Formalization of Quasilattices

Dominik Kulesza
Institute of Informatics
University of Białystok
Poland

Adam Grabowski(0)
Institute of Informatics
University of Białystok
Poland

Abstract

Summary. The main aim of this article is to introduce formally one of the generalizations of lattices, namely quasilattices, which can be obtained from the axiomatization of the former class by certain weakening of ordinary absorption laws. We show propositions QLT-1 to QLT-7 from [15], presenting also some short variants of corresponding axiom systems. Some of the results were proven in the Mizar [1, [2] system with the help of Prover9 [14] proof assistant.

MSC: 68V20 06B05 06B75
Keywords: lattice theory; quasilattice; absorption law
MML identifier: LATQUASI, version: 8.1.10 5.63.1382

0. Introduction

For years, lattice theory was quite dynamically developed area of mathematics represented formally in the Mizar Mathematical Library. The first Mizar article in this topic was [18], and the monographs of two authors were stimulating source for formalization efforts: Birkhoff [3] (especially at the very beginning), and then Grätzer [12], [13]. The chosen approach was just the algebraic one, with two operation of binary supremum and infimum, and the induced ordering relation as a generated Mizar predicate.

Initially, the formalization efforts within lattice theory were not very systematic, but during the project of translating "Compendium of Continuous Lattices" [5] into Mizar formalism with a number of people involved, a lot of work was done to provide the alternative approach for lattices, with relational structures as the starting point (as it was claimed in [4]).

The series of Mizar articles with MML identifiers beginning with YELLOW (with numerals), e.g. [7] was written to explore this specific field in a more detailed way, but the structures behind both approaches are different (although from the informal viewpoint the difference is meaningless [10]). Still however, the correspondence between relational structures and lattices in the form of the Mizar structure LattRelStr with binary operations and the underlying ordering relation available as parallel selectors in the merged structure was studied [8]. An overview of the mechanization of lattice theory in the repository of Mizar texts can be found in [6]. Most of described efforts were done more or less manually.

Our work can be seen as a step towards a Mizar support for [15] or [16], where original proof objects by OTTER/Prover9 were used. Some preliminary works in this direction were already done in [9] by present authors. We use the interface ott2miz [17] which allows for the automated translation of proofs; these automatically generated proofs are usually quite lenghty, even after native enhancements done by internal Mizar software for library revisions.

In the present development, we deal with the parts of Chap. 6 "Lattice-like algebras" of [15], pp. 111-135, devoted to quasilattices.

The class of quasilattices (QLT) can be characterized from the standard set of axioms for lattices (with idempotence for the join and meet operations included), where absorption laws are replaced by the pair of link laws (called QLT1 and QLT2 in the Mizar source - compare Def. 1 and Def. 2). Def. 8 and Def. 9 provide standard examples of structures which are quasilatices, but not necessarily lattices (absorption laws do not hold). In the latter one, the lattice operations are given by

\sqcup	0	1	2					
0	0	0	0					
1	0	1	0					
2	0	0	2	\quad	\square	0	1	2
:---:	:---:	:---:	:---:					
0	0	1	0					
1	1	1	1					
2	0	1	2					

Then we prove, using Mizar formalism, the new form of distributivity for QLT, that the standard distributivity implies its dual, and self-dual, a bit longer, form of distributivity (QLT-1, QLT-2, QLT-3). Later we characterize Bowden's inequality (which forces quasilattices, and hence lattices, to be distributive -QLT-4) and some modularity conditions (QLT-5 and QLT-6) - both in the form of the equations (taking into account automatic treatment of the equality predicate in Mizar [11] and the design of Prover9 this is more feasible), and in the more common (at least from informal point of view) form of implication with inequality. The final section shows that the meet operation need not be unique in QLT (although in the class of lattices, starting with the same join operation, the other operation is uniquely defined).

1. Preliminaries

From now on L denotes a non empty lattice structure and v_{3}, v_{101}, v_{100}, $v_{102}, v_{103}, v_{2}, v_{1}, v_{0}$ denote elements of L.

