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Extended Natural Numbers and Counters
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Summary. This article introduces extended natural numbers, i.e. the set
N ∪ {+∞}, in Mizar [4], [3] and formalizes a way to list a cardinal numbers of
cardinals. Both concepts have applications in graph theory.
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0. Introduction

Extended natural numbers have often been used in the literature to define dis-
tances in graphs that are not necessarily connected, to set the distance between
vertices of different components to +∞, see e.g. [5], [7], [8]. Therefore it is only
natural to formalize these numbers in preparation for a formalization of distances
in graphs. On the other hand, one usually does not see the list of counters from
the second part of this article in the literature. The generalistic motivation
to introduce these is a rather simple one, however. n-partite finite graphs are
rather known and constructions like Kω,ω arise sometimes. The index objects of
these alone could be formalized using Cardinal-yielding XFinSequence (cf.
[14], [1]), but a generalization for the index object to be any cardinality long
seemed to be appropriate. This allows for easy notation of more graphs than
just with the finite amount of indices. For example K1,2,3,..., where the index
ranges over all natural numbers, is an easy notation for a graph that does not
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have a finite independence number and also no infinite subset of vertices that
form an independent set.

In the first section the set N = N ∪ {+∞} of extended natural numbers is
introduced to the Mizar system [6] as a subset of the extended real numbers
R = R ∪ {−∞,+∞} defined in [12]. Basic theorems will be proven, often spe-
cializations of theorems from [10], [13] or generalizations of theorems from [2].
The second section will introduce sets of extended natural numbers and proceed
in a similar fashion to [11]. The third section does the same with relations that
only have extended natural numbers in their range, similar to [9]. Section 4
deals with some ordinal preliminaries. Not all are needed for the last section, but
the author felt they would fit better here than into a graph preliminary article.
Finally, the last section introduces relations with cardinal domain, as only a
cardinal domain (in lieu of an ordinal one) is needed for counting purposes. The
article ends with the definition of Counters and Counters+, two expandable
modes with the latter not allowing 0 in its range.

1. Extended Natural Numbers

The functor N yielding a subset of R is defined by the term

(Def. 1) N ∪ {+∞}.
Now we state the proposition:

(1) N ⊂ N ⊂ R.
Proof: −∞ /∈ N. �

Observe that N is non empty and infinite.
Let x be an object. We say that x is extended natural if and only if

(Def. 2) x ∈ N.

Let us observe that +∞ is extended natural and every object which is exten-
ded natural is also extended real and every object which is natural is also exten-
ded natural and every set which is finite and extended natural is also natural.

There exists an object which is zero and extended natural and there exists
an object which is non zero and extended natural and there exists a number
which is extended natural and every element of N is extended natural.

An extended natural is an extended natural extended real. Let x be an exten-
ded natural. Note that x(∈ N) reduces to x.

One can check that sethood property holds for extended naturals.
Now we state the proposition:

(2) Let us consider an object x. Then x is an extended natural if and only
if x is a natural number or x = +∞.
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Note that every object which is zero is also extended natural and every
extended real which is extended natural is also non negative and every extended
natural is non negative and every extended natural which is non zero is also
positive.

From now on N , M , K denote extended naturals.
Let us consider N and M . Observe that min(N,M) is extended natural and

max(N,M) is extended natural and N +M is extended natural and N ·M is
extended natural.

Now we state the propositions:

(3) 0 ¬ N .

(4) If 0 6= N , then 0 < N .

(5) 0 < N + 1.

(6) If M ∈ N and N ¬M , then N ∈ N.

(7) If N < M , then N ∈ N.

(8) If N ¬M , then N ·K ¬M ·K.

(9) (i) N = 0, or

(ii) there exists K such that N = K + 1.
The theorem is a consequence of (2).

(10) If N +M = 0, then N = 0 and M = 0.

Let M be an extended natural and N be a non zero extended natural. One
can check that M +N is non zero and N +M is non zero.

Now we state the propositions:

(11) If N ¬M + 1, then N ¬M or N =M + 1.

(12) If N ¬M ¬ N + 1, then N =M or M = N + 1.

(13) If N ¬M , then there exists K such that M = N +K.

(14) N ¬ N +M .

(15) If N ¬M , then N ¬M +K.

(16) If N < 1, then N = 0.

(17) If N ·M = 1, then N = 1.

(18) K < K +N if and only if 1 ¬ N and K 6= +∞.

(19) If K 6= 0 and N =M ·K, then M ¬ N .

(20) If M ¬ N , then M ·K ¬ N ·K.

(21) (K +M) +N = K + (M +N).

