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Summary. In this article the union and intersection of a set of graphs are
formalized in the Mizar system [5], based on the formalization of graphs in [7].
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0. Introduction

The union and intersection of two graphs are usually defined in any general
graph theory textbook, although there are small differences between the authors
from time to time. For example, Wilson [10] only allows two vertex- and edge-
disjoint graphs to be united; his graph union is usually known as the disjoint
union [2], [8] or sum [8] of two graphs, which will be formalized in in detail in
another article. Bondy and Murty [2] as well as Diestel [4] allow unions of two
arbitary simple graphs, but labelled the vertices in the graphical representation
to avoid confusion. In both books it was silently assumed that edges between
the same vertices in both graphs are the same, thereby securing the union to be
a simple graph again. Wagner [9], while generalizing to the union and intersec-
tion of a family of graphs, explicitly states that condition and previously adds
the condition, that on the other side identical edges in the graph family must
have the same incident vertices. Naturally, in this paper union and intersection
are generalized to families of multidigraphs, i.e. the graphs of [7]. Union and
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intersection are defined as modes rather than functions in accordance with the
style of the early GLIB articles and to leave this formalization extendable by
graph decorators.

To denote the graph family, a Graph-yielding Function from [7] could
have been used. But since sets of graphs would be needed sooner or later in the
Mizar Mathematical Library [1] (e.g. to count all spanning trees of a graph),
the set attribute Graph-membered is rigorously introduced in the first section.

In the second section, the first condition of Wagner is formalized. It simply
means that for two graphs G and H from the family, their respective source and
target function tolerate each other (S(G) ≈ S(H) and T (G) ≈ T (H), cf. [3]).
As this property is indispensable for unions (or else in a union an edge could
point to different vertices), the set attribute was named \/-tolerating. The
graph union U for a ∪-tolerating set S is given by

U = (
⋃
G∈S V (G),

⋃
G∈S E(G),

⋃
G∈S S(G),

⋃
G∈S T (G)) .

While Wagner’s second condition is useful to ensure the resulting graph union
will be non-multi, it is not formalized in this article.

Since graphs without vertices are not allowed by the used definition [7], the
difference between ∪-tolerating and /\-tolerating is the additional condition
that

⋂
G∈S V (G) is non empty. Then the graph intersection I for a ∩-tolerating

set S is given by

I = (
⋂
G∈S V (G),

⋂
G∈S E(G),

⋂
G∈S S(G),

⋂
G∈S T (G)) .

To avoid confusion with intersection graphs of any kind, the mode was named
GraphMeet.

With this formalization the union of a graph with (any kind of) its comple-
ment will be complete and the intersection will be edgeless, just as intended by
[6].

1. Sets of Graphs

Let X be a set. We say that X is graph-membered if and only if

(Def. 1) for every object x such that x ∈ X holds x is a graph.

Observe that every set which is empty is also graph-membered.
Let F be a graph-yielding function. One can verify that rngF is graph-

membered.
Let G1 be a graph. Let us note that {G1} is graph-membered.
Let G2 be a graph. Let us observe that {G1, G2} is graph-membered and

there exists a set which is empty and graph-membered and there exists a set
which is trivial, finite, non empty, and graph-membered.
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Let X be a graph-membered set. One can check that every subset of X is
graph-membered.

Let Y be a set. Let us note that X ∩ Y is graph-membered and X \ Y is
graph-membered.

LetX, Y be graph-membered sets. Let us note thatX∪Y is graph-membered
and X−. Y is graph-membered.

Let us consider a set X. Now we state the propositions:

(1) If for every object Y such that Y ∈ X holds Y is a graph-membered set,
then

⋃
X is graph-membered.

(2) If there exists a graph-membered set Y such that Y ∈ X, then
⋂
X is

graph-membered.

Let X be a non empty, graph-membered set. Observe that every element
of X is function-like and relation-like and every element of X is N-defined and
finite and every element of X is graph-like.

Let S be a graph-membered set. We say that S is plain if and only if

(Def. 2) for every graph G such that G ∈ S holds G is plain.

We say that S is loopless if and only if

(Def. 3) for every graph G such that G ∈ S holds G is loopless.

We say that S is non-multi if and only if

(Def. 4) for every graph G such that G ∈ S holds G is non-multi.

