

Double Sequences and Iterated Limits in Regular Space

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on $\mathbb{N}(\mathcal{F}_1)$ with the Fréchet filter on $\mathbb{N} \times \mathbb{N}(\mathcal{F}_2)$, we compare $\lim_{\mathcal{F}_1}$ and $\lim_{\mathcal{F}_2}$ for all double sequences in a non empty topological space.

Endou, Okazaki and Shidama formalized in [14] the "convergence in Pringsheim's sense" for double sequence of real numbers. We show some basic correspondences between the *p*-convergence and the filter convergence in a topological space. Then we formalize that the double sequence $(x_{m,n} = \frac{1}{m+1})_{(m,n)} \in \mathbb{N} \times \mathbb{N}$ converges in "Pringsheim's sense" but not in Frechet filter on $\mathbb{N} \times \mathbb{N}$ sense.

In the next section, we generalize some definitions: "is convergent in the first coordinate", "is convergent in the second coordinate", "the *lim* in the first coordinate of", "the *lim* in the second coordinate of" according to [14], in Hausdorff space.

Finally, we generalize two theorems: (3) and (4) from [14] in the case of double sequences and we formalize the "iterated limit" theorem ("Double limit" [7], p. 81, par. 8.5 "Double limite" [6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].

MSC: 54A20 40A05 40B05 03B35

Keywords: filter; double limits; Pringsheim convergence; iterated limits; regular space

 $\mathrm{MML} \ \mathrm{identifier:} \ CARDFIL4, \ \mathrm{version:} \ 8.1.05 \ 5.37.1275$

1. Preliminaries

From now on x denotes an object, X, Y, Z denote sets, i, j, k, l, m, n denote natural numbers, r, s denote real numbers, n_1 denotes an element of the ordered \mathbb{N} , and A denotes a subset of $\mathbb{N} \times \mathbb{N}$.

173

Now we state the propositions:

- (1) Let us consider a finite subset W of X. If $X \setminus W \subseteq Z$, then $X \setminus Z$ is finite.
- (2) If $Z \subseteq X$ and $X \setminus Z$ is finite, then there exists a finite subset W of X such that $X \setminus W = Z$.
- (3) Let us consider sets X_1 , X_2 , a family S_1 of subsets of X_1 , and a family S_2 of subsets of X_2 . Then $\{s, \text{ where } s \text{ is a subset of } X_1 \times X_2 : \text{ there exist sets } s_1, s_2 \text{ such that } s_1 \in S_1 \text{ and } s_2 \in S_2 \text{ and } s = s_1 \times s_2 \}$ is a family of subsets of $X_1 \times X_2$.
- (4) If $x \in X \times Y$, then x is pair.
- (5) If 0 < r, then there exists m such that m is not zero and $\frac{1}{m} < r$.
- (6) Let us consider points x, y of the metric space of real numbers. Then there exist real numbers x_1, y_1 such that
 - (i) $x = x_1$, and
 - (ii) $y = y_1$, and
 - (iii) $\rho(x,y) = \rho_{\mathbb{R}}(x,y)$, and
 - (iv) $\rho(x, y) = \rho^1(\langle x \rangle, \langle y \rangle)$, and
 - (v) $\rho(x, y) = |x_1 y_1|.$
- (7) Let us consider points x, y of $(\mathcal{E}^1)_{top}$. Then there exist points x_2, y_2 of the metric space of real numbers and there exist real numbers x_1, y_1 such that $x_2 = x_1$ and $y_2 = y_1$ and $x = \langle x_1 \rangle$ and $y = \langle y_1 \rangle$ and $\rho(x_2, y_2) =$ $\rho_{\mathbb{R}}(x_1, y_1)$ and $\rho(x_2, y_2) = \rho^1(\langle x_1 \rangle, \langle y_1 \rangle)$ and $\rho(x_2, y_2) = |x_1 - y_1|$.
- (8) Let us consider points x, y of \mathcal{E}^1 , and real numbers r, s. If $x = \langle r \rangle$ and $y = \langle s \rangle$, then $\rho(x, y) = |r s|$. The theorem is a consequence of (7).

One can check that $\mathbb{N} \times \mathbb{N}$ is countable and $\mathbb{N} \times \mathbb{N}$ is denumerable. Now we state the propositions:

- (9) the set of all $\langle 0, n \rangle$ where *n* is a natural number is infinite. PROOF: Define $\mathcal{F}(\text{object}) = \langle 0, \$_1 \rangle$. Consider *f* being a function such that dom $f = \mathbb{N}$ and for every object *x* such that $x \in \mathbb{N}$ holds $f(x) = \mathcal{F}(x)$ from [9, Sch. 3]. *f* is one-to-one. rng f = the set of all $\langle 0, n \rangle$ where *n* is a natural number by [9, (3)]. \Box
- (10) If $i \leq k$ and $j \leq l$, then $\mathbb{Z}_i \times \mathbb{Z}_j \subseteq \mathbb{Z}_k \times \mathbb{Z}_l$.
- (11) $(\mathbb{N} \setminus \mathbb{Z}_m) \times (\mathbb{N} \setminus \mathbb{Z}_n) \subseteq \mathbb{N} \times \mathbb{N} \setminus \mathbb{Z}_m \times \mathbb{Z}_n.$
- (12) If $n = n_1$ and $n \leq m$, then $m \in \uparrow n_1$.
- (13) If $n = n_1$ and $m \in \uparrow n_1$, then $n \leq m$.
- (14) If $n = n_1$, then $\uparrow n_1 = \mathbb{N} \setminus \mathbb{Z}_n$.