Let L be a non empty lattice structure. We say that L satisfies QLT1 if and only if
(Def. 1) for every elements v_{0}, v_{2}, v_{1} of $L,\left(v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)\right) \sqcup\left(v_{0} \sqcap v_{1}\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$. We say that L satisfies QLT2 if and only if
(Def. 2) for every elements v_{0}, v_{2}, v_{1} of $L,\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$. We say that L is QLT-distributive if and only if
(Def. 3) for every elements v_{1}, v_{2}, v_{0} of $L, v_{0} \sqcap\left(v_{1} \sqcup\left(v_{0} \sqcap v_{2}\right)\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$.
Observe that every non empty lattice structure which is trivial is also QLTdistributive and satisfies also QLT1 and QLT2 and every non empty lattice structure which is trivial is also join-idempotent and meet-idempotent and there exists a non empty lattice structure which is join-commutative, joinassociative, join-idempotent, meet-commutative, meet-associative, and meetidempotent and satisfies QLT1 and QLT2.

Let L be a join-commutative, non empty lattice structure. One can verify that L satisfies QLT1 if and only if the condition (Def. 4) is satisfied.
(Def. 4) for every elements v_{0}, v_{1}, v_{2} of $L, v_{0} \sqcap v_{1} \sqsubseteq v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$.
Note that $\{0,1,2\}$ is real-membered and every element of $\{0,1,2\}$ is real.
Let x, y be elements of $\{0,1,2\}$. The functor $\operatorname{OpEx} 2(x, y)$ yielding an element of $\{0,1,2\}$ is defined by the term
(Def. 5) $\begin{cases}1, & \text { if } x=1 \text { or } y=1, \\ \min (x, y), & \text { if } x \neq 1 \text { and } y \neq 1 .\end{cases}$
The functors: QLTEx1 and QLTEx2 yielding binary operations on $\{0,1,2\}$ are defined by conditions
(Def. 6) for every elements x, y of $\{0,1,2\}$, if $x=y$, then $\operatorname{QLTEx} 1(x, y)=x$ and if $x \neq y$, then $\operatorname{QLTEx} 1(x, y)=0$,
(Def. 7) for every elements x, y of $\{0,1,2\}$, if $x=1$ or $y=1$, then $\operatorname{QLTEx} 2(x, y)=$ 1 and if $x \neq 1$ and $y \neq 1$, then $\operatorname{QLTEx} 2(x, y)=\min (x, y)$, respectively. Now we state the proposition:
(1) QLTEx1 $=$ QLTEx2.

The functors: QLTLattice1 and QLTLattice2 yielding strict, non empty lattice structures are defined by terms
(Def. 8) $\langle\{0,1,2\}$, QLTEx1, QLTEx1 \rangle,
(Def. 9) $\langle\{0,1,2\}$, QLTEx1, QLTEx 2\rangle,
respectively. Let us note that QLTEx1 is commutative, associative, and idempotent and QLTEx2 is commutative, associative, and idempotent and QLTLattice1 is join-commutative, join-associative, and join-idempotent and QLTLattice1 is meet-commutative, meet-associative, and meet-idempotent.

Let us consider elements v_{0}, v_{1} of QLTLattice1. Now we state the propositions:
(2) If $v_{1}=0$, then $v_{0} \sqcap v_{1}=v_{1}$.
(3) If $v_{1}=0$, then $v_{0} \sqcup v_{1}=v_{1}$.

Observe that QLTLattice1 satisfies QLT1 and QLTLattice1 satisfies QLT2 and every element of QLTLattice2 is real and QLTLattice2 is join-commutative, join-associative, and join-idempotent and QLTLattice2 is meet-commutative, meet-associative, and meet-idempotent.

Observe also that QLTLattice2 satisfies QLT1 and QLTLattice2 satisfies QLT2 and QLTLattice2 is non join-absorbing and QLTLattice2 is non meetabsorbing and QLTLattice1 is non join-absorbing and QLTLattice1 is non meetabsorbing.

A quasilattice is a join-commutative, join-associative, meet-commutative, meet-associative, join-idempotent, meet-idempotent, non empty lattice structure satisfying QLT1 and QLT2.

