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Poland

Summary. In [7], [9], [10] we presented a formalization of Kronecker’s
construction of a field extension E for a field F in which a given polynomial
p ∈ F [X]\F has a root [5], [6], [3]. A drawback of our formalization was that it
works only for polynomial-disjoint fields, that is for fields F with F ∩ F [X] = ∅.
The main purpose of Kronecker’s construction is that by induction one gets a
field extension of F in which p splits into linear factors. For our formalization this
means that the constructed field extension E again has to be polynomial-disjoint.

In this article, by means of Mizar system [2], [1], we first analyze whether
our formalization can be extended that way. Using the field of polynomials over
F with degree smaller than the degree of p to construct the field extension E
does not work: In this case E is polynomial-disjoint if and only if p is linear.
Using F [X]/<p> one can show that for F = Q and F = Zn the constructed field
extension E is again polynomial-disjoint, so that in particular algebraic number
fields can be handled.

For the general case we then introduce renamings of sets X as injective
functions f with dom(f) = X and rng(f) ∩ (X ∪ Z) = ∅ for an arbitrary set Z.
This, finally, allows to construct a field extension E of an arbitrary field F in
which a given polynomial p ∈ F [X]\F splits into linear factors. Note, however,
that to prove the existence of renamings we had to rely on the axiom of choice.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider sets X, Y. If Y ⊆ X, then X \ Y ∪ Y = X.

Let us consider natural numbers n, m. Now we state the propositions:

(2) (i) n+m = n+m, and

(ii) n ·m = n ·m.

(3) (i) n ⊆ m iff n ¬ m, and

(ii) n ∈ m iff n < m.

Let us consider a natural number n. Now we state the propositions:

(4) 2n = 2n.

(5) If n  3, then n+ n < 2n.

(6) If n  3, then n+ n ∈ 2n. The theorem is a consequence of (2), (5), (3),
and (4).

(7) N meets 2N.

Let us consider a set X. Now we state the propositions:

(8) There exists an object o such that o /∈ X.

(9) There exists a set Y such that

(i) X ⊆ Y , and

(ii) X ∩ Y = ∅.

(10) Let us consider sets X, Y. Suppose X ⊆ Y . Then there exists a set Z
such that

(i) Z ⊆ Y, and

(ii) Z = X .

(11) Let us consider a set X. Then there exists a set Y such that

(i) X = Y , and

(ii) X ∩ Y = ∅.
The theorem is a consequence of (9) and (10).

(12) Let us consider a field E. Then every subfield of E is a subring of E.

(13) Let us consider a field F , and a subring R of F . Then R is a subfield of
F if and only if R is a field.

Let F be a field and E be an extension of F . Note that there exists an exten-
sion of F which is E-extending. We introduce the notation E is F -infinite as an
antonym for E is F -finite. Let us consider a field F , an extension E of F , and
an E-extending extension K of F .
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(14) VecSp(E,F ) is a subspace of VecSp(K,F ).

(15) (i) K is F -infinite, or

(ii) E is F -finite and deg(E,F ) ¬ deg(K,F ).
The theorem is a consequence of (14).

(16) Let us consider a field F , a polynomial p over F , and a non zero poly-
nomial q over F . Then deg(p mod q) < deg q.

2. Linear Polynomials

Let R be a ring and p be a polynomial over R. We say that p is linear if and
only if

(Def. 1) deg p = 1.

Let R be a non degenerated ring. One can check that there exists a poly-
nomial over R which is linear and there exists a polynomial over R which is
non linear and there exists an element of the carrier of PolyRing(R) which is
linear and there exists an element of the carrier of PolyRing(R) which is non
linear and every polynomial over R which is zero is also non linear and every
polynomial over R which is constant is also non linear.

Let F be a field. Let us note that every polynomial over F which is linear
has also roots and every element of the carrier of PolyRing(F ) which is linear
is also irreducible and every element of the carrier of PolyRing(F ) which is non
linear and has roots is also reducible.