PROOF: $\uparrow n_1 \subseteq \mathbb{N} \setminus \mathbb{Z}_n$ by [12, (50)], (13), [1, (44)]. $\mathbb{N} \setminus \mathbb{Z}_n \subseteq \uparrow n_1$ by [1, (44)], [12, (50)]. \Box

- (15) $\pi_1(A) = \{x, \text{ where } x \text{ is an element of } \mathbb{N} : \text{ there exists an element } y \text{ of } \mathbb{N} \text{ such that } \langle x, y \rangle \in A \}.$
- (16) $\pi_2(A) = \{y, \text{ where } y \text{ is an element of } \mathbb{N} : \text{ there exists an element } x \text{ of } \mathbb{N} \text{ such that } \langle x, y \rangle \in A \}.$
- (17) Let us consider a finite subset A of $\mathbb{N} \times \mathbb{N}$. Then there exists m and there exists n such that $A \subseteq \mathbb{Z}_m \times \mathbb{Z}_n$. The theorem is a consequence of (15) and (16).
- (18) Let us consider a non empty set X. Then every filter of X is a proper filter of 2_{\subset}^{X} .
- (19) Let us consider a non empty set X, and a filter \mathcal{F} of X. Then there exists a filter base \mathcal{B} of X such that
 - (i) $\mathcal{B} = \mathcal{F}$, and
 - (ii) $[\mathcal{B}) = \mathcal{F}.$
- (20) Let us consider a non empty topological space T, and a filter \mathcal{F} of the carrier of T. If $x \in \text{LimFilter}(\mathcal{F})$, then x is a cluster point of \mathcal{F}, T .
- (21) Let us consider an element B of the base of Frechet filter. Then there exists n such that $B = \mathbb{N} \setminus \mathbb{Z}_n$. The theorem is a consequence of (14).
- (22) Let us consider a subset B of \mathbb{N} . Suppose $B = \mathbb{N} \setminus \mathbb{Z}_n$. Then B is an element of the base of Frechet filter. The theorem is a consequence of (14).

2. CARTESIAN PRODUCT OF TWO FILTERS

From now on X, Y, X_1 , X_2 denote non empty sets, \mathcal{A}_1 , \mathcal{B}_1 denote filter bases of X_1 , \mathcal{A}_2 , \mathcal{B}_2 denote filter bases of X_2 , \mathcal{F}_1 denotes a filter of X_1 , \mathcal{F}_2 denotes a filter of X_2 , \mathcal{B}_3 denotes a generalized basis of \mathcal{F}_1 .

Let X_1 , X_2 be non empty sets, \mathcal{B}_1 be a filter base of X_1 , and \mathcal{B}_2 be a filter base of X_2 . The functor $\mathcal{B}_1 \times \mathcal{B}_2$ yielding a filter base of $X_1 \times X_2$ is defined by the term

(Def. 1) the set of all $B_1 \times B_2$ where B_1 is an element of \mathcal{B}_1 , B_2 is an element of \mathcal{B}_2 .

Now we state the propositions:

- (23) Suppose $\mathcal{F}_1 = [\mathcal{B}_1)$ and $\mathcal{F}_1 = [\mathcal{A}_1)$ and $\mathcal{F}_2 = [\mathcal{B}_2)$ and $\mathcal{F}_2 = [\mathcal{A}_2)$. Then $[\mathcal{B}_1 \times \mathcal{B}_2) = [\mathcal{A}_1 \times \mathcal{A}_2)$.
- (24) If $\mathcal{B}_3 = \mathcal{B}_1$, then $[\mathcal{B}_1] = \mathcal{F}_1$.

(25) There exists \mathcal{B}_1 such that $[\mathcal{B}_1) = \mathcal{F}_1$. The theorem is a consequence of (24).

Let X_1, X_2 be non empty sets, \mathcal{F}_1 be a filter of X_1 , and \mathcal{F}_2 be a filter of X_2 . The functor $(\mathcal{F}_1, \mathcal{F}_2)$ yielding a filter of $X_1 \times X_2$ is defined by

(Def. 2) there exists a filter base \mathcal{B}_1 of X_1 and there exists a filter base \mathcal{B}_2 of X_2 such that $[\mathcal{B}_1) = \mathcal{F}_1$ and $[\mathcal{B}_2) = \mathcal{F}_2$ and $it = [\mathcal{B}_1 \times \mathcal{B}_2)$.

Let \mathcal{B}_1 be a generalized basis of \mathcal{F}_1 and \mathcal{B}_2 be a generalized basis of \mathcal{F}_2 . The functor $\mathcal{B}_1 \times \mathcal{B}_2$ yielding a generalized basis of $\langle \mathcal{F}_1, \mathcal{F}_2 \rangle$ is defined by

(Def. 3) there exists a filter base \mathcal{B}_3 of X_1 and there exists a filter base \mathcal{B}_4 of X_2 such that $\mathcal{B}_1 = \mathcal{B}_3$ and $\mathcal{B}_2 = \mathcal{B}_4$ and $it = \mathcal{B}_3 \times \mathcal{B}_4$.

Let n be a natural number. The functor $\uparrow^2(n)$ yielding a subset of $\mathbb{N} \times \mathbb{N}$ is defined by

(Def. 4) for every element x of $\mathbb{N} \times \mathbb{N}$, $x \in it$ iff there exist natural numbers n_1 , n_2 such that $n_1 = (x)_1$ and $n_2 = (x)_2$ and $n \leq n_1$ and $n \leq n_2$.

Now we state the proposition:

(26) $\langle n, n \rangle \in \uparrow^2(n).$

Let us consider n. One can check that $\uparrow^2(n)$ is non empty.

