Analysis of Algorithms: An Example of a Sort Algorithm

Grzegorz Bancerek
Association of Mizar Users
Białystok, Poland

Abstract

Summary. We analyse three algorithms: exponentiation by squaring, calculation of maximum, and sorting by exchanging in terms of program algebra over an algebra.

MML identifier: AOFA_A01, version: 8.0.01 5.5.1167
The notation and terminology used in this paper have been introduced in the following articles: [37], [1], 2], [17], 3], [4], [13], [18], [34, [23], [29], [19], 20], [15], [5], [33], [6], [27], [38], [28], 30], [14], [7], 8], [31], [16], [24], [26], [35], [9], [21], 32], 39], 36], 10], 11], [25], 12], and [22].

1. Exponentiation by Squaring Revisited

Now we state the propositions:
(1) (i) $1 \bmod 2=1$, and
(ii) $2 \bmod 2=0$.
(2) Let us consider a non empty non void many sorted signature Σ, an algebra \mathfrak{A} over Σ, a subalgebra \mathfrak{B} of \mathfrak{A}, a sort symbol s of Σ, and a set a. Suppose $a \in($ the sorts of $\mathfrak{B})(s)$. Then $a \in($ the sorts of $\mathfrak{A})(s)$.
(3) Let us consider a non empty set I, sets a, b, c, and an element i of I. Then $c \in(i$-singleton $a)(b)$ if and only if $b=i$ and $c=a$.
(4) Let us consider a non empty set I, sets a, b, c, d, and elements i, j of I. Then $c \in(i$-singleton $a \cup j$-singleton $d)(b)$ if and only if $b=i$ and $c=a$ or $b=j$ and $c=d$. The theorem is a consequence of (3).

Let Σ be a boolean correct non empty non void boolean signature with integers with connectives from 4 and the sort at 1 and \mathfrak{A} be a non-empty algebra over Σ. We say that \mathfrak{A} is integer if and only if
(Def. 1) There exists an image \mathfrak{C} of \mathfrak{A} such that \mathfrak{C} is a boolean correct algebra over Σ with integers with connectives from 4 and the sort at 1 .

Now we state the propositions:
(5) Let us consider a non empty non void many sorted signature Σ and a non-empty algebra \mathfrak{A} over Σ. Then $\operatorname{Im~id}_{\alpha}=$ the algebra of \mathfrak{A}, where α is the sorts of \mathfrak{A}.
(6) Let us consider a non empty non void many sorted signature Σ. Then every non-empty algebra over Σ is an image of \mathfrak{A}. The theorem is a consequence of (5). Proof: \mathfrak{A} is \mathfrak{A}-image.
Let Σ be a boolean correct non empty non void boolean signature with integers with connectives from 4 and the sort at 1 . One can verify that there exists a non-empty algebra over Σ which is integer.

Let \mathfrak{A} be an integer non-empty algebra over Σ. Note that there exists an image of \mathfrak{A} which is boolean correct.

Let us note that there exists a boolean correct image of \mathfrak{A} which has integers with connectives from 4 and the sort at 1 .

Now we state the proposition:
(7) Let us consider a non empty non void many sorted signature Σ, a nonempty algebra \mathfrak{A} over Σ, an operation symbol o of Σ, a set a, and a sort symbol r of Σ. Suppose o is of type $a \rightarrow r$. Then
(i) $\operatorname{Den}(o, \mathfrak{A})$ is a function from (the sorts of $\mathfrak{A})^{\#}(a)$ into (the sorts of $\mathfrak{A})(r)$, and
(ii) $\operatorname{Args}(o, \mathfrak{A})=(\text { the sorts of } \mathfrak{A})^{\#(a)}$, and
(iii) $\operatorname{Result}(o, \mathfrak{A})=($ the sorts of $\mathfrak{A})(r)$.

Let Σ be a boolean correct non empty non void boolean signature and \mathfrak{A} be a boolean correct non-empty algebra over Σ. Observe that every non-empty subalgebra of \mathfrak{A} is boolean correct.

Let Σ be a boolean correct non empty non void boolean signature with integers with connectives from 4 and the sort at 1 and \mathfrak{A} be a boolean correct non-empty algebra over Σ with integers with connectives from 4 and the sort at 1 . Note that every non-empty subalgebra of \mathfrak{A} has integers with connectives from 4 and the sort at 1 .