Let R be an integral domain, p be a linear polynomial over R, and q be
a non constant polynomial over R. Let us note that p ∗ q is non linear.

Let F be a field, p be a linear polynomial over F , and q be a non constant
polynomial over F . Let us note that p ∗ q has roots.

3. More on PolyRing(p)

Let F be a field and p be a non constant element of the carrier of PolyRing(F ).
The functor canHomP(p) yielding a function from F into PolyRing(p) is defined
by

(Def. 2) for every element a of F , it(a) = a�F .

One can verify that canHomP(p) is additive, multiplicative, unity-preserving,
and one-to-one and PolyRing(p) is F -homomorphic and F -monomorphic.

Let F be a polynomial-disjoint field and p be an irreducible element of
the carrier of PolyRing(F ). One can verify that embField(canHomP(p)) is add-
associative, right complementable, associative, distributive, and almost left in-
vertible and embField(canHomP(p)) is F -extending.
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The functor KrRootP(p) yielding an element of embField(canHomP(p)) is
defined by the term

(Def. 3) ((emb-iso(canHomP(p)))−1 · ((KroneckerIso(p))−1))(KrRoot(p)).

Now we state the proposition:

(17) Let us consider a polynomial-disjoint field F , and an irreducible element
p of the carrier of PolyRing(F ). Then ExtEval(p,KrRootP(p)) = 0F .
Proof: Set K = KroneckerField(F, p). Set E = embField(canHomP(p)).
Set h = (KroneckerIso(p)) · (emb-iso(canHomP(p))). Reconsider P = K
as an E-isomorphic field. Reconsider i1 = h as an isomorphism between E
and P . Reconsider i2 = i1−1 as a homomorphism from P to E. Reconsider
t = pp as an element of the carrier of PolyRing(P ). (PolyHom(i2))(t) = p
by [4, (12)], [8, (17)]. �

4. On Embedding F into F [X]/<p> and PolyRing(p)

Now we state the propositions:

(18) Let us consider a field F , and a linear element p of the carrier
of PolyRing(F ). Then

(i) PolyRing(p) and F are isomorphic, and

(ii) the carrier of embField(canHomP(p)) = the carrier of F .

(19) Let us consider a strict field F , and a linear element p of the carrier of
PolyRing(F ). Then embField(canHomP(p)) = F . The theorem is a con-
sequence of (18).

(20) Let us consider a field F , and a linear element p of the carrier
of PolyRing(F ). Then

(i) PolyRing(F ){p}–ideal and F are isomorphic, and

(ii) the carrier of embField(embedding(p)) = the carrier of F .

The theorem is a consequence of (18) and (16).

(21) Let us consider a strict field F , and a linear element p of the carrier of
PolyRing(F ). Then embField(embedding(p)) = F . The theorem is a con-
sequence of (20).

(22) Let us consider a polynomial-disjoint field F , and an irreducible ele-
ment p of the carrier of PolyRing(F ). Then embField(canHomP(p)) is
polynomial-disjoint if and only if p is linear. The theorem is a consequen-
ce of (18).
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(23) Let us consider a field F , an irreducible element p of the carrier of
PolyRing(F ), and a polynomial-disjoint field E.
Suppose E = embField(embedding(p)). Then F is polynomial-disjoint.

Let n be a prime number and p be an irreducible element of the carrier of
PolyRing(Z/n). Let us observe that embField(embedding(p)) is add-associative,
right complementable, associative, distributive, and almost left invertible.

Let p be an irreducible element of the carrier of PolyRing(FQ). Let us note
that embField(embedding(p)) is add-associative, right complementable, associa-
tive, distributive, and almost left invertible.

(24) Let us consider a prime number n, and a non constant element p of
the carrier of PolyRing(Z/n). Then Z/n and PolyRing(Z/n){p}–ideal are disjoint.