We say that S is non-directed-multi if and only if

(Def. 5) for every graph G such that G ∈ S holds G is non-directed-multi.

We say that S is simple if and only if

(Def. 6) for every graph G such that G ∈ S holds G is simple.

We say that S is directed-simple if and only if

(Def. 7) for every graph G such that G ∈ S holds G is directed-simple.

We say that S is acyclic if and only if

(Def. 8) for every graph G such that G ∈ S holds G is acyclic.

We say that S is connected if and only if

(Def. 9) for every graph G such that G ∈ S holds G is connected.

We say that S is tree-like if and only if

(Def. 10) for every graph G such that G ∈ S holds G is tree-like.

We say that S is chordal if and only if

(Def. 11) for every graph G such that G ∈ S holds G is chordal.

We say that S is edgeless if and only if

(Def. 12) for every graph G such that G ∈ S holds G is edgeless.
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We say that S is loopfull if and only if

(Def. 13) for every graph G such that G ∈ S holds G is loopfull.

Let us observe that every graph-membered set which is empty is also plain,
loopless, non-multi, non-directed-multi, simple, directed-simple, acyclic, con-
nected, tree-like, chordal, edgeless, and loopfull and every graph-membered set
which is non-multi is also non-directed-multi and every graph-membered set
which is loopless and non-multi is also simple and every graph-membered set
which is loopless and non-directed-multi is also directed-simple.

Every graph-membered set which is simple is also loopless and non-multi
and every graph-membered set which is directed-simple is also loopless and non-
directed-multi and every graph-membered set which is acyclic is also simple and
every graph-membered set which is acyclic and connected is also tree-like and
every graph-membered set which is tree-like is also acyclic and connected.

Let G1 be a plain graph. Let us observe that {G1} is plain. Let G2 be a plain
graph. One can check that {G1, G2} is plain.

Let G1 be a loopless graph. One can verify that {G1} is loopless. Let G2 be
a loopless graph. Note that {G1, G2} is loopless.

Let G1 be a non-multi graph. One can check that {G1} is non-multi. Let G2
be a non-multi graph. Let us note that {G1, G2} is non-multi.

Let G1 be a non-directed-multi graph. Note that {G1} is non-directed-multi.
Let G2 be a non-directed-multi graph. Observe that {G1, G2} is non-directed-
multi.

Let G1 be a simple graph. Let us note that {G1} is simple. Let G2 be a simple
graph. One can verify that {G1, G2} is simple.

Let G1 be a directed-simple graph. Let us observe that {G1} is directed-
simple. LetG2 be a directed-simple graph. Note that {G1, G2} is directed-simple.

Let G1 be an acyclic graph. One can check that {G1} is acyclic. Let G2 be
an acyclic graph. Let us note that {G1, G2} is acyclic.

Let G1 be a connected graph. Note that {G1} is connected. Let G2 be a con-
nected graph. Observe that {G1, G2} is connected.

Let G1 be a tree-like graph. Let us note that {G1} is tree-like. Let G2 be
a tree-like graph. One can verify that {G1, G2} is tree-like.

Let G1 be a chordal graph. Let us observe that {G1} is chordal. Let G2 be
a chordal graph. One can check that {G1, G2} is chordal.

Let G1 be an edgeless graph. One can verify that {G1} is edgeless. Let G2
be an edgeless graph. Note that {G1, G2} is edgeless.

Let G1 be a loopfull graph. One can check that {G1} is loopfull. Let G2 be
a loopfull graph. Let us note that {G1, G2} is loopfull.

Let F be a plain, graph-yielding function. Observe that rngF is plain.
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Let F be a loopless, graph-yielding function. One can verify that rngF is
loopless.

