

Justyna Małgorzata Drewnowska

Genetic structure of environmental Bacillus cereus sensu lato strains isolated from Northeastern Poland

A thesis submitted to The University of Bialystok for the degree of Doctor Of Philosophy

PhD thesis prepared under the supervision Dr Izabela Święcicka, Associate Professor

> BIAŁYSTOK 2016

I dedicate this dissertation to my husband Mariusz for his remarkable patience and unwavering love and support over the course of my research.

Acknowledgments

This work would have no value if it were not academic, educational and emotional support and belief in me as a researcher.

I am deeply grateful and I wish to express my gratitude to **Dr Izabela Święcicka**, **Associate Professor.** I would like to thank her for suggesting the idea for the thesis, supervising the work and offering every possible help in finishing this thesis. Most of all, I thank her for believing in me, encouraging my research and allowing me to grow as a research scientist. It has been a great pleasure to be her first PhD student.

Many thanks also go to the technical staff at the Department of Microbiology, Monika Zambrzycka and Grzegorz Zambrowski for their great technical support and creating relaxed atmosphere during the laboratory work.

Finally, I would like to thank for my parents, **Malgorzata** and **Mirosław**; and my wonderful grandparents, **Eugenia** and **Zbigniew**. They all kept me going, and without their unconditional love this work would not be possible.

Contents

Streszczenie	5
Abstract	8
Introduction	11
Appendix 1. Diversity of thermal ecotypes and potential pathotypes of <i>Bacillus thuringiensis</i> soil isolates	. 19
Appendix 2. Eco-genetic structure of <i>Bacillus cereus sensu lato</i> populations from different environments in Northeastern Poland	. 39
Appendix 3. Melanin-like pigment synthesis by soil Bacillus weihenstephanensis	
Isolates from Northeastern Poland	68
Summary	. 88
Conclusions	. 92
References	93
Co-authors's statements	101

Streszczenie

Frederick Cohan w 2002 roku zaproponował specjację ekologiczną jako główny proces różnicowania bakterii. Zgodnie z teorią Cohan'a każdy gatunek bakterii zawiera zmienna liczbę ekotypów. Ekotyp bakteryjny jest definiowany jako homogeniczna grupa o wysokim podobieństwie ekologicznym. Poszczególne ekotypy danego gatunku charakteryzują się specyficznymi adaptacjami, pozwalającymi efektywne na wykorzystywanie składników odżywczych lub innych warunków środowiska. Teoria specjacji ekologicznej wśród bakterii została potwierdzona w populacjach Bacillus subtilis-Bacillus licheniformis pochodzących z Parku Narodowego Doliny Śmierci, sinic z Parku Narodowego Yellowstone oraz Bacillus simplex z Izraela. W ramach rozprawy doktorskiej badałam czy naturalne populacje gramdodatnich laseczek Bacillus cereus sensu lato wykazują ekotypowy charakter.

Przedstawiciele *B. cereus s.l.* występują powszechnie w środowisku naturalnym i wywierają ogromny wpływ na zdrowie człowieka, przemysł spożywczy oraz rolnictwo i leśnictwo. Te tlenowe, sporulujące laseczki z jednej strony produkują toksyny szkodliwe dla ludzi, zwierząt roślinożernych oraz bezkręgowców, ale też są znane jako producenci enzymów i wtórnych metabolitów, degradujących niebezpieczne związki chemiczne i/lub wspomagających wzrost roślin. Znane są też szczepy *B. cereus s.l.* stosowane jako probiotyki w paszy dla zwierząt. Powyższe właściwości były i są intensywnie badane, jednakże jedynie w odniesieniu do szczepów o szczególnym znaczeniu gospodarczym i medycznym, jak *B. cereus sensu stricto, B. thuringiensis* oraz *B. anthracis.* Tymczasem pokrewieństwo filogenetyczne tych laseczek wciąż budzi wiele kontrowersji. Również podłoże ekologicznej dywersyfikacji w grupie *B. cereus s.l.* nie jest dostatecznie poznane, przede wszystkim z powodu braku informacji na temat szczepów izolowanych z gleby, głównego rezerwuaru tych bakterii.

W ramach rozprawy doktorskiej analizowałam strukture genetyczna oraz zidentyfikowałam potencjalne ekotypy wśród 297 szczepów B. cereus s.l. wyizolowanych z prób gleby pobranych w (i) Narwiańskim Parku Narodowym (Załącznik 1), jak również w (ii) Białowieskim Parku Narodowym, (iii) Biebrzańskim Parku Narodowym oraz (iv) w gospodarstwie rolnym w Jasienówce (Załącznik 2 i 3). Ekologiczna specjacja w grupie B. cereus wydaje się być silniejsza, aniżeli zdolność tych bakterii do horyzontalnego transferu genów. W związku z tym założyłam, iż wśród badanych populacji występują ekotypy, jak ekotyp termiczny, cytotoksyczny i melaninowy. W pierwszej kolejności wykazałam, iż termiczne ekotypy (izolaty zdolne do wzrostu w niskich temperaturach) występuja wśród naturalnych populacji B. cereus s.l. z północno-wschodniej Polski (Załącznik 1, Załącznik 2). Początkowo wykazałam również, iż potencjał cytotoksyczny jest znacząco związany z dwoma liniami filogenetycznymi B. thuringiensis (Załącznik 1). Dalsze analizy ujawniły, iż szczepy potencjalnie cytotoksyczne występują przede wszystkim w środowisku, w którym działalność człowieka jest znacząca (gleba uprawna). Ponadto cytotoksyczność nie jest cechą gatunkową i występuje wśród szczepów należących do różnych grup filogenetycznych, co potwierdza oportunistyczny model patogenności grupy B. cereus s.l. (Załącznik 2). Następnie zidentyfikowałam potencjalny ekotyp melaninowy, utworzony przez szczepy B. weihenstephanensis pochodzące z Białowieskiego Parku Narodowego oraz pola uprawnego w Jasienówce, zdolne do produkcji rozpuszczalnego w wodzie pigmentu (Załącznik 3). Właściwości fizyko-chemiczne tego pigmentu jednoznacznie wskazują, iż jest to melanina. Synteza melaniny może znacząco wpływać na funkcjonowanie mikroorganizmów w niekorzystnych warunkach środowiskowych. Z tego względu zdolność do syntezy melaniny przez glebowe izolaty B. weihenstephanensis, a także ich psychrotroficzny charakter, wydają się być doskonałym dostosowaniem do miejscowych warunków środowiska. Przeprowadzenie analiz w odniesieniu do stosunkowo wysokiej liczby szczepów B. cereus s.l. pochodzacych z ekologicznie zróżnicowanych środowisk, pozwoliło testować hipotezę stanowiącą, że specyficzne genotypy tych bakterii występują w poszczególnych naturalnych środowiskach (Załącznik 2). Analizy MLST (ang. Multi-Locus Sequence Typing) wykazały, iż aż 92% typów sekwencyjnych (ST) jest charakterystyczna dla poszczególnych środowisk. Ponadto 78% badanych izolatów posiadało niezidentyfikowane do tej pory STs. Powyższe wyniki wskazuja na istnienie specyficznych genotypów wśród naturalnych populacji *B. cereus s.l.* Obecność ekologicznie odrębnych genotypów wynika raczej z adaptacji tych bakterii do specyficznych środowisk, aniżeli z przypadkowej kolonizacji.

Taksonomia grupy *B. cereus s.l.* budzi wiele kontrowersji. Na podstawie literatury odnoszącej się głównie do szczepów związanych z działalnością człowieka, założyłam, iż szczepy środowiskowe *B. cereus s.l.* są genetycznie blisko spokrewnione i powinny być sklasyfikowane do jednego gatunku (Załącznik 2). Wprawdzie wykazałam istnienie czterech głównych grup filogenetycznych, obejmujących zmienną liczbę *B. cereus/B. weihenstephanensis, B. thuringiensis* i *B. mycoides/B. pseudomycoides*, jednakże tylko niewielka liczba typów sekwencyjnych (ST) zawierała szczepy należące do różnych gatunków. Ponadto, izolaty sklasyfikowane do tego samego gatunku, ale pochodzące z różnych środowisk, wykazywały tendencję do grupowania się w kompleksy klonalne. Powyższe wyniki dały podstawę do wyciągnięcia wniosku, iż środowiskowe izolaty *B. cereus s.l.* nie reprezentują jednego gatunku.

Szczegółowe analizy genetyczne, fenotypowe oraz biochemiczne przeprowadzone w odniesieniu do wysokiej liczby środowiskowych szczepów *B. cereus s.l.*, rzuciły nowe światło na ewolucję oraz ekologiczną adaptację tych bakterii. Ponadto, luki w wiedzy na temat biologii tych tlenowych laseczek, zostały znacząco uzupełnione poprzez uwzględnienie przeze mnie po raz pierwszy *B. mycoides* w badaniach struktury genetycznej *B. cereus s.l.*

Abstract

In 2002, Cohan proposed ecological speciation as the major way of bacterial diversification. He suggested that each bacterial species contains a variable number of ecotypes, defined as homogenous groups of bacteria that are ecologically similar and share genetic adaptation(s) to certain habitats, resources, and/or conditions. Now, it is generally accepted, that ecological speciation is likely to occur frequently in the bacterial world and that new ecotypes appear to originate in complex communities at a fast rate, in both natural and laboratory conditions. Specific ecotypes have been already observed within *Bacillus subtilis-Bacillus licheniformis* from Death Valley National Park, cyanobacteria from Mushroom Spring, Yellowstone National Park, and *Bacillus simplex* from Israel. In my doctoral thesis I tested whether natural populations of Gram-positive bacilli of *Bacillus cereus sensu lato* have an ecotypic character.

B. cereus s.l. are widespread in natural environments and have a significant impact on human health, food industry, and agriculture. On one hand, members of this group synthetize various toxins harmful to humans, herbivores and invertebrates. On the other hand, they are also known as producers of various valuable enzymes and secondary metabolites whereby they degrade pollutants and promote the growth of plants and animals. These aspects have been intensively studied especially with regard to *B. cereus*, *B. thuringiensis*, and *B. anthracis*, the *B. cereus* group members with the highest impact on human health and economy. Meanwhile, the phylogenetic relationships between these bacilli are still under controversial discussion. Likewise, the basis of ecological diversification of *B. cereus s.l.* remains largely undescribed, especially in relation to strains isolated from soil being their primary environment.

Within the doctoral thesis I investigated the genetic structure and identified potential ecotypes among 297 soil *B. cereus s. l.* isolates from diverse habitats in

Northeastern Poland, such as (i) the Narew National Park (Appendix 1), as well as (ii) the Białowieża National Park, (iii) Biebrza National Park, and (iv) agricultural land in Jasienowka (Appendixes 2 and 3). Since ecological speciation among B. cereus s.l. is stronger than the potential of these bacteria for horizontal gene transfer, I assumed that particular B. cereus s.l. genetic lineages contain isolates possessing the same specific ecological properties (thermal ecotype, cytotoxin K pathotype, and melanotype). First of all, I confirmed the presence of a thermal ecotype (isolates adapted to low temperature) among natural populations of *B. cereus s.l.* (Appendixes 1 and 2). However, while the first studies showed the presence of two lineages of cytotoxic B. thuringiensis strains (Appendix 1), upon further examination I found the cytK gene to be mainly associated with strains from farm samplings, representing all studied species of the *B. cereus* group, and to be intermixed among the clades on the phylogenetic tree. This observation supports the opportunistic pathogenicity model of B. cereus s.l. (Appendix 2). Next, for the first time, I identified a melanotype within B. weihenstephanensis strains from Białowieża National Park and farmland in Jasienowka, which were able to synthesize a water-soluble melaninlike pigment (Appendix 3). The pigment may give a survival advantage in the environment for many microorganisms. The ability to synthesize melanin by soil isolates and their psychrotrophic character seem to be a local adaptation to a specific niche. A relatively large number of samples of B. cereus s.l. from ecologically different environments allowed testing the hypothesis that specific genotypes of these bacilli occur in particular natural habitats (Appendix 2). The multi-locus sequence typing (MLST) revealed 92% of sequence types (STs) in bacilli originated from one habitat only. Together with the fact that there were new STs described for 78% of the isolates, it strongly indicates the existence of specific genotypes within the natural *B. cereus s.l.* populations. Presumably, the presence of ecologically distinct genotypes resulted from adaptations to specific habitats. The taxonomy of the B. cereus s.l. is complex and rises a lot of controversy. I assumed that environmental B. cereus s.l. are highly genetically related and should be classified as one species (Appendix 2). Indeed, phylogenetic analyses revealed three major clades, in which B. cereus/B. weihenstephanensis, B. thuringiensis and B. mycoides/B. pseudomycoides were intermixed. However, only few STs contain bacilli classified into different species. Moreover, the isolates originated from different habitats and classified to the same species

were grouped into particular clonal complexes. Thus, certainly environmental *B. cereus s.l.* do not represent one species.

Detailed genetic, phenotypic and biochemical analyses of the environmental *B*. *cereus s.l.* strains shed new light on the evolution and ecological adaptation of these bacteria to specific soil habitats differing in scope of human activity. In addition, the gaps in the knowledge on this group's biology are further complemented by taking into account the *B. mycoides* species which are often omitted by researchers when studying the *B. cereus s.l.* group.

Introduction

In 2002, Cohan proposed ecological speciation as the major way of bacterial diversification, and suggested that each bacterial species contains a variable number of ecotypes [Cohan, 2002]. In Cohan's framework, an ecotype is defined as a homogenous group of bacteria, that are ecologically similar and share genetic adaptation(s) to certain habitats, resources, and/or conditions. Genetic diversity within an ecotype is limited by cohesive forces, such as periodic selection and/or genetic drift. Thus, genetic lineages within one ecotype are ecologically too homogeneous to allow their indefinite co-existence [Cohan, 2002; Cohan & Perry, 2007; Cohan & Koeppel, 2008; Koeppel et al., 2013]. Such ecotypes are usually monophyletic groups, because they are founded by a single individual. In some cases, if niche-determining plasmids are acquired or lost in horizontal gene transfer, an ecotype may never appear as a separate cluster [Cohan, 2007]. Now, it is generally accepted, that ecological speciation is likely to occur frequently in the bacterial world and that new ecotypes appear to originate in complex communities at a fast rate, in both natural and laboratory conditions [Dolittle & Zhaxybayeva, 2009; Vos et al., 2013]. Several aspects of bacterial population dynamics, such as (i) the rarity of recombination, (ii) the promiscuity of genetic exchange, (iii) the small size of recombining segments, and (iv) the large population sizes, can entail the rapid evolution of bacteria [Koeppel *et al.*, 2013]. Especially the low rate of genetic exchange, being insufficient to impede adaptive divergence, may split a population into ecologically distinct populations which coexist without developing sexual and geographic isolation.

Data reported over the last decade on ecotypes within (i) *Bacillus subtilis-Bacillus licheniformis* from Death Valley National Park [Connor *et al.*, 2010], (ii) cyanobacteria from Mushroom Spring, Yellowstone National Park [Ward *et al.*, 2006], and (iii) in *Bacillus simplex* from 'Evolution Canyons' in Israel [Sikorski & Nevo, 2007], has allowed

to conclude that closely related populations within these bacteria are present along environmental gradients. Especially soil, due to its three-dimensional spatial network, and heterogeneity in nutrients, particle size, pH, humidity, and microbiota [McArthur, 2006; Vos *et al.*, 2013], creates favorable conditions for bacterial evolution [Connor *et al.*, 2010; Horner-Devine *et al.*, 2004; Materna *et al.*, 2012; Ward *et al.*, 2006]. Although soil is the primary niche also for *Bacillus cereus sensu lato* (*s.l.*) [Ceuppens *et al.*, 2013; Von Stetten *et al.*, 1999], the ecotypic character of these bacilli in their natural environment has not been thoroughly studied yet.

B. cereus s.l. comprises Gram-positive endospore-forming bacilli persisting ubiquitously in different natural habitats, food products, and in hospital environments, where they display a wide variety of different lifestyles [Ceuppens *et al.*, 2013]. From ecological and economical points of view, the most known members of this group are (i) *Bacillus cereus sensu stricto (B. cereus s.s.)*, an opportunistic pathogen occasionally involved in foodborne illnesses [Logan, 2012], (ii) *Bacillus thuringiensis*, an entomopathogen used worldwide as a biopesticide [Crickmore, 2006], and (iii) *Bacillus anthracis*, an etiologic agent of anthrax, which primarily causes the disease in ruminants and secondarily in humans or other animals [Mock & Fouet, 2001]. *B. cereus s.l.* also includes (iv) *Bacillus mycoides* and (v) *Bacillus pseudomycoides* which form characteristic rhizoidal colonies on solid media and are distinguished by DNA relatedness and fatty acid composition [Nakamura, 1998], (vi) psychrotolerant *Bacillus weihenstephanensis* [Lechner *et al.*, 1998], as well as recently described (vii) thermotolerant *Bacillus cytotoxicus* [Guinebretière *et al.*, 2013], and (viii) *Bacillus toyonensis*, a probiotic organisms used in animal feed [Jiménez *et al.*, 2013].

The classical "Biological Species Concept" (BSC) [Mayr, 1944] defines a species as "groups of actually or potentially interbreeding natural populations which are reproductively isolated from other such groups". Thus, sexual isolation, arising mostly from the appearance of prezygotic barriers or geographical separation, is essential for species divergence. In this context, bacteria which reproduce clonally, exchange genes even with distant relatives through horizontal gene transfer (HGT), and often co-occur in nature without geographical boundaries, cannot be considered in the framework of Mayr's BSC

Figure 1. Genome similarity of the *B. cereus s.l.* strains in comparison to the *B. anthracis* Ames genome.

The outer circle 1 and 2, predicted coding regions on the plus strand, and minus strand, respectively; circle 3, atypical nucleotide composition curve; circle 4, genes not represented on the array; circle 5, genes present on the array. Genes were classified into: (i) genes present in the query strain (yellow), (ii) genes absent in the query strain (red), and (iii) diverged genes (blue). Missing data are in grey. The B. cereus group strains other than B. anthracis Ames are displayed as circles 6-24 [Read et al., 2003].

[Cohan, 2002]. Although, the development of molecular approaches in the last thirty years has made the identification of bacterial species much more accessible, the *B. cereus s.l.* taxonomy is so complex that it rises a lot of controversy. Early attempts to delineate bacterial species by DNA-DNA hybridization, in which bacterial species were defined as those isolates sharing at least 70% hybridization under standardized conditions, indicated that members of *B. cereus s.l.* should be considered as a different species [Nakamura & Jackson, 1995]. Afterwards, it became clear that DNA-DNA hybridization was not appropriate due to the level of variability over the lifetime of a species, especially in connection with *B. cereus s.l.* adaptations to various habitats [Riley & Lizotte-Waniewski, 2009]. More recently, the comparison of highly conserved sequences of the 16S rRNA gene of *B. anthracis, B. cereus* and *B. thuringiensis* showed >99% similarity, indicating that these bacilli belong to a single species [Sacchi *et al.*, 2002]. This view is supported by the fact that *B. cereus s.l.* share a large core set of conserved genes and their chromosomes display high level of synteny (Figure 1) [Read *et al.*, 2003; Rasko *et al.*, 2005].

Nevertheless, despite genetic similarity, the *B. cereus s.l.* members are mainly distinguished based on phenotypic features, which often arise from the presence of plasmids. However, these extra-chromosomal molecules of DNA could be naturally lost or gained in horizontal gene transfer (HGT), changing dramatically phenotype of the given isolate (Table 1) [Ceuppens et al., 2013; Mock & Fouet, 2001; Hoton et al., 2009]. From ecological perspective, the taxonomy of B. cereus s.l. is even more complicated when considering variations in their symbiotic associations and species-specific virulence [Swiecicka, 2008; Mock & Fouet, 2001; Bullied *et al.*, 2002; Swiecicka & Mahillon, 2006]. For example, cereulide, typically associated with the emetic strains of B. cereus s.s., is also produced by psychrotolerant B. weihenstephanensis [Thorsen et al., 2006]. On the other hand, B. cereus s.s. may cause clinical symptoms similar to those of inhalation anthrax [Hoffmaster et al, 2004]. Also other properties attributed to a particular species may not be intrinsically unique. For example, some B. thuringiensis strains have been reported as a potential source of human diarrheal infections similar to those caused by *B. cereus s.s.* [Hansen & Hendriksen, 2001], while some were able to grow at low temperature [Bartoszewicz et al., 2009; Soufiane & Côtè, 2010], being a primary feature of B. weihenstephanensis [Lechner et al., 1998].

Diagnostic feature	B. cereus s.s	B. thuringiensis	B. anthracis	B. mycoides	B. pseudomycoides	B. weihenstephanensis	B. cytotoxicus	B. toyonensis*
Sheep blood hemolysis	+	+		+	+	+	+	+
Rhizoidal growth				+	+			
Growth at 7°C		-/+		-/+		+		
Growth at 50°C							+	
Plasmid-borne signatures:								
Parasporal crystal (Cry)		+						
Anthrax toxin(s)			+					
Emetic toxin	-/+					-/+		

Table 1. Diagnostic phenotypic features used for the species-level classification

 of *B. cereus s.l.* isolates.

-/+, variable; the lack of particular properties has been omitted for clarity.

*, B. toyonensis $BCT-7112^{T}$ was primarily identified as B. cereus var toyoi, which could be distinguished from the closest relatives by the optimum growth temperature (35°C), higher salinity tolerance (up to 5% NaCl), and optimal pH (6.5) [Jimenez et al., 2013].

Due to the medical importance and economic significance, a vast number of investigations have focused on *B. cereus* and *B. anthracis* originated from clinical cases and food products, and *B. thuringiensis* as a potential bioinsecticidal [Priest *et al.*, 2004; Fagerlund *et al.*, 2007; Ehling-Schulz *et al.*, 2005; Sorokin *et al.*, 2006; Hoffmaster *et al.*, 2006; Vassileva *et al.*, 2007; Marston *et al.*, 2006; Hoffmaster *et al.*, 2008; Cardazzo *et al.*, 2008; Didelot *et al.*, 2009; Raymond *et al.*, 2010; Zahner *et al.*, 2013, Blackburn *et al.*,

2013]. Whereas, some global analysis have been concentrated on independent strains from miscellaneous geographic locations, substrate origins, and date of isolation [Guinebretiere *et al.*, 2008, Tourasse & Kolsto, 2007; Tourasse *et al.*, 2010], which makes it difficult to infer about ecological speciation of *B. cereus s.l.* General patterns emerging from these studies are the following: (i) particular species are phylogenetically intermixed, (ii) most of the clinical *B. cereus s.l.* isolates group together with *B. anthracis* strains, and (iii) other clusters contain mostly isolates from soil and dairy. In addition, Guinebretière *et al.* [2008] identified seven genetic *B. cereus s.l.* groups (I-VII) with the ecotypic structure associated with particular thermal niches. Furthermore, they showed that cytotoxic activity and toxin distributions varied according to the phylogenetic group I-VII rather than species affiliation [Guinebretiere *et al.*, 2010]. Despite these studies, still little is known about genetic structure and ecological speciation among natural populations of *B. cereus s.l.* originated from soil.

Interestingly, B. cereus group members are versatile producers of secondary metabolites, such as antimicrobial substances [Abriouel et al., 2011], extracellular enzymes [Liang et al., 2013], and fluorescent pigments [Benerjee et al., 2013]. Nevertheless, these phenotypic features are very often omitted when the genetic structure of *B. cereus s.l.* is studied. From evolutionary and ecologic points of view, especially the production of melanin is highly significant for their producers as the pigment absorb a broad spectrum of electromagnetic radiation [Moeller et al., 2005], protects from reactive oxygen species [Tada et al., 2010], prevents from heavy metals toxicity [Garcia-Rivera & Casadevall, 2001], and from extreme temperatures [Rosas & Casadevall, 1997]. It is worth nothing, that melanin is potentially also involved in the development of symbiosis between soil bacteria and plants [Pinero et al., 2007]. Yet, so far only two melanin-positive wild strains, B. thuringiensis subsp. dendrolimus L-7601 [Chen et al., 2004] and B. thuringiensis subsp. kurstaki CCTCC AB90010 [Liu et al., 2004], have been described. Nevertheless, several studies have managed to obtain the production of the blackish-brown pigment in B. cereus s.l. through chemical mutagenesis [Aghajanyan et al., 2005] or genetic modification [Ruan et al., 2002].

Considering the above issues, I decided to verify whether soil *B. cereus s.l.* populations have "the ecotype character". Altogether, I studied 297 *B. cereus s.l.* isolates, 24 *B. thuringiensis* from soil sampled in the Narew National Park (Appendix 1) and 273 *B. cereus/B. weihenstephanensis, B. thuringiensis,* and *B. mycoides/B. pseudomycoides* originated from soil samples from three highly geographically and ecologically diverse habitats: (i) Białowieża National Park (Białowieża NP), the last European natural forest with the primeval character and limited human activity (a World Heritage site and a biosphere reserve), (ii) Biebrza National Park (Biebrza NP), the largest Europe's marshes with limited human activity, located in the Biebrza River basin, and (iii) the agricultural soil in Jasienowka, a small village on the south of Podlasie province (Appendixes 2 and 3).

The first hypothesis is: particular *B. cereus s.l.* genetic lineages cover isolates possessing the same specific ecological properties encoded by chromosomal genes, such as (i) the ability to grow at low temperature (thermal ecotype) (Appendixes 1 and 2), (ii) cytotoxicity due to the presence and expression of the *cytK* gene (CytK pathotype) (Appendixes 1 and 2), and (iii) the ability to produce the melanin pigment (melanotype) (Appendix 3). The study on bacteria from environments differing significantly in human activity or type of soil, allowed me to investigate the impact of natural environment on the genetic structure of *B. cereus s.l.*, and to verify the second hypothesis, which is: *B. cereus s.l.* revealing distinct genotypes (ecotypes) occur in particular habitats (Appendix 2). In addition, taking into account genetic properties of *B. cereus/B. weihenstephanensis, B. thuringiensis* and *B. mycoides/B. pseudomycoides*, I was able to determine whether bacteria belonging to *B. cereus s.l.* should be classified as ecotypes within a single species or as separate species. I postulated that environmental *B. cereus s.l.* are highly genetically related and should be classified as one species (Hypothesis 3; Appendix 2).

Whereas the banding-based subtyping methods, such as multilocus enzyme electrophoresis (MLEE), amplified fragment length polymorphism (AFLP), or pulsed-field gel electrophoresis (PFGE), are not specific enough for studying the genetic structure of bacterial populations, multilocus sequence typing (MLST), based on a detailed analysis of the nucleotide sequence of seven housekeeping genes, has become the "gold standard" in the investigation of the population structure, evolution of bacteria, and identification of

epidemic clones [Maiden *et al.*, 1998; Priest *et al.*, 2004; Helgason *et al.*, 2004; Barker *et al.*, 2005; Hoffmaster *et al.*, 2008, Bolt *et al.*, 2010]. Most importantly, MLST allows classifying bacteria into "clonal complexes" (CCs) containing isolates that are identical at six or more loci, which correspond remarkably to ecologically distinct groups; therefore, they should effectively correspond to bacterial ecotypes [Cohan, 2000]. Taking all of these into account, I chose this approach as the primary method in my studies on the eco-genetic structure of *B. cereus s.l.* populations from Northeastern Poland.

Appendix 1

Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates

Swiecicka I, Bartoszewicz M, Kasulyte-Creasey D, Drewnowska JM, Murawska E, Yernazarova A, Lukaszuk E, Mahillon J (2013) Diversity of thermal ecotypes and potential pathotypes of Bacillus thuringiensis soil isolates. FEMS Microbiol Ecol 85(2), 262-72.

My contribution: setup of experimental details, laboratory work (detection of δ -endotoxin and the *cytK* gene, the psychrotolerance testing of Polish isolates), data analysis, contribution in the manuscript preparation.

Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates

Izabela Swiecicka¹, Marek Bartoszewicz¹, Daiva Kasulyte-Creasey², Justyna M. Drewnowska¹, Emilia Murawska¹, Aliya Yernazarova^{1,3}, Edyta Lukaszuk⁴ & Jacques Mahillon⁵

¹Department of Microbiology, University of Bialystok, Bialystok, Poland; ²CABI Europe-UK, Egham, UK; ³Department of Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan; ⁴Department of Plant Physiology, University of Bialystok, Bialystok, Poland; and ⁵Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Correspondence: Izabela Swiecicka, Department of Microbiology, University of Bialystok, 20B Swierkowa Street, 15-950 Bialystok, Poland. Tel.: + 48 857457332; fax: +48 857457301; e-mail: izabelas@uwb.edu.pl

Received 18 July 2012; revised 10 March 2013; accepted 17 March 2013.

DOI: 10.1111/1574-6941.12116

Editor: Kornelia Smalla

Keywords

B. thuringiensis; multi-locus sequence typing; psychrotolerance; pulsed-field gel electrophoresis; toxicity.

Abstract

Ecological diversification of Bacillus thuringiensis soil isolates was examined to determine whether bacteria adapted to grow at low temperature and/or potentially pathogenic correspond to genetically distinct lineages. Altogether, nine phylogenetic lineages were found among bacilli originating from North-Eastern Poland (n = 24) and Lithuania (n = 25) using multi-locus sequence typing. This clustering was chiefly confirmed by pulsed-field gel electrophoresis. One third of the bacilli were found to be psychrotolerant, which strongly supports the hypothesis of the existence of thermal ecotypes among B. thuringiensis. PCR screening was also performed to detect potential enterotoxin genes and Bacillus anthracis pXO1- and pXO2-like replicons. The cytK-positive isolates (22%) were significantly associated with two phylogenetic lineages (potential CytK pathotypes), whereas there was no correlation between phylogenetic grouping and the presence of the potential tripartite enterotoxin pathotypes (86% of strains). A statistically significant association between phylogenetic lineages and ecologic properties was found with regard to the cry1-positive Lithuanian isolates, while the cry genes in Polish isolates and the pXO1- and pXO2 replicon-like elements showed scattered distribution across phylogenetic lineages. Our results support the hypothesis that B. thuringiensis comprises strains belonging to different phylogenetic lineages, which exhibit specific ecological properties.