(25) Let us consider a non constant element p of the carrier of PolyRing(FQ).
Then FQ and PolyRing(FQ)

{p}–ideal are disjoint.

Let n be a prime number and p be an irreducible element of the carrier
of PolyRing(Z/n). Let us note that embField(embedding(p)) is polynomial-
disjoint.

Let p be an irreducible element of the carrier of PolyRing(FQ). One can
check that embField(embedding(p)) is polynomial-disjoint.

Let R be a ring. We say that R is strong polynomial disjoint if and only if

(Def. 4) for every element a of R and for every ring S and for every element p of
the carrier of PolyRing(S), a 6= p.

Observe that ZR is strong polynomial disjoint and FQ is strong polynomial
disjoint and RF is strong polynomial disjoint.

Let n be a non trivial natural number. Note that Z/n is strong polynomial
disjoint and every ring which is strong polynomial disjoint is also polynomial-
disjoint and there exists a field which is strong polynomial disjoint and there
exists a field which is non strong polynomial disjoint.

(26) Let us consider a strong polynomial disjoint field F , an irreducible ele-
ment p of the carrier of PolyRing(F ), and a field E.
Suppose E = embField(embedding(p)). Then E is strong polynomial di-
sjoint.

5. Renamings

Let X be a non empty set and Z be a set.
A Renaming of X and Z is a function defined by

(Def. 5) dom it = X and it is one-to-one and rng it ∩ (X ∪ Z) = ∅.
Let r be a Renaming of X and Z. Let us note that dom r is non empty and

rng r is non empty and every Renaming of X and Z is X-defined and one-to-one.
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Let r be a Renaming of X and Z. Observe that the functor r−1 yields
a function from rng r into X. Now we state the proposition:

(27) Let us consider a non empty set X, a set Z, and a Renaming r of X and
Z. Then r−1 is onto.

Let F be a field, Z be a set, and r be a Renaming of the carrier of F and
Z. The functor ren-add(r) yielding a binary operation on rng r is defined by

(Def. 6) for every elements a, b of rng r, it(a, b) = r((r−1)(a) + (r−1)(b)).

The functor ren-mult(r) yielding a binary operation on rng r is defined by

(Def. 7) for every elements a, b of rng r, it(a, b) = r((r−1)(a) · (r−1)(b)).
The functor RenField(r) yielding a strict double loop structure is defined by

(Def. 8) the carrier of it = rng r and the addition of it = ren-add(r) and
the multiplication of it = ren-mult(r) and the one of it = r(1F ) and
the zero of it = r(0F ).

One can check that RenField(r) is non degenerated and RenField(r) is Abe-
lian, add-associative, right zeroed, and right complementable and RenField(r)
is commutative, associative, well unital, distributive, and almost left invertible.

One can check that the functor r−1 yields a function from RenField(r) into
F . Now we state the propositions:

(28) Let us consider a field F , a set Z, and a Renaming r of the carrier of F
and Z. Then r−1 is additive, multiplicative, unity-preserving, one-to-one,
and onto. The theorem is a consequence of (27).

(29) Let us consider a field F , and a set Z. Then there exists a field E such
that

(i) E and F are isomorphic, and

(ii) (the carrier of E) ∩ ((the carrier of F ) ∪ Z) = ∅.
The theorem is a consequence of (28).

6. Kronecker’s Construction

Let us consider a field F and a non constant element f of the carrier of
PolyRing(F ). Now we state the propositions:

(30) There exists an extension E of F such that f has a root in E.

(31) There exists an extension E of F such that f splits in E.
Proof: Define P[natural number] ≡ for every field F for every non con-
stant element f of the carrier of PolyRing(F ) such that deg f = $1 there
exists an extension E of F such that f splits in E. P[1]. For every non
zero natural number k, P[k]. Consider n being a natural number such that
deg f = n. �
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