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Summary. In this paper we introduce some notions to facilitate formula-
ting and proving properties of iterative algorithms encoded in nominative data
language [19] in the Mizar system [3], [1]. It is tested on verification of the partial
correctness of an algorithm computing n-th Fibonacci number:
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while (i <> n)

c :=s
s :=b
b :=c+ s
i:=1i+1
return s

This paper continues verification of algorithms [10], [13], [I2] written in terms
of simple-named complex-valued nominative data [6], [§], [I7], [11], [I4], [I5]. The
validity of the algorithm is presented in terms of semantic Floyd-Hoare triples
over such data [9]. Proofs of the correctness are based on an inference system for
an extended Floyd-Hoare logic [2], [4] with partial pre- and post-conditions [16],

18], [, [51.
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1. INTRODUCTION

From now on D denotes a non empty set, m, n, N denote natural numbers,
zo denotes a non zero natural number, fi, fo, f3, f1, f5, fe denote binominative
functions of D, p1, p2, p3, P4, P5, Ps, P7r denote partial predicates of D, d, v
denote objects.

Observe that V, A denote sets, z denotes an element of V, val denotes
a function, loc denotes a V-valued function, di denotes a non-atomic nominative
data of V and A, and T denotes a nominative data with simple names from V'
and complex values from A.

Let R1, Ry be binary relations. We say that R; is valid w.r.t. Ry if and only
if

(Def. 1) rng R; C dom Ry.

Let us consider V, loc, val, and N. We say that loc and val are different

w.r.t. N if and only if

(Def. 2) for every natural numbers m, n such that 1 <m < N and 1 <n < N
holds val(m) # loc/,,.

Now we state the propositions:

(1) Suppose loc] Seg N is one-to-one and Seg N C dom loc. Let us consider
natural numbers 4, j. Suppose 1 < ¢ < N and 1 < j < N and i # j. Then
loc); # locy;.

(2) If V is not empty and v € domdy, then (di1VZ(v =4)(d1))(2) = di(v).

Let us consider D, f1, f2, f3, f4, f5, and fg. The functor PP-composition( fi,
f2, f3, fa, f5, f6) yielding a binominative function of D is defined by the term

(Def. 3) PP-composition(f1, fa, f3, f1, f5) ® fs.
Now we state the proposition:

(3) UNCONDITIONAL COMPOSITION RULE FOR 6 PROGRAMS:

Suppose (p1, f1,p2) is an SFHT of D and (pa, fa2,p3) is an SFHT of D and
(p3, f3,p4) is an SFHT of D and (p4, f4,ps) is an SFHT of D and (ps,
f5,p6) is an SFHT of D and (ps, fs,p7) is an SFHT of D and (~ pa, fo,
p3) is an SFHT of D and (~ ps, f3,p4) is an SFHT of D and (~ py, fa,
ps) is an SFHT of D and (~ ps, f5,p) is an SFHT of D and (~ pe, fs,
p7) is an SFHT of D. Then (p;, PP-composition( f1, fa, f3, f4, f5, f6), p7) is
an SFHT of D.

Let us consider V', A, loc, val, and d;. Let zo be a natural number. Assume

z9 > 0. The functor LocalOverlapSeq(A4, loc, val, dy, z2) yielding a finite sequence
of elements of NDgc(V, A) is defined by
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(Def. 4) lenit = z9 and it(1) = dlvgoc/l)(val(l) =4)(d1) and for every natural
number n such that 1 < n < len it holds it(n+1) = it(n)V,(lloc/n+1)(val(n+
1) =4)(it(n)).
Let f be a function. We say that f is (V,A)-nonatomicND yielding if and
only if
(Def. 5) for every object m such that n € dom f holds f(n) is a non-atomic
nominative data of V' and A.
Let f be a finite sequence. Let us observe that f is (V,A)-nonatomicND
yielding if and only if the condition (Def. 6) is satisfied.
(Def. 6) for every natural number n such that 1 <n <len f holds f(n) is a non-
atomic nominative data of V' and A.
Let us consider dj. Observe that (d;) is (V,A)-nonatomicND yielding and
there exists a finite sequence which is (V,A)-nonatomicND yielding.
Now we state the proposition:

(4) Let us consider a (V,A)-nonatomicND yielding finite sequence f. If n €
dom f, then f(n) is a non-atomic nominative data of V and A.

