $F$, an extension $E$ of $F$, and an element $a$ of $E$. Then $a$ is $F$-algebraic if and only if $\operatorname{FAdj}(F,\{a\})$ is $F$-finite. The theorem is a consequence of $(27),(22),(43),(35),(19),(47),(11)$, and (49).

## References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi:10.1007/s10817-017-9440-6
[3] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
[4] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.
[5] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
[6] Christoph Schwarzweller. Renamings and a condition-free formalization of Kronecker's construction. Formalized Mathematics, 28(2):129-135, 2020. doi 10.2478/forma-2020-0012.
[7] Christoph Schwarzweller. Representation matters: An unexpected property of polynomial rings and its consequences for formalizing abstract field theory, In M. Ganzha, L. Macıaszek, and M. Paprzycki, editors, Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, volume 15 of Annals of Computer Science and Information Systems, pages 67-72. IEEE, 2018. doi 10.15439/2018F88
[8] Yasushige Watase. Algebraic numbers. Formalized Mathematics, 24(4):291-299, 2016. doi 10.1515/forma-2016-0025.

Accepted September 25, 2020

