

Isomorphism Theorem on Vector Spaces over a Ring^1

Yuichi Futa Tokyo University of Technology Tokyo, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize in the Mizar system [1, 4] some properties of vector spaces over a ring. We formally prove the first isomorphism theorem of vector spaces over a ring. We also formalize the product space of vector spaces. Z-modules are useful for lattice problems such as LLL (Lenstra, Lenstra and Lovász) [5] base reduction algorithm and cryptographic systems [6, 2].

MSC: 15A03 15A04 03B35 Keywords: isomorphism theorem; vector space MML identifier: VECTSP12, version: 8.1.06 5.44.1305

1. BIJECTIVE LINEAR TRANSFORMATION

From now on K, F denote rings, V, W denote vector spaces over K, l denotes a linear combination of V, and T denotes a linear transformation from V to W.

Now we state the propositions:

- (1) Let us consider a field K, finite dimensional vector spaces V, W over K, a subset A of V, a basis B of V, a linear transformation T from V to W, and a linear combination l of $B \setminus A$. Suppose A is a basis of ker T and $A \subseteq B$. Then $T(\sum l) = \sum (T @*l)$.
- (2) Let us consider a field F, vector spaces X, Y over F, a linear transformation T from X to Y, and a subset A of X. Suppose T is bijective. Then A is a basis of X if and only if $T^{\circ}A$ is a basis of Y.

¹This work was supported by JSPS KAKENHI grant number JP15K00183.

- (3) Let us consider a field F, vector spaces X, Y over F, and a linear transformation T from X to Y. Suppose T is bijective. Then X is finite dimensional if and only if Y is finite dimensional.
- (4) Let us consider a field F, a finite dimensional vector space X over F, a vector space Y over F, and a linear transformation T from X to Y. Suppose T is bijective. Then
 - (i) Y is finite dimensional, and
 - (ii) $\dim(X) = \dim(Y)$.

PROOF: For every basis I of X, $\dim(Y) = \overline{\overline{I}}$. \Box

(5) Let us consider a field F, vector spaces X, Y over F, a linear combination l of X, and a linear transformation T from X to Y. If T is one-to-one, then T[@] l = T @* l.

PROOF: For every element y of Y, $(T^{@}l)(y) = \sum CFS(l, T, y)$.

2. Properties of Linear Combinations of Modules over a Ring

Now we state the proposition:

(6) Let us consider a field K, a vector space V over K, subspaces W_1 , W_2 of V, a basis I_1 of W_1 , and a basis I_2 of W_2 . If V is the direct sum of W_1 and W_2 , then $I_1 \cap I_2 = \emptyset$.

Let us consider a field K, a vector space V over K, subspaces W_1 , W_2 of V, a basis I_1 of W_1 , a basis I_2 of W_2 , and a subset I of V. Now we state the propositions:

- (7) Suppose V is the direct sum of W_1 and W_2 and $I = I_1 \cup I_2$. Then Lin(I) = the vector space structure of V. PROOF: Reconsider $I_3 = I_1$ as a subset of V. Reconsider $I_4 = I_2$ as a subset of V. For every vector x of V, $x \in W_1 + W_2$ iff $x \in \text{Lin}(I_3) + \text{Lin}(I_4)$. \Box
- (8) If V is the direct sum of W_1 and W_2 and $I = I_1 \cup I_2$, then I is linearly independent.

PROOF: Consider l being a linear combination of I such that $\sum l = 0_V$ and the support of $l \neq \emptyset$. $I_1 \cap I_2 = \emptyset$. I_1 misses I_2 . Reconsider $I_3 = I_1$, $I_4 = I_2$ as a subset of V. Consider l_1 being a linear combination of I_3 , l_2 being a linear combination of I_4 such that $l = l_1 + l_2$. Reconsider $l_3 = l_1$ as a linear combination of I. Set $v_1 = \sum l_3$. $v_1 \neq 0_V$ by [3, (25)]. \Box

(9) Let us consider a field K, a vector space V over K, subspaces W_1, W_2 of V, a basis I_1 of W_1 , and a basis I_2 of W_2 . If $W_1 \cap W_2 = \mathbf{0}_V$, then $I_1 \cup I_2$ is a basis of $W_1 + W_2$.

PROOF: Set $I = I_1 \cup I_2$. Reconsider $W = W_1 + W_2$ as a strict subspace of V. Reconsider $W_3 = W_1$, $W_4 = W_2$ as a subspace of W. Reconsider $I_0 = I$ as a subset of W. For every object $x, x \in W_3 \cap W_4$ iff $x \in \mathbf{0}_V$. For every object $x, x \in W$ iff $x \in W_3 + W_4$. I_0 is base. \Box

3. First Isomophism Theorem

Let us consider a field K, a finite dimensional vector space V over K, and a subspace W of V. Now we state the propositions:

(10) There exists a linear complement S of W and there exists a linear transformation T from S to V/W such that T is bijective and for every vector v of V such that $v \in S$ holds T(v) = v + W.

