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A Case Study of Transporting Urysohn’s
Lemma from Topology via Open Sets into
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Summary. Józef Białas and Yatsuka Nakamura has completely formalized
a proof of Urysohn’s lemma in the article [4], in the context of a topological space
defined via open sets. In the Mizar Mathematical Library (MML), the topological
space is defined in this way by Beata Padlewska and Agata Darmochwał in the
article [18]. In [7] the topological space is defined via neighborhoods. It is well
known that these definitions are equivalent [5, 6].

In the definitions, an abstract structure (i.e. the article [17, STRUCT 0] and
its descendants, all of them directly or indirectly using Mizar structures [3]) have
been used (see [10], [9]). The first topological definition is based on the Mizar
structure TopStruct and the topological space defined via neighborhoods with
the Mizar structure: FMT Space Str. To emphasize the notion of a neighborho-
od, we rename FMT TopSpace (topology from neighbourhoods) to NTopSpace (a
neighborhood topological space).

Using Mizar [2], we transport the Urysohn’s lemma from TopSpace to NTop-
Space.

In some cases, Mizar allows certain techniques for transporting proofs, defi-
nitions or theorems. Generally speaking, there is no such automatic translating.

In Coq, Isabelle/HOL or homotopy type theory transport is also studied,
sometimes with a more systematic aim [14], [21], [11], [12], [8], [19]. In [1], two
co-existing Isabelle libraries: Isabelle/HOL and Isabelle/Mizar, have been aligned
in a single foundation in the Isabelle logical framework.

In the MML, they have been used since the beginning: reconsider, registra-
tion, cluster, others were later implemented [13]: identify.

In some proofs, it is possible to define particular functors between different
structures, mainly useful when results are already obtained in a given structure.
This technique is used, for example, in [15] to define two functors MXR2MXF and
MXF2MXF between Matrix of REAL and Matrix of F-Real and to transport the
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definition of the addition from one structure to the other: [...] A + B -> Matrix
of REAL equals MXF2MXR ((MXR2MXF A) + (MXR2MXF B)) [...].

In this paper, first we align the necessary topological concepts. For the for-
malization, we were inspired by the works of Claude Wagschal [20]. It allows
us to transport more naturally the Urysohn’s lemma ([4, URYSOHN3:20]) to the
topological space defined via neighborhoods.

Nakasho and Shidama have developed a solution to explore the notions in-
troduced in various ways https://mimosa-project.github.io/mmlreference/
current/ [16].

The definitions can be directly linked in the HTML version of the Mizar
library (example: Urysohn’s lemma http://mizar.org/version/current/html/
urysohn3.html#T20).

MSC: 54A05 03B35 68V20

Keywords: filter; topology via neighborhoods; transfer principle; transport of
structure; align

MML identifier: FINTOPO8, version: 8.1.10 5.64.1388

1. Some Redefinitions: Neighborhood Topological Space

From now on T denotes a topological space and A, B denote subsets of T .
Now we state the proposition:

(1) If A misses B, then IntA misses IntB.

A neighborhood topological space is a topology from neighbourhoods. Let
X be a non empty topological space. We introduce the notation Top2NTop(X)
as a synonym of TopSpace2FMTX.

LetX be a topology from neighbourhoods. We introduce the notation NTop2-
Top(X) as a synonym of FMT2TopSpaceX.

2. Alignment of Topological Space Concepts Defined via Open
Sets and Defined via Neighbourhoods

Let N1 be a non empty neighborhood topological space. Observe that ΩN1

is open and ∅N1 is open.
Let N1 be a U-FMT filter, non empty, strict formal topological space and

x be an element of N1. Note that the functor UF (x) yields a filter of the carrier
of N1.
[20, definition 2.11.2, p. 89]:
Let N1 be a U-FMT filter, non empty, strict formal topological space and

F be a filter of the carrier of N1. The functor LimFilter(F ) yielding a subset of
N1 is defined by the term
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(Def. 1) {x, where x is a point of N1 : F is finer than UF (x)}.

[20, definition 2.11.3, p. 92 and Proposition 2.11.4, p. 90]:
Let N1, N2 be U-FMT filter, non empty, strict formal topological spaces,

f be a function from N1 into N2, and F be a filter of the carrier of N1. The
functor limF f yielding a subset of N2 is defined by the term

(Def. 2) LimFilter(the image of filter F under f).

[20, definition 2.10.1 (1), p. 83]:
Let N be a neighborhood topological space, A be a subset of N , and x be

a point of N . We say that x is interior point of A if and only if

(Def. 3) A is a neighbourhood of x.