2. Properties of Quasilattices: QLT-1

Now we state the propositions:
(4) Suppose for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)\right) \sqcup\left(v_{0} \sqcap v_{1}\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$ and for every v_{0}, $v_{0} \sqcup v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{0}, v_{2}, and v_{1}, $\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$ and for every v_{1}, v_{2}, and v_{0}, $v_{0} \sqcap\left(v_{1} \sqcup\left(v_{0} \sqcap v_{2}\right)\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right) .\left(v_{1} \sqcap v_{2}\right) \sqcup\left(v_{1} \sqcap v_{3}\right)=v_{1} \sqcap\left(v_{2} \sqcup v_{3}\right)$.
(5) If L is meet-commutative, join-idempotent, join-associative, join-commutative, and QLT-distributive and satisfies QLT1 and QLT2, then L is distributive. The theorem is a consequence of (4).
Observe that every non empty lattice structure which is meet-commutative, join-idempotent, join-associative, join-commutative, and QLT-distributive and satisfies QLT1 and QLT2 is also distributive.

3. QLT-2

Now we state the propositions:
(6) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcap$ $v_{2}=v_{0} \sqcap\left(v_{1} \sqcap v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every $v_{0}, v_{0} \sqcup v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$ and for every v_{0}, v_{2}, and $v_{1}, v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)=\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{0} \sqcap v_{2}\right) . v_{1} \sqcup\left(v_{2} \sqcap v_{3}\right)=$ $\left(v_{1} \sqcup v_{2}\right) \sqcap\left(v_{1} \sqcup v_{3}\right)$.
(7) If L is meet-idempotent, meet-associative, meet-commutative, join-idempotent, join-associative, and distributive and satisfies QLT2, then L is distributive'. The theorem is a consequence of (6).
Let us observe that every non empty lattice structure which is meet-idempotent, meet-associative, meet-commutative, join-idempotent, join-associative, and distributive and satisfies QLT2 is also distributive'.

4. QLT-3

Let us consider L. We say that L is QLT-selfdistributive if and only if
(Def. 10) for every v_{2}, v_{1}, and $v_{0},\left(\left(\left(v_{0} \sqcap v_{1}\right) \sqcup v_{2}\right) \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{0}\right)=\left(\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\right.\right.$ $\left.\left.v_{2}\right) \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup v_{0}\right)$.
Now we state the proposition:
(8) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcap$ $v_{2}=v_{0} \sqcap\left(v_{1} \sqcap v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)\right) \sqcup\left(v_{0} \sqcap v_{1}\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$ and for every v_{0}, $v_{0} \sqcup v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{0}, v_{2}, and v_{1}, $\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$ and for every v_{2}, v_{1}, and v_{0}, $\left(\left(\left(v_{0} \sqcap v_{1}\right) \sqcup v_{2}\right) \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{0}\right)=\left(\left(\left(v_{0} \sqcup v_{1}\right) \sqcap v_{2}\right) \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup v_{0}\right)$. $v_{1} \sqcup\left(v_{2} \sqcap v_{3}\right)=\left(v_{1} \sqcup v_{2}\right) \sqcap\left(v_{1} \sqcup v_{3}\right)$.
Let us note that every non empty lattice structure which is meet-idempotent, meet-associative, meet-commutative, join-idempotent, join-associative, join-commutative, and QLT-selfdistributive and satisfies QLT1 and QLT2 is also distributive'.

5. QLT-4: Bowden Inequality

Let us consider L. We say that L satisfies Bowden inequality if and only if (Def. 11) for every elements x, y, z of $L,(x \sqcup y) \sqcap z \sqsubseteq x \sqcup(y \sqcap z)$.

Let L be a join-commutative, non empty lattice structure. Observe that L satisfies Bowden inequality if and only if the condition (Def. 12) is satisfied.
(Def. 12) for every elements v_{0}, v_{2}, v_{1} of $L,\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcup\left(\left(v_{0} \sqcup v_{1}\right) \sqcap v_{2}\right)=$ $v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$.
Now we state the proposition:
(9) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)\right) \sqcup\left(v_{0} \sqcap v_{1}\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$ and for every $v_{0}, v_{0} \sqcup v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{0}, v_{2}, and v_{1}, $\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcup\left(\left(v_{0} \sqcup v_{1}\right) \sqcap v_{2}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right) . v_{1} \sqcup\left(v_{2} \sqcap v_{3}\right)=$ $\left(v_{1} \sqcup v_{2}\right) \sqcap\left(v_{1} \sqcup v_{3}\right)$.
Note that every non empty lattice structure which is meet-idempotent, meetassociative, meet-commutative, join-idempotent, join-associative, and join-commutative and satisfies QLT1, QLT2, and Bowden inequality is also distributive'.