(22) K · (N +M) = K ·N +K ·M .
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2. Sets of Extended Natural Numbers

Let X be a set. We say that X is extended natural-membered if and only if

(Def. 3) for every object x such that x ∈ X holds x is extended natural.

Note that every set which is empty is also extended natural-membered and
every set which is natural-membered is also extended natural-membered.

Every set which is extended natural-membered is also extended real-membered
and N is extended natural-membered and there exists a set which is non empty
and extended natural-membered. Now we state the proposition:

(23) Let us consider a set X. Then X is extended natural-membered if and
only if X ⊆ N.

In the sequel X denotes an extended natural-membered set.
Let us consider X. Let us observe that every element of X is extended

natural. Now we state the propositions:

(24) Let us consider a non empty, extended natural-membered set X. Then
there exists N such that N ∈ X.

(25) If for every N , N ∈ X, then X = N.

(26) Let us consider a set Y. If Y ⊆ X, then Y is extended natural-membered.

Let us consider X. One can verify that every subset of X is extended
natural-membered. Let us consider N . Let us observe that {N} is extended
natural-membered. Let us consider M . Let us note that {N,M} is extended
natural-membered. Let us consider K. One can verify that {N,M,K} is exten-
ded natural-membered.

Let us consider X. Let Y be an extended natural-membered set. One can
verify that X ∪ Y is extended natural-membered.

Let Y be a set. One can verify that X ∩ Y is extended natural-membered
and X \ Y is extended natural-membered.

Let Y be an extended natural-membered set. One can check that X−. Y is
extended natural-membered.

Let Y be a set. One can check that X ⊆ Y if and only if the condition (Def.
4) is satisfied.

(Def. 4) if N ∈ X, then N ∈ Y.
Let Y be an extended natural-membered set. One can check that X = Y if

and only if the condition (Def. 5) is satisfied.

(Def. 5) N ∈ X iff N ∈ Y.
One can verify that X misses Y if and only if the condition (Def. 6) is

satisfied.

(Def. 6) there exists no N such that N ∈ X and N ∈ Y.



Extended natural numbers and counters 243

Now we state the propositions:

(27) Let us consider a set F . Suppose for every setX such thatX ∈ F holdsX
is extended natural-membered. Then

⋃
F is extended natural-membered.

(28) Let us consider sets F , X. Suppose X ∈ F and X is extended natural-
membered. Then

⋂
F is extended natural-membered.

The scheme ENMSeparation deals with a unary predicate P and states that

(Sch. 1) There exists an extended natural-membered set X such that for every
N , N ∈ X iff P[N ].

Let X be an extended natural-membered set. Let us note that an upper
bound of X can equivalently be formulated as follows:

(Def. 7) for every N such that N ∈ X holds N ¬ it .
One can check that a lower bound of X can equivalently be formulated as

follows:

(Def. 8) for every N such that N ∈ X holds it ¬ N .

Let us note that every extended natural-membered set is lower bounded and
every extended natural-membered set which is non empty is also left-ended.

Let us consider X. Note that there exists an upper bound of X which is
extended natural and there exists a lower bound of X which is extended natural
and infX is extended natural.

Let X be a non empty, extended natural-membered set. Let us note that
supX is extended natural and every extended natural-membered set which is
non empty and upper bounded is also right-ended.

Let X be a left-ended, extended natural-membered set. One can verify that
the functor minX yields an extended natural and is defined by

(Def. 9) it ∈ X and for every N such that N ∈ X holds it ¬ N .

Let X be a right-ended, extended natural-membered set. One can verify that
the functor maxX yields an extended natural and is defined by

(Def. 10) it ∈ X and for every N such that N ∈ X holds N ¬ it .

3. Relations with Extended Natural Numbers in Range

Let R be a binary relation. We say that R is extended natural-valued if and
only if

(Def. 11) rngR ⊆ N.

Let us note that every binary relation which is empty is also extended
natural-valued and every binary relation which is natural-valued is also exten-
ded natural-valued and every binary relation which is extended natural-valued
is also (N)-valued and extended real-valued.
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Every binary relation which is (N)-valued is also extended natural-valued
and there exists a function which is extended natural-valued.

Let R be an extended natural-valued binary relation. One can check that
rngR is extended natural-membered.

Now we state the proposition:

(29) Let us consider a binary relation R, and an extended natural-valued
binary relation S. If R ⊆ S, then R is extended natural-valued.

Let R be an extended natural-valued binary relation. Observe that every
subset of R is extended natural-valued.

Let R, S be extended natural-valued binary relations. One can verify that
R ∪ S is extended natural-valued.

Let R be an extended natural-valued binary relation and S be a binary
relation. One can check that R ∩ S is extended natural-valued and R \ S is
extended natural-valued and S ·R is extended natural-valued.