Let F be a non-multi, graph-yielding function. Note that rngF is non-multi.
Let F be a non-directed-multi, graph-yielding function. Observe that rngF

is non-directed-multi.
Let F be a simple, graph-yielding function. One can verify that rngF is

simple.
Let F be a directed-simple, graph-yielding function. Observe that rngF is

directed-simple.
Let F be an acyclic, graph-yielding function. Note that rngF is acyclic.
Let F be a connected, graph-yielding function. Observe that rngF is con-

nected.
Let F be a tree-like, graph-yielding function. One can verify that rngF is

tree-like.
Let F be a chordal, graph-yielding function. Observe that rngF is chordal.
Let F be an edgeless, graph-yielding function. One can verify that rngF is

edgeless.
Let F be a loopfull, graph-yielding function. Note that rngF is loopfull.
Let X be a plain, graph-membered set. Observe that every subset of X is

plain.
Let X be a loopless, graph-membered set. Note that every subset of X is

loopless.
Let X be a non-multi, graph-membered set. One can verify that every subset

of X is non-multi.
Let X be a non-directed-multi, graph-membered set. Observe that every

subset of X is non-directed-multi.
Let X be a simple, graph-membered set. Note that every subset of X is

simple.
Let X be a directed-simple, graph-membered set. One can check that every

subset of X is directed-simple.
Let X be an acyclic, graph-membered set. One can verify that every subset

of X is acyclic.
Let X be a connected, graph-membered set. Observe that every subset of X

is connected.
Let X be a tree-like, graph-membered set. Note that every subset of X is

tree-like.
Let X be a chordal, graph-membered set. One can check that every subset

of X is chordal.
Let X be an edgeless, graph-membered set. Let us observe that every subset

of X is edgeless.
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Let X be a loopfull, graph-membered set. Let us note that every subset of
X is loopfull.

Let X be a plain, graph-membered set and Y be a set. Note that X ∩ Y is
plain and X \ Y is plain.

Let X, Y be plain, graph-membered sets. Observe that X ∪ Y is plain and
X−. Y is plain.

Let X be a loopless, graph-membered set and Y be a set. Note that X ∩ Y
is loopless and X \ Y is loopless.

Let X, Y be loopless, graph-membered sets. Observe that X ∪ Y is loopless
and X−. Y is loopless.

Let X be a non-multi, graph-membered set and Y be a set. Note that X ∩Y
is non-multi and X \ Y is non-multi.

Let X, Y be non-multi, graph-membered sets. Observe that X ∪ Y is non-
multi and X−. Y is non-multi.

Let X be a non-directed-multi, graph-membered set and Y be a set. Note
that X ∩ Y is non-directed-multi and X \ Y is non-directed-multi.

Let X, Y be non-directed-multi, graph-membered sets. Observe that X ∪ Y
is non-directed-multi and X−. Y is non-directed-multi.

Let X be a simple, graph-membered set and Y be a set. Note that X ∩ Y is
simple and X \ Y is simple.

Let X, Y be simple, graph-membered sets. Observe that X ∪ Y is simple
and X−. Y is simple.

Let X be a directed-simple, graph-membered set and Y be a set. Note that
X ∩ Y is directed-simple and X \ Y is directed-simple.

Let X, Y be directed-simple, graph-membered sets. Observe that X ∪ Y is
directed-simple and X−. Y is directed-simple.

Let X be an acyclic, graph-membered set and Y be a set. Note that X ∩ Y
is acyclic and X \ Y is acyclic.

Let X, Y be acyclic, graph-membered sets. Observe that X ∪ Y is acyclic
and X−. Y is acyclic.

Let X be a connected, graph-membered set and Y be a set. Note that X∩Y
is connected and X \ Y is connected.

Let X, Y be connected, graph-membered sets. Observe that X ∪ Y is con-
nected and X−. Y is connected.

Let X be a tree-like, graph-membered set and Y be a set. Note that X ∩ Y
is tree-like and X \ Y is tree-like.

Let X, Y be tree-like, graph-membered sets. Observe that X ∪Y is tree-like
and X−. Y is tree-like.

Let X be a chordal, graph-membered set and Y be a set. Note that X ∩ Y
is chordal and X \ Y is chordal.
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Let X, Y be chordal, graph-membered sets. Observe that X ∪ Y is chordal
and X−. Y is chordal.

Let X be an edgeless, graph-membered set and Y be a set. Note that X ∩Y
is edgeless and X \ Y is edgeless.

Let X, Y be edgeless, graph-membered sets. Observe that X ∪Y is edgeless
and X−. Y is edgeless.

Let X be a loopfull, graph-membered set and Y be a set. Note that X ∩ Y
is loopfull and X \ Y is loopfull.