6. Preliminaries to QLT-5: Modularity for Quasilattices

Let us consider L. We say that L is QLT-selfmodular if and only if
(Def. 13) for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup\left(v_{0} \sqcap v_{1}\right)\right)$.
Let L be a join-idempotent, non empty lattice structure and a, b be elements of L. Let us note that the predicate $a \sqsubseteq b$ is reflexive.

Let us consider v_{1}, v_{2}, and v_{3}. Now we state the propositions:
(10) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcap$ $v_{2}=v_{0} \sqcap\left(v_{1} \sqcap v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)\right) \sqcup\left(v_{0} \sqcap v_{1}\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$ and for every v_{0}, $v_{0} \sqcup v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{0}, v_{2}, and v_{1}, $\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$ and for every v_{0}, v_{1}, and v_{2} such that $v_{0} \sqcup v_{1}=v_{1}$ holds $v_{0} \sqcup\left(v_{2} \sqcap v_{1}\right)=\left(v_{0} \sqcup v_{2}\right) \sqcap v_{1}$. Then $\left(v_{1} \sqcap v_{2}\right) \sqcup\left(v_{1} \sqcap v_{3}\right)=v_{1} \sqcap\left(v_{2} \sqcup\left(v_{1} \sqcap v_{3}\right)\right)$.
(11) Suppose for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)\right) \sqcup\left(v_{0} \sqcap v_{1}\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$ and for every v_{0}, $v_{0} \sqcup v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$
and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{0}, v_{2}, and v_{1}, $\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$ and for every v_{2}, v_{1}, and v_{0}, $\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{0} \sqcap v_{2}\right)=v_{0} \sqcap\left(v_{1} \sqcup\left(v_{0} \sqcap v_{2}\right)\right)$. Then if $v_{1} \sqcup v_{2}=v_{2}$, then $v_{1} \sqcup\left(v_{3} \sqcap v_{2}\right)=\left(v_{1} \sqcup v_{3}\right) \sqcap v_{2}$.
Let L be a meet-idempotent, join-idempotent, meet-commutative, joincommutative, meet-associative, join-associative, non empty lattice structure satisfying QLT1 and QLT2. Observe that L is modular if and only if the condition (Def. 14) is satisfied.
(Def. 14) for every elements v_{1}, v_{2}, v_{3} of $L,\left(v_{1} \sqcap v_{2}\right) \sqcup\left(v_{1} \sqcap v_{3}\right)=v_{1} \sqcap\left(v_{2} \sqcup\left(v_{1} \sqcap v_{3}\right)\right)$.

7. QLT-5

Now we state the proposition:
(12) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcap$ $v_{2}=v_{0} \sqcap\left(v_{1} \sqcap v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)\right) \sqcup\left(v_{0} \sqcap v_{1}\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$ and for every v_{0}, $v_{0} \sqcup v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{0}, v_{2}, and v_{1}, $\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$ and for every v_{2}, v_{1}, and v_{0}, $\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup\left(v_{0} \sqcap v_{1}\right)\right) .\left(v_{1} \sqcap v_{2}\right) \sqcup\left(v_{1} \sqcap v_{3}\right)=$ $v_{1} \sqcap\left(v_{2} \sqcup\left(v_{1} \sqcap v_{3}\right)\right)$.
Let us note that every non empty lattice structure which is meet-idempotent, meet-associative, meet-commutative, join-idempotent, join-associative, join-commutative, and QLT-selfmodular and satisfies QLT1 and QLT2 is also modular.