Introduction

Bacillus thuringiensis, an entomopathogen lethal to many insects due to the synthesis of δ -endotoxins, also called Cry toxins (Ben-Dov *et al.*, 1997; de Maagd *et al.*, 2001), is present in a wide range of environments and exhibits a high level of phenotypic and genotypic diversity (Gaviria Rivera & Priest, 2003; Swiecicka & Mahillon, 2005). Yet, the unique ecological role(s) played by *B. thuringiensis* in their environmental niches is not fully understood (Swiecicka, 2008). One possible way to tackle this issue is to investigate the ecological changes that distinguish the *B. thuringiensis* isolates into ecotypes, defined as groups of closely related, but ecologically different, genetic variants (Connor *et al.*, 2010). Indeed, bacterial isolates of particular ecotype occupy similar ecological niches and possess specific properties that allow them to exploit and adapt to their immediate environment (Cohan & Perry, 2007; Stefanic et al., 2012). Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group, which also includes B. cereus sensu stricto implicated in food poisoning (Granum & Lund, 1997), Bacillus mycoides and Bacillus pseudomycoides, characterized by their rhizoid growth on solid agar plates (Nakamura, 1998), Bacillus anthracis, the etiologic agent of anthrax (Mock & Fouet, 2001), and the psychrotolerant Bacillus weihenstephanensis (Lechner et al., 1998). Although these bacteria are genetically closely related (Pannucci et al., 2002a; Helgason et al., 2004), they display distinct virulence spectra whose genetic determinants are mostly plasmid-borne. For instance, the production of entomotoxins by B. thuringiensis, the cereulide toxin by emetic B. cereus pathotypes,

Despite its entomopathogenic properties, B. thuringiensis has occasionally been reported as a potential source of human infections similar to those caused by B. cereus (Jackson et al., 1995). In fact, most B. thuringiensis and B. mycoides/B. pseudomycoides isolates harbour the genetic determinants of potential enterotoxins thought to be involved in diarrhoeal gastrointestinal infections (Hansen & Hendriksen, 2001; Swiecicka et al., 2006). Whether these potential pathogenic ecotypes of B. thuringiensis are authentic pathotypes remains an open issue. The temperature adaptation is another B. cereus s.l. property of significant importance from both an environmental and a food industry point of view. Bartoszewicz et al. (2009) and Soufiane & Côté (2010) have pointed out that some B. thuringiensis were able to grow at low temperature and displayed specific motifs in their cspA gene (coding the major cold shock protein CspA), two features originally described as characteristic of the psychrotolerant B. weihenstephanensis (Francis et al., 1998; Lechner et al., 1998). These observations, together with an earlier report by Sorokin et al. (2006), indicated that psychrotolerance is a common feature among B. cereus s.l. isolates rather than a specific attribute of B. weihenstephanensis. Moreover, all the isolates demonstrating the ability to grow at low temperature can be regarded as thermal ecotypes of B. cereus s.l. (Guinebretière et al., 2008).

It is generally accepted that closely related but ecologically distinct ecotypes may represent distinct evolutionary lineages within a particular species (Connor et al., 2010). Accordingly, the primary hypothesis is that particular B. thuringiensis genetic lineages consist of isolates possessing the same specific ecological properties encoded by chromosomal genes, such as the ability to grow at low temperature (thermal ecotype) or the presence of the same set of enterotoxin genes (pathotypes). Conversely, the isolates displaying properties encoded by plasmidborne genes may belong to different lineages. The multilocus sequence typing (MLST) approach extensively used in the phylogenetic typing of the B. cereus group members (Helgason et al., 2004; Ko et al., 2004; Priest et al., 2004; Guinebretière et al., 2008; Hu et al., 2009), and pulsed-field gel electrophoresis (PFGE) applied to estimate the population structure of these bacilli (Gaviria Rivera & Priest, 2003; Swiecicka & Mahillon, 2005), were used in the present study to assess the genetic structure and phylogenetic lineages of 49 B. thuringiensis environmental isolates, including their relationship with the other members of the B. cereus complex. Furthermore, the following parameters were analysed in relation to the MLST lineages: (1) the ability to grow at low temperature, a cardinal feature of psychrotrophy as exemplified by strains of *B. weihenstephanensis*; (2) the presence of putative enterotoxin genes; and (3) the distribution of the pXO1- and pXO2-like replicons. To get a broader view of the genetic diversity and population structure, bacteria originating from two geographically distinct locations, North-Eastern Poland and Lithuania (about 400 km apart) were analysed.

Materials and methods

Bacterial strains, growth conditions, and bacterial identification

A total of 49 *B. thuringiensis* isolates from forest soil rich in organic material were tested (Fig. 1, Supporting Information Table S1). Among them, 25 strains were isolated from soil taken in the Narew National Park (North-Eastern Poland), and eight and 17 isolates were obtained from samples taken in central Lithuania (Vilnius) and North Lithuania (Pakruojis district), located 100–400 km apart (Fig. 1). Only one *B. thuringiensis* strain was analysed from each soil sample. To isolate *B. thuringiensis*, a 10% soil solution (w/v) in 0.85% NaCl was shaken for 1 h (200–250 rpm) and then preheated in a water bath

Fig. 1. Geographic map of Poland and Lithuania with the location of the sample sites in Lithuania (+, Vilnius; isolates: DK-1.8, DK-1.18, DK-1.2, DK-1.6; DK-2.6, DK-2.9, DK-2.4, DK-3.3; ▲, Pakruojis district; isolates: DK-3AB, DK-4AB, DK-1AC, DK-2AC, DK-4AD, DK-2AG, DK-3AG, DK-4AG, DK-C32, DK-2E, DK-8E, DK-6F, DK-11F, DK-13F, DK-15F, DK-2H, DK-3H), and in Poland (¤, Narew National Park; all isolates).

for 5 min at 72 °C to eliminate vegetative cells and to select the spores. For each serial dilution $(10^{-1} \text{ to } 10^{-4})$, 100 µL were plated on MYP agar (Oxoid, Basingstoke, UK), a selective medium for isolating members of the B. cereus group, and incubated at 30 °C for 48 h. Those bacteria forming rough and dry colonies with a violet pink background surrounded by egg yolk precipitation on the MYP agar and with parasporal crystals observed under phase-contrast microscopy, were identified as B. thuringiensis. The selected isolates were screened for haemolytic activity on Columbia Blood Agar (Oxoid) at 30 °C. Bacillus thuringiensis HD1, HD2, HD3, HD12, HD73, and HD146 strains (BGSC, Bacillus Genetic Stock Center, Ohio State University, Ohio, USA) were used as references. Bacillus weihenstephanensis DSMZ 11821 (German Collection of Microorganisms and Cell Cultures), B. cereus ATCC 10987, and B. cereus ATCC 14579 (American Type Culture Collection) were also included as reference strains for psychrotolerant properties and the presence of the potential enterotoxin genes, respectively.

DNA extraction

Genomic DNA was extracted from overnight cultures grown in Luria–Bertani (LB) broth using the DNeasy Blood and Tissue Kit (Qiagen GmbH, Hilden, Germany) in accordance with the manufacturer's instructions. The quantity and the purity of the extracted DNA were assessed using the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE).

MLST-based phylogenetic analysis

In total, seven housekeeping genes - glpF (glycerol uptake facilitator protein), gmk (putative guanylate kinase), ilvD (dihydroxy-acid dehydratase), pta (phosphate acetyltransferase), pur (phosphoribosylaminoimidazolecarboxamide), pycA (pyruvate carboxylase), and tpi (triosephosphate isomerase) - were amplified with the primers described at the B. cereus PubMLST database (http://pubmlst.org/bcereus/info/primers.shtml) and given in Table S2. The PCR programs were as follows: 95 °C for 5 min; 35 cycles of 95 °C for 30 s, 56 °C (gmk, pta, pur), 57 °C (pvcA), 58 °C (ilvD, tpi) or 59 °C (glpF) for 30 s, and 72 °C for 1 min; 72 °C for 10 min. PCRs were performed with the Veriti 96-Well thermal cycler (Applied Biosystems, Foster City, CA) in the final volume of 25 µL containing 0.65 U Taq DNA polymerase (MBI Fermentas, Vilnius, Lithuania), 250 ng DNA, 0.5 mM of each of the four dNTP, 2.0 mM MgCl₂, and 0.5 µM of each of the primers. The presence of PCR products was tested with the capillary electrophoresis QIAxcel system (Qiagen).

Amplification products were obtained from all 49 isolates and then purified using the QiaAmp PCR purification kit (Qiagen). Sequencing reactions were performed using the Big Dye Terminator cycle sequencing kit (Applied Biosystems) and the primers described at the B. cereus PubMLST website. Products of cycle sequencing reactions were purified using the ExTerminator Kit (A&A Biotechnology, Gdynia, Poland) and sequenced with the ABI3130 automated sequencer (Applied Biosystems). The sequences were aligned and analysed with regard to their conservative sites and number of polymorphic nucleotide positions with the BIOEDIT SEQUENCE ALIGNMENT EDITOR version 7.0.1. program. The sequences of each of the seven housekeeping genes were assigned allele numbers based on the locus queries at http://pubmlst.org/bcereus/, and sequence types (ST) based on the combination of seven alleles. To assess the relationship of the B. thuringiensis isolates under this study, a phylogenetic tree was generated from their allelic profiles using the neighbour-joining (NJ) algorithm with the aid of START2 software (Jolley et al., 2004). Genetic distances, based on the nucleotide polymorphism in housekeeping alleles, were calculated using the neighbour-joining method and Kimura 2-parameter mathematical model. The correctness of the results was evaluated using a 1000-step bootstrap test.

Psychrotolerance

To determine the potential 'psychrotolerance' genetic profile, all the *B. thuringiensis* isolates were screened by PCR for *cspA*, using a pair of primers cspA_f and cspA_r (Table S2), and the presence of specific ⁴ACAGTT⁹ motif in the gene sequence, as reported by Bartoszewicz *et al.* (2009). The purified amplicons were cloned into the pGEM-T Easy vector (Promega, Madison, WI) and sequenced using the ABI3130 automated sequencer. Alignments of the sequences were performed as described above. To determine their potential psychrotrophic character, the isolates were screened for their ability to grow at 7 °C in nutrient broth with vigorous agitation for 7–10 days, as well as at 43 °C on nutrient agar plates for 48 h.

Presence of potential enterotoxin genes

All the *B. thuringiensis* isolates were tested for the presence of the *hblA* and *nheA* genes with the pairs of primers (Table S2) designed by Hansen & Hendriksen (2001), and for the *cytK* gene with the primer pair described by Swiecicka *et al.* (2006) (Table S2). PCR amplifications were carried out using the Veriti 96-Well thermal cycler for 30 reaction cycles in a final volume of 15 μ L containing 0.35 U *Taq* DNA polymerase (MBI Fermentas),

150 ng DNA, 0.5 mM of each of the four dNTP, 1.5 mM MgCl₂, and 0.5 μ M of each of the primers. The conditions for PCRs were as follows: an initial denaturation step for 3 min at 95 °C, denaturation of DNA template at 95 °C for 1 min, annealing templates and oligonucleotide primers at 50 °C (*cytK*, *hblA*) and 55 °C (*nheA*) for 1 min, and extension of PCR products at 72 °C for 1 min. An extra extension step was performed at 72 °C for 10 min. The PCR products were analysed in the capillary electrophoresis system QIAxcel.

Detection of δ -endotoxin genes, and pXO1- and pXO2-like replicons

To assess the potential entomopathogenic properties, the presence of *cry1*, *cry2*, *cry3*, *cry4*, *cry7*, *cry8*, and *cry9* genes was tested as described by Ben-Dov *et al.* (1997, 1999) with the pairs of primers given in Table S2. The presence of the *repX* and *repA* genes, encoding the replication proteins of the pXO1 and pXO2 plasmids, respectively, was tested by PCR as described by Hu *et al.* (2009) with the pairs of primers provided in Table S2. The PCR products were analysed in the capillary electrophoresis system QIAxcel.

PFGE of genomic DNA

Genomic DNA in LMP agarose (Sigma Chemical Co., St. Louis, MO) plugs was prepared according to Gaviria Rivera & Priest (2003). The agarose-imbedded DNA was then digested with 30 U of NotI (MBI Fermentas) and electrophoresed in the CHEF-DR II System (Bio-Rad, Hercules, CA) followed by staining DNA with ethidium bromide solution (1 μ g mL⁻¹) and then analysed as described previously (Swiecicka & Mahillon, 2005). Each DNA profile was compared with the other DNA profiles using the Dice similarity coefficient. To reflect these similarities, a dendrogram was performed by UPGMA algorithm with the NTSYS version 2.02 g program (Exeter Software, Setauket, NY).

Statistical analysis

The Fisher exact test, performed with the R version 2.15.2 program, was used to investigate whether the variable MLST group is pairwise independent of each of the following variables: *hblA*, *nheA*, *cytK*, the δ -endotoxin genes, *B. anthracis* replicon-like, and psychrotrophy. The null hypothesis of the test is that the two analysed variables are independent. The significance level was set at 0.05. The MLST group that consisted of only one isolate was omitted in the analysis.

Results

Environmental *B. thuringiensis* isolates display broad diversity

The sequences of seven housekeeping genes of the 49 soil B. thuringiensis isolates were compared with allelic sequences available at PubMLST database (http://pubmlst. org/bcereus). Among the environmental isolates, sequence variability for each fragment ranged from 4.6% (tpi) to 21.4% (ilv) of polymorphic sites, with the number of alleles per locus varying from 9 (gmk) to 18 (ilv). With the exception of gmk, the number of alleles of each locus among Polish isolates was slightly higher than isolates from Lithuania (Table 1). When the nucleotide sequences of all the genes were compared with the PubMLST database, 43 STs could be distinguished, including 11 and 21 new STs among the Lithuanian and Polish isolates, respectively (Table S1). The remaining 11 known STs were shared by 17 isolates. The vast majority of the STs were present only once in the tested bacilli. Only ST305

Table 1. Genetic diversity at seven loci of the environmental *B. thuringiensis* isolates.

				Origin of B. thuringiensis							
Fragment		B. thuringiensis (n =	49)	Lithuania ($n = 25$)		Poland ($n = 24$)					
Locus	length (bp)	Polymorphic sites*	No. of alleles	Polymorphic sites*	No. of alleles	Polymorphic sites*	No. of alleles				
glp	372	34 (9.1)	17	29 (7.8)	10	29 (7.8)	14				
gmk	504	53 (10.5)	9	42 (8.3)	7	38 (7.5)	5				
ilv	393	84 (21.4)	18	65 (16.5)	10	71 (18.1)	13				
pta	414	37 (8.9)	15	28 (6.8)	8	30 (7.2)	11				
pur	384	58 (15.1)	17	51 (13.3)	9	52 (13.5)	13				
рус	363	66 (18.2)	13	58 (16.0)	7	57 (15.7)	10				
tpi	435	20 (4.6)	13	12 (2.8)	6	16 (3.7)	9				

*No. of polymorphic sites and percentage (in parentheses) calculated as the number of polymorphic sites divided by the length of the sequenced fragment.

and ST312, consisting of two and four isolates, were represented by bacteria from both locations (Table S1).

To evaluate the genetic relationships among the environmental *B. thuringiensis*, the sequences of the seven housekeeping genes were compared using the NJ clustering method. The resulting dendrogram based on the concatenated nucleotide sequences revealed nine major groups (A–I) with the number of strains varying from one to 16 (Fig. 2). Groups B and D comprised Lithuanian isolates only, whereas Polish isolates were predominant in groups E and I. All the *B. thuringiensis* reference strains (except HD3), the *B. cereus* ATCC14579 type strain, and five Polish environmental isolates formed Cluster C. Quite interestingly, all the psychrotolerant isolates were grouped in a single cluster (F) together with the reference strain of cold-adapted *B. weihenstephanensis* DSMZ11821 (see also below).

PFGE macrorestriction profiling confirmed the *B. thuringiensis* genetic diversity

PFGE genotyping of the 48 *B. thuringiensis* (one strain could not be pulsotyped) revealed 46 distinct profiles (Fig. 3). Only two pairs of strains, IS5004 and IS5005, and DK-1.2 and DK-2.9, showed indistinguishable patterns, whereas the rest of the DNA profiles differed by at least one band. NotI cleaved the *B. thuringiensis* genome into five to eleven DNA fragments, ranging from 80 to 2540 kb. Although most strains exhibited a high number of common bands, differences were observed throughout all the DNA patterns. A numerical analysis of this diversity grouped the 46 profiles into six clusters (Fig. 3). Four clusters (I, III, IV, and VI) contained both Polish and Lithuanian bacilli, whereas groups II and V comprised exclusively Lithuanian isolates.

All the isolates pertaining to PFGE clusters I, II, and V were classified into groups F, D, and B, respectively, in the MLST analysis (Figs 2 and 3). The strains assigned to the other PFGE groups belonged to distinct MLST clusters (Fig. 3, Table S1). In most cases, though, the detailed branching (among close neighbours) observed between MLST and PFGE clusterings were congruent.

Psychrotolerant *B. thuringiensis* isolates belong to a separate phylogenetic lineage

The low temperature adaptation of the soil *B. thuringiensis* isolates was evaluated by the assessment of their growth at 7 and 43 °C. Interestingly, 15 bacteria (five Lithuanian isolates from the Northern part of Lithuania and 10 Polish isolates) grew well at the low cardinal temperature and showed no growth at 43 °C. As indicated above, these bacilli, along with the psychrotolerant

B. weihenstephanensis DSMZ 11821 reference strain, formed a single MLST group defined as cluster F (Fig. 2). In the PFGE analysis, these isolates fell into groups I (12) and IV (3) (Fig. 3). Furthermore, it was confirmed that all these bacilli had the ⁴ACAGTT⁹ signature in their *cspA* gene sequence. In the statistical analysis the null hypothesis was rejected due a *P*-value of < 0.001. This means that there is a statistically significant association between the psychrotrophic strains and the MLST group F.

Potential tripartite enterotoxin genes, but not cytK, are scattered among environmental B. thuringiensis

The B. thuringiensis isolates were screened by PCR to determine the occurrence of the hblA, nheA, and cytK genes, encoding the subunit A of the haemolytic enterotoxin (HBL), the subunit A of the non-haemolytic enterotoxin (NHE), and cytotoxin K (CytK), respectively. Of 49 soil bacilli, 44 (90%) showed positive results for the presence of nheA. Similarly, hblA was also found in a high proportion (86%) of the isolates. Similar results have been observed among the reference strains. In contrast, the cytK gene was observed in only 11 (22%) of the B. thuringiensis isolates. Bacilli with both enterotoxin genes, nheA and hblA, exhibited scattered distribution over all of the tree clusters (Fig. 2) and belonged to different PFGE patterns (Fig. 3). In contrast, the cytKpositive isolates constituted two separate clusters (A and E) in the MLST and made up part of the MLST clusters C and G (as defined in Fig. 2). The cytK-positive B. thuringiensis reference strains tested in this study pertained to the MLST cluster C (five of six). In PFGE analysis, the 11 cytK-positive isolates exhibited different DNA fingerprints, placed in groups III (2), IV (5), and VI (4).

All the isolates harboured at least one potential enterotoxin gene, but the numbers of those genes differed significantly among STs (Fig. 2, Table S1). The combination of both hblA and nhe was spread among (1) 22 different STs found for 28 soil isolates belonging to all phylogenetic groups except cluster E and (2) three STs defined for the reference strains HD3, HD12, and HD146 from the cluster G and C, respectively. The triad hblA, nheA, and cvtK was only observed in 13 STs (nine among soil isolates and four references), all from clusters A and C. With the exception of ST312, strains representing the same ST type harboured the same enterotoxin genes. In fact, all four ST312 isolates possessed hblA, while the nheA gene was absent from DK-1.2. In Fisher's exact test the null hypothesis was not rejected with regard to the hblA and nheA genes, as the P-value was 0.066 and 1, respectively. Conversely, in the case of the cytK gene, the null hypothesis was rejected (P < 0.001). Thus, the

Fig. 2. NJ dendrogram of MLST analysis of Polish (IS) and Lithuanian (DK) soil *Bacillus thuringiensis* isolates and the references strains of *B. thuringiensis* HD1, *B. thuringiensis* HD2, *B. thuringiensis* HD3, *B. thuringiensis* HD12, *B. thuringiensis* HD73, and *B. thuringiensis* HD146, *B. cereus* ATCC 14579, *B. cereus* ATCC 10987, *B. weihenstephanensis* DSMZ 11821, and *B. anthracis* Ames, based on the DNA sequences of fragments of seven housekeeping genes (see Materials and methods). The scale bar indicates the scale of genetic distance measured as an average number of nucleotide differences per site. Symbols are as follows: stars, psychrotrophic strains; rhombus, strains containing *cry1*, *cry4* (only the DK-3H isolate) or *cry9* (only the IS3035 isolate) genes; hollow circles, bacilli containing pXO2-like *repA*; solid circles, isolates with pXO1-like *repX*.

PFGE group	DNA fingerprint	Strain ^a			MLST cluster
		IS5001	*	0	F
	10.110	IS5006	* •		F
		DK-3H	* •		F
4		DK-2AC	*	0	F
		DK-13F	* •		F
		DK-15F	*		F
		IS5011	* •	0	F
	A	IS5026	*		• F
	and the second se	IS5030	*		• F
	I TAKE IN A	IS5031	*		• F
		IS5010	* •		F
	A 12 111	185032	*		F
	11 10 101				D
					D
					– D
					D
		DK-3.3	•		ם
		DK-3AB	•		D
		DK-TAC	•		ם
		DK-ZAG	•		ם
	1 10110	DK-2.0	•		D
		DK-3AG	•		I
		IS5004	•		1
		IS5005	•		
		IS5007			r C
		IS5035	•		C
	111111	IS5015			U U
		IS5020			п
		DK-1.2			п
		DK-2.9			п
		DK-1.18			п
		DK-8E	•		п ^
		185021			• A
	1 STREEP IN	185002	* •		F
		185024	*		F
	1111 111	DK-11F	*		F
IV	1. 1. 10.1.11	155028			E
		155018			• A
		DK-4AD			A
		IS5033			• 0
		DK-C32			A
,		DK-1.6			В
v └─- └────		DK-6F			В
		DK-2E			В
	1 111 1	IS5027			•
		DK-2.4			• G
vi –		IS5016		0	С
		IS5017		0	• C
<u> </u>	IN F THE	IS5019			С
!		M [kb]			
	2200 825 365 225				

statistical results indicate (1) a lack of evidence of association between the *hblA*- and *nheA*- positive strains and the MLST groups, and (2) a strong association between the *cytK*-positive strains and the MLST groups A and C.

pXO1- and pXO2-related replicons and *cry* genes of Polish isolates are also randomly distributed

The B. thuringiensis isolates were also PCR-screened for the presence of the B. anthracis pXO1- and pXO2 replicon-like sequences, resulting in nine and five positive bacilli, respectively (Figs 2 and 3). Only one isolate IS5017 (ST580) gave a positive signal for both replicons. Interestingly, the majority of the *B. anthracis* plasmid-like replicons were observed in the Polish B. thuringiensis population (12 isolates), whereas among Lithuanian strains, only two bacilli displayed pXO1- (isolate DK-2.4; ST559) or pXO2-like replicons (isolate DK-2AC; ST305). B. thuringiensis containing pXO1-like replicon were classified into MLST groups A, C, F, G, and I, whereas isolates harbouring pXO2-like replicons were found in clusters C and F (Fig. 2). There is no statistical evidence that the strains with the B. anthracis-like replicons and the MLST clusters are dependent (P = 0.462 and 0.175 for repAand *repX*-positive strains, respectively).

The highest proportion of the cry-positive isolates harboured cry genes encoding toxins against Lepidoptera. Altogether, 19 bacilli (eight Polish and 11 Lithuanian) yielded PCR products with the cry1 primers (Fig. 2, Table S1), and one strain from Poland, IS5035, possessed the cry9 gene. IS5035 was classified into ST15, the MLST type displayed by B. thuringiensis serovar aizawai. Only one bacterium, DK-3H (ST566; cluster F), was found to be positive for the cry4 gene, encoding toxin potentially active against Diptera. Interestingly, nine Lithuanian bacilli, all positive for the cry1 gene, formed a single cluster D in the MLST study and the PFGE group II. In Fisher's exact test the null hypothesis, that the cry1-positive isolates and MLST clusters are independent, was rejected (P < 0.0001). All the isolates turned out to be negative for the genes encoding δ -endotoxins against Coleoptera (Cry3, Cry7, and Cry8).

Discussion

In this study, ecological diversification among *B. thuringiensis* soil isolates was examined to determine whether the bacteria adapted to grow at low temperature and/or potentially pathogenic correspond to genetically distinct lineages. Based on the MLST scheme, nine lineages (clusters) were found among 49 *B. thuringiensis* isolates originating from North-Eastern Poland (n = 24) and

Lithuania (n = 25). The genetic diversity of the isolates that pertained to particular MLST lineages was high (Fig. 2, Table 1). The *B. thuringiensis* polymorphism was also confirmed by PFGE, in which only two pairs of strains were found to be apparently clonal (Fig. 3). A high degree of genetic diversity among B. thuringiensis soil isolates can be explained by the existence of ecologically distinct ecotypes (Cohan, 2002), which recently have been considered the fundamental unit of bacterial diversity (Cohan & Perry, 2007; Koeppel et al., 2008). The presence of specific ecotypes in Bacillus subtilis-Bacillus licheniformis from Death Valley National Park (Connor et al., 2010), in cyanobacteria from Mushroom Spring, Yellowstone National Park (Ward et al., 2006), or in B. subtilis from the sandy bank of the Sava River in Slovenia (Stefanic et al., 2012), confirms the importance of ecotypes in the assessment of bacterial ecology.

Temperature is one of the most important factors which bacteria have to respond to in their environment. Guinebretière et al. (2008) have found temperature diversity in B. cereus s.l. and have proposed an 'ecotypic' structure of populations in the group. The existence of psychrotolerance variants among B. thuringiensis has been demonstrated by Bartoszewicz et al. (2009) and Soufiane & Côté (2010). In the present study, one-third of B. thuringiensis soil isolates were found to be psychrotolerant. Quite remarkably, all these bacilli formed the separate MLST cluster F, which also included the reference strain of B. weihenstephanensis (Fig. 2). The genetic similarity of these bacteria was confirmed by PFGE (Fig. 3). These observations strongly support the hypothesis of the existence of a thermal ecotype among B. thuringiensis soil isolates. Furthermore, the present data provide additional evidence to that of earlier observations (Bartoszewicz et al., 2009; Soufiane & Côté, 2010) that the ability to grow at low temperature, first described for B. weihenstephanensis (Lechner et al., 1998), is also shared by other species of the B. cereus group. Contrary to the results reported by Guinebretière et al. (2008), where the psychrotolerance B. cereus s.l. strains were classified into two phylogenetic groups, B. thuringiensis isolates growing at low temperature were assigned, in the present work, to a single phylogenetic lineage. In the work of Guinebretière et al. this discrepancy may be due to the incorporation of strains from a wider range of sources (natural environment, such as plants, water, soil, air, dairy products and other foods), whereas the bacteria tested in our study originated from soil only. Similar to our results, Sorokin et al. (2006) classified the psychrotolerant B. thuringiensis and B. cereus soil strains into one MLST phylogenetic cluster. Nevertheless, the existence of a higher number of psychrotolerant ecotypes among the B. cereus group originating from different ecological niches cannot be excluded.

Bacillus thuringiensis isolates displayed a high diversity with respect to potential toxicity (Hansen & Hendriksen, 2001; Swiecicka et al., 2006; Oh et al., 2012). To assess the existence of potential pathotypes among the B. thuringiensis soil isolates and their association with particular lineages, the presence of potential enterotoxin genes was tested by PCR, notwithstanding the fact that the mere presence of a gene is not necessary correlated with the actual enterotoxicity of the host strain. Contrary to the hblA and nheA genetic determinants, which were found in more than 86% of the strains, cytK-positive reactions were only observed in c. 22% of the isolates (MLST cluster A and within cluster B; Fig. 2). Due to the fact that the significant association of the cytK- positive strains with the lineages A and B was statistically confirmed, the isolates pertaining to these groups can be regarded as potential cytK pathotypes, although they also bear the *hblA* and *nheA* genes. Conversely, the potential pathotypes of the tripartite enterotoxins (HBL and NHE) are not associated with any particular phylogenetic lineage. Interestingly, whereas the nheA and hblA genes were found in proportions similar to what was previously reported for B. thuringiensis isolates recovered from the intestines of small free-living mammals from North-Eastern Poland (Swiecicka et al., 2006), the percentage of the cytK-positive soil isolates was significantly lower than those reported in previous experiments (e.g. Gaviria Rivera et al., 2000; Hansen & Hendriksen, 2001), which indicates specific properties of *B. thuringiensis* isolates under study.

Although δ -endotoxin crystals were observed under phase contrast microscope in all the isolates, only 19/49 (39%) gave positive PCR reactions to the cry genes (cry1-4 and cry7-9). The bacilli which did not react with the primers used in this study could carry a potential pool for new cry genes not yet described or may harbour other δ -endotoxin genes not tested in our study. It is worth emphasizing that in previous investigations, the cry genes were found in similar proportions in populations of B. thuringiensis isolated from small mammals (Swiecicka & Mahillon, 2005). Interestingly, whereas the majority of Lithuanian strains with cry1 created one separated cluster D and the PFGE group II, Polish cry-positives belonged to different clusters (Figs 2 and 3). The strong association of the Lithuanian cry1-positive isolates with the MLST cluster D may suggest that those bacilli are specific pathotypes against Lepidopteran insects. However, this assumption needs to be further characterized by bioassays. Moreover, only five Polish isolates were placed in the same cluster as B. thuringiensis HD1 (ST10), HD2 (ST10), HD12 (ST23), HD73 (ST8), and HD146 (ST56) and the B. cereus type strain ATCC 14579 (ST4). Similarly, Priest et al. (2004) classified these reference strains into one clade.

In the B. cereus group, plasmids are very common and individual strains differed from each other in plasmid number, size, and profile (Hoton et al., 2005; Reyes-Ramírez & Ibarra, 2008). Although the *B. cereus s.l.* phylogeny is based on chromosomal markers, the main features of B. thuringiensis and B. anthracis are plasmid-borne. Thus, B. cereus s.l. plasmids are essential not only for defining the phenotypic traits associated with pathogenesis but also for enabling them to occupy different environmental niches. In this regard, special concern is given to the anthrax toxin genes of B. anthracis. Our study indicated that the genetic elements related to the B. anthracis pXO1- and pXO2-like replicons are present in distinct MLST clusters and PFGE groups. Similarly, Pannucci et al. (2002a,b) did not found a correlation between the presence of B. anthracis-like extrachromosomal elements and genomic relatedness of the B. cereus group members.

It is worth noting that, contrary to previous observations on the presence of clonal B. thuringiensis in the alimentary track of free-living animals from North-Eastern Poland (Swiecicka & Mahillon, 2005), there is no indication of clonal groups among soil isolates obtained from the same area (Figs 2 and 3). It is therefore plausible that among B. thuringiensis are lineages or ecotypes adapted to specific animals. Moreover, we cannot exclude the presence of highly diverse B. thuringiensis ecotypes in soil and specific ecotypes in the animal hosts, as similar relationships have been found for its relative B. anthracis (Harrell et al., 1995; Mock & Fouet, 2001) and virulent B. cereus (Helgason et al., 2000). To further address this issue, it will be necessary to analyse the genetic structure of B. thuringiensis from soil and animals obtained at the same time and from the same area. Soils are extremely heterogeneous matrices that vary even in a very small scale with regard to the size of particles, amount of organic matter, pH, nutrient concentration, type of vegetation, and root mass (McArthur, 2006). These factors interact with each other, as well as with temperature, and may have an impact on soil bacteria adaptation and evolution. The B. thuringiensis isolates under study were obtained from soil rich in organic material, a condition that may support or even stimulate horizontal gene transfers (Bizzarri & Bishop, 2007; Hu et al., 2009).

To sum up, the present study showed a high degree of genetic polymorphism among soil *B. thuringiensis* strains, and provided new insights into the population structure. Our results strongly support the hypothesis that *B. thuringiensis* comprises strains belonging to different phylogenetic lineages and exhibiting specific ecological properties.