Let X, Y be loopfull, graph-membered sets. Observe that X ∪ Y is loopfull
and X−. Y is loopfull. There exists a graph-membered set which is empty, plain,
loopless, non-multi, non-directed-multi, simple, directed-simple, acyclic, connec-
ted, tree-like, chordal, edgeless, and loopfull. There exists a graph-membered
set which is non empty, tree-like, acyclic, connected, simple, directed-simple,
loopless, non-multi, and non-directed-multi.

There exists a graph-membered set which is non empty, edgeless, and chordal
and there exists a graph-membered set which is non empty and loopfull and there
exists a graph-membered set which is non empty and plain.

Let S be a non empty, plain, graph-membered set. One can verify that every
element of S is plain.

Let S be a non empty, loopless, graph-membered set. Let us observe that
every element of S is loopless.

Let S be a non empty, non-multi, graph-membered set. Observe that every
element of S is non-multi.

Let S be a non empty, non-directed-multi, graph-membered set. Let us note
that every element of S is non-directed-multi.

Let S be a non empty, simple, graph-membered set. Note that every element
of S is simple.

Let S be a non empty, directed-simple, graph-membered set. Note that
every element of S is directed-simple.

Let S be a non empty, acyclic, graph-membered set. Note that every element
of S is acyclic.

Let S be a non empty, connected, graph-membered set. One can check that
every element of S is connected.

Let S be a non empty, tree-like, graph-membered set. One can verify that
every element of S is tree-like.

Let S be a non empty, chordal, graph-membered set. One can verify that
every element of S is chordal.

Let S be a non empty, edgeless, graph-membered set. Let us observe that
every element of S is edgeless.
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Let S be a non empty, loopfull, graph-membered set. Observe that every
element of S is loopfull.

Let S be a graph-membered set. The functors: the vertices of S, the edges
of S, the source of S, and the target of S yielding sets are defined by conditions

(Def. 14) for every object V , V ∈ the vertices of S iff there exists a graph G such
that G ∈ S and V = the vertices of G,

(Def. 15) for every object E, E ∈ the edges of S iff there exists a graph G such
that G ∈ S and E = the edges of G,

(Def. 16) for every object s, s ∈ the source of S iff there exists a graph G such
that G ∈ S and s = the source of G,

(Def. 17) for every object t, t ∈ the target of S iff there exists a graph G such that
G ∈ S and t = the target of G,

respectively. Let S be a non empty, graph-membered set. The functors: the ver-
tices of S, the edges of S, the source of S, and the target of S are defined by
terms

(Def. 18) the set of all the vertices of G where G is an element of S,

(Def. 19) the set of all the edges of G where G is an element of S,

(Def. 20) the set of all the source of G where G is an element of S,

(Def. 21) the set of all the target of G where G is an element of S,

respectively. One can verify that
⋃

(the vertices of S) is non empty.
Let S be a graph-membered set. Note that the source of S is functional and

the target of S is functional.
Let S be an empty, graph-membered set. Let us note that the vertices of S is

empty and the edges of S is empty and the source of S is empty and the target
of S is empty.

Let S be a non empty, graph-membered set. Let us observe that the vertices
of S is non empty and the edges of S is non empty and the source of S is non
empty and the target of S is non empty.

Let S be a trivial, graph-membered set. Note that the vertices of S is trivial
and the edges of S is trivial and the source of S is trivial and the target of S is
trivial.

Now we state the propositions:

(3) Let us consider a graph G. Then

(i) the vertices of {G} = {the vertices of G}, and

(ii) the edges of {G} = {the edges of G}, and

(iii) the source of {G} = {the source of G}, and

(iv) the target of {G} = {the target of G}.
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(4) Let us consider graphs G, H. Then

(i) the vertices of {G,H} = {the vertices of G, the vertices of H}, and

(ii) the edges of {G,H} = {the edges of G, the edges of H}, and

(iii) the source of {G,H} = {the source of G, the source of H}, and

(iv) the target of {G,H} = {the target of G, the target of H}.
(5) Let us consider a graph-membered set S. Then

(i) α ⊆ S , and

(ii) β ⊆ S , and

(iii) γ ⊆ S , and

(iv) δ ⊆ S ,

where α is the vertices of S, β is the edges of S, γ is the source of S, and
δ is the target of S.
Proof: Define P[object, object] ≡ there exists a graph G such that $1 = G

and $2 = the vertices of G. For every object x such that x ∈ S there exists
an object y such that P[x, y]. Consider f1 being a function such that
dom f1 = S and for every object x such that x ∈ S holds P[x, f1(x)].
Define Q[object, object] ≡ there exists a graph G such that $1 = G and
$2 = the edges of G. For every object x such that x ∈ S there exists
an object y such that Q[x, y]. Consider f2 being a function such that
dom f2 = S and for every object x such that x ∈ S holds Q[x, f2(x)].