[20, definition 2.10.1 (2), p. 83]:
Let N be a neighborhood topological space, A be a subset of N , and x be

a point of N . We say that x is adherent point of A if and only if

(Def. 4) for every element V of UF (x), V meets A.

The functor IntA yielding a subset of N is defined by the term

(Def. 5) {x, where x is a point of N : x is interior point of A}.

[20, definition 2.13.1, p. 97]:
Let N1, N2 be neighborhood topological spaces, f be a function from N1

into N2, and x be a point of N1. We say that f is continuous at x if and only if

(Def. 6) for every filter F of the carrier of N1 such that x ∈ LimFilter(F ) holds
f(x) ∈ limF f .

We say that f is continuous if and only if

(Def. 7) for every point x of N1, f is continuous at x.

Note that there exists a function from N1 into N2 which is continuous.
Let N be a neighborhood topological space and A be a subset of N .
[20, definition 2.10.1 (1), p. 83]: IntA is open.
[20, definition 2.10.1 (2), p. 83]:
Let N be a neighborhood topological space and A be a subset of N . The

functor A yielding a subset of N is defined by the term

(Def. 8) {x, where x is a point of N : x is adherent point of A}.

[20, definition 2.9.3, p. 81]:
Let N1 be a neighborhood topological space and A be a subset of N1. We

say that A is closed if and only if

(Def. 9) ΩN1 \A is an open subset of N1.

One can check that there exists a subset of N1 which is closed and ΩN1 is
closed as a subset of N1 and ∅N1 is closed as a subset of N1 and there exists
a subset of N1 which is non empty and closed.
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Let S, T be non empty topological spaces and f be a function from S

into T . The functor Top2NTop(f) yielding a function from Top2NTop(S) into
Top2NTop(T ) is defined by the term

(Def. 10) f .

Let T1 be a non empty topological space, T2 be a non empty, strict topo-
logical space, and f be a continuous function from T1 into T2. Observe that
the functor Top2NTop(f) yields a continuous function from Top2NTop(T1) into
Top2NTop(T2) and is defined by the term

(Def. 11) f .

[20, definition 2.17.1, p. 111]:
Let N be a neighborhood topological space. We say that N is T2 if and only

if

(Def. 12) for every filter F of the carrier of N , LimFilter(F ) is trivial.

One can check that there exists a neighborhood topological space which is
T2.

Let N be a neighborhood topological space. We say that N is normal if and
only if

(Def. 13) for every closed subsets A, B of N such that A misses B there exists
a neighbourhood V of A and there exists a neighbourhood W of B such
that V misses W .

Let x be a point ofN . The functor NTop2Top(x) yielding a point of NTop2Top
(N) is defined by the term

(Def. 14) x.

Let T be a non empty topological space and x be a point of T . The functor
Top2NTop(x) yielding a point of Top2NTop(T ) is defined by the term

(Def. 15) x.

Let N be a neighborhood topological space and S be a subset of N . The
functor NTop2Top(S) yielding a subset of NTop2Top(N) is defined by the term

(Def. 16) S.

Let T be a non empty topological space and S be a subset of T . The functor
Top2NTop(S) yielding a subset of Top2NTop(T ) is defined by the term

(Def. 17) S.

One can verify that there exists a neighborhood topological space which is
non empty and normal.

Let T1, T2 be neighborhood topological spaces and f be a function from T1
into T2. The functor NTop2Top(f) yielding a function from NTop2Top(T1) into
NTop2Top(T2) is defined by the term

(Def. 18) f .
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The functor FMT-R1 yielding a neighborhood topological space is defined
by the term

(Def. 19) Top2NTop(R111).
Now we state the proposition:

(2) The carrier of FMT-R1 = R.

One can verify that FMT-R1 is real-membered.

3. Some Properties of a Neighborhood Topology

From now on N , N1, N2 denote neighborhood topological spaces, A, B
denote subsets of N , O denotes an open subset of N , a denotes a point of N ,
X denotes a subset of N1, Y denotes a subset of N2, x denotes a point of N1,
y denotes a point of N2, f denotes a function from N1 into N2, and f1 denotes
a continuous function from N1 into N2.

Now we state the propositions:

(3) O is an open subset of NTop2Top(N).

(4) A is a subset of NTop2Top(N).

(5) (i) ΩN is open, and

(ii) ∅N is open.

(6) N 7−→ y is continuous.