Acknowledgements

We thank E. Kostrowska (Department of Microbiology, University of Bialystok, Poland) for testing the *cspA* gene presence with PCR, and J. Swiecicki (Warsaw School of Economics and Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland) for performing the statistical analysis. D. Kasulyte-Creasey is indebted to N. Kuisiene and D. Chitavichius for giving her the opportunity to isolate the B. thuringiensis strains during her stay at the Department of Plant Physiology and Microbiology, Vilnius University, Lithuania. E. Murawska is grateful to the Podlaskie Province Marshal's Office, Poland, and WOTT University of Bialystok for the scholarship in the frame of the project 'Podlasie Scholarship Fund', Priority of VIII Operation Programme Human Capital financed by the European Social Fund (ESF) and Polish Government. The project was partly supported by grant N N304 281 140 and by the fund in the frame of 'Specific scientific equipment - 2012' of the Ministry of Science and Higher Education in Poland (I. Swiecicka).

References

Bartoszewicz M, Bideshi DK, Kraszewska A, Modzelewska E & Swiecicka I (2009) Natural isolates of *Bacillus thuringiensis* display genetic and psychrotrophic properties characteristic of *Bacillus weihenstephanensis*. J Appl Microbiol **106**: 1967–1975.

Ben-Dov E, Zaritsky A, Dahan E *et al.* (1997) Extended screening by PCR for seven *cry*-group genes from fieldcollected strains of *Bacillus thuringiensis*. *Appl Environ Microbiol* **63**: 4883–4890.

- Ben-Dov E, Wang Q, Zaritsky A, Manasherob R, Barak Z, Schneider B, Khamraev A, Baizhanov M, Glupov V & Margalith Y (1999) Multiplex PCR screening to detect *cry9* genes in *Bacillus thuringiensis* strains. *Appl Environ Microbiol* 65: 3714–3716.
- Bizzarri MF & Bishop AH (2007) The ecology of *Bacillus thuringiensis* on the Phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of *Pieris brassicae*. *Microb Ecol* **56**: 133–139.
- Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56: 457–487.
- Cohan FM & Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. *Curr Biol* 17: R373–R386.

Connor N, Sikorski J, Rooney AP *et al.* (2010) Ecology of speciation in the genus *Bacillus*. *Appl Environ Microbiol* **76**: 1349–1358.

Francis KP, Mayr R, von Stetten F, Stewart GSAB & Scherer S (1998) Discrimination of psychrotrophic and mesophilic strains of the *Bacillus cereus* group by PCR targeting of major cold shock protein genes. *Appl Environ Microbiol* 64: 3525–3529.

Gaviria Rivera AM & Priest FG (2003) Pulsed field gel electrophoresis of chromosomal DNA reveals a clonal population structure to *Bacillus thuringiensis* that relates in general to crystal protein gene content. *FEMS Microbiol Lett* 223: 61–66.

- Gaviria Rivera AM, Granum PE & Priest FG (2000) Common occurrence of enterotoxin genes and enterotoxicity in *Bacillus thuringiensis. FEMS Microbiol Lett* **190**: 151–155.
- Granum PE & Lund T (1997) *Bacillus cereus* and its food poisoning toxins. *FEMS Microbiol Lett* **157**: 223–228.
- Guinebretière MH, Thompson FL, Sorokin A *et al.* (2008) Ecological diversification in the *Bacillus cereus* group. *Environ Microbiol* **10**: 851–865.
- Hansen BM & Hendriksen NB (2001) Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl Environ Microbiol 67: 185–189.
- Harrell LJ, Andersen GL & Wilson KH (1995) Genetic variability of *Bacillus anthracis* and related species. J Clin Microbiol 33: 1847–1850.
- Helgason E, Caugant DA, Olsen I & Kolstø A-B (2000) Genetic structure of population of *Bacillus cereus* and *Bacillus thuringiensis* isolates associated with periodontitis and other human infections. J Clin Microbiol **38**: 1615–1622.
- Helgason EH, Tourasse NJ, Meisal R, Caugant DA & Kolstø A-B (2004) Multilocus sequence typing scheme for bacteria of the *Bacillus cereus* group. *Appl Environ Microbiol* **70**: 191–201.
- Hoton F, Andrup L, Swiecicka I & Mahillon J (2005) The cereulide genetic determinants of emetic *Bacillus cereus* are plasmid-borne. *Microbiology* **151**: 2121–2124.
- Hoton F, Fornelos N, N'Guessan E, Hu X, Swiecicka I, Dierick K, Jääskeläinen E, Salkinoja-Salonen M & Mahillon J (2009) Family portrait of *Bacillus cereus* and *Bacillus weihenstephanensis* cereulide-producing strains. *Environ Microbiol Rep* 1: 177–183.
- Hu X, Swiecicka I, Timmery S & Mahillon J (2009) Sympatric soil communities of *Bacillus cereus sensu lato*: population structure and potential plasmid dynamics of pXO1-and pXO2-like elements. *FEMS Microbiol Ecol* **70**: 344–355.
- Jackson SG, Goodbrand RB, Ahmed R & Kasatiya S (1995) *Bacillus cereus* and *Bacillus thuringiensis* isolated in gastrointestinal outbreak investigations. *Lett Appl Microbiol* **21**: 103–105.
- Jolley KA, Chan M-S & Maiden MCJ (2004) mlstdbNet distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5: 86.
- Ko KS, Kim JW, Kim JM, Chung SI, Kim IJ & Kook YH (2004) Population structure of the *Bacillus cereus* group as determined by sequence analysis of six housekeeping genes and the *plcR* gene. *Infect Immun* **72**: 5253–5261.
- Koeppel A, Perry EB, Sikorski J *et al.* (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. *P Natl Acad Sci USA* **105**: 2504–2509.
- Lechner S, Mayr R, Francis KP, Prüβ BM, Kaplan T, Wießner-Gunkel E, Stewart GSAB & Scherer S (1998) *Bacillus weihenstephanensis* sp. nov. is a new psychrotolerant species of the *Bacillus cereus* group. *Int J Syst Bacteriol* **48**: 1373–1382.
- de Maagd RA, Bravo A & Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17: 193–199.

- McArthur JV (2006) *Microbial Ecology. An Evolutionary Approach.* Academic Press, Burlington, MA, pp. 253–295.
- Mock M & Fouet A (2001) Anthrax. *Annu Rev Microbiol* 55: 647–671.
- Nakamura LK (1998) Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol **48**: 1031–1035.
- Oh M-H, Ham J-S & Cox JM (2012) Diversity and toxigenicity among members of the *Bacillus cereus* group. *Int J Food Microbiol* **152**: 1–8.
- Pannucci J, Okinaka R, Williams E, Sabin R, Ticknor LO & Kuske CR (2002a) DNA sequence conservation between the *Bacillus anthracis* pXO2 plasmid and genomic sequence from closely related bacteria. *BMC Genomics* **20**: 706–718.
- Pannucci J, Okinaka R, Sabin R & Kuske CR (2002b) *Bacillus anthracis* pXO1 plasmid sequence conservation among closely related bacterial species. *J Bacteriol* **184**: 131–141.
- Priest FG, Barker M, Baillie LWJ, Holmes EC & Maiden CJ (2004) Population structure and evolution of the *Bacillus cereus* group. *J Bacteriol* **186**: 7959–7970.
- Reyes-Ramírez A & Ibarra JE (2008) Plasmid patterns of *Bacillus thuringiensis* type strains. *Appl Environ Microbiol* **74**: 125–129.
- Sorokin A, Candelon B, Guilloux K, Galleron N, Wackerow-Kouzova N, Ehrlich SD, Bourguet D & Sanchis V (2006) Multiple-locus sequence typing analysis of *Bacillus cereus* and *Bacillus thuringiensis* reveals separate clustering and a distinct population structure of psychrotrophic strains. *Appl Environ Microbiol* 72: 1569–1578.
- Soufiane B & Côté JC (2010) Bacillus thuringiensis serovars bolivia, vazensis and navarrensis meet the description of Bacillus weihenstephanensis. Curr Microbiol 60: 343–349.

- Stefanic P, Decorosi F, Viti C, Petito J, Cohan FM & Mendic-Mulec I (2012) The quorum sensing diversity within and between ecotypes of *Bacillus subtilis*. *Environ Microbiol* 14: 1378–1389.
- Swiecicka I (2008) Natural occurrence of *Bacillus thuringiensis* and *Bacillus cereus* in eukaryotic organisms: a case for symbiosis. *Biocontrol Sci Tech* **18**: 221–239.
- Swiecicka I & Mahillon J (2005) The clonal structure of *Bacillus thuringiensis* isolates from North-east Poland does not correlate with their *cry* gene diversity. *Environ Microbiol* 7: 34–39.
- Swiecicka I, Van der Auwera GA & Mahillon J (2006) Hemolytic and non-hemolytic enterotoxin genes are broadly distributed among *Bacillus thuringiensis* isolated from wild mammals. *Microb Ecol* 52: 544–551.
- Ward MW, Bateson MM, Ferris MJ, Kühl M, Wieland A, Koeppel A & Cohan FM (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure, and function. *Philos Trans R Soc B* **361**: 1997–2008.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Characterisation of the soil *B. thuringiensis*isolates from Northeaster Poland and central Lithuania.**Table S2.** Primers used in this study.

Table S1. Characterisation of the soil *B. thuringiensis* isolates from Northeaster Poland and central Lithuania.

				Genes	presenc	e				Psychrotolerance			
			Putativ	Putative enterotoxins			<i>B. anthracis</i> plasmid-like replicons			Growth at			
Strain ^a	ST ^b	MLST group	PFGE group	hblA	nheA	cytK		repA	repX	cspA ^d	7°C	43°C	
IS5021	583 ^N	A	III	+	+	+	+	-	+	М	-	+	
IS5018	581 ^N	А	IV	+	+	+	-	-	+	М	-	+	
DK-4AD	295	А	IV	+	+	+	-	-	-	М	-	+	
DK-C32	216	А	IV	+	+	+	-	-	-	М	-	+	
DK-2H	564 ^N	В	N.D.	+	+	-	-	-	-	М	-	+	
DK-6F	564 ^N	В	V	+	+	-	-	-	-	М	-	+	
DK-2E	567 ^N	В	V	+	+	-	-	-	-	М	-	+	

DK-1.6	555 ^N	В	V	+	+	-	-	-	-	М	-	+
IS5033	591 ^N	С	IV	+	+	+	-	-	+	М	-	+
IS5035	15	С	III	+	+	+	+9	-	-	М	-	+
IS5016	579 ^N	С	VI	+	+	+	-	+	-	М	-	+
IS5017	580 ^N	С	VI	+	+	+	-	+	+	М	-	+
IS5019	582 ^N	С	VI	+	+	+	-	-	-	М	-	+
DK-2.6	560 ^N	D	II	+	+	-	+	-	-	М	-	+
DK-1.8	556 ^N	D	II	+	+	-	+	-	-	М	-	+
DK-1AC	558 ^N	D	II	+	-	-	+	-	-	М	-	+
DK-4AB	72	D	II	+	+	-	+	-	-	М	-	+
DK-3AG	72	D	II	+	+	-	+	-	-	М	-	+
DK-3AB	111	D	II	+	+	-	+	-	-	М	-	+
DK-4AG	223	D	II	+	+	-	+	-	-	М	-	+
DK-3.3	223	D	II	+	+	-	+	-	-	М	-	+
DK-2AG	561 ^N	D	II	+	+	-	+	-	-	М	-	+
IS5028	587 ^N	Е	IV	-	+	+	-	-	-	М	-	+
IS5024	584 ^N	F	IV	-	+	-	-	-	-	Р	+	-
DK-11F	568 ^N	F	IV	+	-	-	-	-	-	Р	+	-

IS5002	571 ^N	F	IV	-	+	-	+	-	-	Р	+	-
IS5011	577 ^N	F	Ι	+	-	-	+	+	-	Р	+	-
IS5006	574 ^N	F	Ι	-	+	-	+	-	-	Р	+	-
IS5001	305	F	Ι	+	+	-	-	+	-	Р	+	-
DK-2AC	305	F	Ι	+	+	-	-	+	-	Р	+	-
DK-3H	566 ^N	F	Ι	+	+	-	$+^{4}$	-	-	Р	+	-
DK-13F	325	F	Ι	+	+	-	+	-	-	Р	+	-
DK-15F	187	F	Ι	+	+	-	-	-	-	Р	+	-
IS5031	589 ^N	F	Ι	+	+	-	-	-	+	Р	+	-
IS5030	588 ^N	F	Ι	-	+	-	-	-	+	Р	+	-
IS5026	585 ^N	F	Ι	-	+	-	-	-	+	Р	+	-
IS5032	590 ^N	F	Ι	+	+	-	-	-	-	Р	+	-
IS5010	576 ^N	F	Ι	+	+	-	+	-	-	Р	+	-
DK-2.4	559 ^N	G	V	-	+	+	-	-	+	М	-	+
DK-1.2	312	Н	III	+	-	-	-	-	-	М	-	+
DK-8E	312	Н	III	+	+	-	-	-	-	М	-	+
IS5020	312	Н	III	+	+	-	-	-	-	М	-	+
DK-2.9	312	Н	III	+	+	-	-	-	-	М	-	+

IS5015	578 ^N	Н	III	+	+	-	-	-	-	М	-	+
DK-1.18	557 ^N	Н	III	+	+	-	-	-	-	М	-	+
IS5004	572 ^N	Ι	III	+	-	-	+	-	-	М	-	+
IS5005	573 ^N	Ι	III	+	+	-	+	-	-	М	-	+
IS5007	575 ^N	Ι	III	+	+	-	-	-	-	М	-	+
IS5027	586 ^N	Ι	VI	+	+	-	-	-	+	М	-	+
DSMZ 11821	115	F	N.D.	+	+	-	-	-	-	Р	+	-
HD1	10	С	N.D.	+	+	+	+	-	-	М	-	+
HD2	10	С	N.D.	+	+	+	+	-	-	М	-	+
HD12	23	С	N.D.	+	+	-	+	-	-	М	-	+
HD73	8	С	N.D.	+	+	+	+	+	-	М	-	+
HD146	56	С	N.D.	+	+	-	+	-	-	М	-	+
HD3	171	G	N.D.	+	-	-	+	-	-	М	-	+
ATCC 10987	32	G	N.D.	-	+	+	-	-	+	М	-	+
ATCC 14579	4	С	N.D.	+	+	+	-	-	-	М	-	+
Ames	1	G	N.D.	-	+	-	-	+	+	М	N.D.	N.D.

^a IS, *B. thuringiensis* isolates from Poland (the Narew National Park); DK, *B. thuringiensis* isolates from Lithuania (Vilnius district: DK-1.8, DK-1.18, DK-1.2, DK-1.6; DK-2.6, DK-2.9, DK-2.4, DK-3.3; Pakruojis district: DK-3AB, DK-4AB, DK-1AC, DK-2AC, DK-4AD, DK-2AG, DK-

3AG, DK-4AG, DK-C32, DK-2E, DK-8E, DK-6F, DK-11F, DK-13F, DK-15F, DK-2H, DK-3H; DSMZ 11821, *B. weihenstephanensis* type strain; HD1, *B. thuringiensis* HD1; HD2, *B. thuringiensis* HD2; HD3, *B. thuringiensis* HD3; HD12, *B. thuringiensis* HD12; HD73, *B. thuringiensis* HD73; HD146, *B. thuringiensis* HD146; ATCC 10987, *B. cereus* ATCC 10987; ATCC 14579, *B. cereus* ATCC 14579; Ames, *B. anthracis* Ames.

^b New STs are indicated with a N index.

^c+, *cry1*; +⁴, *cry*⁴; +⁹, *cry9*;

^d M, mesotrophic isolates with the signature ${}^{4}\text{GCAGTA}{}^{9}$ in the *cspA* gene; P, psychrotrophic isolates with the signature ${}^{4}\text{ACAGTT}{}^{9}$ in the *cspA* gene.

Table S2. Primers used in this study.

Target gene	Primer name	Nucleotide (5'-3')	PCR product size (bp)	Reference
Primers for N	ALST analysis			
glpF	glpF_F	5'-GCGTTTGTGCTGGTGTAAGT-3'	548	www.pubmlst.org/bcereus/info/primers.shtml
	glpF_R	5'-CTGCAATCGGAAGGAAGAAG-3'		
gmk	gmk_F	5'-ATTTAAGTGAGGAAGGGTAGG-3'	599	www.pubmlst.org/bcereus/info/primers.shtml
	gmk_R	5'-GCAATGTTCACCAACCACAA-3'		
ilvD	ilvD_F	5'-CGGGGCAAACATTAAGAGAA-3'	553	www.pubmlst.org/bcereus/info/primers.shtml
	ilvD_R	5'-GGTTCTGGTCGTTTCCATTC-3'		
	ilvD4_F	5'-GCAGAGATTAAAGATAAGGA-3'	568	www.pubmlst.org/bcereus/info/primers.shtml
	ilvD2_R	5'-GTT ACC ATT TGT GCA TAA CGC-3'		
pta	pta_F	5'-GCAGAGCGTTTAGCAAAAGAA-3'	575	www.pubmlst.org/bcereus/info/primers.shtml
	pta_R	5'-TGCAATGCGAGTTGCTTCTA-3'		
pur	pur_F	5'-CTGCTGCGAAAAATCACAAA-3'	534	www.pubmlst.org/bcereus/info/primers.shtml
	pur_R	5'-CTCACGATTCGCTGCAATAA-5'		
русА	pycA_F	5'-GCGTTAGGTGGAAACGAAAG-3'	549	www.pubmlst.org/bcereus/info/primers.shtml
---------------	-------------------	---------------------------------	-----	--
	pycA_R	5'-CGCGTCCAAGTTTATGGAAT-3'		
tpi	tpi_F	5'-GCCCAGTAGCACTTAGCGAC-3'	557	www.pubmlst.org/bcereus/info/primers.shtml
	tpi_R	5'-CCGAAACCGTCAAGAATGAT-3'		
Primers for a	cspA signature			
cspA	cspA_f	5'-TGCTGAAAACGAACGAGAAA-3'	332	Bartoszewicz et al., 2009
	cspA_r	5'-TTATAGTTTGATTACGTTTTA-3'		
Primers for e	enterotoxin genes			
hblA	HBLA1	5'-GTGCAGATGTTGATGCCGAT	301	Hansen and Hendriksen, 2001
	HBLA2	5'-ATGCCACTGCGTGGACATAT-3'		
nheA	nheA 344 S	5'-TACGCTAAGGAGGGGCA-3'	478	Hansen and Hendriksen, 2001
	nheA 843 A	5'-GTTTTTATTGCTTCATCGGCT-3'		
cytK	CytKF	5'-GATAATATGACAATGTCTTTAAA-3'	617	Swiecicka et al., 2006
	CytKR	5'-GGAGAGAAACCGCTATTTGT-3'		
Primers for a	δ-endotoxin genes			
cryl	Un1(d)	5'-CATGATTCATGCGGCAGATAAAC-3'	277	Ben-Dov et al., 1997
	Un1(r)	5'-TTGTGACACTTCTGCTTCCCATT-3'		
cry2	Un2(d)	5'-GTTATTCTTAATGCAGATGAATGGG-3'	701	Ben-Dov et al., 1997
	Un2(r)	5'-CGGATAAAATAATCTGGGAAATAGT-3'		

cry3	Un3(d)	5'-CGTTATCGCAGAGAGAGATGACATTAAC-3'	589	Ben-Dov et al., 1997
	Un3(r)	5'-CATCTGTTGTTTCTGGAGGCAAT-3'		
cry4	Un4(d)	5'-GCATATGATGTAGCGAAACAAGCC-3'	439	Ben-Dov et al., 1997
	Un4(r)	5'-GCGTGACATACCCATTTCCAGGTCC-3'		
cry7,8	Un7,8(d)	5'-AAGCAGTGAATGCCTTGTTTAC-3'	420	Ben-Dov et al., 1997
	Un7,8(r)	5'-CTTCTAAACCTTGACTACTT-3'		
cry9	Un9(d)	5'-CGGTGTTACTATTAGCGAGGGCGG-3'	354	Ben-Dov et al., 1999
	Un9(r)	5'-GTTTGAGCCGCTTCACAGCAATCC-3'		
Primers for pXC	01 and pXO2 replicon-like	sequences		
repX	repX_F1	5'- CCATATCGTGCGATTCTTG-3'	1,163	Hu et al., 2009
	repX_R2	5'- GATAATTTCTTCTTTGYTGGTTGTGA-3'		
repX	repX_F1	5'-CCATATCGTGCGATTCTTG-3'	583	Hu et al., 2009
	repX_R1	5'-GAGCAAATTCACTCGCATCA-3'		
repA	repA_F1	5'- TAAATCTAAAAAYTCRAAAGCTG-3'	1,183	Hu et al., 2009
	repA_R2	5'- GTGTAAAGTATAGCACAGGT-3'		
repA	repA_F2	5'- GGACARGCTTCTCACTGGAC-3'	386	Hu et al., 2009
	repA_R3	5'- GGCATTCTGAAGAAVCCAAA-3'		

W=A or T; Y=C or T; R=A or G; V=A or G or C; H=A or C or T; D=A or G or T; S=G or C; K=G or C; N=A or G or C or T; B=G or C or T.

Appendix 2

Eco-genetic structure of *Bacillus cereus sensu lato* populations from different environments in Northeastern Poland

Drewnowska JM, Swiecicka I (2013) Eco-genetic structure of Bacillus cereus sensu lato populations from different environments in northeastern Poland. PLoS ONE 8(12), e80175.

My contribution: setup of experimental details, laboratory work (isolation and identification of *B. cereus s.l.* isolates, psychrotolerance and termotolerance testing, DNA extraction, detection of the δ -endotoxins genes and *cytK* gene, real-time PCR of the *cytK* gene, multi-locus sequence typing analysis), data analysis including bioinformatics (ClonalFrame v1.2, PHYLOViZ v1.0, DnaSP v5, START v2, R v2.15.2, MEGA4), contribution in the manuscript preparation.

Eco-Genetic Structure of *Bacillus cereus sensu lato* Populations from Different Environments in Northeastern Poland

Justyna M. Drewnowska, Izabela Swiecicka*

Department of Microbiology, University of Bialystok, Bialystok, Poland

Abstract

The *Bacillus cereus* group, which includes entomopathogens and etiologic agents of foodborne illness or anthrax, persists in various environments. The basis of their ecological diversification remains largely undescribed. Here we present the genetic structure and phylogeny of 273 soil *B. cereus s.l.* isolates from diverse habitats in northeastern Poland, with samplings acquired from the last European natural forest (Białowieża National Park), the largest marshes in Europe (Biebrza National Park), and a farm. In multi-locus sequence typing (MLST), despite negative selection in seven housekeeping loci, the isolates exhibited high genetic diversity (325 alleles), mostly resulting from mutation events, and represented 148 sequencing types (131 STs new and 17 STs already described) grouped into 19 complexes corresponding with bacterial clones, and 80 singletons. Phylogenetic analyses showed that 74% of the isolates clustered with *B. cereus s.l.* environmental references (clade III), while only 11 and 15%, respectively, grouped with isolates of clinical origin (clade I), and *B. cereus* ATCC 14579 and reference *B. thuringiensis* (clade II). Predominantly within clade III, we found lineages adapted to low temperature (thermal ecotypes), while putative toxigenic isolates (*cytK*-positive) were scattered in all clades of the marsh and farm samplings. The occurrence of 92% of STs in bacilli originating from one habitat, and the description of new STs for 78% of the isolates, strongly indicate the existence of specific genotypes within the natural *B. cereus s.l.* populations. In contrast to the human-associated *B. cereus s.l.* that exhibit a significant level of similarity, the environmental isolates appear more complex. Thus we propose dividing *B. cereus s.l.* into two groups, the first including environmental isolates, and the second covering those that are of clinical relevance.

Citation: Drewnowska JM, Swiecicka I (2013) Eco-Genetic Structure of Bacillus cereus sensu lato Populations from Different Environments in Northeastern Poland. PLoS ONE 8(12): e80175. doi:10.1371/journal.pone.0080175

Editor: Michiel Vos, University of Exeter Medical School, United Kingdom

Received August 14, 2013; Accepted October 8, 2013; Published December 2, 2013

Copyright: © 2013 Drewnowska, Swiecicka. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been founded by the Ministry of Science and Higher Education in Poland grant # N N304 281 140 and partly by the fund "Specific scientific equipment – 2012". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: izabelas@uwb.edu.pl

Introduction

Bacillus cereus sensu lato (s.l.) are Gram-positive endospore-forming bacilli that persist in different ecological environments [1,2]. This group of bacteria includes various strains of Bacillus thuringiensis, an enthomopathogen successfully exploited in biocontrol worldwide [3], Bacillus cereus sensu stricto (B. cereus s.s.) which is associated with foodborne illness [4], and Bacillus anthracis, the etiologic agent of anthrax [5]. Bacillus cereus s.l. also include psychrotolerant Bacillus weihenstephanensis [6], thermotolerant Bacillus cytotoxicus [7], as well as Bacillus mycoides and Bacillus pseudomycoides that form characteristic rhizoidal colonies on solid media [8]. The species-specific properties of these bacteria are generally based on plasmid-borne signatures [5], entomopathogenicity [9], and the ability to synthesize cereulide [10]. In contrast to extra-chromosomal profiles, the chromosomes of these bacilli exhibit a high level of synteny [11], thus giving rise to controversy regarding their taxonomy. Based on genetic evidence, B. thuringiensis, B. cereus s.s. and B. anthracis have been designated as one species [12] or are contained in one genetic cluster [13], although others have reported that at least B. anthracis represents an independent taxon [14]. From an ecologic perspective, the taxonomy of B. cereus s.l. is even more complicated when variations in their symbiotic associations, including species-specific virulence, are considered

[1,5,15,16]. For example, cereulide, typically associated with the emetic strains of *B. cereus s.s.*, is also produced by *B. weihenstephanensis* [17], while *B. cereus s.s.* may cause clinical symptoms similar to those of inhalation anthrax [18]. Other properties attributed to a particular species may not be intrinsically unique, for example, psychrotolerance, a primary feature of *B. weihenstephanensis* [6], has recently been reported among *B. thuringiensis* isolates [19,20].

Data reported over the last decade have revealed the importance of the environment to bacterial adaptation, diversification, and evolution [21,22,23,24,25]. Soil, which is the primary niche for *B. cereus s.l.* [2,26], creates favorable conditions for these processes to occur due to its heterogeneity in nutrients, particle size, pH, humidity and microbiota [22,27,28]. Thus, so called ecotypes, defined as a cohesive group of bacteria that are ecologically similar to one another and are closely related at the molecular level, evolve and proliferate as a result of acquired genetic determinants or favorable mutations that confer selective advantages conducive to a particular niche or ecosystem [29]. From this point of view, ecotypes represent distinct evolutionary lineages within a particular species [21].

The mechanisms involved in ecological diversification of B. *cereus s.l.* are poorly understood. Considering the group's biological and ecologic properties we postulate that (1) in particular habitats distinct genotypes (ecotypes) of B. cereus s.l. occur, and (2) environmental B. cereus s.l. are highly related genetically and should be classified as one species. To test these hypotheses, we assessed the genetic structure and phylogenetic relationship of soil isolates of B. cereus s.l. using the multi-locus sequence typing (MLST) approach based on seven housekeeping genes. These isolates were collected from geographically and ecologically distinct locations in northeastern Poland, namely, (i) Białowieża National Park (Białowieża NP), the last European natural forest with a primeval character and limited human activity (a World Heritage site and a biosphere reserve), (ii) Biebrza National Park (Biebrza NP), the largest of Europe's marshes and also with limited human activity, located in the Biebrza River basin, and (iii) the agricultural soil in Jasienowka, a small village south of Podlasie province. The results of our study provide new insights into population structure of environmental B. cereus s.l. and address key issues regarding their ecology and phylogeny.

Materials and Methods

Soil sampling, and chemical and physical analysis of soil

Soil samples were obtained from Białowieża NP (forest bacilli), Biebrza NP (marsh bacilli), and agricultural land in Jasienowka (farm bacilli), northeastern Poland. The marsh collections consisted of soil samples taken adjacent to water. All samples from the parks were collected with consent according to the Nature Conservation Act adopted on 16 April, 2004 by Polish Parliament (Parliament Diary 2004, No. 92: 880). The owner of the farm also permitted collection of soil samples for our study. The locations of the sampling areas are $\sim 60-200$ km apart (Figure 1). At each location 60 to 90 soil samples were collected from sites distributed over an area of about 50,000 m². Samples were analyzed by the Institute of Soil Science and Plant Cultivation in Puławy, Poland, for pH, organic content, humic substances, carbon, nitrogen, phosphorus, calcium, and sulfur.

Isolation and identification of B. cereus sensu lato

B. cereus s.l. were isolated as described previously [30]. Bacilli showing rhizoidal growth on the MYP agar (Oxoid, Basingstoke, UK), a selective medium for the *B. cereus* group, were classified as B. mycoides/B. pseudomycoides (referred hereafter as B. mycoides). Bacteria forming rough and dry colonies with a violet-pink background surrounded by egg yolk precipitation, were designated as B. cereus or B. thuringiensis if parasporal crystals were observed under phase-contrast microscopy (Olympus BX61). From each sample, only one isolate of B. mycoides and B. cereus s.s. or B. thuringiensis were selected for further study. Occasionally, two isolates of the same species or those classified as B. cereus s.s. or B. thuringiensis, but showing visible differences in colony appearance on MYP, were selected from one sample for further analysis. Each isolate was subsequently screened for hemolytic activity on Columbia Blood Agar (Oxoid) at 30°C and for psychrotolerance and thermotolerance by growth in Luria-Bertani (LB) broth at 7°C and 50°C, respectively. The diagnostic features used for specieslevel classification of the *B. cereus s.l.* isolates are provided in Table S1. Based on colony morphology and microscopic observation, \sim 30 isolates of *B. cereus s.s.*, *B. thuringiensis*, and *B. mycoides* from each location were selected randomly for further analysis.

DNA extraction

Genomic DNA was extracted from overnight LB broth culture using the DNeasy Blood and Tissue Kit (Qiagen GmbH, Hilden, Germany) and the QIAcube automat (Qiagen). The quantity and

Figure 1. Geographic map of Poland with locations of soil sampling. Soil samples were collected in Białowieża National Park (Białowieża NP; N 52°42', E 23°54'), the natural forest with no human activity, in marshes of Biebrza National Park (Biebrza NP; N 53°36', E 22°56') with limited human activity, and a farmland in Jasienowka (N 52°30', E 22°58') in northeastern Poland. doi:10.1371/journal.pone.0080175.q001

purity of DNA were determined using the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, USA).

Detection of the δ -endotoxins genes and the *cytK* gene

All isolates were screened for the presence of cytK encoding cytotoxin K in B. cereus s.l. [16] and the most frequently occurring genes encoding δ -endotoxins in *B. thuringiensis: cry1, cry2, cry4*, and cry9 [31], as described by Ben-Dov et al. [32,33] (PCR primer sequences are provided in the Table S2). PCR (15 µl reactions containing 0.35 U Taq DNA polymerase (MBI Fermentas), 150 ng of DNA, 0.5 mM of each dNTP, 1.5 mM MgCl₂, and 0.5 µM of each of the primers] was performed using the Veriti 96-Well thermal cycler (Applied Biosystems, Foster City, USA), and amplicons were analyzed in the capillary electrophoresis system QIAxcel (Qiagen). B. thuringiensis subsp. kurstaki HD1, B. thuringiensis subsp. aizawai HD133, and B. thuringiensis subsp. israelensis HD567 (BGSC, Bacillus Genetic Stock Centre, Ohio State University, Ohio, USA) were used as reference strains for the cry genes. B. cereus ATCC 14579 (ATCC, American Type Culture Collection) was used as the reference strain for cytK.