Let X be a non-empty many sorted set indexed by the carrier of Σ. Let us observe that $\mathfrak{F}_{\Sigma}(X)$ is integer as a non-empty algebra over Σ.

Now we state the proposition:
(8) Let us consider a non empty non void many sorted signature Σ, algebras $\mathfrak{A}_{1}, \mathfrak{A}_{2}, \mathfrak{B}_{1}$ over Σ, and a non-empty algebra \mathfrak{B}_{2} over Σ. Suppose
(i) the algebra of $\mathfrak{A}_{1}=$ the algebra of \mathfrak{A}_{2}, and
(ii) the algebra of $\mathfrak{B}_{1}=$ the algebra of \mathfrak{B}_{2}.

Let us consider a many sorted function h_{1} from \mathfrak{A}_{1} into \mathfrak{B}_{1} and a many sorted function h_{2} from \mathfrak{A}_{2} into \mathfrak{B}_{2}. Suppose
(iii) $h_{1}=h_{2}$, and
(iv) h_{1} is an epimorphism of \mathfrak{A}_{1} onto \mathfrak{B}_{1}.

Then h_{2} is an epimorphism of \mathfrak{A}_{2} onto \mathfrak{B}_{2}.
Let Σ be a boolean correct non empty non void boolean signature with integers with connectives from 4 and the sort at 1 and X be a non-empty many sorted set indexed by the carrier of Σ. Let us note that there exists an including Σ-terms over X non-empty free variable algebra over Σ which is vf-free and integer.

Let Σ be a non empty non void many sorted signature. Let \mathfrak{T} be an including Σ-terms over X non-empty algebra over Σ. The functor FreeGenerator (\mathfrak{T}) yielding a non-empty generator set of \mathfrak{T} is defined by the term
(Def. 2) FreeGenerator (X).
Let X_{0} be a countable non-empty many sorted set indexed by the carrier of Σ and \mathfrak{T} be an including Σ-terms over X_{0} non-empty algebra over Σ. Let us observe that FreeGenerator (\mathfrak{T}) is $\operatorname{Equations}(\Sigma, \mathfrak{T})$-free and non-empty.

Let X be a non-empty many sorted set indexed by the carrier of Σ, \mathfrak{T} be an including Σ-terms over X algebra over Σ, and G be a generator set of \mathfrak{T}. We say that G is basic if and only if
(Def. 3) FreeGenerator $(\mathfrak{T}) \subseteq G$.
Let s be a sort symbol of Σ and x be an element of $G(s)$. We say that x is pure if and only if
(Def. 4) $\quad x \in($ FreeGenerator $(\mathfrak{T}))(s)$.
Observe that FreeGenerator (\mathfrak{T}) is basic.
Note that there exists a non-empty generator set of \mathfrak{T} which is basic.
Let G be a basic generator set of \mathfrak{T} and s be a sort symbol of Σ. One can check that there exists an element of $G(s)$ which is pure.

Now we state the proposition:
(9) Let us consider a non empty non void many sorted signature Σ, a nonempty many sorted set X indexed by the carrier of Σ, an including Σ terms over X algebra \mathfrak{T} over Σ, a basic generator set G of \mathfrak{T}, a sort symbol s of Σ, and a set a. Then a is a pure element of $G(s)$ if and only if $a \in($ FreeGenerator $(\mathfrak{T}))(s)$.
Let Σ be a non empty non void many sorted signature, X be a non-empty many sorted set indexed by the carrier of Σ, \mathfrak{T} be an including Σ-terms over X algebra over Σ, and G be a generator system over Σ, X, and \mathfrak{T}. We say that G is basic if and only if
(Def. 5) The generators of G are basic.
Observe that there exists a generator system over Σ, X, and \mathfrak{T} which is basic.

Let G be a basic generator system over Σ, X, and \mathfrak{T}. Note that the generators of G are basic.