Let us consider V', A, loc, val, dq, and z9. One can check that LocalOverlapSeq

(A, loc,val,dy, z2) is (V,A)-nonatomicND yielding.

Let us consider n. Let us observe that (LocalOverlapSeq(A, loc, val, dy, z2))(n)
is function-like and relation-like.

Let us consider a natural number n. Now we state the propositions:

(5) Suppose V is not empty and V' is without nonatomic nominative data
w.r.t. A. Then suppose 1 < n < z9 and val(n+1) € dom((LocalOverlapSeq
(A,loc,val,dy, z2))(n)). Then dom((LocalOverlapSeq(A, loc, val, d1, z2))(n+
1)) = {loc/p41} U dom((LocalOverlapSeq(A, loc, val, dy, z2))(n)).

(6) Suppose V is not empty and V' is without nonatomic nominative data
w.r.t. A. Then suppose 1 < n < z9 and val(n+1) € dom((LocalOverlapSeq
(A,loc,val,dy, z2))(n)). Then dom((LocalOverlapSeq(A, loc, val, d1, z2))(n))
C dom((LocalOverlapSeq(A, loc,val, dy, z2))(n+1)). The theorem is a con-
sequence of (5).

Let us consider V', A, loc, val, di, and zo. We say that loc, val and zo are
correct w.r.t. di if and only if
(Def. 7) V' is not empty and V is without nonatomic nominative data w.r.t. A
and wval is valid w.r.t. d; and dom(LocalOverlapSeq(A, loc,val,d1, z2)) C
dom val.
Now we state the proposition:

(7) Suppose loc, val and zo are correct w.r.t. di. Let us consider a natural
number n. Suppose 1 < n < z2. Then dom d; C dom((LocalOverlapSeq( A4,
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loc,val,dy, z2))(n)).

PROOF: Set F' = LocalOverlapSeq(A, loc,val, dy, z2). Define P[natural
number] = if 1 < $; < 22, then domd; C dom(F'($1)). For every natural
number £ such that P[k] holds P[k+1]. For every natural number k, P[k].
O

Let us consider natural numbers m, n. Now we state the propositions:

(8) Suppose loc, val and zo are correct w.r.t. dj. Then suppose 1 < n < m <
z9. Then dom((LocalOverlapSeq(A, loc,val, dy, 22))(n)) € dom
((LocalOverlapSeq(A, loc, val, di, z2))(m)). The theorem is a consequence
of (7) and (6).

(9) Suppose loc, val and zo are correct w.r.t. di. Then if 1 <n < m < 29,
then loc/,, € dom
((LocalOverlapSeq(A, loc, val, di, z2))(m)). The theorem is a consequence
of (8) and (7).

(10) Suppose loc, val and zo are correct w.r.t. di. Then if (n € domwval or 1 <
n < z2) and 1 < m < 2z, then val(n) € dom((LocalOverlapSeq(A, loc, val,
dy,22))(m)). The theorem is a consequence of (7).

Let us consider natural numbers j, m, n. Now we state the propositions:

(11) Suppose loc, val and zy are correct w.r.t. d; and loc and val are different

w.r.t. zo. Then suppose 1 <n < m < j < zo. Then ((LocalOverlapSeq(A,
loc,val,dy, z2))(n))(val(j)) = (LocalOverlapSeq(A, loc, val, dy, z2))(m)
(val(7))-
PROOF: Set F' = LocalOverlapSeq(A, loc, val, dy, z2). Set 11 = val(j). De-
fine P[natural number| = if n < $; < j < 22, then F(n)(l1) = F($1)(l1).
For every natural number k such that P[k] holds P[k+1]. For every natural
number k, Plk]. O

(12) Suppose loc, val and zo are correct w.r.t. d; and Segze C domloc and
loc| Seg zo is one-to-one. Then suppose 1 < j < n < m < 2.
Then (LocalOverlapSeq(A, loc, val,dy, 22))(n)(loc,;) =
(LocalOverlapSeq(A, loc, val, d1, z2))(m)(loc);).
PROOF: Set F' = LocalOverlapSeq(4, loc, val, dy, 22). Set l; = loc,;. Define
P[natural number| = if n < $1 < 22, then F(n)(l1) = F($1)(l1). For every
natural number k such that P[k] holds P[k+ 1]. For every natural number
k, Plk]. O