PROOF: Set S = the linear complement of W. Set $V_1 = {}^V/_W$. Define $\mathcal{P}[\text{vector of } V, \text{vector of } V_1] \equiv \$_2 = \$_1 + W$. Consider f_1 being a function from the carrier of V into the carrier of V_1 such that for every vector v of V, $\mathcal{P}[v, f_1(v)]$. Set $T = f_1 \upharpoonright (\text{the carrier of } S)$. For every vector v of V such that $v \in S$ holds T(v) = v + W. The carrier of $V_1 \subseteq \text{rng } T$. For every objects x_1, x_2 such that $x_1, x_2 \in$ the carrier of S and $T(x_1) = T(x_2)$ holds $x_1 = x_2$. \Box

(11) (i) V/W is finite dimensional, and

(ii) $\dim(V/W) + \dim(W) = \dim(V)$.

The theorem is a consequence of (10) and (4).

Let K be a ring, V, U be vector spaces over K, W be a subspace of V, and f be a linear transformation from V to U. Assume the carrier of $W \subseteq$ the carrier of ker f. The functor f/W yielding a linear transformation from V/W to U is defined by

(Def. 1) for every vector A of V/W and for every vector a of V such that A = a + W holds it(A) = f(a).

The functor CQF unctional f yielding a linear transformation from $^V/_{\ker f}$ to U is defined by the term

(Def. 2) $f/_{\ker f}$.

Observe that CQFunctional f is one-to-one. Now we state the proposition:

- (12) Let us consider a ring K, vector spaces V, U over K, and a linear transformation f from V to U. Then there exists a linear transformation T from $V/_{\ker f}$ to im f such that
 - (i) T = CQFunctional f, and
 - (ii) T is bijective.

PROOF: Set T = CQFunctional f. For every object $x, x \in \text{rng } T$ iff $x \in \text{rng } f$. \Box

Let K be a ring, V, U, W be vector spaces over K, f be a linear transformation from V to U, and g be a linear transformation from U to W. One can verify that the functor $g \cdot f$ yields a linear transformation from V to W.

4. The Product Space of Vector Spaces

Let K be a ring.

A sequence of vector spaces over K is a non empty finite sequence and is defined by

(Def. 3) for every set S such that $S \in \operatorname{rng} it$ holds S is a vector space over K.

Note that every sequence of vector spaces over K is Abelian group yielding.

Let G be a sequence of vector spaces over K and j be an element of dom G. One can check that the functor G(j) yields a vector space over K. Let j be an element of dom \overline{G} . One can verify that the functor G(j) yields a vector space over K. The functor multop G yielding a multi-operation of the carrier of K and \overline{G} is defined by

(Def. 4) len $it = \text{len }\overline{G}$ and for every element j of dom \overline{G} , it(j) = the left multiplication of G(j).

The functor $\prod G$ yielding a strict, non empty vector space structure over K is defined by the term

(Def. 5) $\langle \prod \overline{G}, \prod^{\circ} \langle +_{G_i} \rangle_i, \langle 0_{G_i} \rangle_i, \prod^{\circ} \operatorname{multop} G \rangle.$

Let us note that $\prod G$ is Abelian, add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, and scalar unital.

5. CARTESIAN PRODUCT OF VECTOR SPACES

From now on K denotes a ring.

Let K be a ring and G, F be non empty vector space structures over K. The functor prodmlt(G, F) yielding a function from (the carrier of K)×((the carrier of G)× (the carrier of F)) into (the carrier of G)× (the carrier of F) is defined by

(Def. 6) for every element r of K and for every vector g of G and for every vector f of F, $it(r, \langle g, f \rangle) = \langle r \cdot g, r \cdot f \rangle$.

The functor $G\times F$ yielding a strict, non empty vector space structure over K is defined by the term

(Def. 7) $\langle (\text{the carrier of } G) \times (\text{the carrier of } F), \text{prodadd}(G, F), \text{prodzero}(G, F), \text{prodmlt}(G, F) \rangle.$

Let G, F be Abelian, non empty vector space structures over K. Note that $G \times F$ is Abelian.

Let G, F be add-associative, non empty vector space structures over K. One can verify that $G \times F$ is add-associative.

Let G, F be right zeroed, non empty vector space structures over K. One can verify that $G \times F$ is right zeroed.

Let G, F be right complementable, non empty vector space structures over K. One can check that $G \times F$ is right complementable.