Real-Time PCR of cytK

RNA was isolated using the Total RNA Mini Plus Kit (A&A Biotechnology, Gdynia, Poland), and cDNA was prepared with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer's instructions. Reactions were performed in the Veriti 96 Well thermal cycler (Applied Biosystems) in a final volume of 20 μ l, as follows: 10 min at 25°C, 120 min at 37°C, 5 min at 85°C, and 5 min at 4°C. The cDNA was analyzed using the Step One Plus Real-Time PCR System (Applied Biosystems). The reactions were performed using the Real-Time 2×PCR Master Mix SYBR A Kit (A&A Biotechnology) in 20 μ l of the reaction mixture, containing 10 μ l of RT

2×PCR Master Mix, 0.1–1 μM of each forward and reverse *cytK* primers (Table S2), 10 pg – 1 μg template cDNA and water added to a final volume of 20 μl. The thermal protocols for *cytK* and *udp* (uridine phosphorylase), genes used as a reference [34], were as follows: 95°C for 3 min (*cytK*) and 2 min (*udp*); 40 cycles of 95°C for 15 sec (*cytK*) and 30 sec (*udp*), 60°C (*cytK*) and 57°C (*udp*) for 30 sec, 72°C for 45 sec (*cytK*) and 1 min (*udp*). Threshold cycle (C_T) was normalized to the C_T of the *udp* gene amplified from the corresponding sample. The expression of *cytK* was calculated using the Pfaffl's method [35] with comparison to the reference *B. cereus* ATCC 14579.

Multi-locus sequence typing (MLST)

All isolates were characterized by the MLST scheme using seven housekeeping loci, glpF (glycerol uptake facilitator protein), gmk (putative guanylate kinase), ilvD (dihydroxy-acid dehydratase), pta (phosphate acetyltransferase), pur (phosphoribosylamino-imidazolecarboxamide), pycA (pyruvate carboxylase), and tpi (triosephosphate isomerase). The 534–599 bp fragments originating from these loci were amplified as described previously [30] in the Veriti 96-Well thermal cycler (Applied Biosystems) with the pairs of primers recommended in the *B. cereus* PubMLST database (http:// pubmlst.org/bcereus) (see Table S2). Amplicons were analyzed by the capillary electrophoresis QIAxcel system (Qiagen). The products were purified with the CleanUp Kit (A&A Biotechnology, Gdynia, Poland) and sequences were determined with the ABI3500 automated sequencer (Applied Biosystems) using Big Dye Terminator cycle sequencing Kit (Applied Biosystems).

The MLST scheme sequences (348–504 bp) were assembled with the BioEdit Sequence Alignment Editor version 7.0.1 software. Each unique sequence was assigned an arbitrary allele number by reference to the *B. cereus* group MLST database. The combination of allele numbers for all seven loci of a given isolate allowed assessing the specific sequence type (ST), regarded also as genotype. New allele sequences and STs were submitted to the *B. cereus* PubMLST database. The χ^2 test with Bonferroni correction, performed with the R version 2.15.2 software, was used for pairwise analysis of statistical differences in proportions of the new STs in the habitats. The null hypothesis of the test is that the proportions are even. The significance level was set at 0.05.

Diversity of the loci

In order to assess loci diversity and their significance in selection, allele frequencies of each loci and the number of polymorphic sites were calculated using the DnaSP version 5 software [36]. The same software was also used to calculate pairwise ratios of nonsynonymous (dN) substitutions to synonymous (dS) substitutions (dN/dS) according to Nei and Gojobori [37]. This statistic allows measuring the significance of selection, as follows: dN/dS < 1, purifying selection; dN/dS = 1, neutral selection; dN/dS > 1, positive selection [38]. The relative impact of homologous recombination on the variation of the B. cereus s.l. populations was estimated by calculation of the r/m ratio using ClonalFrame software version 1.2 [39]. The analysis was performed on the complete dataset (N = 273) and with regard to each environment with four independent runs. The basis of 100,000 iterations including 50,000 burn in iterations was used in all runs of the algorithm.

Population genetic analysis

The sequence types (STs) were assigned to clonal complexes using PHYLOViZ v1.0 [40] with goeBURST algorithm and 1,000 bootstrap resampling, according to Feil et al. [41]. Clonal complexes (CCs) were defined as Single Locus Variants (SLV) of two or more independent isolates that shared identical alleles at six or seven loci. To assess the correlation between alleles in the populations and the clonal versus panmixia status [42], the standard index of association (I^{S}_{A}) was calculated using the START version 2 software [43]. This statistic allowed for estimating the degree of linkage disequilibrium among loci. $I^{S}_{A} \sim 0$ indicates equilibrium between recombination and mutation rates. $I^{S}_{A} > 1$ means low rate of recombination in relation to mutation. The χ^{2} test with Bonferroni correction, performed with the R version 2.15.2 software, was used for pairwise analysis of the statistical differences in proportions of bacilli forming clonal complexes with regard to their species designation. The null hypothesis of the test is that the proportions are even. The significance level was set at 0.05.

Phylogenetic analysis

Phylogenetic trees based on the concatenated loci were constructed for each population and for all isolates jointly with the MEGA4 software using the Neighbor-Joining method (NJ). Branch quality was evaluated using 1,000 replicates bootstrap test [44]. Altogether 28 reference sequences from the *B. cereus* MLST database were used for comparative analysis.

Results

Occurrence of B. cereus s.l. in different types of soil

The estimated density of *B. cereus s.l.* isolates from the farm, and Białowieża and Biebrza national parks (NPs) were, respectively, $0.7\pm0.7\times10^5$, $1.4\pm1.7\times10^5$ and $1.5\pm2.2\times10^5$ (Table 1). At each location, the density differed significantly among samplings. Moreover, while *B. cereus s.s.* and *B. thuringiensis* were isolated from each sample, *B. mycoides* was present in all marsh and farm samples, but only in 77% of forest samples. Chemical analysis revealed significant differences in nutrients from different locations, for example, the amount of humic substances and organic matter were ~20 times higher in soil from the NPs than the farm soil, which allowed the classification of the soil in the parks as organic, and the farm as mineral (Table 1).

Genetic diversity of the environmentally different *B. cereus s.l.* populations

The 273 B. cereus s.l. isolates were analyzed with the MLST approach to assess their genetic relationship and ecological diversification. The characteristic of each locus is presented in Table 2 and Figure 2 (additional data are shown in Table S3). The polymorphic sites ranged from 307 to 392 among the forest and marsh isolates, and was much higher in B. cereus s.s. and B. thuringiensis than B. mycoides originating from the parks, that was similar for all three species isolated from the farm samplings. However, the number of polymorphic sites among the farm B. mycoides was influenced by the number of polymorphic sites in two strains further classified to a separate phylogenetic clade (see below). Altogether 325 alleles were identified. The ratio of nonsynonymous to synonymous mutations (dN/dS) was less than one for all loci in all isolates, indicating purifying selection among the genes. The relative frequency of recombination and mutation among all B. cereus s.l. isolates (N = 273; 95% credibility interval) varied from 0.9 to 1.5. When single environments were considered the recombination to mutation ratio was slightly higher among strains from Białowieża NP (1.2-2.7) than those from Biebrza NP (0.8-1.9) and farmland (0.8-1.8).

The isolates were classified into 148 STs, 131 new STs (N = 212) and 17 STs (N = 61) already described in the MLST database. Almost all STs (56/57) detected in bacilli originating from Table 1. Soil types, chemical properties and density of *B. cereus sensu lato* in the samples.

	Soil		Content	Content in air-dry soil [%]						
Origin	type ^a	рН	SOM ^b	HS ^c	с	N	P org.	Ca	s	B. cereus s.l. ^d
Białowieża	0	4,75	24,1	21,4	14,8	0,753	0,041	0,39	0,06	$1.4 \pm 1.7 \times 10^{5}$
National Park										
Biebrza	0	7,15	17,3	18,9	13,1	1,005	0,126	1,87	0,24	$1.5 \pm 2.2 \times 10^{5}$
National Park										
Farmland in	М	5,25	1,68	0,98	0,66	0,062	0,037	0,127	0,01	$0.7 {\pm} 0.7 { imes} 10^5$
Jasienowka										

^aM, mineral soil; O, organic soil;

^bsoil organic matter;

^chumic substances;

^dgiven as an average CFU per gram of soil.

doi:10.1371/journal.pone.0080175.t001

Białowieża NP were found to be new, whereas with the marsh and farm isolates the number of new STs was 43/55 and 40/49, respectively. According to the χ^2 test, the proportion of the new STs to all STs of bacilli from Białowieża NP (86/93) differed significantly from the corresponding proportions in samples from Biebrza NP (61/95) and Jasienowka farm (65/85), with p-value of 0.0076 and 0.0293, respectively. However, the proportions in the samples from the latter two habitats did not differ significantly (p-value = 1).

Altogether 105 STs were present only once, while the most numerous, ST222, ST625, and ST624, were detected 27, 19, and 13 times, respectively. With regard to the environment, 50, 47, and 40 STs were associated only with the forest, marsh, and farm isolates, respectively. Additionally, nine STs (N = 41) were found in two environment simultaneously: ST646 and ST665 in the forest and marsh isolates; ST624, ST650 and ST712 in bacteria isolated from the forest and the farm; ST196, ST218, ST410; and ST647 with the marsh and farm isolates. Only ST222 (N = 27) and ST625 (N = 19) contained bacteria from all three environments. Consid-

ering the species classification, 68, 54, and 19 STs were identified among *B. cereus s.s., B. thuringiensis* and *B. mycoides*, respectively. *B. cereus* and *B. thuringiensis* originating from the same environment were found simultaneously in five STs (ST657, ST683, ST705, ST708, ST737), while *B. cereus* and *B. mycoides* were present in ST222 (two *B. cereus* plus 25 *B. mycoides*) and ST624 (one *B. cereus* and 12 *B. mycoides*). *B. thuringiensis* with *B. mycoides* or three species together did not occur in one ST.

Isolate-based analysis of population genetic structure

The goeBURST approach allowed assigning the isolates to 19 clonal complexes (CCs) containing 68 STs (N = 172), and 80 singletons (N = 101) (Figure 3). All CCs were named after putative founders of STs. The most numerous complex, CC650, comprised 20 STs (N = 89) originating from the three environments, including the most frequent STs ST222 (N = 27), ST625 (N = 19), and ST624 (N = 13). The second clonal complex, CC223, included seven STs (N = 16) also from the three habitats. The CC658–668 complex, the two putative founder, included 4

Table 2. Genetic diversity in the seven loci within three B. cereus sensu lato populations from northeastern Poland.

	Białowieża Nat	ional Park		Biebrza Nation	al Park		Farmland			
	N = 93 (B.c25; B.	.t38; B.m30) ^a		N = 95 (B.c39; B	.t26; B.m30) ^a		N = 85 (B.c38; B.t23; B.m24) ^a			
	ST = 57 (56) ^b			$ST = 55 (43)^{b}$	ST = 55 (43) ^b			$ST = 49 (40)^{b}$		
Locus	Polymorphic sites	Alleles ^c	Index <i>d</i> N/ <i>d</i> S ^d	Polymorphic sites	Alleles ^c	Index <i>d</i> N/ <i>d</i> S ^d	Polymorphic sites	Alleles ^c	Index dN/dS ^d	
glpF	34	22 (10)	0.046	41	24 (8)	0.101	34	21 (3)	0.125	
gmk	41	11 (7)	0.023	57	16 (4)	0.018	86	20 (7)	0.017	
ilvD	73	20 (13)	0.014	94	25 (14)	0.015	103	17 (4)	0.017	
pta	39	24 (12)	0.020	44	24 (8)	0.019	54	21 (5)	0.024	
pur	49	21 (12)	0.031	62	24 (9)	0.018	80	24 (8)	0.016	
русА	56	14 (6)	0.030	67	18 (5)	0.029	80	21 (6)	0.030	
tpi	15	12 (5)	0.082	27	21 (8)	0.076	32	17 (4)	0.070	
Total	307	124 (65)	0.030	392	152 (56)	0.032	389	141 (37)	0.033	

^aB.c., Bacillus cereus s.s.; B.t., Bacillus thuringiensis; B.m., Bacillus mycoides.

^bST, sequencing type; number of new STs described in this study is given in the parentheses.

^cNumber of new alleles described in this study are given in the parenthesis.

^dRatio of nonsynonymous (d_N) to synonymous (d_S) substitutions per nucleotide site where dN/dS < 1 indicates that the loci is subjected to purifying selection. doi:10.1371/journal.pone.0080175.t002

Figure 2. Genetic diversity in housekeeping genes within *B. cereus s.l.* **originated from three locations in northeastern Poland.** The percentage of the polymorphic sites was much higher in *B. cereus* and *B. thuringiensis* than in *B. mycoides* originating from Białowieża National Park (A) and Biebrza National Park (B). Contradictory for bacteria isolated from the farm soil (C), the percentage of the polymorphic sites was similar among bacilli classified to the three species.

doi:10.1371/journal.pone.0080175.g002

STs (N = 6). The other 16 CCs, comprised either three or two STs mostly originating from one environment.

In general, particular clonal complexes were composed of bacilli classified as the same species (Figure 4). Even in the most numerous complex, CC650 and CC223, a similar tendency was observed. In CC650, 11 STs consisting only of *B. cereus* (N = 20) composed one subcomplex around ST650, while nine STs with 65 *B. mycoides* and four *B. cereus* created the second subcomplex. The CC223 complex included 14 *B. thuringiensis* from all environments

and only two *B. cereus* from Białowieża NP. The next two complexes, CC705–723 and CC656–657, comprised *B. cereus* and single *B. thuringiensis* of the same allelic profiles. CC732 and CC730–739 consisted of two STs with either *B. cereus* or *B. thuringiensis*.

Considering origins, eight CCs (N = 56) and 33 singletons (N = 37) were found among the forest isolates, nine CCs (N = 55)and 31 singletons (N = 40) in the marsh isolates, and four CCs (N = 48) and 25 singletons (N = 37) in the farm isolates (Figure S1). On the other hand, with regard to species classification, nine CCs (N = 52) and 44 singletons (N = 50) or six CCs (N = 34) and 40 singletons (N = 53), respectively, were observed among *B. cereus* and B. thuringiensis, while B. mycoides were classified only in four CCs (N = 78) and six singletons (N = 6) (Figure S2). It is worthy to note that $\sim 77\%$ of *B. mycoides* belonged to CC650. According to the χ^2 test, the proportion of the isolates forming clonal complexes within B. mycoides (78/84) differed significantly from the corresponding proportions within B. cereus (55/105) and B. thuringiensis (34/88); p-value of the test were <0.000 in both cases. However, the proportions in the latter two species did not differ significantly (p-value = 0.821).

The clonality of the isolates and the degree of association between alleles were assessed with the standardized index of association (I_A^S). The index for all 273 *B. cereus s.l.* isolates was calculated to be 0.477 (P<0.000). The separate calculation for each environment were $I_A^S = 0.364$ (P<0.000) for the forest isolates, $I_A^S = 0.651$ (P<0.000) for the marsh *B. cereus s.l.*, and $I_A^S = 0.476$ (P<0.000) for the farm isolates. Among particular species, the I_A^S indices were 0.452 (P=0.000), 0.390 (P<0.000), and 0.520 (P=0.000) for *B. cereus s.s.*, *B. thuringiensis*, and *B. mycoides*, respectively.

Phylogenetic analysis

The multiple alignment of 148 unique MLST concatenated sequences (2,829 bases long) of the environmental B. cereus s.l. and 28 reference sequences available at the MLST B. cereus database, revealed four major strain groups, defined according to Priest et al. (2004), as clade I, II, III and IV (Figure 5). Clade I contained approximately 11% of the environmental isolates (one *B*. thuringiensis and 28 B. cereus) mostly clustered with B. anthracis Ames (ST1), B. cereus ATCC 10987 (ST32), an atypical xylosepositive strain isolated from cheese, and B. thuringiensis HD868 (ST104). Based on the PubMLST dataset, this clade also contained strains isolated from clinical samples (ST123, ST133, ST141), food (ST123, ST152) and environment (ST309, ST152). Clade II containing approximately 15% of all environmental bacilli (28 B. thuringiensis and 11 B. cereus) clustered together with B. cereus type strain ATCC 14579 (ST4), B. cereus ATCC 11778 (ST34), and B. thuringiensis HD1 (ST10), HD12 (ST23), and HD73 (ST8), the lepidopteran-active strains. This clade also contained isolates from clinical samples (ST72, ST85), food (ST43) or natural environment (ST223, ST278, ST315). Clade III consisting of 74% of the bacteria isolated in this study grouped with B. cereus s.l. references designated as environmental isolates (ST286, ST305, ST332) in the MLST database, B. weihenstephanensis WSBC 10364 (ST42) and DSMZ 11821 (ST447), as well as B. mycoides ATCC 6462 (ST116). Clade IV contained only two B. mycoides from Jasienowka and B. pseudomycoides DSMZ 12442 (ST83).

Analysis of the sample collection sites and the phylogenetic tree showed a strong correlation between the clade designation and origin of isolates (Figure 6). Almost all *B. cereus s.l.* (97%) recovered from Białowieża NP clustered in clade III, while only one and two isolates from this habitat clustered with the references in clade II and III. Similarly, the majority (71%) of bacteria isolated from the

Figure 3. geoBURST analysis showing the clonal assignment of STs present in *B. cereus s.l.* Bacteria originated from Białowieża National Park, Biebrza National Park, and the Jasienowka farm in northeastern Poland. The CCs are named based on the ST assigned as a founder genotype (marked with a star) of the complex. The relative size of the circles indicates their prevalence among the *B. cereus s.l.* isolates. New STs characterized in this study are accentuated by a green halo, while STs present in the MLST database are accentuated by a blue halo. doi:10.1371/journal.pone.0080175.g003

farm clustered within clade III, and only 14 and 13% of isolates from this habitat were found in clade I and II. The bacilli originating from Biebrza NP clustered in clade I, II, and III in proportions of 17, 28, and 55%, respectively.

Detection of toxin genes

The *cytK* gene was present in four isolates from Biebrza NP (three *B. cereus*, and one *B. thuringiensis*) and in 29 from the farm (five *B. cereus*, five *B. thuringiensis*, and 19 *B. mycoides*) (Figure 6, Table S4). However, based on Real-Time PCR data, the expression of the *cytK* gene was established for eight isolates (one and seven from the Biebrza NP and the farm, respectively), identified as *B. cereus* (N = 4), *B. thuringiensis* (N = 2), and *B. mycoides* (N = 2) (Figure 6). The relative expression varied from 0.55 (*B. mycoides* 35/1 from the farmland, ST627) to 1.02 (*B. thuringiensis* 56/3 from Biebrza NP, ST707) (Table S4).

The entomopathogenic properties of *B. thuringiensis* were assessed based on the presence of genes encoding δ -endotoxins. The *cry1* gene was found among 38, 24 and 22 bacilli from Białowieża NP, Biebrza NP and the farm, respectively, and four isolates (BPN 40/2, ST710; BPN 43/2, ST680; BPN 51/1, ST667; BPN 54/2, ST668) from Białowieża NP were also *cry2*-positive. Only *B. thuringiensis* BB 48/1 (ST721) and BB 56/3 (ST707) isolated from Biebrza NP, and *B. thuringiensis* JAS 10/2 (ST694) from the farmland harbored *cry4*. Interestingly, based on the phylogenetic trees (Figure 6) the BB 56/3 isolate (ST707) appeared to be closely related to *B. thuringiensis* HD12 (ST23), and JAS 10/2 (ST694) to HD868 (ST104).

Temperature adaptation

Altogether, 189 environmental *B. cereus s.l.* isolates (69.2%) were able to grow at low temperature (Table S4). The majority of these

Figure 4. geoBURST analysis showing the clonal assignment of the STs present in soil isolates of *B. cereus, B. thuringiensis,* and *B. mycoides* originating from northeastern Poland. The CCs are named based on the ST assigned as a founder genotype (marked with a star) of the complex. The relative size of the circles indicates their prevalence among the *B. cereus s.l.* isolates. New STs characterized in this study are accentuated by a green halo, while STs present in the MLST database are accentuated by a blue halo. doi:10.1371/journal.pone.0080175.g004

isolates (95.8%) belonged to clade III (Figure 6). The largest number of isolates with psychrotrophic properties was found among bacilli isolated from Białowieża NP (95.7%), while growth at 7°C was observed only among 43.2 and 69.4% isolates from Biebrza NP and farmland, respectively. None of the isolates grew at 50°C.

Discussion

In this report we present various aspects of the genetic structure and phylogeny of *B. cereus s.l.* isolates originating from three highly diverse habitats in northeastern Poland. In general, the density of these bacilli in "organic soil" was approximately twice as high when compared to "mineral soil". Evidently these differences correlated with the concentration of nutrients and biogenic elements as suggested by Broughton et al. [45]. *B. cereus s.l.* isolated in this study demonstrated a high genetic diversity, but similar in all populations, as measured in MLST by the number of polymorphic sites, alleles, and sequence types. Heterogeneous habitats, such as soil, even with low concentration of nutrients as noted in the farm sampling, facilitates bacterial genetic divergence [46]. Zwick et al. [47]

Figure 5. Phylogenetic tree of 273 *B. cereus s.l.* environmental isolates from northeastern Poland. The tree was constructed based on seven concatenated housekeeping loci (*glpF, gmk, ilvD, pta, pur, pycA*, and *tpi*) representing a total of 2,829 nucleotides, using the Neighbor-Joining (NJ) method implemented in MEGA4 software. Branch quality was evaluated using 1,000 replicates bootstraps [44]. The *B. cereus s.l.* isolates originated from northeastern Poland were separated into four major clades containing 10.6% (Clade I), 14.7% (Clade II), 74.0% (Clade III), and 0.7% (Clade IV) of environmental isolates. The pathogenic *B. cereus s.l.* references were clustered mostly with the environmental references were grouped together with the bacilli isolated in this study classified as the clade III. doi:10.1371/journal.pone.0080175.g005

suggested that genes associated with metabolic processes under selection offer ecological specialization and may result from adaptation to specific deficiencies in the environment. Based on the r/m ratio, the diversity observed within the studied populations resulted mostly from mutation events, rather than from recombination events. Yet, some differences were noted at the level of recombination when forest bacilli (r/m: 1.2-2.7) were compared with marsh (r/m: 0.8-1.9) and farm (r/m: 0.8-1.8) populations. Thus, it is more likely that environmental conditions may influence recombination rates. B. cereus s.l. isolated in northeastern Poland undergo recombination slower than those tested by Didelot and Falush [39] (*r/m*: 1.3–2.8) or Didelot et al. [48] (*r/m*: 1.08–1.57). A comprehensive study by Vos and Didelot [49] comparing homologous recombination rates in bacteria and archaea showed significant variation from species to species, with the r/m ratio from 0.02 for Leptospira interrogans to even 63.3 for Flavobacterium psychrophillum. Apparently, recombination rates are not only influenced by bacterial lifestyle (pathogenic, commensal or mutualistic), but also by environmental conditions. Nevertheless, it is necessary to emphasize the impact of horizontal gene transfer (HGT) on bacterial diversity, particularly mediated by conjugation, which occurs especially in soil rich in organic material [50,51].

The relatively large samples of *B. cereus s.l.* from three different ecologic habitats, allowed testing the hypothesis that specific

genotypes of these bacilli occur in a particular natural habitat. This assumption was supported by the presence of 137 (92%) STs in bacilli originating from one specific habitat. Moreover, the description of new STs for 77% of the isolates provided additional evidence for the existence of specific genotypes within natural B. cereus s.l. populations. Owing to high dispersal ability of Bacillus spp. [21], the presence of ecologically distinct genotypes within environmental B. cereus s.l. populations must be based on adaptations to habitats, not on accidental colonization. In this regard, of particular importance is the statistically significant abundance of new genotypes within B. cereus s.l. originated from Białowieża NP when compared with those from Biebrza NP and the farm. The protection of Białowieża NP [52] appears to have an impact on the heterogeneity of ecological "microniches", which affects the diversification of B. cereus s.l. into genetically different lineages. Nevertheless, it cannot be excluded that the forest environment itself may select for distinct ecotypes. Yet, the incidence of 11 STs (8%) simultaneously in more than one habitat is, to a minor extent, in contradiction to the hypothesis about association between bacterial genotypes and ecological niches. The latter STs probably represent polyphyletic genotypes persisting in a variety of environmental habitats, similarly as noted for B. thuringiensis HD73 (ST8) [28]. Thus, some genotypes within environmental B. cereus s.l. populations do not seem to be niche specialists. This observation probably also applies to other microorganisms in natural population. For instance Hunt et al. [53] noted remarkable narrow preferences within some Vibrio spp. genotypes, whereas others were broadly distributed in marine ecosystem.

In contrast to the diversity, the ISA index, significantly different from zero, inferred a clonal population structure. It is generally accepted, that in clonal bacterial populations the genetic diversity is purged by selective sweeps [54]. Recombination in Bacillus spp. is unlikely to be frequent enough to prevent periodic selection events from occurring [54]. Indeed, the selective pressure on the alleles among the bacilli studied, as measured by dN/dS ratio, indicates a negative selection. Nevertheless, our data highlight the ecological diversity among very close relatives (e.g. within group III), which indicates that a selective sweep would not be expected to purge the diversity within an entire species. For instance, goeBURST grouped 172 bacilli isolated in this study into 19 complexes corresponding to bacterial clones, and 101 bacteria into 80 singletons. Thus, although the dN/dS and I_A^S indices suggested clonal population structures, dynamic genetic diversification exists in natural populations of B. cereus s.l., presumably allowing these bacteria to adapt to different ecological niches, and thereby increasing the number of ecologically distinct subpopulations, so called ecotypes [55]. In some cases ecotypes are identified as DNA sequence lineages, but more often an ecotype can encompass distinct evolutionary lineages [54]. In this study we found lineages of isolates, mostly within clade III, capable of growth at low temperature (thermal ecotypes), as previously observed among B. cereus s.l. and B. thuringiensis [30,56]. However, in contrast to the previous report [30], in which we found association between the cytotoxic potential with some B. thuringiensis ecotypes, in this study the presence of cytK was mainly associated with isolates from farm samplings where human activity is extensive, while the gene was absent in isolates originating from Białowieża NP. Moreover, the cytK presence was intermixed among the lineages and species. This supports the opportunistic pathogenicity model of B. cereus s.l., where the potential or ability to cause various diseases have no association with specific pathotypes [57]. The presence of cytK among B. cereus s.s., B. thuringiensis and B. mycoides, indicate that food poisoning potential is not associated with species affiliation as suggested by Guinebretière et al. [57]. From an ecological point of

Figure 6. NJ phylogenic trees of the B. cereus s.l. environmental isolates originated from three locations in northeastern Poland and

28 reference strains. The trees prepared separately for each population were constructed as given in Figure 5. The isolates originated from Białowieża and Biebrza National Parks pertained to three clades, while those isolated from the farm samples clustered to four clades, with only two isolates in clade IV containing *B. pseudomycoides* reference strains. Detailed information on the isolates and the reference strains used in phylogenetic trees are given in Table S3. Yellow box indicates the *cytK* positive isolates. Red asterisk indicates the isolates that express the *cytK* gene in Real-Time PCR analysis. Blue asterisk indicates isolates able to grow at 7°C. *B.c., B. cereus s.s.; B.t., B. thuringiensis; B.m., B. mycoides, B.a., B. anthracis, B.w., B. weihenstephanensis.* doi:10.1371/journal.pone.0080175.g006

view, it could be considered that toxin production is considerably "expensive" for the bacterial host, and presumably toxigenic genes would not be maintained if harboring them were disadvantageous [2]. Nevertheless, the problem of *B. cereus s.l.* pathogenicity and its relation to ecology of the group seems to be more complex and needs further investigation.

In phylogenetic analyses, only a small number of isolates from the marsh and farm samples clustered in clade I, a clade composed primarily of pathogenic bacilli [13]. These bacilli formed singletons and low-numbered complexes, which may suggest they are "atypical" environmental isolates. The part of STs forming clade III, created the CC650 complex (N = 89/202) and were classified as B. cereus s.s. and B. mycoides, whereas, clade II STs forming CC223 (N = 16/40) were mostly *B. thuringiensis* and *B. cereus s.s.* These two clonal complexes seem to be representative for these clades, and indicate their adaptation to specific niches, i.e., CC650 - soil matrices, and CC223 - insect larvae. Some taxonomists, based on studies of mostly human-associated isolates, disagree with the separation of B. cereus s.l. into distinct species [12,13]. Hence, we hypothesized that the environmental B. cereus s.l. are also genetically highly related and should be classified to one species. However, the above hypothesis was not confirmed in our study as (i) only seven STs included bacilli classified into different species, (ii) the isolates classified to the same species but originated from different habitats exhibited a tendency of clustering to particular complexes, and (iii) B. mycoides isolates showed higher genetic similarity than B. cereus s.s. and B. thuringiensis confirmed statistically by significantly lower number of clonal complexes with high number of isolates (4 CCs; N = 78/84). The previous reports largely focused on *B. cereus s.s.*, *B.* anthracis, and/or B. thuringiensis [12,28,30]. Here we present for the first time the genetic structure for B. mycoides. Indeed this bacterium has no proven medical and/or economic significance, but it could alter bacterial populations dynamics, for instance by aiding other bacteria to adapt to specific environments or by facilitating horizontal gene transfer, as has been described for *B. cereus* and *B.* thuringiensis [28]. Although the idea of classification of the B. cereus s.l. isolates into one species has many proponents [12,13,18], this issue is still unresolved, especially as it relates to environmental isolates of the group. It seems that in contrast to the human-associated B. cereus s.l. exhibiting high levels of similarities [12], the environmental isolates are more intricate. We propose dividing B. cereus s.l. into two groups, the first which contains environmental isolates, and the second composed of those that may be clinically significant.

In summary, although high genetic diversity measured with MLST was observed among natural *B. cereus s.l.* isolates from three varied habitats in northeastern Poland, the populations appear to be clonal in nature. Nevertheless, the bacilli undergo dynamic genetic diversification, mostly resulting from mutation events. Further, a significantly high number of genotypes found within *B. cereus s.l.* populations are habitat-specific. In phylogenetic analyses described in this report, only a small number of isolates, mostly from environments associated with the anthropogenic factors (the Jasienowka farm and the Biebrza NP) clustered in clade I and were associated with pathogenic *B. cereus s.l.*, while the majority of isolates clustered in clade III comprising environmental bacilli from the MLST database. Based on genetic properties of the isolates we did not find strong arguments for merging of the

particular species into one taxon. It seems that in contrast to human-associated *B. cereus s.l.*, which exhibit significant similarity, the environmental isolates are more complex.

Supporting Information

 Table S1
 The diagnostic feature used for species-level classification of the *B. cereus s.l.* isolates.