(13) Let us consider a z3-element finite sequence val. Suppose Seg zo C dom loc
and loc[ Seg z3 is one-to-one and loc and val are different w.r.t. zo and loc,
val and z9 are correct w.r.t. di. If 1 < n < m < 22, then ((LocalOverlapSeq
(4, loc,val, dy, 22))(m))(loc,) = di(val(n)).
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PROOF: Set F' = LocalOverlapSeq(A,loc,val,d;, z2). Define Plnatural
number] = if n < $1 < 29, then (F(81))(locs,) = di(val(n)). For every
natural number k such that P[k] holds P[k+ 1]. For every natural number
k, Plk]. O
(14) Let us consider a zo-element finite sequence val. Suppose loc and val
are different w.r.t. zo and loc, val and zo are correct w.r.t. dy. Let us
consider natural numbers m, n. Suppose 1 < m < z0 and 1 < n < 29.
Then ((LocalOverlapSeq(A, loc,val, dy, z2))(m))(val(n)) = di(val(n)).
PROOF: Set F' = LocalOverlapSeq(A,loc,val,d;, z2). Define Plnatural
number] = if 1 < $; < 29, then (F($1))(val(n)) = di(val(n)). For every
natural number k such that P[k] holds P[k +1]. For every natural number
k, Plk]. O
(15) Let us consider a z-element finite sequence val. Suppose loc, val and zy
are correct w.r.t. d; and Seg zo C dom loc and loc| Seg zo is one-to-one and
loc and val are different w.r.t. zo. Let us consider natural numbers j, m, n.
Suppose 1 < j < m < n < 2. Then ((LocalOverlapSeq(A, loc, val, dy, z2))
(n))(loc/y,) = (LocalOverlapSeq(A, loc, val, di, z2))(j) (val(m)).
PROOF: Set F' = LocalOverlapSeq(A, loc,val,d;, z2). Define P[natural
number| = if m < $; < 22, then (F(31))(loc/,) = F(j)(val(m)). For
every natural number k such that P[k] holds P[k + 1]. For every natural
number k, Plk]. O
Let us consider V', A, loc, and val. Let zo be a natural number. Assume 0 <
z9. The functor initial-assignments-Seq(A, loc, val, z3) yielding a finite sequence
of elements of NDgc(V, A)—> NDgc(V, A) is defined by
(Def. 8) lenit = z and it(1) = Asg*®/1)(val(1) =,) and for every natural num-
ber n such that 1 < n < z3 holds it(n + 1) = it(n) e (Asg/n+1) (val(n +
1) =)
The functor initial-assignments(A, loc, val, z2) yielding a binominative func-
tion over simple-named complex-valued nominative data of V' and A is defined
by the term

(Def. 9) (initial-assignments-Seq(A, loc, val, z2))(z2).

2. MAIN ALGORITHM

Let us consider V', A, and loc. The functor Fibonacci-loop-body(A, loc) yiel-
ding a binominative function over simple-named complex-valued nominative da-
ta of V and A is defined by the term

(Def. 10) PP-composition(Asg(loc/ﬁ)((loc/4) :>a),Asg(lOC/4)((loc/5) =), Asg(loe/s)
(addition(A, locg, loc,y)), Asg¢/1) (addition(A, locyy,locyz))).
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The functor Fibonacci-main-loop(A, loc) yielding a binominative function
over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 11)  WH(= Equality(A, loc/y, loc/3), Fibonacci-loop-body (A4, loc)).
Let us consider val. The functor Fibonacci-main-part(A,loc,val) yielding

a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 12) initial-assignments(A, loc, val, 6) e (Fibonacci-main-loop(A4, loc)).
Let us consider z. The functor Fibonacci-program(A, loc, val, z) yielding a bi-

nominative function over simple-named complex-valued nominative data of V'
and A is defined by the term

(Def. 13) Fibonacci-main-part(A, loc, val) e (Asg®((locs) =a))-
From now on ng denotes a natural number.