8. QLT-6

Now we state the proposition:
(13) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcap$ $v_{2}=v_{0} \sqcap\left(v_{1} \sqcap v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every v_{0}, v_{2}, and $v_{1},\left(v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)\right) \sqcup\left(v_{0} \sqcap v_{1}\right)=v_{0} \sqcap\left(v_{1} \sqcup v_{2}\right)$ and for every v_{0}, $v_{0} \sqcup v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{0}, v_{2}, and v_{1}, $\left(v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)\right) \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcup v_{1}\right) \sqcap v_{2}\right) \sqcup v_{1}=\left(\left(v_{2} \sqcup v_{1}\right) \sqcap v_{0}\right) \sqcup v_{1} .\left(v_{1} \sqcap v_{2}\right) \sqcup\left(v_{1} \sqcap v_{3}\right)=$ $v_{1} \sqcap\left(v_{2} \sqcup\left(v_{1} \sqcap v_{3}\right)\right)$.
Let us consider L. We say that L is QLT-selfmodular' if and only if
(Def. 15) for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcup v_{1}\right) \sqcap v_{2}\right) \sqcup v_{1}=\left(\left(v_{2} \sqcup v_{1}\right) \sqcap v_{0}\right) \sqcup v_{1}$.
Observe that every non empty lattice structure which is meet-idempotent, meet-associative, meet-commutative, join-idempotent, join-associative, join-commutative, and QLT-selfmodular' and satisfies QLT1 and QLT2 is also modular.

9. The Counterexample Needed to Prove QLT-7

Now we state the proposition:
(14) There exist quasilattices L_{1}, L_{2} such that
(i) the carrier of $L_{1}=$ the carrier of L_{2}, and
(ii) the join operation of $L_{1}=$ the join operation of L_{2}, and
(iii) the meet operation of $L_{1} \neq$ the meet operation of L_{2}.

The theorem is a consequence of (1).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pakk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Garrett Birkhoff. Lattice Theory. Providence, Rhode Island, New York, 1967.
[4] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.
[5] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[6] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211-221, 2015. doi:10.1007/s10817-015-9333-5.
[7] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures Formalized Mathematics, $\sigma(\mathbf{1}): 117-121,1997$.
[8] Adam Grabowski and Markus Moschner. Managing heterogeneous theories within a mathematical knowledge repository. In Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec, editors, Mathematical Knowledge Management Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 116-129. Springer, 2004. doi:10.1007/978-3-540-27818-4_9. 3rd International Conference on Mathematical Knowledge Management, Bialowieza, Poland, Sep. 19-21, 2004.
[9] Adam Grabowski and Damian Sawicki. On two alternative axiomatizations of lattices by McKenzie and Sholander. Formalized Mathematics, 26(2):193-198, 2018. doi 10.2478/forma-2018-0017.
[10] Adam Grabowski and Christoph Schwarzweller. Translating mathematical vernacular into knowledge repositories. In Michael Kohlhase, editor, Mathematical Knowledge Management, volume 3863 of Lecture Notes in Computer Science, pages 49-64. Springer, 2006. doi https://doi.org/10.1007/11618027_4 4th International Conference on Mathematical Knowledge Management, Bremen, Germany, MKM 2005, July 15-17, 2005, Revised Selected Papers.
[11] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. Equality in computer proof-assistants. In Ganzha, Maria and Maciaszek, Leszek and Paprzycki, Marcin, editor, Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, volume 5 of ACSIS-Annals of Computer Science and Information Systems, pages 45-54. IEEE, 2015. doi $10.15439 / 2015 \mathrm{~F} 229$.
[12] George Grätzer. General Lattice Theory. Academic Press, New York, 1978.
[13] George Grätzer. Lattice Theory: Foundation. Birkhäuser, 2011.
[14] William McCune. Prover9 and Mace4 2005-2010.
[15] William McCune and Ranganathan Padmanabhan. Automated Deduction in Equational Logic and Cubic Curves. Springer-Verlag, Berlin, 1996.
[16] Ranganathan Padmanabhan and Sergiu Rudeanu. Axioms for Lattices and Boolean Algebras. World Scientific Publishers, 2008.
[17] Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.
[18] Stanisław Żukowski. Introduction to lattice theory Formalized Mathematics, 1(1):215222, 1990.

Accepted May 31, 2020