Let R, S be extended natural-valued binary relations. Note that R−. S is
extended natural-valued.

Let R be an extended natural-valued binary relation and X be a set. Let
us note that R◦X is extended natural-membered and R�X is extended natural-
valued and X�R is extended natural-valued.

Let x be an object. Let us observe that R◦x is extended natural-membered.
Let us consider X. One can check that idX is extended natural-valued.
Let f be a function. Note that f is extended natural-valued if and only if

the condition (Def. 12) is satisfied.

(Def. 12) for every object x such that x ∈ dom f holds f(x) is extended natural.

Now we state the proposition:

(30) Let us consider a function f . Then f is extended natural-valued if and
only if for every object x, f(x) is extended natural.

Let f be an extended natural-valued function and x be an object. Observe
that f(x) is extended natural.

Let X be a set. Let us consider N . One can verify that X 7−→ N is extended
natural-valued.

Let f , g be extended natural-valued functions. Note that f+·g is extended
natural-valued.

Let x be an object. Let us considerN . Let us observe that x 7−→. N is extended
natural-valued.

Let Z be a set. Let us consider X. Note that every relation between Z and X
is extended natural-valued and Z ×X is extended natural-valued as a relation
between Z and X and there exists a function which is non empty, constant, and
extended natural-valued.
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Now we state the proposition:

(31) Let us consider a non empty, constant, extended natural-valued function
f . Then there exists N such that for every object x such that x ∈ dom f
holds f(x) = N .

4. Ordinal Preliminaries

Now we state the proposition:

(32) Let us consider a function f . Then f is ordinal yielding if and only if for
every object x such that x ∈ dom f holds f(x) is an ordinal number.

One can check that every set which is ordinal is also ⊆-linear.
Let f be an ordinal yielding function and x be an object. Observe that f(x)

is ordinal.
Let A, B be non-empty transfinite sequences. Note that AaB is non-empty.
Now we state the propositions:

(33) Let us consider a set X, and an object x. Then X 7−→ x = X .

(34) Let us consider a cardinal number c, and an object x. Then c 7−→ x = c.
The theorem is a consequence of (33).

Let X be a trivial set. One can verify that X is trivial.
Let c1 be a cardinal number and c2 be a non empty cardinal number. Note

that c1 + c2 is non empty.
Now we state the propositions:

(35) Let us consider an ordinal number A. Then A 6= 0 and A 6= 1 if and only
if A is not trivial.

(36) Let us consider an ordinal number A, and an infinite cardinal number
B. If A ∈ B, then A+B = B.
Proof: Define F(ordinal number) = A+ $1. Consider f being a sequence
of ordinal numbers such that dom f = B and for every ordinal number C
such that C ∈ B holds f(C) = F(C). �

Let f be a cardinal yielding function and g be a function. Observe that f · g
is cardinal yielding and every function which is natural-valued is also cardinal
yielding.

Let f be an empty function. Let us observe that disjoint f is empty.
Let f be an empty yielding function. One can verify that disjoint f is empty

yielding.
Let f be a non empty yielding function. One can check that disjoint f is non

empty yielding.
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Let f be an empty yielding function. One can verify that
⋃
f is empty and

every function which is cardinal yielding is also ordinal yielding.
Now we state the proposition:

(37) Let us consider a function f , and a permutation p of dom f .
Then Card(f · p) = (Card f) · p.

Let A be a transfinite sequence. Note that CardA is transfinite sequence-like.
Now we state the proposition:

(38) Let us consider transfinite sequences A, B. Then Card(AaB) = CardAa

CardB.

Let f be a trivial function. One can check that Card f is trivial.
Let f be a non trivial function. Note that Card f is non trivial.
Let A, B be cardinal yielding transfinite sequences. Note that A a B is

cardinal yielding.
Let c1 be a cardinal number. Note that 〈c1〉 is cardinal yielding.
Let c2 be a cardinal number. Let us observe that 〈c1, c2〉 is cardinal yielding.
Let c3 be a cardinal number. One can verify that 〈c1, c2, c3〉 is cardinal yiel-

ding.
Let X1, X2, X3 be non empty sets. One can verify that 〈X1, X2, X3〉 is

non-empty.
Let A be an infinite ordinal number. Let us note that 〈A〉 is non natural-

valued.
Let x be an object. Let us observe that 〈A, x〉 is non natural-valued and

〈x,A〉 is non natural-valued.
Let y be an object. Observe that 〈A, x, y〉 is non natural-valued and 〈x,A, y〉

is non natural-valued and 〈x, y,A〉 is non natural-valued and there exists a finite
0-sequence which is non empty, non-empty, and natural-valued and 〈x〉 is one-
to-one.