(7) a is interior point of A if and only if there exists an open subset O of N
such that a ∈ O and O ⊆ A.

(8) If a ∈ O, then a is interior point of O.

(9) IntA =
⋃
{O, where O is an open subset of N : O ⊆ A}.

(10) IntA ⊆ A.

(11) [20, definition 2.10.1, p. 83]:
If A ⊆ B, then IntA ⊆ IntB.

(12) [20, definition 2.10.2, p. 83]:
A is open if and only if IntA = A.

(13) IntA = Int IntA.

(14) Let us consider a non empty, strict neighborhood topological space N ,
a subset A of N , and a point x of N . Suppose A is a neighbourhood of x.
Then IntA is an open neighbourhood of x. The theorem is a consequence
of (12).

(15) The image of filter UF (x) under f = {M , where M is a subset of N2 :
f−1(M) ∈ UF (x)}.
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(16) If f is continuous at x and y = f(x), then for every element V of UF (y),
there exists an element W of UF (x) such that f◦W ⊆ V .

(17) If y = f(x) and for every element V of UF (y), there exists an element
W of UF (x) such that f◦W ⊆ V , then f is continuous at x.

(18) [20, definition 2.13.1, p. 97]:
If y = f(x), then f is continuous at x iff for every element V of UF (y),
there exists an element W of UF (x) such that f◦W ⊆ V .

(19) [20, proposition 2.13.3, p. 99]:
If f is continuous at x and x is adherent point of X and y = f(x) and
Y = f◦X, then y is adherent point of Y.

(20) [20, theorem 2.13.4, p. 99, (1) ⇒ (2)]:
f1
◦X ⊆ f1◦X.

(21) Every closed subset of N is a closed subset of NTop2Top(N).

(22) [20, proposition 2.10.2, p. 84]:
If B = ΩN \A, then ΩN \A = IntB.

(23) [20, proposition 2.10.2, p. 84]:
If B = ΩN \A, then ΩN \ (IntA) = B.

(24) A ⊆ A.

(25) [20, 2.10.6, p. 84]:
A is closed if and only if A = A.

(26) [20, 2.10.5, p.84]:
If A ⊆ B, then A ⊆ B.

(27) [20, theorem 2.13.4, p. 99, (2) ⇒ (3)]:
If for every subset X of N1, f◦X ⊆ f◦X, then for every closed subset S
of N2, f−1(S) is a closed subset of N1.

(28) [20, definition 2.9.3, p. 81]:
If B = ΩN \A, then A is open iff B is closed.

(29) If A = ΩN \B, then A is open iff B is closed.

(30) [20, theorem 2.13.4, p. 99, (3) ⇒ (4)]:
If for every closed subset S of N2, f−1(S) is a closed subset of N1, then
for every open subset S of N2, f−1(S) is an open subset of N1.

(31) [20, theorem 2.13.4, p. 99, (4) ⇒ (1)]:
If for every open subset S of N2, f−1(S) is an open subset of N1, then f

is continuous.

(32) [20, theorem 2.13.4, p. 99, (1) ⇔ (4)]:
f is continuous if and only if for every open subset O of N2, f−1(O) is
an open subset of N1.
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(33) [20, theorem 2.13.4, p. 99, (1) ⇔ (3)]:
f is continuous if and only if for every closed subset O of N2, f−1(O) is
a closed subset of N1.

(34) IntA = Int NTop2Top(A).

(35) If A is a neighbourhood of a, then NTop2Top(A) is a neighbourhood of
NTop2Top(a). The theorem is a consequence of (34).

(36) If A is a neighbourhood of B, then NTop2Top(A) is a neighbourhood of
NTop2Top(B).

(37) If A misses B, then NTop2Top(A) misses NTop2Top(B).

(38) If A misses B, then IntA misses IntB.

From now on N denotes a T2 neighborhood topological space.
Now we state the propositions:

(39) Let us consider points x, y of N . Suppose x 6= y. Then there exists
an element V1 of UF (x) and there exists an element V2 of UF (y) such that
V1 misses V2.

(40) NTop2Top(N) is a T2, non empty, strict topological space. The theorem
is a consequence of (39).

(41) Let us consider a non empty, normal neighborhood topological space N .
Then NTop2Top(N) is normal. The theorem is a consequence of (36) and
(1).

Let N be a non empty, normal neighborhood topological space. One can
verify that NTop2Top(N) is normal.