Let us consider V', A, val, ng, and d. We say that val, ng, and d constitute
a valid input for the Fibonacci algorithm w.r.t. V and A if and only if

(Def. 14) there exists a non-atomic nominative data d; of V' and A such that
d = dy and {wal(1),val(2),val(3),val(4),val(5),val(6)} C domd; and
dy(val(1)) = 0 and dy (val(2)) = 1 and d;i(val(3)) = ng and dy (val(4)) =0
and di(val(5)) =1 and d;(val(6)) = 0.

The functor valid-Fibonacci-input(V, A, val, ng) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by

(Def. 15) dom it = NDgc(V, A) and for every object d such that d € dom it holds
if val, ng, and d constitute a valid input for the Fibonacci algorithm w.r.t.
V and A, then it(d) = true and if val, ng, and d do not constitute a valid
input for the Fibonacci algorithm w.r.t. V' and A, then it(d) = false.
One can check that valid-Fibonacci-input(V, A, val, ng) is total.
Let us consider z and d. We say that z, ng, and d constitute a valid output
for the Fibonacci algorithm w.r.t. A if and only if

(Def. 16) there exists a non-atomic nominative data d; of V and A such that
d =d; and z € domd; and d;(z) = Fib(ng).
The functor valid-Fibonacci-output (A, z, ng) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by

(Def. 17)  dom it = {d, where d is a nominative data with simple names from V'
and complex values from A : d € dom(z =)} and for every object d such
that d € dom it holds if 2z, ng, and d constitute a valid output for the
Fibonacci algorithm w.r.t. A, then it(d) = true and if z, ng, and d do
not constitute a valid output for the Fibonacci algorithm w.r.t. A, then
it(d) = false.
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Let us consider loc and d. We say that loc, ng, and d constitute an invariant
for the Fibonacci algorithm w.r.t. A if and only if

(Def. 18) there exists a non-atomic nominative data d; of V and A such that d = d;
and {loc1,loc)y,locss, locy, locs,loc g} C domdy and dy(loc/y) = 1 and
di(locs3) = ng and there exists a natural number I such that I = d;(loc/;)
and dy(loc/y) = Fib(I) and d;(loc/5) = Fib(I + 1).

The functor Fibonacci-inv (A4, loc, ng) yielding a partial predicate over simple-
named complex-valued nominative data of V' and A is defined by

(Def. 19) dom it = NDgc(V, A) and for every object d such that d € dom it holds
if loc, ng, and d constitute an invariant for the Fibonacci algorithm w.r.t.
A, then it(d) = true and if loc, ng, and d do not constitute an invariant
for the Fibonacci algorithm w.r.t. A, then it(d) = false.

Let us observe that Fibonacci-inv(A, loc, ng) is total.
Now we state the propositions:

(16) Let us consider a 6-element finite sequence val. Suppose V' is not empty

and V is without nonatomic nominative data w.r.t. A and Seg6 C dom loc
and loc[ Seg 6 is one-to-one and loc and wal are different w.r.t. 6. Then
(valid-Fibonacci-input(V, A, val, ng), initial-assignments(A, loc, val, 6),
Fibonacci-inv (A4, loc, ng)) is an SFHT of NDgc(V, A).
PROOF: Set i = loc;;. Set j = locjy. Set n = locsz. Set s = locyy.
Set b = locs. Set ¢ = locjg. Set i1 = wal(1). Set ji = wval(2). Set
ny = val(3). Set s; = val(4). Set by = val(5). Set ¢; = val(6). Set [ =
valid-Fibonacci-input(V, A, val, ng). Set i2 = Fibonacci-inv (A, loc, ng). Set
D3 = i1 =,. Set Dy = 71 =a- Set D5 =nq =y. Set Dg = s1 =. Set Dy =
b1 =a- Set D2 = C1 =q- Set U1 = Sp(iQ,DQ,C). Set T1 = Sp(Ul,Dl,b).
Set S1 = Sp(Tl,DG,S). Set Ry = Sp(Sl,D5,n). Set Q1 = SP(R17D4,j).
Set P = Sp(Ql,Dg,i). I |: P. 0O

(17) Suppose V is not empty and A is complex containing and V' is witho-
ut nonatomic nominative data w.r.t. A and for every T, T is a value
on loc/; and T is a value on loc/, and T is a value on loc)y and T' is
a value on loc/s and Seg6 C domloc and loc| Seg6 is one-to-one. Then
(Fibonacci-inv (A4, loc, ng), Fibonacci-loop-body (A, loc), Fibonacci-inv(A,
loc,mp)) is an SFHT of NDgc(V, A). The theorem is a consequence of (1)
and (2).