In this paper Σ denotes a boolean correct non empty non void boolean signature with integers with connectives from 4 and the sort at $1, X$ denotes a non-empty many sorted set indexed by the carrier of Σ, \mathfrak{T} denotes a vf-free including Σ-terms over X integer non-empty free variable algebra over Σ, \mathfrak{C} denotes a boolean correct non-empty image of \mathfrak{T} with integers with connectives from 4 and the sort at $1, G$ denotes a basic generator system over Σ, X, and $\mathfrak{T}, \mathfrak{A}$ denotes a if-while algebra over the generators of G, I denotes an integer sort symbol of Σ, x, y, z, m denote pure elements of (the generators of $G)(I)$, b denotes a pure element of (the generators of $G)(($ the boolean sort of $\Sigma)), \tau$, τ_{1}, τ_{2} denote elements of \mathfrak{T} from I, P denotes an algorithm of \mathfrak{A}, and s, s_{1}, s_{2} denote elements of \mathfrak{C}-States(the generators of G).

Let Σ be a boolean correct non empty non void boolean signature and \mathfrak{A} be a non-empty algebra over Σ. The functor false \mathfrak{A} yielding an element of \mathfrak{A} from the boolean sort of Σ is defined by the term
(Def. 6) \neg true $_{\mathfrak{A}}$.
In this paper f denotes an execution function of \mathfrak{A} over \mathfrak{C}-States(the generators of G) and $\operatorname{States}_{b \nrightarrow \text { false }_{\mathbb{C}}}($ the generators of $G)$.

Now we state the proposition:
(10) false $_{\mathfrak{C}}=$ false.

Let Σ be a boolean correct non empty non void boolean signature, X be a non-empty many sorted set indexed by the carrier of Σ, \mathfrak{T} be an including Σ-terms over X algebra over Σ, G be a generator system over Σ, X, and \mathfrak{T}, b be an element of (the generators of $G)(($ the boolean sort of $\Sigma)), \mathfrak{C}$ be an image of $\mathfrak{T}, \mathfrak{A}$ be a pre-if-while algebra, f be an execution function of \mathfrak{A} over \mathfrak{C}-States(the generators of G) and States $_{b \rightarrow \text { false }_{\mathcal{C}}}($ the generators of $G), s$ be an element of \mathfrak{C}-States(the generators of G), and P be an algorithm of \mathfrak{A}. Note that the functor $f(s, P)$ yields an element of \mathfrak{C}-States(the generators of G). Let Σ be a non empty non void many sorted signature, \mathfrak{T} be a non-empty algebra over Σ, G be a non-empty generator set of \mathfrak{T}, s be a sort symbol of Σ, and x be an element of $G(s)$. The functor ${ }^{@} x$ yielding an element of \mathfrak{T} from s is defined by the term
(Def. 7) x.
Let us consider $\Sigma, X, \mathfrak{T}, G, \mathfrak{A}, b, I, \tau_{1}$, and τ_{2}. The functors $b \operatorname{leq}\left(\tau_{1}, \tau_{2}, \mathfrak{A}\right)$ and $b \operatorname{gt}\left(\tau_{1}, \tau_{2}, \mathfrak{A}\right)$ yielding algorithms of \mathfrak{A} are defined by the terms, respectively.
(Def. 8) $\quad b:=\mathfrak{A}\left(\operatorname{leq}\left(\tau_{1}, \tau_{2}\right)\right)$.
(Def. 9) $\quad b:=\mathfrak{A}\left(\neg \operatorname{leq}\left(\tau_{1}, \tau_{2}\right)\right)$.
The functor $2_{\mathfrak{T}}^{I}$ yielding an element of \mathfrak{T} from I is defined by the term (Def. 10) $1_{\mathfrak{T}}^{I}+1_{\mathfrak{T}}^{I}$.

Let us consider G, \mathfrak{A}, and b. Let us consider τ. The functors τ is $\operatorname{odd}(b, \mathfrak{A})$ and τ is even (b, \mathfrak{A}) yielding algorithms of \mathfrak{A} are defined by the terms, respectively.
(Def. 11) $b \operatorname{gt}\left(\tau \bmod 2_{\mathfrak{T}}^{I}, 0_{\mathfrak{T}}^{I}, \mathfrak{A}\right)$.
(Def. 12) $\quad b \operatorname{leq}\left(\tau \bmod 2{ }_{\mathfrak{T}}^{I}, 0_{\mathfrak{T}}^{I}, \mathfrak{A}\right)$.
Let us consider \mathfrak{C}. Let us consider s. Let x be an element of (the generators of $G)(I)$. Let us note that $s(I)(x)$ is integer.