Now we state the propositions:

- (27) If $\langle i, j \rangle \in \uparrow^2(n)$, then $\langle i+k, j \rangle$, $\langle i, j+l \rangle \in \uparrow^2(n)$.
- (28) $\uparrow^2(n)$ is an infinite subset of $\mathbb{N} \times \mathbb{N}$. The theorem is a consequence of (17).
- (29) If $n_1 = n$, then $\uparrow^2(n) = \uparrow n_1 \times \uparrow n_1$. The theorem is a consequence of (12) and (13).
- (30) If m = n 1, then $\uparrow^2(n) \subseteq \mathbb{N} \times \mathbb{N} \setminus \operatorname{Seg} m \times \operatorname{Seg} m$. PROOF: Reconsider y = x as an element of $\mathbb{N} \times \mathbb{N}$. Consider n_1, n_2 being natural numbers such that $n_1 = (y)_1$ and $n_2 = (y)_2$ and $n \leq n_1$ and $n \leq n_2$. $x \notin \operatorname{Seg} m \times \operatorname{Seg} m$ by [3, (1)]. \Box
- (31) $\uparrow^2(n) \subseteq \mathbb{N} \times \mathbb{N} \setminus \mathbb{Z}_n \times \mathbb{Z}_n$.

PROOF: Reconsider y = x as an element of $\mathbb{N} \times \mathbb{N}$. Consider n_1, n_2 being natural numbers such that $n_1 = (y)_1$ and $n_2 = (y)_2$ and $n \leq n_1$ and $n \leq n_2$. $x \notin \mathbb{Z}_n \times \mathbb{Z}_n$ by [16, (10)]. \Box

- (32) $\uparrow^2(n) = (\mathbb{N} \setminus \mathbb{Z}_n) \times (\mathbb{N} \setminus \mathbb{Z}_n)$. The theorem is a consequence of (14) and (29).
- (33) There exists n such that $\uparrow^2(n) \subseteq (\mathbb{N} \setminus \mathbb{Z}_i) \times (\mathbb{N} \setminus \mathbb{Z}_j)$. The theorem is a consequence of (4).
- (34) If $n = \max(i, j)$, then $\uparrow^2(n) \subseteq (\uparrow^2(i)) \cap (\uparrow^2(j))$.

Let n be a natural number. The functor $\downarrow^2(n)$ yielding a subset of $\mathbb{N} \times \mathbb{N}$ is defined by

(Def. 5) for every element x of $\mathbb{N} \times \mathbb{N}$, $x \in it$ iff there exist natural numbers n_1 , n_2 such that $n_1 = (x)_1$ and $n_2 = (x)_2$ and $n_1 < n$ and $n_2 < n$.

Now we state the propositions:

- (35) $\downarrow^2(n) = \mathbb{Z}_n \times \mathbb{Z}_n$. PROOF: $\downarrow^2(n) \subseteq \mathbb{Z}_n \times \mathbb{Z}_n$ by [1, (44)]. Consider y_2, y_1 being objects such that $y_2 \in \mathbb{Z}_n$ and $y_1 \in \mathbb{Z}_n$ and $x = \langle y_2, y_1 \rangle$. \Box
- (36) Let us consider a finite subset A of $\mathbb{N} \times \mathbb{N}$. Then there exists n such that $A \subseteq \downarrow^2(n)$.

PROOF: Consider m, n such that $A \subseteq \mathbb{Z}_m \times \mathbb{Z}_n$. Reconsider $m_1 = \max(m, n)$ as a natural number. $A \subseteq \downarrow^2(m_1)$ by [1, (39)], [11, (96)], (35). \Box

(37) $\downarrow^2(n)$ is a finite subset of $\mathbb{N} \times \mathbb{N}$. The theorem is a consequence of (35).

3. Comparison between Cartesian Product of Frechet Filter on $\mathbb N$ and the Frechet Filter of $\mathbb N\times\mathbb N$

Let us consider an element x of (the base of Frechet filter) \times (the base of Frechet filter). Now we state the propositions:

- (38) There exists *i* and there exists *j* such that $x = (\mathbb{N} \setminus \mathbb{Z}_i) \times (\mathbb{N} \setminus \mathbb{Z}_j)$. The theorem is a consequence of (21).
- (39) There exists n such that $\uparrow^2(n) \subseteq x$. The theorem is a consequence of (38) and (33).
- (40) (The base of Frechet filter) × (the base of Frechet filter) is a filter base of $\mathbb{N} \times \mathbb{N}$.
- (41) There exists a generalized basis \mathcal{B} of FrechetFilter(\mathbb{N}) such that
 - (i) \mathcal{B} = the base of Frechet filter, and
 - (ii) $\mathcal{B} \times \mathcal{B}$ is a generalized basis of $(\operatorname{FrechetFilter}(\mathbb{N}), \operatorname{FrechetFilter}(\mathbb{N}))$.

The functor $\uparrow^2_{\mathbb{N}}$ yielding a filter base of $\mathbb{N} \times \mathbb{N}$ is defined by the term

(Def. 6) the set of all $\uparrow^2(n)$ where *n* is a natural number.

Now we state the propositions:

- (42) $\uparrow_{\mathbb{N}}^2$ and (the base of Frechet filter) × (the base of Frechet filter) are equivalent generators. The theorem is a consequence of (22), (32), and (39).
- (43) [(the base of Frechet filter) × (the base of Frechet filter)) = \langle FrechetFilter (N), FrechetFilter(N)). The theorem is a consequence of (41).
- (44) $[\uparrow_{\mathbb{N}}^2) = \langle \text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}) \rangle.$

- (45) (FrechetFilter(\mathbb{N}), FrechetFilter(\mathbb{N})) is finer than FrechetFilter($\mathbb{N} \times \mathbb{N}$). The theorem is a consequence of (17), (11), (22), and (43).
- (46) (i) $\mathbb{N} \times \mathbb{N} \setminus \text{the set of all } \langle 0, n \rangle$ where *n* is a natural number $\in \langle \text{Frechet} \\ \text{Filter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}) \rangle$, and
 - (ii) $\mathbb{N} \times \mathbb{N} \setminus$ the set of all (0, n) where *n* is a natural number \notin Frechet Filter($\mathbb{N} \times \mathbb{N}$).