(18) Suppose V is not empty and A is complex containing and V' is witho-
ut nonatomic nominative data w.r.t. A and for every T, T is a value
on loc/; and T is a value on loc/y and T is a value on loc/y and T' is
a value on loc/s and Seg6 C domloc and loc| Seg6 is one-to-one. Then
(Fibonacci-inv(A4, loc, ng), Fibonacci-main-loop(4, loc), Equality (A4, loc/y,
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loc3) AFibonacci-inv(A4, loc, ng)) is an SFHT of NDgc(V; A). The theorem
is a consequence of (17).

(19) Let us consider a 6-element finite sequence val. Suppose V' is not empty
and A is complex containing and V is without nonatomic nominative data
w.r.t. A and for every T', T' is a value on loc/; and T' is a value on loc,
and 7" is a value on loc,y and T' is a value on loc/s and Seg6 C domloc
and loc[ Seg 6 is one-to-one and loc and wal are different w.r.t. 6. Then
(valid-Fibonacci-input(V, A, val, ng), Fibonacci-main-part(A, loc, val),
Equality (A, loc;y, loc/3) AFibonacci-inv (A, loc, ng)) is an SFHT of NDgc(V,
A). The theorem is a consequence of (16) and (18).

(20) Suppose V' is not empty and V' is without nonatomic nominative data

w.r.t. A and for every T, T' is a value on loc;; and T' is a value on loc/3.
Then Equality(A, loc/q,loc/3) A Fibonacci-inv(A, loc, ng) = Sp
(valid-Fibonacci-output(A, z,n9), (loc/4) =4, 2)-
PROOF: Set i = loc;;. Set j = locjy. Set n = loc/z. Set s = loc,y. Set
b = locs. Set ¢ = locs. Set Dg = s =,. Set By = {i, j,n,s,b, c}. Consider
di being a non-atomic nominative data of V and A such that d = d; and
E; C domd; and di(j) = 1 and dj(n) = ngp and there exists a natural
number [ such that I = d; (i) and di(s) = Fib(I) and d;(b) = Fib(I + 1).
Reconsider d3 = d as a nominative data with simple names from V and
complex values from A. Set L = d3VZDg(ds). z, ng, and L constitute
a valid output for the Fibonacci algorithm w.r.t. A. [

(21) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every T', T is a value on loc;; and T' is a value on loc/3.
Then (Equality(A4, loc/1, loc/3) AFibonacci-inv(A, loc, no), Asg®((loc/s) =
), valid-Fibonacci-output(A4, z,ng)) is an SFHT of NDgc(V, A). The the-
orem is a consequence of (20).

(22) Suppose for every T, T is a value on loc/; and T'is a value on loc/3. Then
(~ (Equality(A,loc/q,loc;3) AFibonacci-inv (A, loc, ng)), Asg®((locs) =a),
valid-Fibonacci-output(4, z,ng)) is an SFHT of NDgc(V, A).

(23) PARTIAL CORRECTNESS OF A FIBONACCI ALGORITHM:

Let us consider a 6-element finite sequence val. Suppose V is not emp-
ty and A is complex containing and V' is without nonatomic nominative
data w.r.t. A and for every T, T is a value on loc/; and T is a value
on locjy and T is a value on loc/3 and T is a value on loc/y and T' is
a value on loc/s and Seg6 C domloc and loc| Seg 6 is one-to-one and loc
and val are different w.r.t. 6. Then (valid-Fibonacci-input(V, A, val,ng),
Fibonacci-program(A, loc, val, z), valid-Fibonacci-output(A, z,ng)) is an S-
FHT of NDgc(V, A). The theorem is a consequence of (19), (21), and (22).
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