Define R[object, object] ≡ there exists a graph G such that $1 = G

and $2 = the source of G. For every object x such that x ∈ S there
exists an object y such that R[x, y]. Consider f3 being a function such
that dom f3 = S and for every object x such that x ∈ S holds R[x, f3(x)].
Define T [object, object] ≡ there exists a graph G such that $1 = G and
$2 = the target of G. For every object x such that x ∈ S there exists
an object y such that T [x, y]. Consider f4 being a function such that
dom f4 = S and for every object x such that x ∈ S holds T [x, f4(x)]. �

Let S be a finite, graph-membered set. Let us observe that the vertices of S
is finite and the edges of S is finite and the source of S is finite and the target
of S is finite.

Let S be an edgeless, graph-membered set. Note that
⋃

(the edges of S) is
empty.

Let us consider graph-membered sets S1, S2. Now we state the propositions:

(6) (i) the vertices of S1 ∪ S2 = (the vertices of S1) ∪ (the vertices of S2),
and

(ii) the edges of S1 ∪ S2 = (the edges of S1) ∪ (the edges of S2), and
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(iii) the source of S1 ∪ S2 = (the source of S1) ∪ (the source of S2), and

(iv) the target of S1 ∪ S2 = (the target of S1) ∪ (the target of S2).

(7) (i) the vertices of S1 ∩ S2 ⊆ (the vertices of S1) ∩ (the vertices of S2),
and

(ii) the edges of S1 ∩ S2 ⊆ (the edges of S1) ∩ (the edges of S2), and

(iii) the source of S1 ∩ S2 ⊆ (the source of S1) ∩ (the source of S2), and

(iv) the target of S1 ∩ S2 ⊆ (the target of S1) ∩ (the target of S2).

(8) (i) (the vertices of S1) \ (the vertices of S2) ⊆ the vertices of S1 \ S2,
and

(ii) (the edges of S1) \ (the edges of S2) ⊆ the edges of S1 \ S2, and

(iii) (the source of S1) \ (the source of S2) ⊆ the source of S1 \ S2, and

(iv) (the target of S1) \ (the target of S2) ⊆ the target of S1 \ S2.
(9) (i) (the vertices of S1)−. (the vertices of S2) ⊆ the vertices of S1−. S2,

and

(ii) (the edges of S1)−. (the edges of S2) ⊆ the edges of S1−. S2, and

(iii) (the source of S1)−. (the source of S2) ⊆ the source of S1−. S2, and

(iv) (the target of S1)−. (the target of S2) ⊆ the target of S1−. S2.
The theorem is a consequence of (8) and (6).

2. Union of Graphs

Let G1, G2 be graphs. We say that G1 toleratesG2 if and only if

(Def. 22) the source of G1 tolerates the source of G2 and the target of G1 tolerates
the target of G2.

Let us observe that the predicate is reflexive and symmetric.
Let us consider graphs G1, G2. Now we state the propositions:

(10) If the edges of G1 misses the edges of G2, then G1 toleratesG2.

(11) Suppose the source of G1 ⊆ the source of G2 and the target of G1 ⊆
the target of G2. Then G1 toleratesG2.

(12) Let us consider a graph G1, and subgraphs G2, G3 of G1.
Then G2 toleratesG3.

(13) Let us consider a graphG1, and a subgraphG2 ofG1. ThenG1 toleratesG2.
The theorem is a consequence of (12).

Let us consider graphs G1, G2. Now we state the propositions:

(14) If G1 ≈ G2, then G1 toleratesG2. The theorem is a consequence of (13).
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(15) G1 toleratesG2 if and only if for every objects e, v1, w1, v2, w2 such
that e joins v1 to w1 in G1 and e joins v2 to w2 in G2 holds v1 = v2 and
w1 = w2.