Let us consider τ. Let us note that τ value $\operatorname{at}(\mathfrak{C}, s)$ is integer.
In the sequel u denotes a many sorted function from FreeGenerator(\mathfrak{T}) into the sorts of \mathfrak{C}.

Let us consider $\Sigma, X, \mathfrak{T}, \mathfrak{C}, I, u$, and τ. One can verify that τ value at (\mathfrak{C}, u) is integer.

Let us consider G. Let us consider s. Let τ be an element of \mathfrak{T} from the boolean sort of Σ. One can verify that τ value at (\mathfrak{C}, s) is boolean.

Let us consider u. One can check that τ value $\operatorname{at}(\mathfrak{C}, u)$ is boolean.
Let us consider an operation symbol o of Σ. Now we state the propositions:
(11) Suppose $o=($ the connectives of $\Sigma)(1)(\in($ the carrier' of $\Sigma))$. Then
(i) $o=($ the connectives of $\Sigma)(1)$, and
(ii) $\operatorname{Arity}(o)=\emptyset$, and
(iii) the result sort of $o=$ the boolean sort of Σ.
(12) Suppose $o=($ the connectives of $\Sigma)(2)(\in($ the carrier' of $\Sigma))$. Then $^{\prime}$
(i) $o=($ the connectives of $\Sigma)(2)$, and
(ii) $\operatorname{Arity}(o)=\langle$ the boolean sort of $\Sigma\rangle$, and
(iii) the result sort of $o=$ the boolean sort of Σ.
(13) Suppose $o=($ the connectives of $\Sigma)(3)(\in($ the carrier' of $\Sigma))$. Then
(i) $o=($ the connectives of $\Sigma)(3)$, and
(ii) $\operatorname{Arity}(o)=\langle$ the boolean sort of Σ, the boolean sort of $\Sigma\rangle$, and
(iii) the result sort of $o=$ the boolean sort of Σ.
(14) Suppose $o=($ the connectives of $\Sigma)(4)\left(\in\left(\right.\right.$ the carrier' $^{\prime}$ of $\left.\left.\Sigma\right)\right)$. Then
(i) $\operatorname{Arity}(o)=\emptyset$, and
(ii) the result sort of $o=I$.
(15) Suppose $o=($ the connectives of $\Sigma)(5)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\emptyset$, and
(ii) the result sort of $o=I$.
(16) Suppose $o=($ the connectives of $\Sigma)(6)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle I\rangle$, and
(ii) the result sort of $o=I$.
(17) Suppose $o=($ the connectives of $\Sigma)(7)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle I, I\rangle$, and
(ii) the result sort of $o=I$.
(18) Suppose $o=($ the connectives of $\Sigma)(8)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle I, I\rangle$, and
(ii) the result sort of $o=I$.
(19) Suppose $o=($ the connectives of $\Sigma)(9)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle I, I\rangle$, and
(ii) the result sort of $o=I$.
(20) Suppose $o=($ the connectives of $\Sigma)(10)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle I, I\rangle$, and
(ii) the result sort of $o=$ the boolean sort of Σ.
(21) Let us consider a non empty non void many sorted signature Σ and an operation symbol o of Σ. Suppose $\operatorname{Arity}(o)=\emptyset$. Let us consider an algebra \mathfrak{A} over Σ. Then $\operatorname{Args}(o, \mathfrak{A})=\{\emptyset\}$.
(22) Let us consider a non empty non void many sorted signature Σ, a sort symbol a of Σ, and an operation symbol o of Σ. Suppose Arity $(o)=\langle a\rangle$. Let us consider an algebra \mathfrak{A} over Σ. Then $\operatorname{Args}(o, \mathfrak{A})=\Pi\langle($ the sorts of $\mathfrak{A})(a)\rangle$.
(23) Let us consider a non empty non void many sorted signature Σ, sort symbols a, b of Σ, and an operation symbol o of Σ. Suppose Arity $(o)=\langle a$, $b\rangle$. Let us consider an algebra \mathfrak{A} over Σ. Then $\operatorname{Args}(o, \mathfrak{A})=\Pi\langle($ the sorts of $\mathfrak{A})(a)$, (the sorts of $\mathfrak{A})(b)\rangle$.