Now we state the propositions:

- (13) Let us consider non empty vector space structures G, F over K. Then
 - (i) for every set x, x is a vector of $G \times F$ iff there exists a vector x_1 of G and there exists a vector x_2 of F such that $x = \langle x_1, x_2 \rangle$, and
 - (ii) for every vectors x, y of $G \times F$ and for every vectors x_1, y_1 of G and for every vectors x_2, y_2 of F such that $x = \langle x_1, x_2 \rangle$ and $y = \langle y_1, y_2 \rangle$ holds $x + y = \langle x_1 + y_1, x_2 + y_2 \rangle$, and
 - (iii) $0_{G \times F} = \langle 0_G, 0_F \rangle$, and
 - (iv) for every vector x of $G \times F$ and for every vector x_1 of G and for every vector x_2 of F and for every element a of K such that $x = \langle x_1, x_2 \rangle$ holds $a \cdot x = \langle a \cdot x_1, a \cdot x_2 \rangle$.
- (14) Let us consider add-associative, right zeroed, right complementable, non empty vector space structures G, F over K, a vector x of $G \times F$, a vector x_1 of G, and a vector x_2 of F. Suppose $x = \langle x_1, x_2 \rangle$. Then $-x = \langle -x_1, -x_2 \rangle$.

Let K be a ring and G, F be vector distributive, non empty vector space structures over K. Let us note that $G \times F$ is vector distributive.

Let G, F be scalar distributive, non empty vector space structures over K. One can check that $G \times F$ is scalar distributive.

Let G, F be scalar associative, non empty vector space structures over K. Let us note that $G \times F$ is scalar associative.

Let G, F be scalar unital, non empty vector space structures over K. Let us observe that $G \times F$ is scalar unital.

Let G be a vector space over K. One can check that the functor $\langle G \rangle$ yields a sequence of vector spaces over K. Let G, F be vector spaces over K. Let us note that the functor $\langle G, F \rangle$ yields a sequence of vector spaces over K. Now we state the proposition:

- (15) Let us consider a vector space X over K. Then there exists a function I from X into $\prod \langle X \rangle$ such that
 - (i) I is one-to-one and onto, and
 - (ii) for every vector x of X, $I(x) = \langle x \rangle$, and
 - (iii) for every vectors v, w of X, I(v+w) = I(v) + I(w), and
 - (iv) for every vector v of X and for every element r of the carrier of K, $I(r \cdot v) = r \cdot I(v)$, and
 - (v) $I(0_X) = 0_{\prod \langle X \rangle}$.

PROOF: Set C_3 = the carrier of X. Consider I being a function from C_3 into $\prod \langle C_3 \rangle$ such that I is one-to-one and onto and for every object x such that $x \in C_3$ holds $I(x) = \langle x \rangle$. For every vectors v, w of X, I(v + w) =I(v) + I(w). For every vector v of X and for every element r of the carrier of K, $I(r \cdot v) = r \cdot I(v)$. \Box

Let K be a ring and G, F be sequences of vector spaces over K. One can verify that the functor $G \cap F$ yields a sequence of vector spaces over K. Now we state the propositions:

- (16) Let us consider vector spaces X, Y over K. Then there exists a function I from $X \times Y$ into $\prod \langle X, Y \rangle$ such that
 - (i) I is one-to-one and onto, and
 - (ii) for every vector x of X and for every vector y of Y, $I(x, y) = \langle x, y \rangle$, and
 - (iii) for every vectors v, w of $X \times Y$, I(v+w) = I(v) + I(w), and
 - (iv) for every vector v of $X \times Y$ and for every element r of K, $I(r \cdot v) = r \cdot I(v)$, and
 - (v) $I(0_{X \times Y}) = 0_{\prod \langle X, Y \rangle}.$

PROOF: Set C_3 = the carrier of X. Set C_4 = the carrier of Y. Consider I being a function from $C_3 \times C_4$ into $\prod \langle C_3, C_4 \rangle$ such that I is one-to-one and onto and for every objects x, y such that $x \in C_3$ and $y \in C_4$ holds $I(x, y) = \langle x, y \rangle$. For every vectors v, w of $X \times Y$, I(v + w) = I(v) + I(w). For every vector v of $X \times Y$ and for every element r of K, $I(r \cdot v) = r \cdot I(v)$. \Box

- (17) Let us consider sequences of vector spaces X, Y over K. Then there exists a function I from $\prod X \times \prod Y$ into $\prod (X \cap Y)$ such that
 - (i) I is one-to-one and onto, and
 - (ii) for every vector x of $\prod X$ and for every vector y of $\prod Y$, there exist finite sequences x_1 , y_1 such that $x = x_1$ and $y = y_1$ and $I(x, y) = x_1 \cap y_1$, and

- (iii) for every vectors v, w of $\prod X \times \prod Y, I(v+w) = I(v) + I(w)$, and
- (iv) for every vector v of $\prod X \times \prod Y$ and for every element r of the carrier of K, $I(r \cdot v) = r \cdot I(v)$, and
- (v) $I(0_{\prod X \times \prod Y}) = 0_{\prod (X \cap Y)}.$