(16) Let us consider a graph G1, a subset E of the edges of G1, and a graph
G2 given by reversing directions of the edges E of G1. Then G1 toleratesG2
if and only if E ⊆ G1.loops(). The theorem is a consequence of (15).

Let S be a graph-membered set. We say that S is ∪-tolerating if and only if

(Def. 23) for every graphs G1, G2 such that G1, G2 ∈ S holds G1 toleratesG2.

Let S be a non empty, graph-membered set. Observe that S is ∪-tolerating
if and only if the condition (Def. 24) is satisfied.

(Def. 24) for every elements G1, G2 of S, G1 toleratesG2.

One can verify that every graph-membered set which is empty is also ∪-
tolerating.

Let G be a graph. Observe that {G} is ∪-tolerating and there exists a graph-
membered set which is non empty and ∪-tolerating.

A graph union set is a non empty, ∪-tolerating, graph-membered set. Now
we state the proposition:

(17) Let us consider graphsG1,G2. ThenG1 toleratesG2 if and only if {G1, G2}
is ∪-tolerating.

Let S1 be a ∪-tolerating, graph-membered set and S2 be a set. Let us note
that S1 ∩ S2 is ∪-tolerating and S1 \ S2 is ∪-tolerating.

Now we state the proposition:

(18) Let us consider graph-membered sets S1, S2. Suppose S1 ∪ S2 is ∪-
tolerating. Then

(i) S1 is ∪-tolerating, and

(ii) S2 is ∪-tolerating.

Let S be a ∪-tolerating, graph-membered set. Let us note that the source
of S is compatible and the target of S is compatible and

⋃
(the source of S)

is function-like and relation-like and
⋃

(the target of S) is function-like and
relation-like and

⋃
(the source of S) is (

⋃
(the edges of S))-defined and (

⋃
(the ver-

tices of S))-valued and
⋃

(the target of S) is (
⋃

(the edges of S))-defined and
(
⋃

(the vertices of S))-valued and
⋃

(the source of S) is total and
⋃

(the target
of S) is total.

Let S be a graph union set.
A graph union of S is a graph defined by

(Def. 25) the vertices of it =
⋃

(the vertices of S) and the edges of it =
⋃

(the edges
of S) and the source of it =

⋃
(the source of S) and the target of it =⋃

(the target of S).
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Now we state the propositions:

(19) Let us consider a graph union set S, and a graph union G of S. Then
every element of S is a subgraph of G.

(20) Let us consider a graph union set S, a graph union G of S, and a graph
G′. Then G′ is a graph union of S if and only if G ≈ G′.

Let S be a graph union set. One can check that there exists a graph union of
S which is plain and there exists a graph union set which is loopless and there
exists a graph union set which is edgeless and there exists a graph union set
which is loopfull.

Let S be a loopless graph union set. Note that every graph union of S is
loopless.

Let S be an edgeless graph union set. Observe that every graph union of S
is edgeless.

Let S be a loopfull graph union set. One can check that every graph union
of S is loopfull.

Now we state the proposition:

(21) Let us consider graphs G, H. Then G is a graph union of {H} if and
only if G ≈ H. The theorem is a consequence of (3).

Let G1, G2 be graphs.
A graph union of G1 and G2 is a supergraph of G1 defined by

(Def. 26) (i) there exists a graph union set S such that S = {G1, G2} and it is
a graph union of S, if G1 toleratesG2,

(ii) it ≈ G1, otherwise.
Now we state the proposition:

(22) Let us consider graphs G1, G2, G. Suppose G1 toleratesG2. Then G is
a graph union of G1 and G2 if and only if the vertices of G = (the vertices
of G1) ∪ (the vertices of G2) and the edges of G = (the edges of G1) ∪
(the edges of G2) and the source of G = (the source of G1)+·(the source
of G2) and the target of G = (the target of G1)+·(the target of G2). The
theorem is a consequence of (4) and (17).

Let us consider graphs G1, G2 and a graph union G of G1 and G2. Now we
state the propositions:

(23) If G1 toleratesG2, then G is a supergraph of G2. The theorem is a con-
sequence of (19).