4. Some Connections between Neighborhood Topology and
Open-Set Topology

In the sequel T denotes a non empty topological space, A, B denote subsets
of T , F denotes a closed subset of T , and O denotes an open subset of T .

Now we state the propositions:

(42) A is a subset of Top2NTop(T ).

(43) F is a closed subset of Top2NTop(T ).

(44) O is an open subset of Top2NTop(T ).

(45) If A misses B, then Top2NTop(A) misses Top2NTop(B).

(46) Let us consider a T2, non empty topological space T . Then Top2NTop(T )
is a T2 neighborhood topological space.

In the sequel T denotes a non empty, strict topological space, A, B denote
subsets of T , and x denotes a point of T .

Now we state the propositions:
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(47) IntA = Int Top2NTop(A).

(48) If A is a neighbourhood of B, then Top2NTop(A) is a neighbourhood of
Top2NTop(B).

(49) If A is a neighbourhood of x, then Top2NTop(A) is a neighbourhood of
Top2NTop(x).

(50) Let us consider a non empty, normal, strict topological space T . Then
Top2NTop(T ) is normal.

Let T be a non empty, normal, strict topological space. Note that Top2NTop
(T ) is normal.

5. Transport from R1 to FMT-R1

From now on A denotes a subset of FMT-R1, x denotes a point of FMT-R1,
y denotes a point of the metric space of real numbers, z denotes a point of
(the metric space of real numbers)top, and r denotes a real number.

Now we state the propositions:

(51) NTop2Top(FMT-R1) = R111.
(52) The carrier of FMT-R1 = R.

(53) Let us consider a neighborhood topological space N , and a function f

fromN into FMT-R1. Then NTop2Top(f) is a function from NTop2Top(N)
into R111.

(54) Let us consider a non empty topological space T , and a function f

from T into R111. Then Top2NTop(f) is a function from Top2NTop(T )
into Top2NTop(R111).

(55) A is open if and only if for every real number x such that x ∈ A there
exists r such that r > 0 and ]x− r, x+ r[ ⊆ A.

(56) {]a, b[, where a, b are real numbers : a < b} is a basis of R111.
(57) {]a, b[, where a, b are real numbers : a < b} is a basis of FMT-R1.
Proof: Set B = {]a, b[, where a, b are real numbers : a < b}. B ⊆ 2α,
where α is the carrier of FMT-R1. B ⊆ the open set family of FMT-R1.
�

(58) If r > 0, then ]x − r, x + r[ is a neighbourhood of x. The theorem is
a consequence of (57).

(59) Let us consider an object x. Then x is a point of FMT-R1 if and only if
x is a point of the metric space of real numbers.

(60) If x = y, then Ball(y, r) = ]x− r, x+ r[.

(61) If x = y and r > 0, then Ball(y, r) is a neighbourhood of x. The theorem
is a consequence of (58).
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(62) If x = z, then Balls z is a family of subsets of FMT-R1.
(63) Let us consider a family S of subsets of FMT-R1. If x = z and S =

Balls z, then [S] = UF (x). The theorem is a consequence of (61), (14), and
(55).

The functor gen-NS-R1 yielding a function from the carrier of FMT-R1 into

22
(the carrier of FMT-R1)

is defined by

(Def. 20) for every real number r, there exists a point x of (the metric space of
real numbers)top such that x = r and it(r) = Ballsx.

The functor gen-R1 yielding a non empty, strict formal topological space is
defined by the term

(Def. 21) 〈the carrier of FMT-R1, gen-NS-R1〉.
Now we state the propositions:

(64) The carrier of gen-R1 = R.

(65) Let us consider an element x of gen-R1. Then there exists a point y of
(the metric space of real numbers)top such that

(i) x = y, and

(ii) UF (x) = Balls y.

(66) dom[gen-R1] = R.

(67) gen-filter gen-R1 = FMT-R1. The theorem is a consequence of (64), (65),
and (58).

6. Transporting Urysohn’s Lemma ([4, URYSOHN3:20]) from an
Open-Set Topological Space to the Associated Neighborhood

Topological Space

Now we state the proposition:

(68) Main result Urysohn’s lemma in a neighborhood topological
space:
Let us consider a non empty, normal neighborhood topological space N ,
and closed subsets A, B of N . Suppose A misses B. Then there exists
a function F from N into FMT-R1 such that

(i) F is continuous, and

(ii) for every point x of N , 0 ¬ F (x) ¬ 1 and if x ∈ A, then F (x) = 0
and if x ∈ B, then F (x) = 1.
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