 (DOCX)

Table S2Primers used in this study.(DOCX)

Table S3 Genetic diversity in the seven housekeeping loci within *B. cereus s.s.*, *B. thuringiensis*, and *B. mycoides* originated from northeastern Poland. (DOCX)

Table S4 Characterization of the *B. cereus s.l.* isolates originated from Białowieża National Park (BPN), Biebrza National Park (BB), and the Jasienowka farm (JAS), and the 12 reference strains used in the phylogenetic analysis.

(DOCX)

Figure S1 geoBURST analysis. The figures are showing the clonal assignment of the STs present in *B. cereus s.l.* originating from Białowieża National Park (A), Biebrza National Park (B), and the Jasienowka farm (C) in northeastern Poland. The CCs are named based on the ST assigned as a founder genotype (marked with a star) of the complex. The relative size of the circles indicates their prevalence among the *B. cereus s.l.* isolates. New STs characterized in this study are accentuated by a green halo, while STs present in the MLST database are accentuated by a blue halo. (TIF)

Figure S2 geoBURST analysis. The figures are showing the clonal assignment of the STs present in soil isolates of *B. cereus s.s.* (A), *B. thuringiensis* (B), and *B. mycoides* (C) originating from northeastern Poland. The CCs are named based on the ST assigned as a founder genotype (marked with a star) of the complex. The relative size of the circles indicates their prevalence among the *B. cereus s.l.* isolates. New STs characterized in this study are accentuated by a green halo, while STs present in the MLST database are accentuated by a blue halo. (TIF)

Acknowledgments

We thank Dennis K. Bideshi (California Baptist University and University of California Riverside, USA) for fruitful discussions, and Magdalena Bulej, our graduate student, for assisting in performing PCR. We also thank the Białowieża National Park Board and the Biebrza National Park Board, and the owner of the farm in Jasienowka for allowing soil samplings.

Author Contributions

Conceived and designed the experiments: JMD IS. Performed the experiments: JMD. Analyzed the data: JMD IS. Contributed reagents/ materials/analysis tools: IS. Wrote the paper: JMD IS.

- Swiecicka I (2008) Natural occurrence of *Bacillus thuringiensis* and *Bacillus cereus* in eukaryotic organisms: a case for symbiosis. Biocontrol Sci Tech 18: 221–239.
- Ceuppens S, Boon N, Uyttendaele M (2013) Diversity of *Bacillus cereus* group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol Ecol 84: 433–450.
- de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17: 193–199.
- Logan NA (2012) Bacillus and relatives in foodborne illness. J Appl Microbiol 112: 417–429.
- 5. Mock M, Fouet A (2001) Anthrax. Ann Rev Microbiol 55: 647-671.
- Lechner S, Mayr R, Francis KP, Prüβ BM, Kaplan T, et al. (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48: 1373–1382.
- Guinebretière MH, Auger S, Galleron N, Contzen M, De Sarrau B, et al. (2013) Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63: 31–40.
- Nakamura LK (1998) Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48: 1031–1035.
- Murawska E, Fiedoruk K, Bideshi DK, Swiecicka I (2013) Complete genome sequence of *Bacillus thuringiensis* subsp. *thuringiensis* strain IS5056, an isolate highly toxic to *Trichoplusia ni*. Genom Announc 1: e00108–13.
- Hoton F, Fornelos N, N'Guessan E, Hu X, Swiecicka I, et al. (2009) Family portrait of *Bacillus cereus* and *Bacillus weihenstephanensis* cereulide-producing strains. Environ Microbiol Rep 1: 177–183.
- Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29: 303–329.
- Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, et al. (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - one species on the basis of genetic evidence. Appl Environ Microbiol 66: 2627–2630.
- Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden CJ (2004) Population structure and evolution of the *Bacillus cereus* group. J Bacteriol 186: 7959–7970.
- Radnedge L, Agron PG, Hill KK, Jackson PJ, Ticknor LO, et al. (2003) Genome differences that distinguish *Bacillus anthracis* from *Bacillus cereus* and *Bacillus thuringiensis*. Appl Environ Microbiol 69: 2755–2764.
- Bullied WJ, Buss TJ, Vessey JK (2002) *Bacillus cereus* UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: field studies. Can J Plant Sci 82: 291–298.
- Swiecicka I, Mahillon J (2006) Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol Ecol 56: 132–140.
- Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, et al. (2006) Characterization of emetic *Bacillus weihenstephanensis*, a new cereulide-producing bacterium. Appl Environ Microbiol 72: 5118–5121.
- Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, et al. (2004) Identification of anthrax toxin genes in a *Bacillus cereus* associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101: 8449–8454.
- Bartoszewicz M, Bideshi DK, Kraszewska A, Modzelewska E, Swiecicka I (2009) Natural isolates of *Bacillus thuringiensis* display genetic and psychrotrophic characteristic of *Bacillus weihenstephanensis*. J Appl Microbiol 106: 1967–1975.
- Soufiane B, Côté JC (2010) Bacillus thuringiensis servoras bolivia, vazensis and navarrensis meet the description of Bacillus weihenstephanensis. Curr Microbiol 60: 343–349.
- Connor N, Sikorski J, Rooney AP, Kopac S, Koeppel AF, et al. (2010) Ecology of speciation in the genus *Bacillus*. Appl Environ Microbiol 76: 1349–1358.
- Guinebretière MH, Thompson FL, Sorokin, Normand P, Dawyndt P, et al. (2008) Ecological diversification in the *Bacillus cereus* group. Environ Microbiol 10: 851–865.
- Horner-Devine MC, Carney KM, Bohannan BJM (2004) An ecological perspective on bacterial biodiversity. Proc Biol Sci 271: 113–122.
- 24. Materna AC, Friedman J, Bauer C, David Ch, Chen S, et al. (2012) Shape and evolution of the marine *Vibrio*. The ISME J 6: 2168–2177.
- 25. Ward DM, Bateson MM, Ferris MJ, Kühl, Wieland A, et al. (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as special-like units linking microbial community composition, structure and function. Phil Trans R Soc B 361: 1997– 2008.
- Von Stetten F, Mayr R, Scherer S (1999) Climatic influence on mesophilic Bacillus cereus and psyhrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ Micrbiol 1: 503–515.
- McÅrthur JV (2006) Microbial Ecology. An evolutionary approach. Academic Press. pp. 253–295.
- Raymond B, Wyres KL, Sheppard SK, Ellis RJ, Bonsall MB (2010) Environmental factors determining the epidemiology and population genetic structure of the *Bacillus cereus* group in the field. PLoS Pathog 6: e1000905.
- Cohan FM, Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17: R373–386.

- Swiecicka I, Bartoszewicz M, Kasulyte-Creasey D, Drewnowska JM, Murawska E, et al (2013) Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates. FEMS Microbiol Ecol 85: 262–272.
- van Frankenhuyzen K (2009) Insecticidal activity of *Bacillus thuringiensis* crystal proteins. J Invertebr Pathol 101: 1–16.
- Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, et al. (1997) Extended screening by PCR for seven cp-group genes from field-collected strains of *Bacillus* thuringiensis. Appl Environ Microbiol 63: 4883–4890.
- Ben-Dov E, Wang Q, Zaritsky A, Manasherob R, Barak Z, et al. (1999) Multiplex PCR screening to detect cry9 genes in *Bacillus thuringiensis* strains. Appl Environ Microbiol 65: 3714–3716.
- Reiter L, Kolstø A-B, Piehler AP (2011) Reference genes for quantitative, reverse-transcription PCR in *Bacillus cereus* group strains throughout the bacterial life cycle. J Microbiol Meth 86: 210–217.
- Pfaffl MW (2001) A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res 29: e45.
- Librado P, Rozas J (2009) DnaSPv5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.
- Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426.
- Turner JW, Paranjpye RN, Landis ED, Biryukov SV, González-Escalona N, et al. (2013) Population structure of clinical and environmental *Vibrio parahaemolyticus* from the Pacific Northwest Coast of the United States. PLoS One 8: e55726.
- Didelot X., Falush D (2007) Inference of bacterial microevolution Using Multilocus Sequence Data. Genetics 175: 1251–1266.
- Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, et al. (2012) PHYLOViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13: 87.
- Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186: 1518–1530.
- Maynard-Smith J, Smith NH, O'Rourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci 90: 4384–4388.
- Jolley KA, Feil EJ, Chan MS, Maiden MC (2001) Sequence type analysis and recombinational tests (START). Bioinformatics 17: 1230–1231.
- Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
- Broughton LC, Gross KL (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologica 125: 420–427.
- Mallet J (2008) Hybridization, ecological races and the nature of species. Philos Trans R Soc Lond B Biol Sci 363: 2971–2986.
- Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA (2012) Genomic characterization of the *Bacillus cereus sensu lato* species: backdrop to the evolution of *Bacillus anthracis*. Genome Res 22: 1512–1524.
- Didelot X, Barker M, Falush D, Priest FG (2009) Evolution of pathogenicity in the *Bacillus cereus* group. Syst Appl Microbiol 32: 81–90.
- Vos M, Didelot S (2009) A comparison of homologous recombination rates in bacteria and archaea. The ISME J 3: 199–208.
- Hu X, Swiecicka I, Timmery S, Mahillon J (2009) Sympatric soil communities of Bacillus cereus sensu lato: population structure and potential plasmid dynamics of pXO1-and pXO2-like elements. FEMS Microbiol Ecol 70: 344–355.
- Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35: 957–976.
- Synge H (2004) European Models of good practice in protected areas. Report of International Union for Conservation of Nature and Natural Resources. (http:// herbarivirtual.uib.es/documents/publicaciones/protected_areas_iucn.pdf)
- Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, et al. (2008) Resource partition and sympatric differentiation among closely related bacterioplankton. Science 320: 1081–1084.
- Cohan FM (2006) Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Phil Trans R Soc B 361: 1985–1996.
- Koeppel AF, Wertheim JO, Barone L, Gentile N, Krizanc D, et al. (2013) Speedy speciation in bacterial microcosm: new species can arise as frequently as adaptations within a species. The ISME J 7: 1080–1091.
- Sorokin A, Candelon B, Guilloux K, Galleron N, Wackerow-Kouzova N, et al. (2006) Multi-locus sequence typing of *Bacillus cereus* and *Bacillus thuringiensis* reveals separate clustering and a distinct population structure of psychrotrophic strains. Appl Environ Microbiol 72: 1569–1578.
- Guinebretière MH, Velge P, Couvert O, Carlin F, Debuyser ML, et al. (2010) Abilility of *Bacillus cereus* group strains to cause food poisoning varies according to phylogenetic affiliation (Groups I to VII) rather than species affiliation. J Clin Microbiol 48: 3388–3391.

Diagnostic	B. cereus	B. thuringiensis	B. anthracis	B. mycoides/	B. weihen-	B. cytotoxicus
feature				B. pseudomycoides	stephanensis	
Parasporal crystal synthesis	no	yes	no	no	no	no
Rhizoidal growth	no	no	no	yes	no	no
Sheep blood hemolysis	yes	yes	no	yes	yes	yes
Growth at 7 °C	no	variable	no	no	yes	no
Growth at 50 °C	no	no	no	no	no	yes

Table S1. The diagnostic feature used for species-level classification of the *B. cereus s.l.* isolates.

Table S2. Primers used in this study.

Target	Primer	Nucleotide	Product	Reference
gene	name		size (bp)	
Primers for the δ-e	endotoxin genes			
cryl	Un1(d)	5'-CATGATTCATGCGGCAGATAAAC-3'	277	Ben-Dov et al., 1997
	Un1(r)	5'-TTGTGACACTTCTGCTTCCCATT-3'		
cry2	Un2(d)	5'-GTTATTCTTAATGCAGATGAATGGG-3'	701	Ben-Dov et al., 1997
	Un2(r)	5'-CGGATAAAATAATCTGGGAAATAGT-3'		
cry3	Un3(d)	5'-CGTTATCGCAGAGAGAGATGACATTAAC-3'	589	Ben-Dov et al., 1997
	Un3(r)	5'-CATCTGTTGTTTCTGGAGGCAAT-3'		
cry4	Un4(d)	5'-GCATATGATGTAGCGAAACAAGCC-3'	439	Ben-Dov et al., 1997
	Un4(r)	5'-GCGTGACATACCCATTTCCAGGTCC-3'		
<i>cry7,8</i>	Un7,8(d)	5'-AAGCAGTGAATGCCTTGTTTAC-3'	420	Ben-Dov et al., 1997
	Un7,8(r)	5'-CTTCTAAACCTTGACTACTT-3'		
cry9	Un9(d)	5'-CGGTGTTACTATTAGCGAGGGCGG-3'	354	Ben-Dov et al., 1999
	Un9(r)	5'-GTTTGAGCCGCTTCACAGCAATCC-3'		

Primers for the cytK gene

cytK	CytKF	5'-GATAATATGACAATGTCTTTAAA-3'	1,011	Swiecicka and Mahillon, 2006
(PCR)	CytKR	5'-GGAGAGAAACCGCTATTTGT-3'		
cytK	CytK(RT)-F	5'-GGCCATTAGGCGTTACAGAA-3'	180	M. Bartoszewicz (personal com.), 2013
(RealTime PCR)	CytK(RT)-R	5'-CTGGCGCTAGTGCAACATTA-3'		
udp	udpF	5'-ACTAGAGAAACTTGGAAATGATCG-3'	101	Reiter et al., 2011
	udpR	5'-GACGCTTAATTGCACGGAAC-3'		
Primers used in MI	LST analysis			
glpF	glpF_F	5'-GCGTTTGTGCTGGTGTAAGT-3'	548	www.pubmlst.org/bcereus/info/primers.shtml
	glpF_R	5'-CTGCAATCGGAAGGAAGAAG-3'		
gmk	gmk_F	5'-ATTTAAGTGAGGAAGGGTAGG-3'	599	www.pubmlst.org/bcereus/info/primers.shtml
	gmk_R	5'-GCAATGTTCACCAACCACAA-3'		
ilvD	ilvD_F	5'-CGGGGCAAACATTAAGAGAA-3'	553	www.pubmlst.org/bcereus/info/primers.shtml
	ilvD_R	5'-GGTTCTGGTCGTTTCCATTC-3'		
	ilvD4_F	5'-GCAGAGATTAAAGATAAGGA-3'	568	www.pubmlst.org/bcereus/info/primers.shtml
	ilvD2_R	5'-GTTACCATTTGTGCATAACGC-3'		
pta	pta_F	5'-GCAGAGCGTTTAGCAAAAGAA-3'	575	www.pubmlst.org/bcereus/info/primers.shtml
	pta_R	5'-TGCAATGCGAGTTGCTTCTA-3'		

pur	pur_F pur_R	5'-CTGCTGCGAAAAATCACAAA-3' 5'-CTCACGATTCGCTGCAATAA-5'	534	www.pubmlst.org/bcereus/info/primers.shtml
русА	pycA_F pycA_R	5'-GCGTTAGGTGGAAACGAAAG-3' 5'-CGCGTCCAAGTTTATGGAAT-3'	549	www.pubmlst.org/bcereus/info/primers.shtml
tpi	tpi_F tpi_R	5'-GCCCAGTAGCACTTAGCGAC-3' 5'-CCGAAACCGTCAAGAATGAT-3'	557	www.pubmlst.org/bcereus/info/primers.shtml

Table S3. Genetic diversity in the seven housekeeping loci within B. cereus, B. thuringiensis, and B. mycoides originated from northeastern Poland.

Białowieża National Park

<i>B. cereus</i> ($N = 25$; $ST = 20$)	<i>B. thuringiensis</i> ($N = 38$; $ST = 33$)	<i>B. mycoides</i> $(N = 30; ST = 8)$
---	--	---------------------------------------

	Polymorphic	Number	Index	Polymorphic	Number	Index	Polymorphic	Number	Index
Locus	sites ^a	of alleles ^b	dN/dS ^c	sites ^a	of alleles ^b	dN/dS ^c	sites ^a	of alleles ^b	dN/dS ^c
glpF	21 (5.6)	11 (5)	0.030	26 (7.0)	15 (7)	0.045	8 (2.2)	5 (1)	0.040
gmk	31 (6.2)	6 (4)	0.030	32 (6.3)	9 (7)	0.037	3 (0.6)	2 (0)	0.145
ilvD	43 (10.9)	11 (6)	0.016	68 (17.3)	14 (9)	0.016	14 (3.6)	4(1)	0.023
pta	27 (6.5)	13 (7)	0.024	34 (8.2)	18 (9)	0.016	3 (0.7)	2 (0)	0.000
pur	41 (11.8)	10 (4)	0.014	48 (13.8)	17 (11)	0.028	16 (4.6)	5 (1)	0.062
русА	43 (11.8)	9 (3)	0.047	44 (12.1)	9 (4)	0.019	20 (5.5)	3 (0)	0.041
tpi	10 (2.3)	8 (3)	0.095	11 (2.5)	7 (2)	0.060	2 (0.5)	2 (0)	0.000
	Biebrza Nation	al Park							
	B. cereus (N = 3)	9; ST = 32)		B. thuringiensis	(N = 26; ST = 1)	6)	B. mycoides (N	= 30; ST = 8)	
	Polymorphic	Number	Index	Polymorphic	Number	Index	Polymorphic	Number	Index
Locus	sites ^a	of alleles ^b	dN/dS ^c	sites ^a	of alleles ^b	dN/dS ^c	sites ^a	of alleles ^b	dN/dS ^c
glpF	37 (9.9)	18 (6)	0.094	26 (7.0)	9 (3)	0.118	7 (1.9)	5 (1)	0.052
gmk	57 (11.3)	14 (4)	0.015	49 (9.7)	8 (1)	0.017	3 (0.6)	2 (0)	0.145

ilvD	91 (23.2)	18 (10)	0.018	79 (20.1)	8 (3)	0.018	16 (4.1)	5 (2)	0.016
pta	41 (9.9)	19 (5)	0.015	28 (6.8)	7 (2)	0.020	11 (2.7)	4 (2)	0.029
pur	57 (16.4)	16 (6)	0.013	50 (14.4)	8 (3)	0.013	16 (4.6)	7 (2)	0.056
русА	66 (18.2)	14 (4)	0.031	54 (14.9)	8 (3)	0.023	20 (5.5)	3 (0)	0.041
tpi	25 (5.7)	18 (8)	0.086	12 (2.8)	8 (0)	0.042	2 (0.5)	2 (0)	0.000

Farmland in Jasienowka

	<i>B. cereus</i> (N = 38; ST = 25)			B. thuringiensis	<i>B. thuringiensis</i> ($N = 23$; $ST = 13$)			B. mycoides (N = 24; ST = 13)		
	Polymorphic	Number	Index	Polymorphic	Number	Index	Polymorphic	Number	Index	
Locus	sites ^a	of alleles ^b	dN/dS ^c	sites ^a	of alleles ^b	dN/dS ^c	sites ^a	of alleles ^b	dN/dS ^c	
glpF	28 (7.5)	15 (2)	0.124	24 (6.5)	9 (0)	0.121	15 (4.0)	5 (1)	0.122	
gmk	45 (8.9)	14 (5)	0.013	38 (7.5)	6 (2)	0.021	53 (10.5)	3 (0)	0.027	
ilvD	77 (19.6)	11 (3)	0.014	62 (15.8)	8 (2)	0.019	66 (16.8)	4(1)	0.018	
pta	29 (7.0)	10 (2)	0.021	25 (6.0)	10 (2)	0.039	35 (8.5)	5(1)	0.018	
pur	55 (15.8)	13 (3)	0.028	45 (12.9)	8 (4)	0.016	47 (13.5)	6(1)	0.014	
русА	56 (15.4)	13 (4)	0.029	53 (14.6)	7 (2)	0.027	38 (10.5)	4 (0)	0.026	
tpi	12 (2.8)	9 (1)	0.098	17 (3.9)	6 (1)	0.080	22 (5.1)	4 (2)	0.052	

^a Number of polymorphic sites and percentage (in parentheses) calculated as the number of polymorphic sites divided by the length of the sequenced fragment.

^b Number of new alleles described in this study is given parentheses.

^c Ratio of nonsynonymous(d_N) to synonymous (d_S) substitutions per nucleotide site. dN/dS < 1 indicates that the loci is subjected to purifying selection.

Isolate ^a	Origin ^b	Growth	cry ^d	<i>cytK</i> ^e	ST ^f	Clade ^g	CC ^h
		at 7°C ^c					
<i>B.c.</i> 33/4	BPN				653 ^N	Ι	S
<i>B.t.</i> 44/2	BPN		+		665 ^N	II	CC223
<i>B.t.</i> 45/4	BPN		+		665 ^N	II	CC223
<i>B.t.</i> 55/2	BPN	+	+		669 ^N	III	CC658-668
<i>B.t.</i> 05/4	BPN	+	+		658 ^N	III	CC658-668
<i>B.t.</i> 60/3	BPN	+	+		658 ^N	III	CC658-668
<i>B.t.</i> 05/2	BPN	+	+		675 ^N	III	S
<i>B.t.</i> 10/2	BPN	+	+		660 ^N	III	S
<i>B.t.</i> 59/2	BPN	+	+		732 ^N	III	CC732
<i>B.t.</i> 50/1	BPN	+	+		725 ^N	III	S
<i>B.m.</i> 06/1	BPN	+			646 ^N	III	CC646
<i>B.m.</i> 42/1	BPN	+			646 ^N	III	CC646
<i>B.m.</i> 03/1	BPN	+			711 ^N	III	CC646
<i>B.t.</i> 54/2	BPN	+	+, + ²		668 ^N	III	CC658-668
<i>B.t.</i> 07/3	BPN	+	+		659 ^N	III	CC658-668
<i>B.t.</i> 56/1	BPN	+	+		659 ^N	III	CC658-668
<i>B.t.</i> 05/3	BPN	+	+		724 ^N	III	S
<i>B.t.</i> 42/2	BPN	+	+		664 ^N	III	S
<i>B.t.</i> 57/2	BPN	+	+		739 ^N	III	CC730-739
<i>B.c.</i> 42/1	BPN	+			730 ^N	III	CC730-739
<i>B.t.</i> 53/3	BPN	+	+		693 ^N	III	S
<i>B.t.</i> 43/2	BPN	+	+, + ²		680 ^N	III	CC678
<i>B.t.</i> 36/4	BPN	+	+		710 ^N	III	S
<i>B.t.</i> 40/2	BPN	+	+, + ²		710 ^N	III	S
<i>B.t.</i> 37/2	BPN	+	+		662 ^N	III	S
<i>B.t.</i> 41/1	BPN	+	+		741 ^N	III	S
<i>B.c.</i> 54/1	BPN	+			731 ^N	III	S
<i>B.c.</i> 57/3	BPN	+			738 ^N	III	S
<i>B.t.</i> 38/4	BPN	+	+		743 ^N	III	S
<i>B.t.</i> 57/4	BPN	+	+		740 ^N	III	S
<i>B.c.</i> 58/4	BPN	+			708 ^N	III	S

Table S4. Characterization of the *B. cereus s.l.* isolates originated from three habitats in northeastern Poland, and 12 reference strains used in the phylogenetic analysis.

<i>B.t.</i> 03/1	BPN	+	+	708 ^N	III	S
<i>B.c.</i> 32/3	BPN	+		652 ^N	III	S
<i>B.c.</i> 50/3	BPN	+		657 ^N	III	CC656-657
<i>B.c.</i> 52/2	BPN	+		657 ^N	III	CC656-657
<i>B.c.</i> 56/3	BPN	+		657 ^N	III	CC656-657
<i>B.t.</i> 30/3	BPN	+	+	657 ^N	III	CC656-657
<i>B.t.</i> 51/1	BPN	+	+, + ²	667 ^N	III	S
<i>B.t.</i> 30/4	BPN	+	+	713 ^N	III	S
<i>B.c.</i> 43/4	BPN	+		656 ^N	III	CC656-657
<i>B.c.</i> 55/4	BPN	+		656 ^N	III	CC656-657
<i>B.t.</i> 40/1	BPN	+	+	663 ^N	III	S
<i>B.t.</i> 06/1	BPN		+	648 ^N	III	S
<i>B.t.</i> 35/2	BPN	+	+	679 ^N	III	S
<i>B.c.</i> 30/1	BPN	+		736 ^N	III	S
<i>B.c.</i> 34/4	BPN	+		737 ^N	III	S
<i>B.t.</i> 12/1	BPN	+	+	737 ^N	III	S
<i>B.c.</i> 21/1	BPN	+		729 ^N	III	CC729-742
<i>B.c.</i> 36/3	BPN	+		742 ^N	III	CC729-742
<i>B.t.</i> 51/2	BPN	+	+	677 ^N	III	S
<i>B.c.</i> 53/1	BPN	+		692 ^N	III	S
<i>B.t.</i> 02/2	BPN	+	+	709 ^N	III	S
<i>B.t.</i> 47/1	BPN	+	+	666 ^N	III	CC678
<i>B.t.</i> 29/1	BPN	+	+	678 ^N	III	CC678
<i>B.t.</i> 54/4	BPN	+	+	678 ^N	III	CC678
<i>B.m.</i> 08/1	BPN	+		625 ^N	III	CC650
<i>B.m.</i> 09/1	BPN	+		625 ^N	III	CC650
<i>B.m.</i> 37/1	BPN	+		625 ^N	III	CC650
<i>B.m.</i> 38/1	BPN	+		625 ^N	III	CC650
<i>B.m.</i> 48/1	BPN	+		625 ^N	III	CC650
<i>B.m.</i> 05/1	BPN	+		712 ^N	III	CC650
<i>B.m.</i> 15/1	BPN	+		712 ^N	III	CC650
<i>B.m.</i> 20/1	BPN	+		712 ^N	III	CC650
<i>B.m.</i> 13/1	BPN	+		222	III	CC650
<i>B.m.</i> 16/1	BPN	+		222	III	CC650
<i>B.m.</i> 29/1	BPN	+		222	III	CC650
<i>B.m.</i> 32/1	BPN	+		222	III	CC650

<i>B.m.</i> 52/1	BPN	+			222	III	CC650
<i>B.m.</i> 56/1	BPN	+			222	III	CC650
<i>B.m.</i> 57/1	BPN	+			222	III	CC650
<i>B.c.</i> 37/1	BPN	+			655 ^N	III	CC650
<i>B.c.</i> 13/1	BPN	+			650 ^N	III	CC650
<i>B.c.</i> 36/2	BPN	+			650 ^N	III	CC650
<i>B.c.</i> 38/2	BPN	+			674 ^N	III	S
<i>B.c.</i> 35/4	BPN	+			654 ^N	III	S
<i>B.c.</i> 08/1	BPN	+			649 ^N	III	CC650
<i>B.c.</i> 08/4	BPN	+			649 ^N	III	CC650
<i>B.c.</i> 28/4	BPN	+			651 ^N	III	S
<i>B.t.</i> 32/4	BPN	+	+		661 ^N	III	S
<i>B.m.</i> 01/1	BPN	+			670 ^N	III	CC670-671
<i>B.m.</i> 04/1	BPN	+			670 ^N	III	CC670-671
<i>B.m.</i> 28/1	BPN	+			670 ^N	III	CC670-671
<i>B.m.</i> 53/1	BPN	+			671 ^N	III	CC670-671
<i>B.t.</i> 23/2	BPN	+	+		676 ^N	III	S
<i>B.c.</i> 60/1	BPN	+			624 ^N	III	CC650
<i>B.m.</i> 12/1	BPN	+			624 ^N	III	CC650
<i>B.m.</i> 26/1	BPN	+			624 ^N	III	CC650
<i>B.m.</i> 31/1	BPN	+			624 ^N	III	CC650
<i>B.m.</i> 35/1	BPN	+			624 ^N	III	CC650
<i>B.m.</i> 36/1	BPN	+			624 ^N	III	CC650
<i>B.m.</i> 39/1	BPN	+			624 ^N	III	CC650
<i>B.m.</i> 40/1	BPN	+			624 ^N	III	CC650
<i>B.m.</i> 45/1	BPN	+			624 ^N	III	CC650
<i>B.c.</i> 04/1	BB				644 ^N	Ι	S
<i>B.c.</i> 51/4	BB			+	644 ^N	Ι	S
<i>B.c.</i> 54/4	BB			+	644 ^N	Ι	S
<i>B.c.</i> 20/4	BB				686 ^N	Ι	S
<i>B.c.</i> 25/4	BB	+			689 ^N	Ι	S
<i>B.c.</i> 08/1	BB				630 ^N	Ι	CC295-630
<i>B.c.</i> 01/3	BB				295	Ι	CC295-630
<i>B.c.</i> 54/3	BB				295	Ι	CC295-630
<i>B.c.</i> 01/1	BB				722 ^N	Ι	S
<i>B.c.</i> 18/1	BB	+			733 ^N	Ι	CC564-733

<i>B.c.</i> 26/4	BB	+			564	Ι	CC564-733
<i>B.c.</i> 18/3	BB				700 ^N	Ι	S
<i>B.c.</i> 19/4	BB				632 ^N	Ι	CC551-632
<i>B.c.</i> 50/5	BB				632 ^N	Ι	CC551-632
<i>B.c.</i> 25/1	BB				551	Ι	CC551-632
<i>B.c.</i> 16/1	BB				638 ^N	Ι	S
<i>B.t.</i> 51/3	BB		+		223	II	CC223
<i>B.t.</i> 56/2	BB		+		223	II	CC223
<i>B.t.</i> 15/2	BB		+		637 ^N	II	S
<i>B.t.</i> 52/5	BB		+		665 ^N	II	CC223
<i>B.t.</i> 58/1	BB		+		665 ^N	II	CC223
<i>B.t.</i> 17/4	BB		+		218	II	CC223
<i>B.t.</i> 21/3	BB		+		218	II	CC223
<i>B.t.</i> 44/5	BB		+		218	II	CC223
<i>B.t.</i> 47/4	BB		+		218	II	CC223
<i>B.c.</i> 23/4	BB				701 ^N	II	CC223
<i>B.c.</i> 28/4	BB				634 ^N	II	CC223
<i>B.t.</i> 48/5	BB		+		718 ^N	II	S
<i>B.t.</i> 10/5	BB		+		636 ^N	II	CC505-636
<i>B.t.</i> 42/3	BB		+		505	II	CC505-636
<i>B.t.</i> 43/5	BB		+		642 ^N	II	CC223
<i>B.t</i> .06/1	BB	+	+		633 ^N	II	S
<i>B.t.</i> 27/1	BB		+		633 ^N	II	S
<i>B.t.</i> 56/3	BB		$+^{4}$	+(1.02)	707 ^N	II	S
<i>B.c.</i> 45/2	BB			+	643 ^N	II	S
<i>B.c.</i> 01/2	BB				705 ^N	II	CC705-723
B.c. 25/5	BB	+			705 ^N	II	CC705-723
<i>B.c.</i> 34/5	BB	+			705 ^N	II	CC705-723
<i>B.t.</i> 32/5	BB		+		705 ^N	II	CC705-723
<i>B.c.</i> 16/2	BB				723 ^N	II	CC705-723
<i>B.c.</i> 02/1	BB				687 ^N	II	S
<i>B.c.</i> 17/5	BB				631 ^N	II	S
<i>B.c.</i> 31/5	BB				640 ^N	II	S
<i>B.c.</i> 33/2	BB	+			409	III	S
<i>B.c.</i> 22/2	BB	+			339	III	S
<i>B.c.</i> 29/2	BB	+			635 ^N	III	CC714