(24) If G1 toleratesG2, then G is a graph union of G2 and G1. The theorem
is a consequence of (23).

(25) Let us consider graphs G1, G2, G′, and a graph union G of G1 and G2.
Then G′ is a graph union of G1 and G2 if and only if G ≈ G′. The theorem
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is a consequence of (20).

Let G1, G2 be graphs. One can verify that there exists a graph union of G1
and G2 which is plain.

Now we state the proposition:

(26) Let us consider graphs G, G1, and a subgraph G2 of G1. Then G is
a graph union of G1 and G2 if and only if G ≈ G1. The theorem is
a consequence of (13) and (22).

Let G1, G2 be loopless graphs. Observe that every graph union of G1 and
G2 is loopless.

Let G1, G2 be edgeless graphs. Let us note that every graph union of G1
and G2 is edgeless.

Let G1, G2 be loopfull graphs. Note that every graph union of G1 and G2 is
loopfull.

Now we state the proposition:

(27) Let us consider a graph G1, a directed graph complement G2 of G1
with loops, a graph union G of G1 and G2, and vertices v, w of G. Then
there exists an object e such that e joins v to w in G. The theorem is
a consequence of (10), (22), and (23).

Let G1 be a graph and G2 be a directed graph complement of G1 with loops.
Let us observe that every graph union of G1 and G2 is loopfull and complete.

Now we state the proposition:

(28) Let us consider a graph G1, an undirected graph complement G2 of G1
with loops, a graph union G of G1 and G2, and vertices v, w of G. Then
there exists an object e such that e joins v and w in G. The theorem is
a consequence of (10), (22), and (23).

Let G1 be a graph and G2 be an undirected graph complement of G1 with
loops. Let us note that every graph union of G1 and G2 is loopfull and complete.

Now we state the proposition:

(29) Let us consider a graph G1, a directed graph complement G2 of G1,
a graph union G of G1 and G2, and vertices v, w of G. If v 6= w, then
there exists an object e such that e joins v to w in G. The theorem is
a consequence of (10), (22), and (23).

Let G1 be a graph and G2 be a directed graph complement of G1. One can
check that every graph union of G1 and G2 is complete.

Now we state the proposition:

(30) Let us consider a graph G1, a graph complement G2 of G1, a graph
union G of G1 and G2, and vertices v, w of G. If v 6= w, then there exists
an object e such that e joins v and w in G. The theorem is a consequence
of (10), (22), and (23).
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Let G1 be a graph and G2 be a graph complement of G1. Let us note that
every graph union of G1 and G2 is complete.

Let G1 be a non-directed-multi graph and G2 be a directed graph comple-
ment of G1 with loops. One can verify that every graph union of G1 and G2 is
non-directed-multi.

Let G1 be a non-multi graph and G2 be an undirected graph complement of
G1 with loops. Note that every graph union of G1 and G2 is non-multi.

Let G1 be a non-directed-multi graph and G2 be a directed graph comple-
ment of G1. Observe that every graph union of G1 and G2 is non-directed-multi.

Let G1 be a non-multi graph and G2 be a graph complement of G1. One can
verify that every graph union of G1 and G2 is non-multi.

3. Intersection of Graphs

Let S be a graph-membered set. We say that S is ∩-tolerating if and only if

(Def. 27)
⋂

(the vertices of S) 6= ∅ and for every graphs G1, G2 such that G1,
G2 ∈ S holds G1 toleratesG2.

Let S be a non empty, graph-membered set. One can verify that S is ∩-
tolerating if and only if the condition (Def. 28) is satisfied.

(Def. 28)
⋂

(the vertices of S) 6= ∅ and for every elementsG1,G2 of S,G1 toleratesG2.

Now we state the proposition:

(31) Let us consider a graph-membered set S. Then S is ∩-tolerating if and
only if S is ∪-tolerating and

⋂
(the vertices of S) 6= ∅.

LetG be a graph. Observe that {G} is ∩-tolerating and every graph-membered
set which is ∩-tolerating is also ∪-tolerating and non empty and there exists
a graph-membered set which is ∩-tolerating.

A graph meet set is a ∩-tolerating, graph-membered set. Let S be a graph
meet set. Note that

⋂
(the vertices of S) is non empty.