Now we state the propositions:

(39) Let us consider objects x, y. Then

(i) dom〈x, y〉 = {0, 1}, and

(ii) rng〈x, y〉 = {x, y}.
(40) Let us consider objects x, y, z. Then

(i) dom〈x, y, z〉 = {0, 1, 2}, and

(ii) rng〈x, y, z〉 = {x, y, z}.
Let x be an object. One can verify that 〈x〉 is trivial.
Let y be an object. Let us note that 〈x, y〉 is non trivial.
Let z be an object. Let us note that 〈x, y, z〉 is non trivial and there exists

a finite 0-sequence which is non empty and trivial.



Extended natural numbers and counters 247

Let D be a non empty set. One can check that there exists a finite 0-sequence
of D which is non empty and trivial.

Now we state the propositions:

(41) Let us consider a non empty, trivial transfinite sequence p. Then there
exists an object x such that p = 〈x〉.

(42) Let us consider a non empty set D, and a non empty, trivial transfinite
sequence p of elements of D. Then there exists an element x of D such
that p = 〈x〉. The theorem is a consequence of (41).

(43) 〈0〉 = id1.

(44) 〈0, 1〉 = id2. The theorem is a consequence of (39).

(45) 〈0, 1, 2〉 = id3. The theorem is a consequence of (40).

(46) Let us consider objects x, y. Then 〈x, y〉 · 〈1, 0〉 = 〈y, x〉. The theorem is
a consequence of (39).

Let us consider objects x, y, z. Now we state the propositions:

(47) 〈x, y, z〉 · 〈0, 2, 1〉 = 〈x, z, y〉. The theorem is a consequence of (40).

(48) 〈x, y, z〉 · 〈1, 0, 2〉 = 〈y, x, z〉. The theorem is a consequence of (40).

(49) 〈x, y, z〉 · 〈1, 2, 0〉 = 〈y, z, x〉. The theorem is a consequence of (40).

(50) 〈x, y, z〉 · 〈2, 0, 1〉 = 〈z, x, y〉. The theorem is a consequence of (40).

(51) 〈x, y, z〉 · 〈2, 1, 0〉 = 〈z, y, x〉. The theorem is a consequence of (40).

(52) Let us consider objects x, y. If x 6= y, then 〈x, y〉 is one-to-one. The
theorem is a consequence of (39).

(53) Let us consider objects x, y, z. If x 6= y and x 6= z and y 6= z, then
〈x, y, z〉 is one-to-one. The theorem is a consequence of (40).

5. Relations with Cardinal Domain

Let R be a binary relation. We say that R is with cardinal domain if and
only if

(Def. 13) there exists a cardinal number c such that domR = c.

One can verify that every binary relation which is empty is also with cardinal
domain and every binary relation which is finite and transfinite sequence-like
is also with cardinal domain and every binary relation which is with cardinal
domain is also transfinite sequence-like.

Let c be a cardinal number. Let us observe that every many sorted set
indexed by c is with cardinal domain.

Let x be an object. Let us note that c 7−→ x is with cardinal domain.
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Let X be a set. Let us note that every denumeration of X is with cardinal
domain.

Let c be a cardinal number. One can verify that every permutation of c is
with cardinal domain and there exists a function which is non empty, trivial, non-
empty, with cardinal domain, and cardinal yielding and there exists a function
which is non empty, non trivial, non-empty, finite, with cardinal domain, and
cardinal yielding.

There exists a function which is non empty, non-empty, infinite, with cardinal
domain, and natural-valued and there exists a function which is non trivial, non-
empty, with cardinal domain, cardinal yielding, and non natural-valued.

Let R be a with cardinal domain binary relation. One can check that domR
is cardinal.

Let f be a with cardinal domain function. We identify f with dom f . Let
R be a with cardinal domain binary relation and P be a total, (rngR)-defined
binary relation. One can verify that R · P is with cardinal domain.

Let g be a function and f be a denumeration of dom g. Let us observe that
g · f is with cardinal domain.

Let f be a with cardinal domain function and p be a permutation of dom f .
Observe that f · p is with cardinal domain.

Now we state the proposition:

(54) Let us consider with cardinal domain transfinite sequences A, B. Suppose
domA ∈ domB. Then A a B is with cardinal domain. The theorem is
a consequence of (36).

Let p be a finite 0-sequence and B be a with cardinal domain transfinite
sequence. Observe that p a B is with cardinal domain.

A Counters is a non empty, with cardinal domain, cardinal yielding function.
A Counters+ is a non empty, non-empty, with cardinal domain, cardinal

yielding function.
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