<i>B.c.</i> 02/3	BB			714 ^N	III	CC714
<i>B.c.</i> 14/1	BB	+		703 ^N	III	CC714
<i>B.m.</i> 10/1	BB	+		645 ^N	III	CC646
<i>B.m.</i> 57/1	BB			646 ^N	III	CC646
<i>B.c.</i> 11/4	BB			699 ^N	III	CC732
<i>B.c.</i> 14/5	BB			699 ^N	III	CC732
<i>B.t.</i> 30/5	BB		+	704 ^N	III	CC732
<i>B.c.</i> 05/3	BB			688 ^N	III	S
<i>B.m.</i> 48/1	BB			691 ^N	III	S
<i>B.c.</i> 12/1	BB			702 ^N	III	S
<i>B.m.</i> 46/1	BB			690 ^N	III	S
<i>B.t.</i> 48/1	BB	+	$+^{4}$	721 ^N	III	S
<i>B.c.</i> 53/3	BB			728 ^N	III	S
<i>B.m.</i> 33/1	BB	+		647 ^N	III	CC647-672
<i>B.m.</i> 58/1	BB	+		647 ^N	III	CC647-672
<i>B.c.</i> 52/3	BB	+		421	III	S
<i>B.c.</i> 20/1	BB	+		410	III	CC650
<i>B.t.</i> 27/4	BB	+	+	715 ^N	III	CC695
<i>B.t.</i> 46/2	BB	+	+	715 ^N	III	CC695
<i>B.t.</i> 40/3	BB	+	+	641 ^N	III	S
<i>B.t.</i> 07/2	BB		+	196	III	S
<i>B.t.</i> 15/1	BB	+	+	196	III	S
<i>B.t.</i> 24/2	BB	+	+	196	III	S
<i>B.t.</i> 58/3	BB	+	+	196	III	S
<i>B.m.</i> 01/1	BB	+		625 ^N	III	CC650
<i>B.m.</i> 02/1	BB			625 ^N	III	CC650
<i>B.m.</i> 08/1	BB			625 ^N	III	CC650
<i>B.m.</i> 14/1	BB	+		625 ^N	III	CC650
<i>B.m.</i> 40/1	BB	+		625 ^N	III	CC650
<i>B.m.</i> 51/1	BB	+		625 ^N	III	CC650
<i>B.m.</i> 54/1	BB	+		625 ^N	III	CC650
<i>B.m.</i> 55/1	BB			625 ^N	III	CC650
<i>B.m.</i> 04/1	BB	+		222	III	CC650
<i>B.m.</i> 05/1	BB	+		222	III	CC650
<i>B.m.</i> 07/1	BB			222	III	CC650
<i>B.m.</i> 16/1	BB	+		222	III	CC650

<i>B.m.</i> 21/1	BB	+			222	III	CC650
<i>B.m.</i> 22/1	BB				222	III	CC650
<i>B.m.</i> 24/1	BB	+			222	III	CC650
<i>B.m.</i> 26/1	BB	+			222	III	CC650
<i>B.m.</i> 30/1	BB	+			222	III	CC650
<i>B.m.</i> 31/1	BB	+			222	III	CC650
<i>B.m.</i> 37/1	BB	+			222	III	CC650
<i>B.m.</i> 41/1	BB	+			222	III	CC650
<i>B.m.</i> 45/1	BB	+			222	III	CC650
<i>B.m.</i> 49/1	BB	+			222	III	CC650
<i>B.m.</i> 50/1	BB	+			222	III	CC650
<i>B.c.</i> 23/3	BB	+			639 ^N	III	S
<i>B.m.</i> 34/1	BB				673 ^N	III	S
<i>B.c.</i> 31/2	JAS				614 ^N	Ι	CC614-682
<i>B.c.</i> 67/5	JAS				614 ^N	Ι	CC614-682
<i>B.c.</i> 08/1	JAS			+(0.90)	682 ^N	Ι	CC614-682
<i>B.c.</i> 11/1	JAS				682 ^N	Ι	CC614-682
<i>B.c.</i> 23/4	JAS			+(0,70)	682 ^N	Ι	CC614-682
<i>B.c.</i> 36/3	JAS	+			682 ^N	Ι	CC614-682
<i>B.c.</i> 28/2	JAS	+			613 ^N	Ι	S
<i>B.c.</i> 05/4	JAS				312	Ι	S
<i>B.c.</i> 07/5	JAS				312	Ι	S
<i>B.c.</i> 90/2	JAS				294	Ι	S
<i>B.c.</i> 92/2	JAS				616 ^N	Ι	S
<i>B.t.</i> 10/2	JAS		$+^{4}$	+	694 ^N	Ι	S
<i>B.t.</i> 03/3	JAS		+		562	II	CC223
<i>B.t.</i> 100/3	JAS		+		562	II	CC223
<i>B.t.</i> 22/1	JAS		+		218	II	CC223
<i>B.t.</i> 42/3	JAS		+		621 ^N	II	S
<i>B.t.</i> 04/4	JAS		+		487	II	S
<i>B.t.</i> 09/5	JAS		+		487	II	S
<i>B.t.</i> 13/1	JAS		+		487	II	S
<i>B.t.</i> 32/4	JAS		+	+(0,71)	487	II	S
<i>B.t.</i> 63/5	JAS		+	+	622 ^N	II	S
<i>B.c.</i> 24/2	JAS			+ (1.01)	612 ^N	II	S
<i>B.c.</i> 35/2	JAS			+(0.86)	612 ^N	II	S

<i>B.c.</i> 74/1	JAS	+			720 ^N	III	S
<i>B.c.</i> 82/3	JAS	+			719 ^N	III	S
<i>B.t.</i> 30/2	JAS	+	+		696 ^N	III	S
<i>B.t.</i> 32/2	JAS	+	+		696 ^N	III	S
<i>B.c.</i> 01/4	JAS	+			681 ^N	III	S
<i>B.c.</i> 84/1	JAS	+			684 ^N	III	S
<i>B.m.</i> 100/1	JAS	+			672 ^N	III	CC647-672
<i>B.m.</i> 91/1	JAS	+			629 ^N	III	S
<i>B.m.</i> 76/1	JAS	+			716 ^N	III	CC650
<i>B.t.</i> 12/5	JAS	+	+		618 ^N	III	S
<i>B.t.</i> 58/5	JAS	+	+		618 ^N	III	S
<i>B.t.</i> 62/4	JAS		+		618 ^N	III	S
<i>B.c.</i> 80/5	JAS	+			683 ^N	III	S
<i>B.t.</i> 60/4	JAS	+	+		683 ^N	III	S
<i>B.t.</i> 83/2	JAS	+	+	+	683 ^N	III	S
<i>B.t.</i> 100/4	JAS	+	+		717 ^N	III	CC695
<i>B.t.</i> 41/1	JAS	+	+		620 ^N	III	S
<i>B.t.</i> 05/5	JAS	+	+		695 ^N	III	CC695
<i>B.t.</i> 21/4	JAS	+	+		695 ^N	III	CC695
<i>B.t.</i> 78/1	JAS	+	+	+	695 ^N	III	CC695
<i>B.c.</i> 06/3	JAS	+			617 ^N	III	S
<i>B.c.</i> 74/3	JAS	+			617 ^N	III	S
<i>B.t.</i> 98/4	JAS	+	+		196	III	S
<i>B.m.</i> 20/1	JAS	+		+	625 ^N	III	CC650
<i>B.m.</i> 23/1	JAS	+		+	625 ^N	III	CC650
<i>B.m.</i> 27/1	JAS	+		+	625 ^N	III	CC650
<i>B.m.</i> 39/1	JAS	+		+	625 ^N	III	CC650
<i>B.m.</i> 58/1	JAS	+		+	625 ^N	III	CC650
<i>B.m.</i> 81/1	JAS	+		+	625 ^N	III	CC650
<i>B.m.</i> 07/1	JAS	+			712 ^N	III	CC650
<i>B.m.</i> 30/1	JAS	+		+	712 ^N	III	CC650
<i>B.c.</i> 78/2	JAS	+			734 ^N	III	CC650
<i>B.c.</i> 30/3	JAS	+			735 ^N	III	CC650
<i>B.c.</i> 06/1	JAS	+		+	222	III	CC650
<i>B.c.</i> 15/2	JAS	+			222	III	CC650
<i>B.m.</i> 17/1	JAS	+		+	222	III	CC650

<i>B.m.</i> 48/1	JAS	+		+	222	III	CC650
<i>B.m.</i> 62/1	JAS	+		+	222	III	CC650
<i>B.c.</i> 23/1	JAS	+			727 ^N	III	CC650
<i>B.c.</i> 68/2	JAS	+			727 ^N	III	CC650
<i>B.c.</i> 76/3	JAS	+			698 ^N	III	CC650
<i>B.c.</i> 26/2	JAS	+			619 ^N	III	CC650
<i>B.c.</i> 84/4	JAS	+			650 ^N	III	CC650
<i>B.c.</i> 21/5	JAS	+			410	III	CC650
<i>B.c.</i> 85/1	JAS	+			410	III	CC650
<i>B.c.</i> 83/3	JAS				615 ^N	III	CC650
<i>B.c.</i> 39/1	JAS				697 ^N	III	CC650
<i>B.c.</i> 81/4	JAS	+			697 ^N	III	CC650
<i>B.c.</i> 86/1	JAS	+			697 ^N	III	CC650
<i>B.c.</i> 19/1	JAS	+			566	III	CC650
<i>B.c.</i> 21/1	JAS	+			566	III	CC650
<i>B.m.</i> 45/1	JAS	+		+	647 ^N	III	CC647-672
<i>B.c.</i> 94/5	JAS	+			726 ^N	III	S
<i>B.m.</i> 09/1	JAS	+		+	623 ^N	III	CC650
<i>B.m.</i> 35/1	JAS	+		+(0.55)	627 ^N	III	CC650
<i>B.m.</i> 15/1	JAS	+		+(0.76)	624 ^N	III	CC650
<i>B.m.</i> 41/1	JAS	+		+	624 ^N	III	CC650
<i>B.m.</i> 60/1	JAS	+		+	624 ^N	III	CC650
<i>B.m.</i> 82/1	JAS	+		+	624 ^N	III	CC650
<i>B.m.</i> 21/1	JAS	+		+	626 ^N	III	CC650
<i>B.m.</i> 72/1	JAS				628 ^N	IV	S
<i>B.m.</i> 51/1	JAS			+	685 ^N	IV	S
DSMZ 11821	DSMZ	+			447	III	N.D.
DSMZ 12442	DSMZ				83	IV	N.D.
WSBC 10364	WSBC	+			42	III	N.D.
HD1	BGSC		+	+ (N.D.)	10	II	N.D.
HD12	BGSC		+		23	II	N.D.
HD73	BGSC		+	+ (N.D.)	8	II	N.D.
HD868	BGSC	N.D.	N.D.	N.D.	104	Ι	N.D.
ATCC 10987	ATCC			+ (N.D.)	32	Ι	N.D.
ATCC 14579	ATCC			+ (ref.)	4	II	N.D.
ATCC 11778	ATCC	N.D.		N.D	34	II	N.D.

ATCC 6462	ATCC	+	N.D.	116	III	N.D.
Ames	-	N.D.		1	Ι	N.D.

^a B.c., B. cereus; B.t., B. thuringiensis; B.m., B. mycoides; B.a., B. anthracis; B.w., B. weihenstephanensis; DSMZ 11821, B. weihenstephanensis type strain; DSMZ 12442, B. pseudomycoides DSMZ 12442; WSBC 10364, B. weihenstephanensis WSBC 10364; HD1, B. thuringiensis HD1; HD12, B. thuringiensis HD12; HD73, B. thuringiensis HD73; HD868, B. thuringiensis HD868; ATCC 10987, B. cereus ATCC 10987; ATCC 14579, B. cereus ATCC 14579; ATCC 11778, B. cereus ATCC 11778; ATCC 6462, B. mycoides ATCC 6462; Ames, B. anthracis Ames.

^b BNP, Białowieża National Park; BB, Biebrza National Park; JAS, the Jasienowka farm; DSMZ,

German Collection of Microorganisms and Cell Cultures; WSBC, Weihenstephan Bacillus collection;

BGSC, Bacillus Genetic Stock Center; ATCC, American Type Culture Collection.

^c +, the growth at 7 ^oC was observed. The negative results were omitted.

^d+, *cry1*; +², *cry2*; +⁴, *cry4*. The negative results were omitted.

^e+, the presence of the *cytK* gene tested in PCR. In parenthesis the relative expression calculated according to the method of Pfaffl [Pfaffl 2001]. The negative results were omitted.

^fST, sequencing type. New STs are indicated with a N index.

^g The clades designation corresponds with Figure 5, and Figure 6.

^h CC, clonal complexes; S, singleton. The CCs designation corresponds with Figure 3, Figure 4, Figure S1, and Figure S2.

Figure S1. geoBURST analysis. The figures are showing the clonal assignment of the STs present in *B. cereus s.l.* originating from Białowieża National Park (A), Biebrza National Park (B), and the Jasienowka farm (C) in Northeastern Poland. The CCs are named based on the ST assigned as a founder genotype (marked with a star) of the complex. The relative size of the circles indicates their prevalence among the *B. cereus s.l.* isolates. New STs characterized in this study are accentuated by a green halo, while STs present in the MLST database are accentuated by a blue halo.

Figure S2. geoBURST analysis. The figures are showing the clonal assignment of the STs present in soil isolates of *B. cereus s.s.* (A), *B. thuringiensis* (B), and *B. mycoides* (C) originating from Northeastern Poland. The CCs are named based on the ST assigned as a founder genotype (marked with a star) of the complex. The relative size of the circles indicates their prevalence among the *B. cereus s.l.* isolates. New STs characterized in this study are accentuated by a green halo, while STs present in the MLST database are accentuated by a blue halo.

Appendix 3

Melanin-like pigment synthesis by soil *Bacillus weihenstephanensis* isolates from northeastern Poland

Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I (2015) Melanin like pigment synthesis by soil Bacillus weihenstephanensis isolates from northeastern Poland. PLoS ONE 10(4), e0125428.

My contribution: general concept of the work, experimental setup, laboratory work (selection of melanin-like pigment producers, biochemical and genetic characterization of melanin-positive strains, PFGE analysis, mechanisms of pigment production, next generation whole genome sequencing), data analysis, reagents contribution, manuscript preparation, proposal preparation and receiving of funding from National Science Centre (Preludium grant No UMO-2013/09/N/NZ8/03209).

Citation: Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I (2015) Melanin-Like Pigment Synthesis by Soil *Bacillus weihenstephanensis* Isolates from Northeastern Poland. PLoS ONE 10(4): e0125428. doi:10.1371/ journal.pone.0125428

Academic Editor: Paul Jaak Janssen, Belgian Nuclear Research Centre SCK•CEN, BELGIUM

Received: January 6, 2015

Accepted: March 18, 2015

Published: April 24, 2015

Copyright: © 2015 Drewnowska et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported by the National Science Centre of Poland (https://www.ncn.gov.pl/? language = en) grant UMO-2013/09/N/NZ8/03209 to JMD. FT-IR was performed in the Center of Synthesis and Analysis BioNanoTechno of University of Bialystok funded by the European Union as a part of the Operational Program Development of Eastern Poland 2007–2013 (project POPW.01.03.00-20-034/ 09-00). The funders had no role in study design, data **RESEARCH ARTICLE**

Melanin-Like Pigment Synthesis by Soil *Bacillus weihenstephanensis* Isolates from Northeastern Poland

Justyna M. Drewnowska¹, Monika Zambrzycka¹, Beata Kalska-Szostko², Krzysztof Fiedoruk³, Izabela Swiecicka^{1,4}*

1 Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland, 2 Department of Physicochemical Analysis, Institute of Chemistry, University of Bialystok, Bialystok, Poland, 3 Department of Microbiology, Medical University of Bialystok, Bialystok, Poland, 4 Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland

* izabelas@uwb.edu.pl

Abstract

Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR) spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR) and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests) and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis) characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment.

collection and analysis, decision to publish, or preparation of the manuscript.

PLOS |

Competing Interests: The authors have declared that no competing interests exist.

ONE

Introduction

Melanin is a heterogenous and polymeric pigment found in many Prokaryote and Eukaryote organisms. Melanin production has been considered to be of a great significance, especially with regard to microorganisms in which it has been often associated with virulence in the host and survival advantage in the environment [1]. For instance, melanin synthesized by free-living microorganisms absorbs a broad spectrum of electromagnetic radiation, from visible light to ionizing radiation [2] protects their producers from reactive oxygen forms [3], heavy metals toxicity [4], and extreme temperatures [5]. These properties of melanin make it an attractive biomaterial used as an ingredient in sunscreens [6], wool fabric dyes [7] and Bacillus thuringiensis-based biopesticides for UV protection [8]. Moreover, melanin protects pathogens against immune responses of a microbe's host [9], and appears to play an important role in the development of symbiosis between soil bacteria and plants [10]. In most organisms, melanin production starts with an enzymatic reaction of L-tyrosine via L-DOPA (L-3,4-dihydroxyphenylalanine) to DOPA-quinone, which involves enzymes such as tyrosinase or tyrosine hydroxylase [11, 12]. In some fungi, such as Cryptococcus neoformans, the conversion of L-DOPA to DOPA-quinone occurs with the participation of laccase [13]. Subsequently, a series of non-enzymatic reactions leads to the formation of black or brown eumelanin or orange-yellow pheomelanin [11-13]. The alternative pathway, involving degradation of L-tyrosine to homogentisic acid (HGA) which can polymerize to brown pyomelanin, also has been observed in some fungi and bacteria, such as Aspergillus fumigatus, Legionella pneumophila, Pseudomonas aeruginosa or Vibrio cholerae [14-16]. Moreover, dark green pigment synthetized by DHN- or HPQ-melanin pathway was characterized in fungi [17] and bacteria [18], respectively.

Bacillus weihenstephanensis is a psychrotrophic Gram-positive aerobic or facultative anaerobic bacterium [19], commonly present in food matrices [20] and soil [21]. This bacterium belongs to the Bacillus cereus group (B. cereus sensu lato) which includes seven other species commonly occurring in different environments and being extremely important for medical and economic reasons [21, 22]. The most extensively studied are (i) *Bacillus anthracis*, etiologic agent of anthrax [23], (ii) Bacillus cereus, an opportunistic pathogen occasionally involved in foodborne illnesses [24], and (iii) B. thuringiensis, entomopathogen universally used as a biopesticide [25]. Much less is known about other members of the group, Bacillus mycoides and Bacillus pseudomycoides, characterized by rhizoidal growth on solid media, antifungal activity and stimulation of plants' growth [26]. B. cereus s.l. also contains recently described thermotolerant Bacillus cytotoxicus [27] and Bacillus toyonensis, a probiotic organisms used in animal feed [28]. Although it has been established that the *B. cereus* group members are versatile producers of secondary metabolites, such as antimicrobial substances [29], extracellular enzymes [30] or fluorescent pigments [31], little is known about strains synthesizing melanin. Only two melanin-positive wild strains, B. thuringiensis subsp. dendrolimus L-7601 [32] and B. thuringiensis subsp. kurstaki CCTCC AB90010 [33], have been described. However, melanin producers among B. weihenstephanensis have not been reported so far. In several studies blackishbrown pigment production in *B. cereus s.l.* has been obtained through chemical mutagenesis [34] or genetic modification [35]. Nevertheless, the mechanism of melanin production among these species is poorly understood.

In this work, for the first time, we report the natural production of water-soluble melaninlike pigment by soil *B. weihenstephanensis* isolates from Northeastern Poland. We also assessed physicochemical properties of melanin-like pigment synthesized by these bacilli and proposed the mechanism of its synthesis. The unique properties of environmental strains prompted us to conduct phenotypic, genotypic and phylogenetic analysis, which gave insight into their evolution.

Materials and Methods

Bacterial strains

A collection of about 950 *B. cereus s.l.* isolates from soil, arthropods, and foodstuffs. Soil samples were obtained from Bialowieza National Park (N 52° 72', E 23° 84'), Biebrza National Park (N 53° 36', E 22° 56'), and agricultural land in Jasienowka (N 52° 30', E 22° 58), Northeastern Poland. All samples from the parks were collected with consent according to Nature Conservation Act adopted on 16 April, 2004 by Polish Parliament (Parliament Diary 2004, No. 92: 880). The owner of the farm also permitted collection of soil samples for our study. The strains were isolated during previous studies [20, 36, 37]. The field studies did not involve endangered or protected species.

The isolates were screened by culturing on different media as Luria-Bertani (LB) agar, LB broth, nutrient agar, nutrient broth, and sporulation medium T3 (0.3% tryptone, 0.2% tryptose, 0.15% yeast extract, 0.05 M sodium phosphate pH 6.8, 0.0005% MgCl₂) in order to select producers of a blackish-brown pigment diffusing into the medium.The collection included bacilli identified in previous studies as *B. cereus*, *B. thuringiensis*, *B. mycoides/B. pseudomycoides*, and *B. weihenstephanensis*. *B. cereus* ATCC 10987 and ATCC 14579 (American Type Culture Collection), *B. thuringiensis* HD1, HD73, HD567, and HD867 (*Bacillus* Genetic Stock Center, Ohio State University), and *B. weihenstephanensis* DSMZ 11821 (German Collection of Microorganisms and Cell Cultures), were used as references during phenotypic and genotypic tests of the melanin-positive isolates tested in this study.

Psychrotolerance of pigment producers

The blackish-brown pigment-positive isolates were tested for the ability to grow at 7°C in LB broth and on nutrient agar plates. Then their psychrotrophic potential was confirmed in PCR by investigating the presence of specific signatures of *cspA* and 16S rDNA genes [19] tested with primers designed by Bartoszewicz et al. [20] and Lechner et al. [19], respectively. PCRs were carried out in the Veriti 96-Well thermal cycler (Applied Biosystems, Foster City, USA), followed by the analysis of amplicons in the QIAxcel capillary electrophoresis system (Qiagen GmbH, Hilden, Germany). Genes were sequenced using Big Dye Terminator Cycle Sequencing Kit (Applied Biosystems) and automated sequencer ABI3500 (Applied Biosystems). A phylogenetic tree of 16S rDNA partial homologs (1463 bp) was constructed with MEGA6 program using the Neighbor-Joining (NJ) method with the branch quality evaluated including 1,000 replicates bootstrap test [38].

Biochemical characterization

Biochemical properties of isolates and references were verified with API 50CHB and API 20E system (bio-Mérieux S.A., Mercy l'Etoile, France), according to the manufacturer's procedure and as recommended by Swiecicka and de Vos [39]. Biochemical similarity was calculated using the simple matching coefficient (SMC) and clustered with unweighted pair-group average linkage algorithm (UPGMA) performed with the NTSys ver. 2.02 g program (Exeter Software, E. Setauket, NY, USA) as described previously [39].

Phylogeny based on multi-locus sequence typing (MLST)

Nucleotide sequences of seven housekeeping genes (*glpF*, *gmk*, *ilvD*, *pta*, *pur*, *pycA*, *tpi*) deposited in the MLST database (<u>http://pubmlst.org/bcereus/</u>) during previous studies [<u>37</u>] and corresponding sequences of reference strains also available in the database, were used to construct a phylogenetic tree with MEGA6 program using the Neighbor-Joining (NJ) method. The branch quality was evaluated using 1,000 replicates bootstrap test [<u>38</u>].

Pulsed-field gel electrophoresis of genomic DNA

Overnight cultures of strains were grown in LB and centrifuged at 4°C and 2,500 x g for 15 min and resuspended in SE buffer (10 mM NaCl, 30 mM EDTA, pH 7.5) to an OD₅₉₀ of approximately 2.0. Genomic DNA plugs were prepared by mixing bacterial suspension with 2% LMP agarose (Sigma-Aldrich, Poznan, Poland) at 1:1 ratio and placed into slots of a plug mold (Bio-Rad, Hercules, CA, USA). After solidification, plugs were treated according to Gaviria Rivera and Priest [40], DNA was digested with 30 U of NotI restrictase (MBI Fermentas, Vilnius, Lithuania) and electrophoresed in the CHEF-MAPPER System (Bio-Rad) following the protocol of Swiecicka et al. [41]. PFG Lambda Ladders and PFG Yeast chromosomes from New England BioLabs were used as markers. Gels were stained with ethidium bromide solution (1 μg ml⁻¹) and visualized in ChemiDOC XRS System (Bio-Rad).

Extraction, purification, and chemical characteristics of melanin-like pigment

The pigment was isolated from the four most productive strains: JAS 39/1, JAS 81/4, JAS 83/3, and JAS 86/1. Isolates were inoculated into 200 ml of nutrient broth and incubated at 30°C on rotary shaker at 180 rpm for 96 h until the liquid medium became dark-brown. When the cell mass was removed, the supernatant was acidified by lowering a pH to 2.0 using 1N HCl and incubated at room temperature for one week, followed by boiling of the suspension for 1 h and centrifuging at 14,000 x g for 15 min. The pigment pellet was washed with ethanol as described by Sajjan et al. [42]. The modified method of Fava et al. [43] was used to perform chemical analyses of the extracted melanin-like pigment. The pigment solubility was checked in deionized water, 1 N NaOH, 1 N HCl, acetone, benzene, chloroform, ethanol, and phenol. In addition, the reactions of melanin with 30% hydrogen peroxide (H_2O_2) , 1% iron (III) chloride (FeCl₃₎, and 5% sodium hydrosulfite (Na₂S₂O₄), were tested. Synthetic melanin (Sigma-Aldrich, Cat. No M8631) was used as a reference.

Electron paramagnetic resonance (EPR) measurement

The electron paramagnetic resonance measurement for the tested melanin-like pigments and synthetic melanin were performed with the X-band (9,3 GHz) EPR spectrometer (Radiopan, Poznan, Poland) and the Rapid Scan Unit (Jagmar, Krakow, Poland). Each sample was placed in a thin-walled glass tube free of paramagnetic impurities. Microwave frequency was obtained by the MCM101 Recorder (Eprad, Poznan, Poland) at magnetic modulation of 100 kHz. The total microwave power of the klystron was 70 mW. The numerical acquisitions of the first-derivative EPR spectra were done at low microwave power of 11 mW. The spectroscopic programs SWAMP (Jagmar) and LabVIEW 8.5 (National Instruments) were used.

Fourier transform infrared (FT-IR) spectroscopy

To quantify the extracted melanin-like pigment, IR spectra were recorded by Nicolet 6700 infrared spectrometer (Thermo Fisher Scientific, Warsaw, Poland). A small amount of pigment
was placed on a diamond window of the spectrometer, and a measurement was done in reflection mode, at a room temperature, by summary of 32 scans with a resolution of 4 cm⁻¹. The available spectra range was 400–4000 cm⁻¹. Synthetic melanin (Sigma-Aldrich, Cat. No M8631) was used as a standard.

Mechanisms of pigment production

LB was inoculated with melanin-positive *B. cereus s.l.* isolates and incubated at 30°C on a rotary shaker at 180 rpm for 24 h. After the preincubation, arginine [44] or kojic acid [45] as tyrosinase inhibitors were added to a final concentration of 0.01–0.5 mM and 10–100µg/ml, respectively. As a laccase inhibitor, sodium azide was added to a final concentration of 0.01–0.2 mM [46]. In addition, the sulcotrione [16] and tricyclazole [45] were used for 4-hydroxyphenylpyr-uvate dioxygenase (4-HPPD) and hydroxynaphthalene reductase inhibition, respectively, to confirm/exclude the HGA or DHN pathways of melanin synthesis. Then, cultures were incubated at 30°C on the rotary shaker at 180 rpm for 96 h till the dark color occurred in the control culture.

Next generation whole genome sequencing

Genomic DNA of *B. cereus* strain JAS 83/3, one of the most melanin-productive isolate, was extracted in the QIAcube automat (Qiagen) using the DNeasy Blood and Tissue Kit (Qiagen) with a protocol for Gram-positive bacteria. The draft genome sequence of the strain was determined using an Ion Torrent PGM sequencer (Applied Biosystems) using the Ion 316 chip with 200-bp shotgun sequencing, according to the manufacturer's instructions. The annotation was performed using best-placed reference protein set GeneMarkS+ provided by the National Center for Biotechnology Information (NCBI).

GenBank accession numbers

The whole sequence of *B. weihenstephanensis* JAS 83/3 obtained by shotgun sequencing is under Accession Number: JNLY0000000 (BioProject: *Genome sequencing of melanin-positive Bacillus weihenstephanensis strain* JAS 83/3; NCBI; PRJNA246580). We also deposited three 16S rRNA homologs of *B. weihenstephanensis* JAS 83/3 (KP006648), *B. thuringiensis* HD567 (KP006649), and *B. thuringiensis* HD867 (KP006650). Remaining sequences of 16S rRNA were available under accession number: NR_024697 (*B. weihenstephanensis* DSMZ 11821), BTK_r29390 (*B. thuringiensis* HD1), HD73_r36 (*B. thuringiensis* HD73), BC0007 (*B. cereus* ATCC 14579), and BCE5759 (*B. cereus* ATCC 10987).

Results

Melanin-like pigment synthesis among *B*. *cereus s*.*l*. from Northeastern Poland is very rare and is restricted to *B*. *weihenstephanensis*

In order to study the production of melanin-like pigment by *B. cereus s.l.*, a large collection of about 950 strains identified as *B. cereus*, *B. thuringiensis*, *B. mycoides/B. pseudomycoides*, and *B. weihenstephanensis*, was screened by culturing on different growth media (LB, nutrient agar, T3 agar, LB and nutrient broths) and observed for the blackish-brown pigment diffused in the medium. Although the origins of the strains were diverse (soil, arthropods, mammals, and foodstuffs), the pigment-positive bacilli were found only among six *B. weihenstephanensis* isolates from soil samples obtained from Jasienowka farm (JAS 39/1, JAS 81/4, JAS 83/3, JAS 86/1) and Bialowieza National Park (BPN 08/1, BPN 08/4) in Northeastern Poland. However, the production of pigment by isolates from the park was low and observed only on NA plates. In

Fig 1. Melanin-like pigment production in Luria-Bertoni broth by *B. weihenstephanensis*. *B. cereus* ATCC 10987 was used as the negative control.

doi:10.1371/journal.pone.0125428.g001

contrast, the farm isolates synthesized the pigment at high quantity both on NA plates and in LB and nutrient broths (Fig 1). These bacilli grew well at 7°C. Their psychrotrophic adaptation was confirmed by the presence of unique nucleotide motifs: (i) ⁴ACAGTT⁹ in the *cspA* gene encoding the major cold shock protein, and (ii) ¹⁰⁰²TCTAGAGATAGA¹⁰¹³ in the 16S rDNA (S1 Table).