PROOF: Set $X = \mathbb{N} \times \mathbb{N} \setminus$ the set of all $\langle 0, n \rangle$ where *n* is a natural number. $\uparrow^2(1) \subseteq X$ by (32), [1, (44)]. $X \notin$ FrechetFilter($\mathbb{N} \times \mathbb{N}$) by [12, (51)], [15, (5)], (9). \Box

(47) FrechetFilter($\mathbb{N} \times \mathbb{N}$) \neq (FrechetFilter(\mathbb{N}), FrechetFilter(\mathbb{N})).

4. TOPOLOGICAL SPACE AND DOUBLE SEQUENCE

In the sequel T denotes a non empty topological space, s denotes a function from $\mathbb{N} \times \mathbb{N}$ into the carrier of T, M denotes a subset of the carrier of T, and $\mathcal{F}_1, \mathcal{F}_2$ denote filters of the carrier of T. Now we state the propositions:

- (48) If \mathcal{F}_2 is finer than \mathcal{F}_1 , then $\operatorname{LimFilter}(\mathcal{F}_1) \subseteq \operatorname{LimFilter}(\mathcal{F}_2)$.
- (49) Let us consider a function f from X into Y, and filters \mathcal{F}_1 , \mathcal{F}_2 of X. Suppose \mathcal{F}_2 is finer than \mathcal{F}_1 . Then the image of filter \mathcal{F}_2 under f is finer than the image of filter \mathcal{F}_1 under f.
- (50) $s^{-1}(M) \in \text{FrechetFilter}(\mathbb{N} \times \mathbb{N})$ if and only if there exists a finite subset A of $\mathbb{N} \times \mathbb{N}$ such that $s^{-1}(M) = \mathbb{N} \times \mathbb{N} \setminus A$.
- (51) $s^{-1}(M) \in \langle \text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}) \rangle$ if and only if there exists n such that $\uparrow^2(n) \subseteq s^{-1}(M)$. The theorem is a consequence of (43), (39), and (42).
- (52) The image of filter FrechetFilter($\mathbb{N} \times \mathbb{N}$) under $s = \{M, \text{ where } M \text{ is a subset of the carrier of } T : there exists a finite subset <math>A$ of $\mathbb{N} \times \mathbb{N}$ such that $s^{-1}(M) = \mathbb{N} \times \mathbb{N} \setminus A$. The theorem is a consequence of (50).
- (53) The image of filter (FrechetFilter(\mathbb{N}), FrechetFilter(\mathbb{N})) under $s = \{M, where M \text{ is a subset of the carrier of } T : there exists a natural number <math>n$ such that $\uparrow^2(n) \subseteq s^{-1}(M)$ }. The theorem is a consequence of (51).

Let us consider a point x of T. Now we state the propositions:

- (54) $x \in \lim_{\text{FrechetFilter}(\mathbb{N}\times\mathbb{N})} s$ if and only if for every neighbourhood A of x, there exists a finite subset B of $\mathbb{N}\times\mathbb{N}$ such that $s^{-1}(A) = \mathbb{N}\times\mathbb{N}\setminus B$. The theorem is a consequence of (52).
- (55) $x \in \lim_{\text{FrechetFilter}(\mathbb{N}\times\mathbb{N})} s$ if and only if for every neighbourhood A of x, $\mathbb{N} \times \mathbb{N} \setminus s^{-1}(A)$ is finite. The theorem is a consequence of (54), (1), and (2).

(56) $x \in \lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} s$ if and only if for every neighbourhood A of x, there exists a natural number n such that $\uparrow^2(n) \subseteq s^{-1}(A)$. The theorem is a consequence of (53).

Let us consider a point x of T and a generalized basis \mathcal{B} of BooleanFilter ToFilter(the neighborhood system of x). Now we state the propositions:

- (57) $x \in \lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} s$ if and only if for every element B of \mathcal{B} , there exists a natural number n such that $\uparrow^2(n) \subseteq s^{-1}(B)$. The theorem is a consequence of (56).
- (58) $x \in \lim_{\text{FrechetFilter}(\mathbb{N}\times\mathbb{N})} s$ if and only if for every element B of \mathcal{B} , there exists a finite subset A of $\mathbb{N}\times\mathbb{N}$ such that $s^{-1}(B) = \mathbb{N}\times\mathbb{N}\setminus A$. The theorem is a consequence of (54), (1), and (55).
- (59) $x \in \lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} s$ if and only if for every element B of \mathcal{B} , there exists a natural number n such that $s^{\circ}(\uparrow^2(n)) \subseteq B$. The theorem is a consequence of (57).
- (60) $x \in \lim_{\mathrm{FrechetFilter}(\mathbb{N}\times\mathbb{N})} s$ if and only if for every element B of \mathcal{B} , there exists a finite subset A of $\mathbb{N}\times\mathbb{N}$ such that $s^{\circ}(\mathbb{N}\times\mathbb{N}\setminus A) \subseteq B$. PROOF: For every neighbourhood A of $x, \mathbb{N}\times\mathbb{N}\setminus s^{-1}(A)$ is finite by [4, (2)], [19, (143)], [9, (76)]. \Box
- (61) $x \in \lim_{\mathrm{FrechetFilter}(\mathbb{N}\times\mathbb{N})} s$ if and only if for every element B of \mathcal{B} , there exists n and there exists m such that $s^{\circ}(\mathbb{N}\times\mathbb{N}\setminus\mathbb{Z}_n\times\mathbb{Z}_m)\subseteq B$. The theorem is a consequence of (60) and (17).
- (62) $x \in s^{\circ}(\uparrow^2(n))$ if and only if there exists *i* and there exists *j* such that $n \leq i$ and $n \leq j$ and x = s(i, j).
- (63) x ∈ s°(N×N \ Z_i×Z_j) if and only if there exist natural numbers n, m such that (i ≤ n or j ≤ m) and x = s(n,m).
 PROOF: Consider n, m being natural numbers such that i ≤ n or j ≤ m and x = s(n,m). (n, m) ∉ Z_i × Z_j by [1, (44)]. □