Now we state the propositions:

(32) Let us consider graphs G1, G2. Then G1 toleratesG2 and the vertices of
G1 meets the vertices of G2 if and only if {G1, G2} is ∩-tolerating. The
theorem is a consequence of (4) and (17).

(33) Let us consider non empty, graph-membered sets S1, S2. Suppose S1∪S2
is ∩-tolerating. Then

(i) S1 is ∩-tolerating, and

(ii) S2 is ∩-tolerating.

The theorem is a consequence of (6) and (18).
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Let S be a graph meet set. One can verify that
⋂

(the source of S) is function-
like and relation-like and

⋂
(the target of S) is function-like and relation-like

and
⋂

(the source of S) is (
⋂

(the edges of S))-defined and (
⋂

(the vertices of S))-
valued and

⋂
(the target of S) is (

⋂
(the edges of S))-defined and (

⋂
(the vertices

of S))-valued and
⋂

(the source of S) is total and
⋂

(the target of S) is total.
A graph meet of S is a graph defined by

(Def. 29) the vertices of it =
⋂

(the vertices of S) and the edges of it =
⋂

(the edges
of S) and the source of it =

⋂
(the source of S) and the target of it =⋂

(the target of S).

Now we state the propositions:

(34) Let us consider a graph meet set S, and a graph meet G of S. Then
every element of S is a supergraph of G.

(35) Let us consider a graph meet set S, a graph meet G of S, and a graph
G′. Then G′ is a graph meet of S if and only if G ≈ G′.

Let S be a graph meet set. Let us observe that there exists a graph meet of
S which is plain.

Now we state the proposition:

(36) Let us consider graphs G, H. Then G is a graph meet of {H} if and only
if G ≈ H. The theorem is a consequence of (3).

Let G1, G2 be graphs.
A graph meet of G1 and G2 is a subgraph of G1 defined by

(Def. 30) (i) there exists a graph meet set S such that S = {G1, G2} and it is
a graph meet of S, if G1 toleratesG2 and the vertices of G1 meets
the vertices of G2,

(ii) it ≈ G1, otherwise.
Now we state the proposition:

(37) Let us consider graphs G1, G2, G. Suppose G1 toleratesG2 and the ver-
tices of G1 meets the vertices of G2. Then G is a graph meet of G1 and
G2 if and only if the vertices of G = (the vertices of G1) ∩ (the vertices
of G2) and the edges of G = (the edges of G1) ∩ (the edges of G2) and
the source of G = (the source of G1)∩(the source of G2) and the target of
G = (the target of G1)∩ (the target of G2). The theorem is a consequence
of (4) and (32).

Let us consider graphs G1, G2 and a graph meet G of G1 and G2. Now we
state the propositions:

(38) If G1 toleratesG2 and the vertices of G1 meets the vertices of G2, then
G is a subgraph of G2. The theorem is a consequence of (34).
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(39) If G1 toleratesG2 and the vertices of G1 meets the vertices of G2, then
G is a graph meet of G2 and G1. The theorem is a consequence of (38).

(40) Let us consider graphs G1, G2, G′, and a graph meet G of G1 and G2.
Then G′ is a graph meet of G1 and G2 if and only if G ≈ G′. The theorem
is a consequence of (35).

Let G1, G2 be graphs. One can check that there exists a graph meet of G1
and G2 which is plain.

Now we state the propositions:

(41) Let us consider graphs G, G1, and a subgraph G2 of G1. Then G is
a graph meet of G1 and G2 if and only if G ≈ G2. The theorem is a con-
sequence of (13) and (37).

(42) Let us consider graphs G1, G2, and a graph meet G of G1 and G2.
Suppose the vertices of G1 meets the vertices of G2 and the edges of G1
misses the edges of G2. Then G is edgeless. The theorem is a consequence
of (10) and (37).

Let G1 be a graph and G2 be a directed graph complement of G1 with loops.
Let us observe that every graph meet of G1 and G2 is edgeless.

Let G2 be an undirected graph complement of G1 with loops. One can check
that every graph meet of G1 and G2 is edgeless.

Let G2 be a directed graph complement of G1. Let us note that every graph
meet of G1 and G2 is edgeless.

Let G2 be a graph complement of G1. Let us observe that every graph meet
of G1 and G2 is edgeless.
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