Biochemical properties of pigment-positive and reference strains were tested using 60 different tests available with the API system (see summary in <u>S1 Table</u>). In short, all environmental isolates produced acetoin, liquefied gelatin and fermented 11 of 49 carbohydrates. Variable results were received for acid production from cellobiose and sucrose as well as for arginine dihydrolysis. Biochemical profiles of reference strains used in the study were similar to these found for the isolates (<u>S1 Table</u>). A dendrogram based on biochemical properties and calculated using the simple matching coefficient and UPGMA algorithm (<u>Fig 2A</u>), showed high similarity between soil isolates and reference *B. weihenstephanensis* DSMZ 11821. *B. cereus* ATCC 10987, *B. cereus* ATCC 14579, *B. thuringiensis* HD1, *B. thuringiensis* HD73, and *B. thuringiensis* HD867 reference strains grouped in a second cluster. *B. thuringiensis* HD567, known for antimosquito properties [<u>47</u>], differed biochemically from other strains and made cluster III.

Fig 2. The phenotypic similarity and phylogeny among *B. weihenstephanensis* producing melanin-like pigment and reference strains. Comparisons between strains based on biochemical API 50CH and API 20E tests were made using simple matching coefficient and clustered with the UPGMA algorithm (A). Phylogenetic trees were constructed based on 16S rDNA gene (B) and seven concatenated housekeeping loci (MLST) (C) using the Neighbor-Joining (NJ) method implemented in MEGA6 software, where branch quality was evaluated using 1,000 replicates bootstraps.

doi:10.1371/journal.pone.0125428.g002

doi:10.1371/journal.pone.0125428.g003

Comparative analysis of 16S rRNA confirmed close relation between melanin-positive isolates and *B. weihenstephanensis* DSMZ 11821 (Fig 2B). On the phylogenetic tree, isolates grouped together with DSMZ 11821, while other references gathered in the second cluster. Phylogeny based on multi-locus sequence typing also revealed two genetic clusters in the Neighbour-Joining dendrogram (Fig 2C). Soil isolates grouped in cluster I with DSMZ 11821, whereas other references were classified into cluster II. Pulsed-field gel electrophoresis (PFGE) confirmed the clonality of *B. weihenstephanensis* JAS 39/1, JAS 81/4 and JAS 86/1 (Fig 3), while *B. weihenstephanensis* BPN 08/1 and BPN 08/4 were not typeable by PFGE (profiles has not been achieved). Pulsed-field fingerprints of isolates do not overlap with PFGE profiles of reference strains.

Melanin-like pigment synthesized by soil *B*. *weihenstephanensis* isolates had phenolic character

EPR spectra of natural pigment produced by environmental strains of *B. weihenstephanensis* from the farm (isolates from Bialowieza National Park did not produce enough pigment to analyse) were similar to the EPR signal of the synthetic melanin and all revealed broad curves around 335 mT (Fig 4A). In addition, FT-IR spectroscopy of dark particles demonstrated similar spectra to synthetic one (Fig 4B). A broad band centered around 3268–3278 cm⁻¹ for each studied pigment was observed, which is associated with-OH stretching. Furthermore, all samples had absorbance peaks in the 1511–1729 cm⁻¹ area, due to the bonding vibration of C = C and C = O aromatic ring stretching, and double bonds in COOH. In contrast to standard melanin, *in vitro* synthesized melanin had signals in 2926–2970 cm⁻¹ area indicating the presence of saturated carbon, as well as around 1045 cm⁻¹ and 1220 cm⁻¹, what corresponds to carbonyl, alcoholic or phenolic groups, respectively. Detailed information on functional groups found in melanin-like pigment synthesized by environmental isolates and synthetic melanin is given in Table 1.

Fig 4. EPR (A) and FT-IR (B) spectra of commercial melanin and pigment obtained from *B*. *weihenstephanensis* isolates.

doi:10.1371/journal.pone.0125428.g004

Α

Chemical properties of melanin-like pigment produced by soil *B. weihenstephanensis* isolates and of synthetic melanin were also similar (S2 Table). Pigments were soluble in alkaline solution (1N NaOH) and phenol, but were insoluble in ethanol, acetone, chloroform, and benzene. Moreover, dissolved pigments and synthetic melanin precipitated in hydrochloric acid (1N HCl) and ferric chloride (1% FeCl₃), and were decolorized by hydrogen peroxide (30% H_2O_2), as well as by sodium hydrosulfite (5% Na₂S₂O₄). The only feature which differed

Table 1.	Functional groups of melanin-like pigment produced by soil B. weihenstephanensis isolates and commercial melanin obtained fro	m Fou-
rier Tran	sform Infrared spectroscopy.	

Assignment	Wave num	Reference				
	Bw JAS 39/1	Bw JAS 81/4	Bw JAS 83/3	Bw JAS 86/1	Commercial melanin	
-OH, stretching	3274	3278	3268	3271		[48]
Aliphatic-CH, stretching	2967	2970	3069	2964		[49]
			2964	2929		
			2926			
-COOH	1729	1723	1726	1723	1707	[49]
Aromatic ring $C = C$ and $C = O$, stretching	1622	1615	1622	1619	1603	<u>[49]</u>
-COOH	1511	1517	1511	1524		[49]
C-H, bonding	1448	1451	1448	1448	1438	[48]
-COO, symmetric stretching	1375	1378	1375	1375		[<u>50]</u>
C-H, deformation	1264	1277		1277	1283	[<u>51]</u>
C = O	1178	1220	1220			[49]
C-O, close to aromatic ring	1042	1045	1045	1045		[<u>51]</u>
N-H, O-H, bending	874	874	874	871	757	[48]

doi:10.1371/journal.pone.0125428.t001

natural pigment and synthetic melanin was the solubility in water, observed only for pigments from *B. weihenstephanensis*.

Next generation whole genome sequencing and a set of biochemical tests indicate that melanin-like pigment synthesis by *B*. *weihenstephanensis* could be associated with the laccase activity

Shotgun sequencing of *B. weihenstephanensis* strain JAS 83/3 was performed to identify genes associated with melanin-like pigment synthesis. We found genes encoding enzymes potentially involved in the synthesis of melanin such as: laccase, phenylalanine 4-monooxygenase, pterin-4-alpha-carbinolamine dehydratase, aromatic amino acid aminotransferase, and 4-hydroxy-phenylpyruvate dioxygenase. It is worth adding that JAS 83/3 genome consisted of 5,902,407 bp and contained 5,362 coding sequences (CDSs), 347 pseudogenes, and 99 RNA operons (seven rRNA, 91 tRNA and one ncRNA).

In a set of biochemical tests, no inhibitory effect on the melanin-like pigment synthesis by environmental *B. weihenstephanensis* isolates was observed after supplementation of bacterial culture with arginine and kojic acid (tyrosinase inhibitors), sulcotrione (an inhibitor of 4-hydroxyphenylpyruvate dioxygenase in the HGA pathway) and tricyclazole (an inhibitor of hydroxynaphthalene reductase in the DHN pathway). On the other hand, the addition of 0.1 mM sodium azide, which inhibits laccase, resulted in the inhibition of melanin-like pigment production, indicating that laccase is a key enzyme in the pigment synthesis among *B. weihen-stephanensis* strains. The addition of higher concentrations of sodium azide resulted in inhibition of bacterial growth. The effects of tested chemicals on melanin-like pigment production in isolates are presented in Fig.5.

Discussion

Although many microorganisms have been known to synthesize melanin [11–15], B. cereus s.l. species able to produce this pigment are extremely rare in nature [32, 33]. In this study we found only six B. weihenstephanensis melanin-positive isolates within a B. cereus s.l. collection of about 950 strains of different origin. However, only four strains originated from Jasienowka farm were able to produce melanin-like pigment in/on different media steadily when the experiments were conducted. Chemicals used in agriculture, such as mineral fertilizers or plant protection products, change bacterial communities [52] and may induce mutation(s) altering biochemical pathways associated with melanin synthesis in microorganisms [34, 53]. Melanin producers from Northeastern Poland showed phenotypic and genotypic similarity with psychrotolerant B. weihenstephanensis DSMZ 11821 reference strain [19]. Within B. cereus group, the adaptation to low temperatures was regarded to be a characteristic of B. weihenstephanensis [19]. However, recent studies have indicated that psychrotolerance is also present among other members of the B. cereus group isolated from Northeastern Poland, one of the coldest region in Poland (Institute of Meteorology and Water Management in Poland, http://www.imgw.pl/ klimat/), and revealed the existence of thermal ecotype among soil isolates [37, 41]. B. weihenstephanensis strains able to grow at low temperatures seem to be perfectly adapted to the habitat they occupy in Northeastern Poland.

The cluster analysis based on biochemical properties, 16S rRNA and housekeeping genes sequences indicated a close relationship among melanin-like pigment producers. A previous study showed that the community of soil *B. cereus s.l.* strains from Northeastern Poland was genetically diverse, and this diversity mostly resulted from mutation events [37]. Belotte et al. [54] noted that environmental heterogeneity, selectable genetic variation and divergent selection were prerequisites for the emergence of local adaptation. Thus, high similarity of melanin-

Fig 5. Putative pathways of melanin synthesis and the inhibition tests for pigment production by *B. weihenstephanensis* isolates. TYR, tyrosinase (EC 1.14.18.1); L-DOPA, L-3,4-dihydroxyphenylalanine; DOPA-Q, Dopa-quinone; LAC, laccase (EC 1.10.3.2); TAT, tyrosine aminotransferase (EC 2.6.1.5); ArAT, aromatic amino acid aminotransferase (EC 2.6.1.57); 4-HPPA, 4-hydroxyphenylpyruvic acid; 4-HPPD, 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27); HGA, homogentisic acid; PKS-1, polyketide synthase type I; 1,3,6,8 THN, 1,3,6,8-tetrahydroxynaphthalene; THR, Hydroxynaphthalene reductase; SCD, scytalone dehydratase (EC 4.2.1.94); 1,3,8 THN, 1,3,8-trihydroxynaphthalene; 1,8 DHN, 1,8-dihydroxynaphthalene; DHN-Melanin, dihydroxynaphthalene melanin; RppA, polyketide synthase type III; P450-mel, cytochrome P-450 enzyme; HPQ, 1,4,6,7,9,12-hexahydroxyperylene-3,10-quinone; HPQ-Melanin, hexahydroxyperylenequinone melanin; C, control. The dotted line represents the non-enzymatic reactions (oxidation and/or polymerization). Abbreviations of inhibited enzymes are marked in red color.

doi:10.1371/journal.pone.0125428.g005

PLOS ONE

positive strains derived from genetically polymorphic population indicated that melanogenesis among soil *B. weihenstephanensis* might be a local adaptation to specific environmental niches which protects these bacteria from adverse environmental factors, such as UV light [2] extreme temperatures [5] or heavy metals [55]. Similarly, Wang et al. [53] also observed high clonality among natural melanin-producing *Vibrio cholerae* strains and suggested an environmental protective function of melanin in the *V. cholerae* community. This raised a question, why bacteria able to produce melanin are very rare in natural environments? We assumed that

melanin-like pigment synthesis among *B. weihenstephanensis* entails a fitness cost due to the energy expensive pathway involving laccase and/or polymerization of the pigment. Yet, the benefit of extracellular melanin-like pigment production could be shared with co-occurring bacteria which do not synthesize the pigment. Such a cooperation of bacteria to reduce production costs were observed for entomopathogenic toxin synthesis by *B. thuringiensis* [56], a close relative of *B. weihenstephanensis* [19, 21].

The presence of stable free radicals in all melanin pigments allowed the identification of the pigment as melanin using EPR spectroscopy. The similar shapes of EPR spectra of natural dark particles and the synthetic melanin confirmed the production of melanin pigment by environmental B. weihenstephanensis isolates. It was shown that o-Semiquinone free radicals (S = 1/2)with unpaired electrons localized on oxygen atoms were responsible for these melanin spectra [57]. Moreover, the typical broadening of melanin spectral curves was caused by dipolar interactions of free radicals in these polymers [58]. FT-IR spectroscopy, which gives precise information on main functional groups of an organic compound, also revealed similar spectra for "environmental" melanin-like pigment produced by soil B. weihenstephanensis isolates and synthetic melanin, indicating their phenolic character. Some differences in FT-IR spectra of environmental pigment and commercial melanin could result from the procedure of pigment extraction and purification, e.g. the usage of ethanol. According to the actual definition, melanin is a dark in color substance, insoluble in aqueous or organic solvents, resistant to concentrated acid and susceptible to bleaching by oxidizing agents [1]. Physicochemical properties of B. weihenstephanensis melanin-like pigment and the synthetic one are comparable. It is worth emphasizing that the precipitation with ferric chloride, decolorization by hydrogen peroxide and infrared spectra, indicated the phenolic nature of melanin-like pigments synthesized by environmental B. weihenstephanensis. The solubility in water of "environmental" melanin was the only difference. Similar results, including also melanin-like pigment water-solubility, were observed by Aghajanyan et al. [34] for B. thuringiensis subsp. galleriae strain K1 obtained by chemical mutagenesis from industrial bioinsecticide B. thuringiensis 69-6. However, in general melanin produced by bacteria was water-insoluble [32, 59]. Certainly, water-soluble melaninlike pigment as this produced by our B. weihenstephanensis isolates might have broader biotechnological applications in comparison to the insoluble pigment.

In microbial melanogenesis the most important enzyme seems to be tyrosinase, a monooxygenase which binds two copper ions within the active site by three conserved histidines residues [12]. Indeed, Liu et al. [33] identified the heat-inducible tyrosinase responsible for the pigment production by wild B. thuringiensis CCTCC AB 90010; however, we did not identify the gene encoding tyrosinase in B. weihenstephanensis JAS 83/3 genome. Nevertheless, there are several other enzymes potentially involved in melanin production, such as laccase or polyketide synthases [12, 13, 17]. Also some species produce melanin in a way of homogentisic acid polymerization [14, 53], yet little is known about these mechanisms among *B. cereus s.l.* Here, for the first time, we pointed out that laccase might be involved in the production of melanin-like pigment among strains belonging to the B. cereus group. While laccase is widely distributed in fungi and plants, in which it can be involved in melanin formation, lignolysis or detoxification, the activity of this enzyme in bacteria has been rarely documented [60, 61]. Laccase enzyme possesses three conservative histidine residues and it has a similar function to tyrosinase, but at the same time, it is activated under different conditions in different species [12]. In fact, the metabolic pathway of melanin synthesis with the participation of laccase is poorly understood and requires further investigation.

Conclusions

Only a limited number of *B. weihenstephanensis* isolates naturally produce melanin-like pigment. This process is probably associated with laccase activity. *B. weihenstephanensis* pigment producers from Northeastern Poland demonstrated a high level of phenotypic and genotypic similarity. Our study shed new light on the evolution and adaptation of *B. weihenstephanensis* to specific habitats. Because of possible applications, water-soluble melanin-like pigment produced by *B. weihenstephanensis* might be an alternative to commercial pigment, thus, it is worth further investigation.

Supporting Information

S1 Table. Phenotypic and genotypic characteristic of melanin-positive *Bacillus weihenstephanensis* isolates and the reference strains. (DOCX)

S2 Table. Chemical properties of melanin-like pigment synthetized by soil *B. weihenstephanensis* isolates in comparison to reference melanin. (DOCX)

Acknowledgments

We thank Prof. B. Pilawa and dr. M. Zdybel, Department of Biophysics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, for their contribution in EPR measurement.

Author Contributions

Conceived and designed the experiments: JMD IS. Performed the experiments: JMD MZ BKS KF. Analyzed the data: JMD IS. Contributed reagents/materials/analysis tools: JMD IS. Wrote the paper: JMD IS.

References

- Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. Cell Microbiol 2003; 5: 203–23. PMID: <u>12675679</u>
- Moeller R, Horneck G, Facius R, Stackebrandt E. Role of pigmentation in protecting *Bacillus* sp. endospores against environmental UV radiation. FEMS Microbiol Ecol 2005; 51: 231–36. PMID: <u>16329871</u>
- 3. Tada M, Kohno M, Niwano Y. Scavenging or quenching effect of melanin on superoxide anion and singlet oxygen. J Clin Biochem Nutr 2010; 46: 224–28. doi: <u>10.3164/jcbn.09-84</u> PMID: <u>20490317</u>
- Garcia-Rivera J, Cadsadevall A. Melanization of *Cryptococcus neoformans* reduces its susceptibility to the antimicrobial effects of silver nitrate. Med Mycol 2001; 39: 353–57. PMID: <u>11556765</u>
- Rosas AL, Casadevall A. Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol Lett 1997; 153: 265–72. PMID: <u>9271852</u>
- Geng J, Tang W, Wan X, Zhou Q, Wang X-J, Shen P, et al. Photoprotection of bacterial-derived melanin against ultraviolet A-induced cell death and its potential application as an active sunscreen. J Eur Acad Dermatol Venerol 2008; 22: 852–58. doi: <u>10.1111/j.1468-3083.2007.02574.x</u> PMID: <u>18312329</u>
- Amal AM, Abeer KA, Samia HM, Nadia AEH, Ahmed KA. Selection of pigment (melanin) production in Streptomyces and their application in printing and dyeing of wool fabrics. Res J Chem Sci 2011; 1: 22– 28.
- 8. Liu F, Yang W, Ruan L, Sun M. A *Bacillus thuringiensis* host strain with high melanin production for preparation of light-stable biopesticides. Ann Microbiol 2013; 63: 1131–35.
- 9. Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev 2000; 13: 708–17. PMID: 11023965

- Pinero S, Rivera J, Romero D, Cevallos MA, Martinez A, Bolivar F, et al. Tyrosinase from *Rhizobium* et/i is involved in nodulation efficiency and symbiosis-associated stress resistance. J Mol Microbiol Biotechnol 2007; 13: 35–44. PMID: <u>17693711</u>
- Plonka PM, Grabacka M. Melanin synthesis in microorganisms—biotechnological and medical aspects. Acta Biochem Pol 2006; 53: 429–43. PMID: <u>16951740</u>
- Singh S, Malhotra AG, Pandey A, Pandey KM. Computional model for pathway reconstruction to unravel the evolutionary significance of melanin synthesis. Bioinformation 2013; 9: 94–100. doi: <u>10.6026/</u> <u>97320630009094</u> PMID: <u>23390353</u>
- Eisenman HC, Mues M, Weber SE, Frases S, Chaskes S, Gerfen G, et al. Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiology 2007; 153: 3954–62. PMID: <u>18048910</u>
- Kotob SI, Coon SL, Quintero EJ, Weiner RM. Homogentisic acid is the primary precursor of melanin synthesis in *Vibrio cholerae*, a *Hyphomonas* strain, and *Schwenella colwelliana*. Appl Environ Microbiol 1995; 61: 1620–22. PMID: <u>7747976</u>
- Chatfield CH, Cianciottoo NP. The secreted pyomelanin pigment of *Legionella pneumophila* confers ferric reductase activity. Infect Immun 2007; 75: 4062–70. PMID: <u>17548481</u>
- Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, et al. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in *Aspergillus fumigatus*. Appl Environ Microbiol 2009; 75: 493–503. doi: 10.1128/AEM.02077-08 PMID: 19028908
- Cunha MM, Franzen AJ, Alviano DS, Zanardi E, Alviano CS, De Souza W, et al. Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of *Fonsecaea pedrosoi* against mouse macrophages. Microsc Res Tech 2005; 68: 377–84. PMID: 16358282
- Funa N, Funabashi M, Ohnishi Y, Horinouchi S. Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in *Streptomyces griseus*. J Bacteriol 2005; 187: 8149– 55. PMID: <u>16291687</u>
- Lechner S, Mayr R, Francis KP, Prüß BM, Kaplan T, Wießner-Gunkel E, et al. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 1998; 48: 1373–82. PMID: <u>9828439</u>
- Bartoszewicz M, Bideshi DK, Kraszewska A, Modzelewska E, Swiecicka I. Natural isolates of *Bacillus thuringiensis* display genetic and psychrotrophic properties characteristic of *Bacillus weihenstephanensis*. J Appl Microbiol 2009; 106: 1967–75. doi: 10.1111/j.1365-2672.2009.04166.x PMID: 19228255
- Ceuppens S, Boon N, Uyttendaele M. Diversity of *Bacillus cereus* group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol Ecol 2013; 84: 433–50. doi: 10.1111/1574-6941.12110 PMID: 23488744
- Swiecicka I. Natural occurrence of Bacillus thuringiensis and Bacillus cereus in eukaryotic organisms: a case for symbiosis. Biocontrol Sci Technol 2008; 18: 221–39.
- 23. Mock M, Fouet A. Anthrax. Ann Rev Microbiol 2001; 55: 647–71. PMID: 11544370
- 24. Logan NA. *Bacillus* and relatives in foodborne illness. J Appl Microbiol 2012; 112: 417–29. doi: <u>10.</u> <u>1111/j.1365-2672.2011.05204.x</u> PMID: <u>22121830</u>
- Crickmore N. Beyond the spore—past and future developments of *Bacillus thuringiensis* as a biopesticide. J Appl Microbiol 2006; 101: 616–19. PMID: <u>16907811</u>
- Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterization of systemic resistance in sugar beer elicited by a non-pathogenic, phyllosphere-colonizing *Bacillus mycoides*, biological control agent. Pathology 2002; 61: 289–98.
- 27. Guinebretière MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, et al. *Bacillus cyto-toxicus* sp. nov is a novel thermotolerant species of the *Bacillus cereus* group occasionally associated with food poisoning. Int J Syst Evol Microbiol 2013; 63: 31–40. doi: <u>10.1099/ijs.0.030627-0</u> PMID: <u>22328607</u>
- Jiménez G, Blanch AR, Tamames J, Rosselló-Mora R. Complete genome sequence of *Bacillus toyonensis* BCT-7112^T, the active ingredient of the feed additive preparation Toyocerin. Genome Announc 2013; 1: e01080–13. doi: <u>10.1128/genomeA.01080-13</u> PMID: <u>24356843</u>
- Abriouel H, Franz CMAP, Omar NB, Gálvez A. Diversity and applications of *Bacillus* bacteriocins. FEMS Microbiol Rev 2011; 35: 201–32. doi: <u>10.1111/j.1574-6976.2010.00244.x</u> PMID: <u>20695901</u>
- Liang TW, Liu CP, Wu C, Wang SL. Applied development of crude enzyme from *Bacillus cereus* in prebiotics and microbial community changes in soil. Carbohydr Polym 2013; 92: 2141–48. doi: <u>10.1016/j.</u> carbpol.2012.11.097 PMID: 23399269
- Banerjee D, Mondal A, Gupta M, Guhna AK, Ray L. Optimization of fermentation conditions for green pigment production from *Bacillus cereus* M¹₁₆ (MTCC5521) and its pharmacological application. Lett Appl Microbiol 2013; 58: 25–30. doi: <u>10.1111/lam.12151</u> PMID: <u>23992047</u>

- Chen Y, Deng Y, Wang J, Cai J, Ren G. Characterization of melanin produced by a wild-type strain of Bacillus thuringiensis. J Gen Appl Microbiol 2004; 50: 183–88. PMID: <u>15754243</u>
- Liu N, Zhang T, Wang YJ, Huang YP, Ou JH, Shen P, et al. A heat inducible tyrosinase with distinct properties from *Bacillus thuringiensis*. Lett Appl Microbiol 2004; 39: 407–12. PMID: <u>15482430</u>
- Aghajanyan AE, Hambardzumyan AA, Hovsepyan AS, Asaturian RA, Vardanyan AA, Saghiyan AA. Isolation, purification and physicochemical characterization of water-soluble *Bacillus thuringiensis* melanin. Pigment Cell Res 2005; 18: 130–35. PMID: <u>15760342</u>
- Ruan L, Huang Y, Zhang G, Yu D, Ping S. Expression of the *mel* gene from *Pseudomonas maltophilia* in *Bacillus thuringiensis*. Lett Appl Microbiol 2002; 34: 244–48. PMID: <u>11940152</u>
- Swiecicka I, Mahillon J. Diversity of commensal *Bacillus cereus sensu lato* isolated from the common saw bug (*Porcellio scaber*, Isopoda). FEMS Microbiol Ecol 2006; 56: 132–40. PMID: 16542411
- Drewnowska JM, Swiecicka I. Eco-genetic structure of *Bacillus cereus sensu lato* populations from different environments in Northeastern Poland. PLoS One 2013; 8: e80175. doi: <u>10.1371/journal.pone.</u> 0080175 PMID: <u>24312460</u>
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 2013; 30: 2725–29. doi: <u>10.1093/molbev/mst197</u> PMID: <u>24132122</u>
- Swiecicka I, de Vos P. Properties of *Bacillus thuringiensis* isolated from bank voles. J Appl Microbiol 2003; 94: 60–64. PMID: <u>12492924</u>
- 40. Gaviria Rivera AM, Priest FG. Pulsed field gel electrophoresis of chromosomal DNA reveals a clonal population structure to *Bacillus thuringiensis* that relates in general to crystal protein gene content. FEMS Microbiol Lett 2003; 223: 61–66. PMID: <u>12799001</u>
- Swiecicka I, Bartoszewicz M, Kasulyte-Creasey D, Drewnowska JM, Murawska E, Yernazarova A, et al. Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates. FEMS Microbiol Ecol 2013; 85: 262–72. doi: <u>10.1111/1574-6941.12116</u> PMID: <u>23521504</u>
- Sajjan S, Kulkarni G, Yaligara V, Kyoung L, Karegoudar TB. Purification and physiochemical characterization of melanin pigment from *Klebsiella* sp. GSK. J Microbiol Biotechnol 2010; 20: 1513–20. PMID: <u>21124055</u>
- Fava F, Gioia DD, Marchetti L. Characterization of a pigment produced by *Pseudomonas fluorescens* during 3-chlorobenzoate co-metabolism. Chemosphere 1993; 27: 825–835.
- Hoti SL, Balaraman K. Formation of melanin pigment by a mutant of *Bacillus thuringiensis* H-14. J Gen Microbiol 1993; 139: 2365–69. PMID: <u>8254306</u>
- Youngchim S, Pornsuwan S, Nosanchuk JD, Danakai W, Vanittanakom N. Melanogenesis in dermatophyte species in vitro and during infection. Microbiology 2011; 157: 2348–56. doi: <u>10.1099/mic.0.</u> 047928-0 PMID: 21565930
- 46. Minussi RC, Miranda MA, Silva JA, Ferreira CV, Aoyama H, Marangoni S, et al. Purification, characterization and application of laccase from *Trametes versicolor* for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. Afr J Biotech 2007; 6: 1248–54.
- 47. Ibarra JE, del Rincón MC, Ordúz S, Noriega D, Benintende G, Monneratet R, et al. Diversity of *Bacillus thuringiensis* strains from Latin America with insecticidal activity against different mosquito species. Appl Environ Microbiol 2003; 69: 5269–74. PMID: <u>12957913</u>
- Coates J. Interpretation of infrared spectra, a practical approach. In Mayers RA, editor. Encyclopedia of Analytical Chemistry. Chichester: Jon Wiley & Sons Ltd; 2006. pp. 10815–37.
- Kannan P, Ganjewala D. Preliminary characterization of melanin isolated from fruits and seeds of Nyctanthes arbor-tristis. J Sci Res 2009; 1: 655–61.
- Magarelli M, Passamonti P, Renieri C. Purification, characterization and analysis od sepia melanin from commercial sepia ink (Sepia officinalis). Rev CES Med Vet Zootech 2010; 5: 18–28.
- Kolczyński-Szafraniec U, Bilińska B. Infrared studies of natural pheomelanins. Curr Topics Biophys 1992; 16: 77–80.
- Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, et al. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 2008; 40: 2843–53.
- Wang R, Wang H, Zhou H, Wang Y, Yue J, Diao B, et al. Characters of homogentisate oxygenase gene mutation and high clonality of the natural pigment-producing *Vibrio cholerae* strains. BMC Microbiol 2011; 11: 109. doi: 10.1186/1471-2180-11-109 PMID: 21592381
- Belotte D, Curien J-B, Maclean RC, Bell G. An experimental test of local adaptation in soil bacteria. Evolution 2003; 57: 27–36. PMID: <u>12643565</u>
- Nair S, Chandramohan D, Loka Bharathi PH. Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics. Water Res 1992; 26: 413–36.

- 56. Raymond B, West SA, Griffin AS, Bonsall MB. The dynamics of cooperative bacterial virulence in the field. Science 2012; 337: 85–88. doi: 10.1126/science.1218196 PMID: 22767928
- 57. Zdybel M, Chodurek E, Pilawa B. Free radicals in ultraviolet irradiated melanins and melanin complexes with Cd(II) and Cu(II)—EPR examination. J Appl Biomed 2015; doi: 10.1016/j.jab.2015.01.002
- Zdybel M, Pilawa B, Buszman E, Wrzesniok D, Krzyminiewski R, Kruczynski Z. Effect of microwave power on EPR spectra of DOPA-melanin-netilmicin complexes with different drug concentrations—a study at temperatures in the range of 125–275 K. Nukleonika 2013; 58: 407–11.
- 59. Ganesh Kumar C, Sahu N, Narender Reddy G, Prasad RBN, Nagesh N, Kamal A. Production of melanin pigment from *Pseudomonas stutzeri* isolated from red seaweed *Hypnea musciformis*. Lett Appl Microbiol 2013; 57: 295–302. doi: 10.1111/lam.12111 PMID: 23725061
- Solano F, Lucas-Elío P, López-Serrano D, Fernández E, Sanchez-Amat A. Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 2001; 204: 175–81. PMID: 11682198
- Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the *Bacillus subtilis* endospore coat. J Biol Chem 2002; 277: 18849–59. PMID: <u>11884407</u>

Supporting Information Table S1. Phenotypic and genotypic characteristic of melanin-positive *Bacillus weihenstephanensis* isolates and the reference strains.

Feature ^a		Strain ^b												
	B.w. JAS 39-1	B.w. JAS 81-4	B.w. JAS 83-3	B.w. JAS 86-1	В. <i>w</i> . ВРN 08-1	B.w. BPN 08-4	В. <i>w</i> . DSM 11821	<i>B.t.</i> HD1	<i>B.t.</i> HD73	B.t. HD567	B.t. HD867	B.c. ATCC 10987	B.c. ATCC 14579	
Growth at:														
7°C	+	+	+	+	+	+	+							
30°C	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nucleotide motif in the <i>cspA</i> gene:														
Psychrophilic ⁴ ACAGTT ⁹	+	+	+	+	+	+	+							
Mesophilic ⁴ GCAGTA ⁹								+	+	+	+	+	+	
Nucleotide motif in the 16S rDNA gene:														
Psychrophilic ¹⁰⁰² TCTAGAGATAGA ¹⁰¹³	+	+	+	+	+	+	+							
Mesophilic ¹⁰⁰² CCTAGAGATAGG ¹⁰¹³								+	+	+	+	+	+	

Parasporal crystal presence								+	+	+	+		
Fermentation of ^c :													
Glycerol								+		+	+		
D-mannose										+	+	+	
Arbutin	+	+	+	+	+	+	+	+	+		+	+	+
Salicin	+	+	+	+	+	+	+	+	+		+	+	+
Cellobiose					+	+		+	+		+	+	+
Sucrose	+	+		+	+	+					+	+	+
Arginine dihydrolysis					+	+							
Liquefaction of gelatin	+	+	+	+	+	+	+					+	

^a For clarity negative results are omitted.