Let us consider a point x of T and a generalized basis \mathcal{B} of BooleanFilter ToFilter(the neighborhood system of x). Now we state the propositions:

- (64) $x \in \lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} s}$ if and only if for every element B of \mathcal{B} , there exists a natural number n such that for every natural numbers n_1, n_2 such that $n \leq n_1$ and $n \leq n_2$ holds $s(n_1, n_2) \in B$. The theorem is a consequence of (62) and (59).
- (65) $x \in \lim_{\mathrm{FrechetFilter}(\mathbb{N}\times\mathbb{N})} s$ if and only if for every element B of \mathcal{B} , there exists i and there exists j such that for every m and n such that $i \leq m$ or $j \leq n$ holds $s(m, n) \in B$. The theorem is a consequence of (61).
- (66) $\lim_{\text{FrechetFilter}(\mathbb{N}\times\mathbb{N})} s \subseteq \lim_{[\uparrow_{\mathbb{N}}^2]} s$. The theorem is a consequence of (42), (43), (45), (48), and (49).

5. Metric Space and Double Sequence

Now we state the propositions:

(67) Let us consider a non empty metric space M, a point p of M, a point x of M_{top} , and a function s from $\mathbb{N} \times \mathbb{N}$ into M_{top} . Suppose x = p. Then $x \in \lim_{\text{(FrechetFilter(\mathbb{N}), FrechetFilter(\mathbb{N}))}} s$ if and only if for every non zero natural number m, there exists a natural number n such that for every natural numbers n_1 , n_2 such that $n \leq n_1$ and $n \leq n_2$ holds $s(n_1, n_2) \in \{q, \text{ where } q \text{ is a point of } M : \rho(p,q) < \frac{1}{m}\}$.

PROOF: $x \in \lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} s$ iff for every non zero natural number m, there exists a natural number n such that for every natural numbers n_1, n_2 such that $n \leq n_1$ and $n \leq n_2$ holds $s(n_1, n_2) \in \{q, \text{ where} q \text{ is a point of } M : \rho(p,q) < \frac{1}{m}\}$ by [13, (6)], (64). \Box

(68) Let us consider a non empty metric space M, a point p of M, a point x of M_{top} , a function s from $\mathbb{N} \times \mathbb{N}$ into M_{top} , and a function s_2 from $\mathbb{N} \times \mathbb{N}$ into M. Suppose x = p and $s = s_2$. Then $x \in \lim_{\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N})}$ if and only if for every non zero natural number m, there exists a natural number n such that for every natural numbers n_1 , n_2 such that $n \leq n_1$ and $n \leq n_2$ holds $s_2(n_1, n_2) \in \{q, \text{ where } q \text{ is a point of } M : \rho(p, q) < \frac{1}{m}\}$.

6. One-dimensional Euclidean Metric Space and Double Sequence

In the sequel R denotes a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} .

Now we state the proposition:

(69) Let us consider a point x of $(\mathcal{E}^1)_{top}$, a point y of \mathcal{E}^1 , a generalized basis \mathcal{B} of BooleanFilterToFilter(the neighborhood system of x), and an element b of \mathcal{B} . Suppose x = y and $\mathcal{B} = \text{Balls } x$. Then there exists a natural number n such that $b = \{q, \text{ where } q \text{ is an element of } \mathcal{E}^1 : \rho(y,q) < \frac{1}{n}\}.$

Let s be a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} . The functor # s yielding a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}^1 is defined by the term

(Def. 7) s.

Now we state the propositions:

- (70) Let us consider a function s from $\mathbb{N} \times \mathbb{N}$ into $(\mathcal{E}^1)_{\text{top}}$, and a point y of \mathcal{E}^1 . Then $s^{\circ}(\uparrow^2(n)) \subseteq \{q, \text{ where } q \text{ is an element of } \mathcal{E}^1 : \rho(y,q) < \frac{1}{m}\}$ if and only if for every object x such that $x \in s^{\circ}(\uparrow^2(n))$ there exist real numbers r_1, r_2 such that $x = \langle r_1 \rangle$ and $y = \langle r_2 \rangle$ and $|r_2 r_1| < \frac{1}{m}$. The theorem is a consequence of (8).
- (71) $r \in \lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} \# R$ if and only if for every non zero natural number m, there exists a natural number n such that for every

natural numbers n_1, n_2 such that $n \leq n_1$ and $n \leq n_2$ holds $|R(n_1, n_2) - r| < \frac{1}{m}$.

PROOF: Reconsider p = r as a point of the metric space of real numbers. for every non zero natural number m, there exists a natural number nsuch that for every natural numbers n_1 , n_2 such that $n \leq n_1$ and $n \leq n_2$ holds $R(n_1, n_2) \in \{q, \text{ where } q \text{ is a point of the metric space of real numbers } : <math>\rho(p,q) < \frac{1}{m}\}$ iff for every non zero natural number m, there exists a natural number n such that for every natural numbers n_1, n_2 such that $n \leq n_1$ and $n \leq n_2$ holds $|R(n_1, n_2) - r| < \frac{1}{m}$ by (6), [8, (60)]. \Box

7. Basic Relations Convergence in Pringsheim's Sense and Filter Convergence

Now we state the propositions:

- (72) Suppose $\lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} \# R \neq \emptyset$. Then there exists a real number x such that $\lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} \# R = \{x\}.$
- (73) If R is P-convergent, then P-lim $R \in \lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} \# R$. The theorem is a consequence of (71).
- (74) R is P-convergent if and only if $\lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} \# R \neq \emptyset$. The theorem is a consequence of (71) and (5).
- (75) Suppose R is P-convergent. Then $\{P-\lim R\} = \lim_{\langle FrechetFilter(\mathbb{N}), FrechetFilter(\mathbb{N}) \rangle} \# R$. The theorem is a consequence of (73) and (72).
- (76) Suppose $\lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} \# R$ is not empty. Then
 - (i) R is P-convergent, and
 - (ii) $\{P-\lim R\} = \lim_{(\operatorname{FrechetFilter}(\mathbb{N}),\operatorname{FrechetFilter}(\mathbb{N}))} \# R.$

8. Example: Double Sequence Converges in Pringsheim's Sense but not in Frechet Filter of $\mathbb{N}\times\mathbb{N}$ Sense

The functor DblSeq-ex1 yielding a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} is defined by

(Def. 8) for every natural numbers $m, n, it(m, n) = \frac{1}{m+1}$. Now we state the propositions:

- (77) Let us consider a non zero natural number m. Then there exists a natural number n such that for every natural numbers n_1 , n_2 such that $n \leq n_1$ and $n \leq n_2$ holds $|(\text{DblSeq-ex1})(n_1, n_2) 0| < \frac{1}{m}$.
- (78) $0 \in \lim_{(\text{FrechetFilter}(\mathbb{N}), \text{FrechetFilter}(\mathbb{N}))} \# \text{DblSeq-ex1}.$

- (79) $\lim_{\text{FrechetFilter}(\mathbb{N}\times\mathbb{N})} \# \text{DblSeq-ex1} = \emptyset$. The theorem is a consequence of (66), (42), (43), (72), (78), and (65).
- (80) $\lim_{(\text{FrechetFilter}(\mathbb{N}),\text{FrechetFilter}(\mathbb{N}))} \# \text{DblSeq-ex1} \neq \lim_{\text{FrechetFilter}(\mathbb{N}\times\mathbb{N})} \# \text{DblSeq-ex1}.$
 - 9. Correspondence with some Definitions from [14]

Let X_1, X_2 be non empty sets, \mathcal{F}_1 be a filter of X_1, Y be a Hausdorff, non empty topological space, and f be a function from $X_1 \times X_2$ into Y. Assume for every element x of X_2 , $\lim_{\mathcal{F}_1} \operatorname{curry}'(f, x) \neq \emptyset$. The functor $\lim_1(f, \mathcal{F}_1)$ yielding a function from X_2 into Y is defined by

(Def. 9) for every element x of X_2 , $\{it(x)\} = \lim_{\mathcal{F}_1} \operatorname{curry}'(f, x)$.

Let \mathcal{F}_2 be a filter of X_2 . Assume for every element x of X_1 , $\lim_{\mathcal{F}_2} \operatorname{curry}(f, x) \neq \emptyset$. The functor $\lim_2(f, \mathcal{F}_2)$ yielding a function from X_1 into Y is defined by

(Def. 10) for every element x of X_1 , $\{it(x)\} = \lim_{\mathcal{F}_2} \operatorname{curry}(f, x)$.

Now we state the propositions:

- (81) Every function from X into \mathbb{R} is a function from X into \mathbb{R}^1 .
- (82) Every sequence of \mathbb{R} is a function from \mathbb{N} into \mathbb{R}^1 .

From now on f denotes a function from $\Omega_{\text{the ordered }\mathbb{N}}$ into \mathbb{R}^1 and s_1 denotes a function from \mathbb{N} into \mathbb{R} .

Now we state the propositions:

- (83) Suppose $f = s_1$ and $\text{LimF}(f) \neq \emptyset$. Then
 - (i) s_1 is convergent, and
 - (ii) there exists a real number z such that $z \in \text{LimF}(f)$ and for every real number p such that 0 < p there exists a natural number n such that for every natural number m such that $n \leq m$ holds $|s_1(m) z| < p$.

PROOF: Consider x being an object such that $x \in \text{LimF}(f)$. Reconsider y = x as a point of (the metric space of real numbers)_{top}. Reconsider z = y as a real number. Consider y_1 being a point of the metric space of real numbers such that $y_1 = y$ and $\text{Balls } y = \{\text{Ball}(y_1, \frac{1}{n}), \text{ where } n \text{ is a natural number } n \neq 0\}$. For every real number p such that 0 < p there exists a natural number n such that for every natural number m such that $n \leq m$ holds $|s_1(m) - z| < p$ by (5), [12, (84), (50)], [2, (18)]. \Box

- (84) If $f = s_1$ and $\operatorname{LimF}(f) \neq \emptyset$, then $\operatorname{LimF}(f) = \{\lim s_1\}$.
 - PROOF: Consider x being an object such that $x \in \text{LimF}(f)$. Consider u being an object such that $\text{LimF}(f) = \{u\}$. $\text{LimF}(f) = \{\lim s_1\}$ by (83), [11, (3)]. \Box

- (85) Let us consider a function f from Ω_{α} into T, and a sequence s of T. If f = s, then LimF(f) = LimF(s), where α is the ordered \mathbb{N} .
- (86) Let us consider a function f from Ω_{α} into T, and a function g from \mathbb{N} into T. If f = g, then $\operatorname{LimF}(f) = \operatorname{LimF}(g)$, where α is the ordered \mathbb{N} .
- (87) Let us consider a function f from \mathbb{N} into \mathbb{R}^1 . Suppose $f = s_1$ and $\operatorname{LimF}(f) \neq \emptyset$. Then $\operatorname{LimF}(f) = \{\lim s_1\}$. The theorem is a consequence of (84).
- (88) for every element x of \mathbb{N} , $\lim_{\text{FrechetFilter}(\mathbb{N})} \operatorname{curry}'(\# R, x) \neq \emptyset$ if and only if R is convergent in the first coordinate. The theorem is a consequence of (5).
- (89) for every element x of N, $\lim_{\text{FrechetFilter}(\mathbb{N})} \operatorname{curry}(\# R, x) \neq \emptyset$ if and only if R is convergent in the second coordinate. The theorem is a consequence of (5).