PROOF: Reconsider $C_1 = \overline{X}$, $C_2 = \overline{Y}$ as a non-empty, non empty finite sequence. Consider I being a function from $\prod C_1 \times \prod C_2$ into $\prod (C_1 \cap C_2)$ such that I is one-to-one and onto and for every finite sequences x, y such that $x \in \prod C_1$ and $y \in \prod C_2$ holds $I(x, y) = x \cap y$. Set $P_1 = \prod X$. Set $P_2 = \prod Y$. For every natural number k such that $k \in \text{dom } \overline{X} \cap \overline{Y}$ holds $\overline{X} \cap Y(k) = (C_1 \cap C_2)(k)$. For every vector x of $\prod X$ and for every vector yof $\prod Y$, there exist finite sequences x_1, y_1 such that $x = x_1$ and $y = y_1$ and $I(x, y) = x_1 \cap y_1$. For every vectors v, w of $P_1 \times P_2$, I(v+w) = I(v) + I(w). For every vector v of $P_1 \times P_2$ and for every element r of the carrier of K, $I(r \cdot v) = r \cdot I(v)$ by [7, (9)]. \Box

- (18) Let us consider vector spaces G, F over K. Then
 - (i) for every set x, x is a vector of $\prod \langle G, F \rangle$ iff there exists a vector x_1 of G and there exists a vector x_2 of F such that $x = \langle x_1, x_2 \rangle$, and
 - (ii) for every vectors x, y of $\prod \langle G, F \rangle$ and for every vectors x_1, y_1 of G and for every vectors x_2, y_2 of F such that $x = \langle x_1, x_2 \rangle$ and $y = \langle y_1, y_2 \rangle$ holds $x + y = \langle x_1 + y_1, x_2 + y_2 \rangle$, and
 - (iii) $0_{\prod \langle G, F \rangle} = \langle 0_G, 0_F \rangle$, and
 - (iv) for every vector x of $\prod \langle G, F \rangle$ and for every vector x_1 of G and for every vector x_2 of F such that $x = \langle x_1, x_2 \rangle$ holds $-x = \langle -x_1, -x_2 \rangle$, and
 - (v) for every vector x of $\prod \langle G, F \rangle$ and for every vector x_1 of G and for every vector x_2 of F and for every element a of K such that $x = \langle x_1, x_2 \rangle$ holds $a \cdot x = \langle a \cdot x_1, a \cdot x_2 \rangle$.

PROOF: Consider I being a function from $G \times F$ into $\prod \langle G, F \rangle$ such that I is one-to-one and onto and for every vector x of G and for every vector y of F, $I(x,y) = \langle x,y \rangle$ and for every vectors v, w of $G \times F$, I(v+w) = I(v) + I(w)and for every vector v of $G \times F$ and for every element r of K, $I(r \cdot v) = r \cdot I(v)$ and $0_{\prod \langle G,F \rangle} = I(0_{G \times F})$. For every set x, x is a vector of $\prod \langle G,F \rangle$ iff there exists a vector x_1 of G and there exists a vector x_2 of F such that $x = \langle x_1, x_2 \rangle$. For every vectors x, y of $\prod \langle G,F \rangle$ and for every vectors x_1, y_1 of G and for every vectors x_2, y_2 of F such that $x = \langle x_1, x_2 \rangle$ and $y = \langle y_1, y_2 \rangle$ holds $x + y = \langle x_1 + y_1, x_2 + y_2 \rangle$. $0_{\prod \langle G,F \rangle} = \langle 0_G, 0_F \rangle$. For every vector x of $\prod \langle G,F \rangle$ and for every vector x_1 of G and for every vector x_2 of F such that $x = \langle x_1, x_2 \rangle$ holds $-x = \langle -x_1, -x_2 \rangle$. For every vector x of $\prod \langle G, F \rangle$ and for every vector x_1 of G and for every vector x_2 of F and for every element a of K such that $x = \langle x_1, x_2 \rangle$ holds $a \cdot x = \langle a \cdot x_1, a \cdot x_2 \rangle$. \Box

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
- Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Submodule of free Z-module. Formalized Mathematics, 21(4):273–282, 2013. doi:10.2478/forma-2013-0029.
- [4] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
- [5] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. *Mathematische Annalen*, 261(4):515–534, 1982. doi:10.1007/BF01457454.
- [6] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. *The International Series in Engineering and Computer Science*, 2002.
- Yasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathematics, 20(1):31–40, 2012. doi:10.2478/v10037-012-0005-1.

Received August 30, 2017

The English version of this volume of Formalized Mathematics was financed under agreement 548/P-DUN/2016 with the funds from the Polish Minister of Science and Higher Education for the dissemination of science.