^b JAS, isolates from a farmland in Jasienowka in Northeastern Poland; BPN, isolates from Białowieża National Park; *B.w., B. weihenstephanensis*; *B.t., B. thuringiensis*; *B.c., B. cereus*; *B.w.* DSMZ 11821, *B. weihenstephanensis* DSMZ 11821 type strain (German Collection of Microorganisms and Cell Cultures); *B.t.* HD1, *B. thuringiensis* HD1 (*Bacillus* Genetic Stock Center, Ohio State University, Columbus, USA, BGSC); *B.t.* HD73, *B. thuringiensis* HD73 (BGSC); *B.t.* HD567, *B. thuringiensis* HD567 (BGSC); *B.t.* HD867, *B. thuringiensis* HD867 (BGSC); *B.c.* ATCC 10987, *B. cereus* ATCC 10987 (American Type Culture Collection); ATCC 14579, *B. cereus* ATCC 14579 (American Type Culture Collection); ^c Only variable results are given. All isolates and the reference strains fermented: ribose, D-glucose, D-fructose, N-acetyloglucosamine, aesculin, maltose, trehalose, glycogen, starch, and gave negative results in the VP test. All isolates and the reference strains were negative for fermentation of: erythritol, D-arabinose, L-arabinose, D-xylose, L-xylose, adonitol, methyl-D-xyloside, galactose, L-sorbose, rhamnose, dulcitol, inositol, mannitol, sorbitol, α methyl-D-mannoside, α methyl-D-glucoside, amygdalin, lactose, melibiose, inuline, melezitose, D-raffinose, xylitol, β -gentiobiose, D-turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, gluconate, 2-keto-gluconate, 5-keto-gluconate. In addition the bacilli under study were negative in the following tests: presence of β -galactosidase (test ONPG), lysine decarboxylation, ornithine decarboxylation, citrate utilization, H₂S production, presence of urease, tryptophane deamination, and indole production.

Supporting Information Table S2. Chemical properties of melanin-like pigment synthetized

by soil Bacillus weihenstephanensis isolates in comparison to reference melanin.

Test	Melanin								
	Produced by <i>Bacillus</i> <i>weihenstephanensis</i> isolates	Comercial							
Color	Blackish-brown	Blackish-brown							
Solubility in:									
Water	+	-							
1 N NaOH	+	+							
Ethanol	-	-							
Acetone	-	-							
Chloroform	-	-							
Benzene	-	-							
Phenol	+	+							
Precipitation:									
1N HCl	+	+							
1% FeCl ₃	+	+							
Decolorization in:									
30% H ₂ O ₂	+	+							
5% Na ₂ S ₂ O ₄	+	+							

Summary

In my doctoral thesis I have undertaken large-scale phylogenetic and genetic structure studies on *B. cereus s.l.* isolates in order to shed some light on the evolution and ecological speciation of this group of bacteria. As it has been proven that the diversity of habitats has a significant impact on the bacterial divergence [Zwick *et al.*, 2012], I tested 297 bacilli (*B. cereus/B. weihenstephanensis*, n=102; *B. thuringiensis*, n=111; *B. mycoides/B. pseudomycoides*, n=84), originated from four natural habitats in Northeastern Poland, which varied in the level of nutrients, physico-chemical properties, and the scope of human activity. It is generally accepted, that soil, which is heterogeneous in nutrients, particle size, pH, humidity and microbiota, creates favorable conditions for bacterial adaptation and diversification [Guinebretière *et al.*, 2008; McArthur, 2006; Raymond *et al.*, 2010]. Indeed, I demonstrated high genetic diversity in populations of *B. cereus s.l* and proved that this heterogeneity resulted mostly from mutation events (Appendix 2). I also observed that even soil with low concentrations of nutrients from farm sampling, facilitated bacterial genetic divergence.

Hypothesis 1:

Particular *B. cereus s.l.* genetic lineages cover isolates possessing the same specific ecological properties encoded by chromosomal genes.

Dynamic genetic diversification exists in natural populations of *B. cereus s.l.* allowing these bacteria to adapt to different ecological niches, and thereby splitting the population into ecologically distinct ecotypes, identified as DNA sequence lineages [Koeppel *et al.*, 2013]. More often an ecotype can encompass distinct evolutionary lineages [Cohan, 2006]. In my studies, I found 199 *B. cereus s.l.* isolates (67%) having the ability to grow at low temperature. The largest number of the psychrotrophic isolates was found

within the Białowieża National Park population. Based on the MLST methodology, lineages of psychrotolerant strains occurred predominantly within the clade III, what strongly supports the hypothesis on the existence of thermal ecotypes within the *B*. *cereus* group (Appendixes 1 and 2).

While the first report (Appendix 1) showed the cytotoxic pathotypes associated with particular lineages among 24 *B. thuringiensis* strains, further studies on 273 *B. cereus s.l.* isolates (Appendix 2), revealed that the *cytK* gene was mainly associated and expressed within the strains isolated from farm samplings. It is worth adding, that the *cytK*-positives were classified to all *B. cereus s.l.* species under study, and were intermixed among clades on the phylogenetic tree. Although these results do not support the hypothesis that particular *B. cereus s.l.* genetic lineages contain isolates possessing cytotoxic potential (CytK pathotype), it is in line with the opportunistic pathogenicity model of *B. cereus s.l.*, where the ability to cause various diseases has no association with specific pathotypes [Ceuppens *et al.*, 2013].

Interestingly, I showed that only a limited number of *B. cereus s.l.* isolates naturally produce the melanin pigment (Appendix 3). Altogether, six melanin-positive strains of B. weihenstephanensis from genetically polymorphic populations (the Białowieża National Park and farm in Jasienowka), demonstrated a high level of phenotypic and genotypic similarity. Certainly, melanogenesis among psychrotolerant B. weihenstephanensis strains might be a local adaptation to specific environmental niches. Moreover, these isolates did cluster together on the phylogenetic tree (Appendixes 2 and 3), what strongly supports the hypothesis on the existence of a melanotype in the B. cereus group. It is known that melanin protects microorganisms from adverse environmental factors, such as UV light [Moeller et al., 2005], extreme temperatures [Rosas et al., 1997] or heavy metals [Nair et al., 1992]. If this is the case, then why B. cereus s.l. able to produce the melanin pigment are so rare in the nature? I assumed that melanin synthesis entails a fitness cost due to the energy expensive pathway involving laccase and/or the polymerization of the pigment. Another explanation is that, the benefit of extracellular melanin production could be shared with co-occurring bacteria which do not synthesize the pigment [Raymond *et al.*, 2012]. It is worth adding, that it has been the first report (Appendix 3) of the melanin synthesis by B.

weihenstephanensis. The application of the next generation whole genome sequencing and a set of biochemical tests, allowed me to conclude that melanin synthesis by *B*. *weihenstephanensis* is associated with laccase activity.

Hypothesis 2:

B. cereus s.l. revealing distinct genotypes (ecotypes) occur in particular habitats.

A relatively large number of samples of *B. cereus s.l.* from ecologically different environments, allowed to test the hypothesis on the occurrence of distinct genotypes (ecotypes) of *B. cereus s.l.* in particular habitats (Appendix 2). The phylogenic studies showed a strong correlation between the clade designation and the origin of isolates. I demonstrated that almost all isolates originated from Białowieża NP clustered in clade III (97%). The bacilli isolated from farm clustered within clade I (14%), II (13%), III (71%), and IV (2%), while the bacteria from Biebrza NP clustered in proportions 17%, 28% and 55%, respectively. I identified new STs for 78% of the isolates (especially among strains acquired from Białowieża National Park) and the presence of a significantly high number of genotypes (92%) within B. cereus s.l. populations that are habitat-specific. In addition, geoBURST analyses grouped the strains into 19 clonal complexes and 80 singletons, which mostly comprised strains originating from single environments. The occurrence of the large number of specific genotypes within natural B. cereus s.l. populations, as well as the presence of cytotoxic strains mainly among farm samplings described above, strongly support the hypothesis on the occurrence of distinct genotypes (ecotypes) of *B. cereus* s.l. in particular habitats. On the other hand, 8 % of genotypes occurred simultaneously in more than one habitat and, to some extent, did seem to be niche specialists. The majority of these genotypes belong to the largest clonal complexes CC223 or CC650, which are representative for clades II and III, respectively. Such STs probably represent polyphyletic genotypes occupying different environmental habitats, as reported for *B. thuringiensis* HD73 [Raymond et al., 2010].

Hypothesis 3:

Environmental *B. cereus s.l.* are highly genetically related and should be classified as one species.

The taxonomy of *B. cereus s.l.* is complex and some microbiologists disagree with the separation of *B. cereus s.l.* into distinct species [Helgason *et al.*, 2000; Priest *et al.*, 2004]. In the phylogenetic analyses I revealed four clades defined according to Priest *et al.* [2004], in which particular species were intermixed. I identified 68, 54, and 19 genotypes of *B. cereus s.s.*, *B. thuringiensis*, and *B. mycoides*, respectively. However, only seven STs contained isolates classified into two species, while three species together did not occur in one ST. Moreover, in geoBURST analyses the particular species tend to cluster into distinct clonal complexes. Especially *B. mycoides/B. pseudomycoides*, forming four CCs covering 93% strains, showed higher genetic similarity than *B. cereus/B. weihenstephanensis* or *B. thuringiensis*. **These results have not confirmed the hypothesis that environmental** *B. cereus s.l.* **should be classified to one species. It seems that in contrast to the human-associated** *B. cereus s.l.* **exhibiting high levels of similarities, the environmental isolates are more intricate. I proposed dividing** *B. cereus s.l.* **into two groups, the first of which contains environmental isolates, and the second is composed of those that may be clinically significant.**

Detailed genetic, phenotypic and biochemical analyses of the environmental *B*. *cereus s.l.* strains shed new light on the evolution and ecological adaptation of these bacteria to specific soil habitats differing in scope of human activity. In addition, the gaps in the knowledge on this group's biology are further complemented by taking into account the *B. mycoides* species which are often omitted by researchers when studying the *B. cereus s.l.* group.

Conclusions

- 1. The ability of growth at low temperatures (thermal ecotype) is a common adaptation among members of *B. cereus s.l.* from Northeastern Poland.
- 2. Cytotoxic pathotype within *B. cereus s.l.* is mainly associated with environments where human activity is extensive.
- 3. Melanotype among *B. cereus s.l.* appears occasionally and seems to be a local adaptation to specific niches.
- 4. Soil *B. cereus s.l* populations are clonal in nature and their genetic diversity results mostly from mutation events and purging effects of purifying selection.
- 5. Taxonomy of environmental *B. cereus s.l.* is more complex in contrast to the human-associated isolates of the group. *B. cereus s.l.* should be divided into environmental and clinically significant subgroups.

References

- Abriouel H, Franz CMAP, Omar NB, Gálvez A (2011) Diversity and applications of *Bacillus bacteriocins*. FEMS Microbiol Rev 35: 201-32.
- Aghajanyan AE, Hambardzumyan AA, Hovsepyan AS, *et al.* (2005) Isolation, purification and physicochemical characterization of water-soluble *Bacillus thuringiensis* melanin. Pigment Cell Res 18: 130-5.
- Barker M, Thakker B, Priest FG (2005) Multilocus sequence typing reveals that *Bacillus cereus* strains isolated from clinical infections have distinct phylogenetic origins. FEMS Microbiol Let 245: 179-84.
- Bartoszewicz M, Bideshi DK, Kraszewska A, et al. (2009) Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic characteristic of Bacillus weihenstephanensis. J Appl Microbiol 106: 1967-75.
- Benerjee D, Mondal A, Gupta M, *et al.* (2013) Optimization of fermentation conditions for green pigment production from *Bacillus cereus* M¹₁₆ (MTCC5521) and its pharmacological application. Lett Appl Microbiol 58: 25-30.
- Blackburn MB, Martin PAW, Kuhar D, *et al.* (2013) Phylogenetic distribution of phenotypic traits in *Bacillus thuringiensis* determined by multilocus sequence analysis. PLoS ONE 8: e66061.
- Bolt F, Cassiday P, Tondella ML, *et al.* (2010) Multilocus sequence typing identifies evidence for recombination and two distinct lineages of *Corynebacterium diphtheriae*. J Clin Microbiol 48: 4177-85.

- Bullied WJ, Buss TJ, Vessey JK (2002) *Bacillus cereus* UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: field studies. Can J Plant Sci 82: 291-8.
- Cardazzo B, Negrisolo E, Carraro L, *et al.* (2008) Multiple-locus sequence typing and analysis of toxin genes in *Bacillus cereus* food-borne isolates. App Environ Microbiol 74: 850-60.
- Ceuppens S, Boon N, Uyttendaele M (2013) Diversity of *Bacillus cereus* group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol Ecol 84: 433-50.
- Chen Y, Deng Y, Wang J, *et al.* (2004) Characterization of melanin produced by a wildtype strain of *Bacillus thuringiensis*. J Gen Appl Microbiol 50: 183-8.
- Cohan FM (2000) Periodic selection and ecological diversity in bacteria [in] Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience.
- Cohan FM (2006) Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Phil Trans R Soc B 361: 1985-96.
- Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56: 457-86.
- Cohan FM, Koeppel AF (2008) The origins of ecological diversity in prokaryotes. Curr Biol 18: 1024-34.
- Cohan FM, Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17: 373-86.
- Connor N, Sikorski J, Rooney AP, *et al.* (2010) Ecology speciation in the genus *Bacillus*. Appl Environ Microbiol 76: 1349-58.
- Crickmore N (2006) Beyond the spore past and future developments of *Bacillus thuringiensis* as a biopesticide. J Appl Microbiol 101: 616-9.
- Didelot X, Barker M, Falush D, Priest FG (2009) Evolution of pathogenicity in the *Bacillus cereus* group. Sys Appl Microbiol 32: 81-90.

- Dolittle WF, Zhaxybayeva O (2009) On the origin of prokaryotic species. Genome Res 19: 744-56.
- Ehling-Schulz M, Svensson B, Guinebretiere M-H, et al. (2005) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151: 183-97.
- Fegerlund A, Brillard J, Furst R, *et al.* (2007) Toxin production in a rare and genetically remote cluster of strains of the *Bacillus cereus* group. BMC Microbiology 7: 43.
- Garcia-Rivera J, Casadevall A (2001) Melanization of *Cryptococcus neoformans* reduces its susceptibility to the antimicrobial effects of silver nitrate. Med Mycol 39: 353-7.
- Guinebretière MH, Auger S, Galleron N, *et al.* (2013) *Bacillus cytotoxicus* sp. nov. is a novel thermotolerant species of the *Bacillus cereus* group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63: 31-40.
- Guinebretière MH, Thompson FL, Sorokin A, *et al.* (2008) Ecological diversification in the *Bacillus cereus group.* Environ Micriobiol 10: 851-65.
- Guinebretiere M-H, Velge P, Couvert O, *et al.* (2010) Ability of *Bacillus cereus* group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J Clin Microbiol 48: 3388-91.
- Hansen BM, Hendriksen NB (2001) Detection of enterotoxic *Bacillus cereus* and *Bacillus thuringiensis strains* by PCR analysis. Appl Environ Microbiol 67: 185-9.
- Helgason E, Okstad OA, Caugant DA, et al. (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - one species on the basis of genetic evidence. Appl Environ Microbiol 66: 2627-30.
- Hoffmaster AR, Hill KK, Gee JE, *et al.* (2006) Characterization of *Bacillus cereus* isolates associated with fatal pneumonias: strains are closely related to *Bacillus anthracis* and harbor *B. anthracis* virulence genes. J Clin Microbiol 44: 3352-60.

- Hoffmaster AR, Novak RT, Marston CK, *et al.* (2008) Genetic diversity of clinical isolates of *Bacillus cereus* using multilocus sequence typing. BMC Microbiol 8: 1-9.
- Hoffmaster AR, Ravel J, Rasko DA, *et al.* (2004) Identification of anthrax toxin genes in a *Bacillus cereus* associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101: 8449-54.
- Horner-Devine MC, Carney KM, Bohannan BJM (2004) An ecological perspective on bacterial biodiversity. Proc Biol Sci 271: 113-22.
- Hoton F, Fornelos N, N'Guessan E, et al. (2009) Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ Microbiol Rep 1: 177-83.
- Jiménez G, Blanch AR, Tamames J, Roselló-Mora R (2013) Complete genome sequence of *Bacillus toyonensis* BCT-7112^T, the active ingredient of the feed additive preparation Toyocerin. Genome Announc 1: e01080-13.
- Koeppel AF, Wertheim JO, Barone L, *et al.* (2013) Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. The ISME J 7: 1080-91.

Lechner S, Mayr R, Francis KP, *et al.* (1998) *Bacillus weihenstephanensis* sp. nov. is a new psychrotolerant species of the *Bacillus cereus* group. Int J Syst Bacteriol 48: 1373-82.

- Liang TW, Liu CP, Wu C, Wang SL (2013) Applied development of crude enzyme from *Bacillus cereus* in prebiotics and microbial community changes in soil. Carbohydr Polym 92: 2141-8.
- Liu N, Zhang T, Wang YJ, *et al.* (2004) A heat inducible tyrosinase with distinct properties from *Bacillus thuringiensis*. Lett Appl Microbiol 39: 407-12.
- Logan NA (2012) *Bacillus* and relatives in foodborne illness. J Appl Microbiol 112: 417-29.

- Maiden MCJ, Bygraves JA, Feil E, *et al.* (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95: 3140-5.
- Marston CK, Gee JE, Popovic T, Hoffmaster AR (2006) Molecular approaches to identify and differentiate *Bacillus anthracis* from phenotypically similar *Bacillus* species isolates. BMC Microbiolgy 6: 22.
- Materna AC, Friedman J, Bauer C, *et al.* (2012) Shape and evolution of the marine *Vibrio*. ISMEJ 6: 2168-77.
- Mayr E (1944) Systematics and the origin of species from the viewpoint of a zoologist. New York: Columbia Univ Press.
- McArthur JV (2006) Microbial Ecology. An evolutionary approach. Academic Press: 253-95.
- Mock M, Fouet A (2001) Anthrax. Ann Rev Microbiol 55: 647-71.
- Moeller R, Horneck G, Facius R, Stackbrandt E (2005) Role of pigmentation in protecting *Bacillus* sp. endospores against environmental UV radiation. FEMS Microbiol Ecol 51: 231-6.
- Nair S, Chandramohan D, Loka Bharathi PH (1992) Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics. Water Res 26: 413-36.
- Nakamura LK (1998) Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48: 1031-5.
- Nakamura LK, Jackson MA (1995) Clarification of the taxonomy of *Bacillus mycoides*. Int J Syst Bacteriol 45: 46-9.
- Pinero S, Rivera J, Romero D, et al. (2007) Tyrosinase from *Rhizobium etii* is involved in nodulation efficiency and symbiosis-associated stress resistance. J Mol Microbiol Biotechnol 13: 35-44.
- Priest FG, Barker M, Baillie LWJ, *et al.* (2004) Population structure and evolution of the *Bacillus cereus* group. J Bacteriol 186: 7959-70.

- Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the *Bacillus cereus* group of organisms. FEMS Microbiol Rev 29: 303-29.
- Raymond B, West SA, Griffin AS, Bonsall MB (2012) The dynamics of cooperative bacterial virulence in the field. Science 337: 85-8.
- Raymond B, Wyres KL, Sheppard SK, *et al.* (2010) Environmental factors determining the epidemiology and population genetic structure of the *Bacillus cereus* group in the field. PLoS Pathog 6: e1000905.
- Read TD, Peterson SN, Tourasse N, *et al.* (2003) The genome sequence of *Bacillus anthracis* Ames and comparison to closely related bacteria. Nature 423: 81-6.
- Riley MA, Lizotte-Waniewski M (2009) Population genomics and the bacterial species concept. Methods Mol Biol 532: 367-77.
- Rosas AL, Casadevall A (1997) Melanization effects susceptibility of *Cryptococcus neoformans* to heat and cold. FEMS Microbiol Lett 153: 265-72.
- Ruan L, Huang Y, Zhang G, *et al.* (2002) Expression of the mel gene from *Pseudomonas maltophilia* in *Bacillus thuringiensis*. Lett Appl Microbiol 34: 244-8.
- Sacchi CT, Whitney AM, Mayer LW, *et al.* (2002) Sequencing of 16S rRNA gene: a rapid tool for identification of *Bacillus anthracis*. Emerg Inf Dis 8: 1117-23.
- Sikorski J, Nevo E (2007) Patterns of thermal adaptation of *Bacillus simplex* to the microclimatically contrasting slopes of 'Evolution Canyon' I and II, Israel. Environ Microbiol 9: 716-26.
- Sorokin A, Candelon B, Guilloux K, *et al.* (2006) Multiple-locus sequence typing analysis of *Bacillus cereus* and *Bacillus thuringiensis* reveals separate clustering and a distinct population structure of psychrotrophic strains. Appl Environ Microbiol 72: 1569-78.

- Soufiane B, Côté JC (2010) *Bacillus thuringiensis* serovars *bolivia, vazensis* and *navarrensis* meet the description of *Bacillus weihenstephanensis*. Curr Microbiol 60: 343-9.
- Swiecicka I (2008) Natural occurrence of *Bacillus thuringiensis* and *Bacillus cereus* in eukaryotic organisms: a case for symbiosis. Biocontrol Sci Tech 18: 221-39.
- Swiecicka I, Mahillon J (2006) Diversity of commensal *Bacillus cereus sensu lato* isolated from the common sow bug (*Porcellio scaber*, Isopoda). FEMS Microbiol Ecol 56: 132-40.
- Tada M, Kohno M, Niwano Y (2010) Scavenging or quenching effect of melanin on superoxide anion and singlet oxygen. J Clin Biochem Nutr 46: 224-8.
- Thorsen L, Hansen BM, Nielsen KF, *et al.* (2006) Characterization of emetic *Bacillus weihenstephanensis*, a new cereulide-producing bacterium. Apll Environ Microbiol 72: 5118-21.
- Tourasse N, Kolsto A-B (2007) SuperCAT: a supertree database for combined and integrative multilocus sequence typing analysis of the *Bacillus cereus* group of bacteria (including *B. cereus, B. anthracis* and *B. thuringiensis*). Nucleic Acids Res 36: D461-8.
- Tourasse N, Okstad OA, Kolsto A-B (2010) HyperCAT: an extension of the SuperCAT database for global multi-scheme and multi-datatype phylogenetic analysis of the *Bacillus cereus* group population. Database: doi:10.1093/database/baq017.
- Vassileva M, Torii K, Oshimoto M, *et al.* (2007) A new phylogenetic cluster of cereulideproducing *Bacillus cereus strains*. J Clin Microbiol 45: 1274-77.
- Vilas-Boas G, Sanchis V, Lereclus D, et al. (2002) Genetic differentiation between sympatric populations of *Bacillus cereus* and *Bacillus thuringiensis*. App Environ Microbiol 68: 1414-24.

- Von Stetten F, Mayr R, Scherer S (1999) Climatic influence on mesophilic *Bacillus cereus* and psychrotolerant *Bacillus weihenstephanensis* populations in tropical, temperate and alpine soil. Environ Microbiol 1: 503-15.
- Vos M, Wolf AB, Jennings SJ, Kowalchuk GA (2013) Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 37: 936-54.
- Ward DM, Bateson MM, Ferris MJ, *et al.* (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as special-like units linking microbial community composition, structure and function. Phil Trans R Soc B 361: 1997-2008.
- Zahner V, Silva AC, de Moraes GP, *et al.* (2013) Extended genetic analysis of Brazilian isolates of *Bacillus cereus* and *Bacillus thuringiensis*. Mem Inst Oswaldo Cruz, Rio de Janeiro 108: 65-72.
- Zwick ME, Joseph SJ, Didelot X, et al. (2012) Genomic characterization of the Bacillus cereus sensu lato species: Backdrop to the evolution of Bacillus anthracis. Genome Res 22: 1512-24.

Co-author's statements indicating their individual contribution to the publications declared as the subject matter of the PhD thesis

Izabela Święcicka, PhD, Assoc. Prof. Marek Bartoszewicz, PhD Daiva Kasulyte-Creasey, MSc Emilia Murawska, MSc Aliya Yernazarova, PhD Edyta Łukaszuk, MSc Jacques Mahillon, Prof. Monika Zambrzycka, MSc Beata Kalska-Szostko, PhD Krzysztof Fiedoruk, PhD

Białystok, 2016

University of Białystok

Institute of Biology 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland

Białystok, 11-03-2016

To whom it may concern

STATEMENT

I, undersigned Izabela ŚWIĘCICKA Ph.D., declare that my part:

- in the paper: Swiecicka I, Bartoszewicz M, Kasulyte-Creasey D, Drewnowska JM, Murawska E, Yernazarova A, Lukaszuk E, Mahillon J (2013) Diversity of thermal ecotypes and potential pathotypes of Bacillus thuringiensis soil isolates. FEMS Microbiol. Ecol. 85:262-72, included authorship of the general concept of the work, contribution of reagents, pulsed-field gel electrophoresis of genomic DNA, participation in data analysis and manuscript preparation, fulfilling the function of the corresponding author.
- in the paper: Drewnowska JM, Swiecicka I (2013) Eco-genetic structure of Bacillus cereus sensu lato population from different environments in northeastern Poland. PLoS ONE 8: e80175, included authorship of the general concept of the work, contribution of reagents, participation in data analysis and manuscript preparation, fulfilling the function of the corresponding author.
- in the paper: Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I (2015) Melanin-like pigment synthesis by soil Bacillus weihenstephanensis isolates from northeastern Poland. PLoS ONE 10: e0125428, included co-authorship of the work concept and participation in contribution of reagents, data analysis and editing the manuscript, fulfilling the function of the corresponding author.

Miscicka I. Święcicka

University of Białystok

Institute of Biology 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland

Białystok, 17-03-2016

To whom it may concern

STATEMENT

I, undersigned PhD Marek BARTOSZEWICZ, declare that my part:

Swiecicka I, Bartoszewicz M, Kasulyte-Creasey D, Drewnowska JM, in the paper: Murawska E, Yernazarova A, Lukaszuk E, Mahillon J (2013) Diversity of thermal ecotypes and potential pathotypes of Bacillus thuringiensis soil isolates. FEMS Microbiol. Ecol. 85:262-72, included multi locus sequence typing (MLST) of all isolates under study and identification of the hblA and nheA genes among Polish isolates.

Korreh BSCosiers Marek Bartoszewicz

London, March 11th, 2016

Daiva KASULYTE-CREASEY Bakeham Lane Egham Surrey TW20 9TY United Kingdom

To whom it may concern

STATEMENT

I, undersigned Daiva KASULYTE-CREASEY, declare that my part:

in the paper: Święcicka I., Bartoszewicz M., Kasulyte-Creasey D., Drewnowska J.M., Murawska E., Yernazarova A., Łukaszuk E., Mahillon J., 2013. Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates. FEMS Microbiol. Ecol. 85: 262-72, included (i) isolation and identification of *B. thuringiensis* strains from Lithuanian soil samples, (ii) DNA extraction, and (iii) detection of δ -endotoxin genes among Lithuanian isolates.

Jan -

Daiva Kasulyte-Creasey

University of Białystok

Institute of Biology 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland

Białystok, 11-03-2016

To whom it may concern

STATEMENT

I, undersigned Emilia MURAWSKA, declare that my part:

in the paper: Swiecicka I., Bartoszewicz M., Kasulyte-Creasey D., Drewnowska J.M., Murawska E., Yernazarova A., Lukaszuk E., Mahillon J. (2013) Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates. FEMS Microbiol. Ecol. 85:262-72, included detection of the *repX* and *repA* genes for all isolates and participation in manuscript preparation.

Emilie Annewska

Emilia Murawska

Almaty, March 11th, 2016

Dr Aliya YERNAZAROVA

Department of Biotechnology al-Farabi Kazakh National University 71 av Al Farabi 050121 Almaty Kazakhstan

STATEMENT

I declare that my part:

in the paper: Swiecicka I., Bartoszewicz M., Kasulyte-Creasey D., Drewnowska J.M., Murawska E., Yernazarova A., Lukaszuk E., Mahillon J., 2013. Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates. FEMS Microbiol. Ecol. 85: 262-72, included PCR detection of potential enterotoxigenic isolates based on the presence of the *hblA*, *nheA*, and *cytK* genes within Lithuanian collection of *Bacillus thuringiensis*.

Signature

University of Białystok

Institute of Biology 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland

Białystok, 19-03-2016

To whom it may concern

STATEMENT

I, undersigned Edyta ŁUKASZUK, declare that my part:

in the paper: Swiecicka I., Bartoszewicz M., Kasulyte-Creasey D., Drewnowska J.M., Murawska E., Yernazarova A., Lukaszuk E., Mahillon J. (2013) Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates. FEMS Microbiol. Ecol. 85:262-272, included isolation of *B. thuringiensis* strains from the Polish soil samples and DNA extraction from these isolates.

Edyta tukank

Edyta Łukaszuk

UCL Université catholique de Louvain

Faculty of Bioscience Engineering Laboratory of Food and Environmental Microbiology Jacques Mahillon, Professor

Louvain-la-Neuve, March 11th, 2008

To whom it may concern

STATEMENT

I, undersigned Pr Jacques MAHILLON, declare that my part:

in the paper: Swiecicka I., Bartoszewicz M., Kasulyte-Creasey D., Drewnowska J.M., Murawska E., Yernazarova A., Łukaszuk E., Mahillon J., 2013. Diversity of thermal ecotypes and potential pathotypes of *Bacillus thuringiensis* soil isolates. FEMS Microbiol. Ecol. 85: 262-72, included co-authorship of the work concept and participation in editing the manuscript.

Signature

J. MAHILLON

han secalitan ya medinas poyenye ya manjara sakadi here

University of Białystok

Institute of Biology 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland

Białystok, 20-03-2016

To whom it may concern

STATEMENT

I, undersigned Monika ZAMBRZYCKA, declare that my part:

in the paper: Drewnowska J.M., Zambrzycka M., Kalska-Szostko B., Fiedoruk K., Swiecicka I. (2015) Melanin-like pigment synthesis by soil Bacillus weihenstephanensis isolates from northeastern Poland, PLoS ONE 10(4): e0125428, included biochemical characteristic (API 50CHB and 20E tests) of melanin-positive strains, as well as pigment extraction and its purification.

Monika Zambrycke Monika Zambrzycka

University of Białystok

Institute of Biology 1K Konstanty Ciołkowski Street, 15-245 Białystok, Poland

Białystok, 11-03-2016

To whom it may concern

STATEMENT

I, undersigned Beata KALSKA-SZOSTKO PhD, declare that my part:

in the paper: Drewnowska J.M., Zambrzycka M., Kalska-Szostko B., Fiedoruk K., Swiecicka I. (2015) Melanin-like pigment synthesis by soil *Bacillus weihenstephanensis* isolates from northeastern Poland, PLoS ONE 10(4): e0125428, included characteristic of melanin pigment with Fourier transform infrared (FT-IR) spectroscopy.

Bihole- Sin

Signature

Medical University of Bialystok

Department of Microbiology

2C Adam Mickiewicz Street, 15-222 Bialystok, Poland

Białystok, 17-03-2016

To whom it may concern

STATEMENT

I, undersigned Krzysztof FIEDORUK PhD, declare that my part:

in the paper: Drewnowska J.M., Zambrzycka M., Kalska-Szostko B., Fiedoruk K., Swiecicka I. (2015) Melanin-like pigment synthesis by soil Bacillus weihenstephanensis isolates from northeastern Poland, PLoS ONE 10(4): e0125428, included cooperation in the performance of next generation whole genome sequencing.

Kayal Frebul

Krzysztof Fiedoruk