Let us consider an element t of \mathbb{N} , a function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}^1 , and a function s_1 from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} . Now we state the propositions:

- (90) Suppose $f = s_1$ and for every element x of \mathbb{N} , $\lim_{\text{FrechetFilter}(\mathbb{N})} \operatorname{curry}(f, x) \neq \emptyset$. Then $\lim_{\text{FrechetFilter}(\mathbb{N})} \operatorname{curry}(f, t) = \{\lim_{t \to \infty} \operatorname{curry}(s_1, t)\}$. The theorem is a consequence of (87).
- (91) Suppose $f = s_1$ and for every element x of \mathbb{N} , $\lim_{\text{FrechetFilter}(\mathbb{N})} \operatorname{curry}'(f, x) \neq \emptyset$. Then $\lim_{\text{FrechetFilter}(\mathbb{N})} \operatorname{curry}'(f, t) = \{\lim_{t \to \infty} \operatorname{curry}'(s_1, t)\}$. The theorem is a consequence of (87).
- (92) Let us consider a Hausdorff, non empty topological space Y, and a function f from $\mathbb{N} \times \mathbb{N}$ into Y. Suppose for every element x of \mathbb{N} , $\lim_{\text{FrechetFilter}(\mathbb{N})}$ curry' $(f, x) \neq \emptyset$ and f = R and $Y = \mathbb{R}^1$. Then $\lim_1(f, \text{FrechetFilter}(\mathbb{N})) =$ the lim in the first coordinate of R. The theorem is a consequence of (91).
- (93) Let us consider a non empty, Hausdorff topological space Y, and a function f from $\mathbb{N} \times \mathbb{N}$ into Y. Suppose for every element x of \mathbb{N} , $\lim_{\text{FrechetFilter}(\mathbb{N})}$ curry $(f, x) \neq \emptyset$ and f = R and $Y = \mathbb{R}^1$. Then $\lim_2(f, \text{FrechetFilter}(\mathbb{N})) =$ the lim in the second coordinate of R. The theorem is a consequence of (90).

10. Regular Space, Double Limit and Iterated Limit

From now on Y denotes a non empty topological space, x denotes a point of Y, and f denotes a function from $X_1 \times X_2$ into Y.

Now we state the proposition:

(94) Suppose $x \in \lim_{\langle \mathcal{F}_1, \mathcal{F}_2 \rangle} f$ and $[\mathcal{B}_1) = \mathcal{F}_1$ and $[\mathcal{B}_2) = \mathcal{F}_2$. Let us consider a subset V of Y. Suppose V is open and $x \in V$. Then there exists an element B_1 of \mathcal{B}_1 and there exists an element B_2 of \mathcal{B}_2 such that $f^{\circ}(B_1 \times B_2) \subseteq V$.

Let us consider a neighbourhood U of x. Now we state the propositions:

- (95) Suppose $x \in \lim_{(\mathcal{F}_1, \mathcal{F}_2)} f$ and $[\mathcal{B}_1) = \mathcal{F}_1$ and $[\mathcal{B}_2) = \mathcal{F}_2$. Then suppose U is closed. Then there exists an element B_1 of \mathcal{B}_1 and there exists an element B_2 of \mathcal{B}_2 such that $f^{\circ}(B_1 \times B_2) \subseteq \operatorname{Int} U$.
- (96) Suppose $x \in \lim_{(\mathcal{F}_1, \mathcal{F}_2)} f$ and $[\mathcal{B}_1) = \mathcal{F}_1$ and $[\mathcal{B}_2) = \mathcal{F}_2$. Then suppose U is closed. Then there exists an element B_1 of \mathcal{B}_1 and there exists an element B_2 of \mathcal{B}_2 such that for every element y of B_1 , $f^{\circ}(\{y\} \times B_2) \subseteq \text{Int } U$. The theorem is a consequence of (95).
- (97) Suppose $x \in \lim_{(\mathcal{F}_1, \mathcal{F}_2)} f$ and $[\mathcal{B}_1) = \mathcal{F}_1$ and $[\mathcal{B}_2) = \mathcal{F}_2$. Then suppose U is closed. Then there exists an element B_1 of \mathcal{B}_1 and there exists an element B_2 of \mathcal{B}_2 such that for every element z of X_1 for every element y of Y such that $z \in B_1$ and $y \in \lim_{\mathcal{F}_2} \operatorname{curry}(f, z)$ holds $y \in \overline{\operatorname{Int} U}$.

PROOF: Consider B_1 being an element of \mathcal{B}_1 , B_2 being an element of \mathcal{B}_2 such that $f^{\circ}(B_1 \times B_2) \subseteq \operatorname{Int} U$. For every element y of B_1 , $f^{\circ}(\{y\} \times B_2) \subseteq \operatorname{Int} U$ by [11, (95)], [19, (125)]. For every element z of B_1 and for every element y of Y such that $y \in \lim_{\mathcal{F}_2} \operatorname{curry}(f, z)$ holds the image of filter \mathcal{F}_2 under $\operatorname{curry}(f, z)$ is a proper filter of $2_{\subseteq}^{\Omega_Y}$ and $\operatorname{Int} U \in$ the image of filter \mathcal{F}_2 under $\operatorname{curry}(f, z)$ and y is a cluster point of the image of filter \mathcal{F}_2 under $\operatorname{curry}(f, z), Y$ by (18), [19, (132)], [10, (95)], (20). For every element z of B_1 and for every element y of Y such that $y \in \lim_{\mathcal{F}_2} \operatorname{curry}(f, z)$ holds $y \in \operatorname{Int} U$ by [4, (25)]. \Box

(98) Suppose $x \in \lim_{\langle \mathcal{F}_1, \mathcal{F}_2 \rangle} f$ and $[\mathcal{B}_1) = \mathcal{F}_1$ and $[\mathcal{B}_2) = \mathcal{F}_2$. Then suppose U is closed. Then there exists an element B_1 of \mathcal{B}_1 and there exists an element B_2 of \mathcal{B}_2 such that for every element z of X_2 for every element y of Y such that $z \in B_2$ and $y \in \lim_{\mathcal{F}_1} \operatorname{curry}'(f, z)$ holds $y \in \overline{\operatorname{Int} U}$.

PROOF: Consider B_1 being an element of \mathcal{B}_1 , B_2 being an element of \mathcal{B}_2 such that $f^{\circ}(B_1 \times B_2) \subseteq \operatorname{Int} U$. For every element y of B_2 , $f^{\circ}(B_1 \times \{y\}) \subseteq$ Int U by [11, (95)], [19, (125)]. For every element z of B_2 and for every element y of Y such that $y \in \lim_{\mathcal{F}_1} \operatorname{curry}'(f, z)$ holds the image of filter \mathcal{F}_1 under $\operatorname{curry}'(f, z)$ is a proper filter of $2_{\subseteq}^{\Omega_Y}$ and $\operatorname{Int} U \in$ the image of filter \mathcal{F}_1 under $\operatorname{curry}'(f, z)$ and y is a cluster point of the image of filter \mathcal{F}_1 under $\operatorname{curry}'(f, z), Y$ by (18), [19, (132)], [10, (95)], (20). For every element z of B_2 and for every element y of Y such that $y \in \lim_{\mathcal{F}_1} \operatorname{curry}'(f, z)$ holds $y \in \operatorname{Int} \overline{U}$ by [4, (25)]. \Box

Let us consider a Hausdorff, regular, non empty topological space Y and a function f from $X_1 \times X_2$ into Y. Now we state the propositions:

(99) Suppose for every element x of X_2 , $\lim_{\mathcal{F}_1} \operatorname{curry}'(f, x) \neq \emptyset$. Then $\lim_{\langle \mathcal{F}_1, \mathcal{F}_2 \rangle}$

 $f \subseteq \lim_{\mathcal{F}_2} \lim_{f \to 1} (f, \mathcal{F}_1)$. The theorem is a consequence of (19) and (98).

(100) Suppose for every element x of X_1 , $\lim_{\mathcal{F}_2} \operatorname{curry}(f, x) \neq \emptyset$. Then $\lim_{\langle \mathcal{F}_1, \mathcal{F}_2 \rangle} f \subseteq \lim_{\mathcal{F}_1} \lim_{z \in \mathcal{F}_2} (f, \mathcal{F}_2)$. The theorem is a consequence of (19) and (97).

Let us consider non empty sets X_1 , X_2 , a filter \mathcal{F}_1 of X_1 , a filter \mathcal{F}_2 of X_2 , a Hausdorff, regular, non empty topological space Y, and a function f from $X_1 \times X_2$ into Y. Now we state the propositions:

- (101) Suppose $\lim_{(\mathcal{F}_1, \mathcal{F}_2)} f \neq \emptyset$ and for every element x of X_1 , $\lim_{\mathcal{F}_2} \operatorname{curry}(f, x) \neq \emptyset$. Then $\lim_{(\mathcal{F}_1, \mathcal{F}_2)} f = \lim_{\mathcal{F}_1} \lim_{(f, \mathcal{F}_2)} f$. The theorem is a consequence of (100).
- (102) Suppose $\lim_{\langle \mathcal{F}_1, \mathcal{F}_2 \rangle} f \neq \emptyset$ and for every element x of X_2 , $\lim_{\mathcal{F}_1} \operatorname{curry}'(f, x) \neq \emptyset$. Then $\lim_{\langle \mathcal{F}_1, \mathcal{F}_2 \rangle} f = \lim_{\mathcal{F}_2} \lim_{f \in \mathcal{F}_1} (f, \mathcal{F}_1)$. The theorem is a consequence of (99).
- (103) Suppose $\lim_{\langle \mathcal{F}_1, \mathcal{F}_2 \rangle} f \neq \emptyset$ and for every element x of X_1 , $\lim_{\mathcal{F}_2} \operatorname{curry}(f, x) \neq \emptyset$ and for every element x of X_2 , $\lim_{\mathcal{F}_1} \operatorname{curry}'(f, x) \neq \emptyset$. Then $\lim_{\mathcal{F}_1} \lim_2 (f, \mathcal{F}_2) = \lim_{\mathcal{F}_2} \lim_1 (f, \mathcal{F}_1)$. The theorem is a consequence of (102) and (101).

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Grzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness. Formalized Mathematics, 9(4):733–738, 2001.
- [5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [6] Nicolas Bourbaki. Topologie générale: Chapitres 1 à 4. Eléments de mathématique. Springer Science & Business Media, 2007.
- [7] Nicolas Bourbaki. General Topology: Chapters 1-4. Springer Science and Business Media, 2013.
- [8] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [12] Roland Coghetto. Convergent filter bases. Formalized Mathematics, 23(3):189–203, 2015. doi:10.1515/forma-2015-0016.
- [13] Roland Coghetto. Summable family in a commutative group. Formalized Mathematics, 23(4):279–288, 2015. doi:10.1515/forma-2015-0022.

- [14] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Double sequences and limits. Formalized Mathematics, 21(3):163–170, 2013. doi:10.2478/forma-2013-0018.
- [15] Andrzej Owsiejczuk. Combinatorial Grassmannians. Formalized Mathematics, 15(2):27– 33, 2007. doi:10.2478/v10037-007-0004-9.
- [16] Karol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337–345, 2005.
- [17] Claude Wagschal. Topologie et analyse fonctionnelle. Hermann, 1995.
- [18] Claude Wagschal. Topologie: Exercices et problèmes corrigés. Hermann, 1995.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

Received June 30, 2016