(24) Let us consider a non empty non void many sorted signature Σ, sort symbols a, b, c of Σ, and an operation symbol o of Σ. Suppose $\operatorname{Arity}(o)=\langle a, b$, $c\rangle$. Let us consider an algebra \mathfrak{A} over Σ. Then $\operatorname{Args}(o, \mathfrak{A})=\Pi\langle($ the sorts of $\mathfrak{A})(a)$, (the sorts of $\mathfrak{A})(b)$, (the sorts of $\mathfrak{A})(c)\rangle$.
(25) Let us consider a non empty non void many sorted signature Σ, nonempty algebras $\mathfrak{A}, \mathfrak{B}$ over Σ, a sort symbol s of Σ, an element a of \mathfrak{A} from s, a many sorted function h from \mathfrak{A} into \mathfrak{B}, and an operation symbol o of Σ. Suppose $\operatorname{Arity}(o)=\langle s\rangle$. Let us consider an element p of $\operatorname{Args}(o, \mathfrak{A})$. If $p=\langle a\rangle$, then $h \# p=\langle h(s)(a)\rangle$.
(26) Let us consider a non empty non void many sorted signature Σ, nonempty algebras $\mathfrak{A}, \mathfrak{B}$ over Σ, sort symbols s_{1}, s_{2} of Σ, an element a of \mathfrak{A} from s_{1}, an element b of \mathfrak{A} from s_{2}, a many sorted function h from \mathfrak{A} into \mathfrak{B}, and an operation symbol o of Σ. Suppose $\operatorname{Arity}(o)=\left\langle s_{1}, s_{2}\right\rangle$. Let us consider an element p of $\operatorname{Args}(o, \mathfrak{A})$. Suppose $p=\langle a, b\rangle$. Then $h \# p=\left\langle h\left(s_{1}\right)(a), h\left(s_{2}\right)(b)\right\rangle$.
(27) Let us consider a non empty non void many sorted signature Σ, nonempty algebras $\mathfrak{A}, \mathfrak{B}$ over Σ, sort symbols s_{1}, s_{2}, s_{3} of Σ, an element a of \mathfrak{A} from s_{1}, an element b of \mathfrak{A} from s_{2}, an element c of \mathfrak{A} from s_{3}, a many sorted function h from \mathfrak{A} into \mathfrak{B}, and an operation symbol o of Σ. Suppose $\operatorname{Arity}(o)=\left\langle s_{1}, s_{2}, s_{3}\right\rangle$. Let us consider an element p of $\operatorname{Args}(o, \mathfrak{A})$. Suppose $p=\langle a, b, c\rangle$. Then $h \# p=\left\langle h\left(s_{1}\right)(a), h\left(s_{2}\right)(b), h\left(s_{3}\right)(c)\right\rangle$.
Let us consider a many sorted function h from \mathfrak{T} into \mathfrak{C}, a sort symbol a of Σ, and an element τ of \mathfrak{T} from a. Now we state the propositions:
(28) If h is a homomorphism of \mathfrak{T} into \mathfrak{C},
then τ value at $(\mathfrak{C}, h \upharpoonright$ FreeGenerator $(\mathfrak{T}))=h(a)(\tau)$.
(29) Suppose h is a homomorphism of \mathfrak{T} into \mathfrak{C} and $s=h \upharpoonright$ the generators of G. Then τ value at $(\mathfrak{C}, s)=h(a)(\tau)$.
(30) true ${ }_{\text {t }}$ value $\operatorname{at}(\mathfrak{C}, s)=$ true. The theorem is a consequence of (11) and (21).
(31) Let us consider an element τ of \mathfrak{T} from the boolean sort of Σ. Then $\neg \tau$ value at $(\mathfrak{C}, s)=\neg(\tau$ value $\operatorname{at}(\mathfrak{C}, s))$. The theorem is a consequence of (29), (12), (22), and (25).
(32) Let us consider a boolean set a and an element τ of \mathfrak{T} from the boolean sort of Σ. Then $\neg \tau$ value $\operatorname{at}(\mathfrak{C}, s)=\neg a$ if and only if τ value $\operatorname{at}(\mathfrak{C}, s)=a$. The theorem is a consequence of (31).
(33) Let us consider an element a of \mathfrak{C} from the boolean sort of Σ and a boolean set x. Then $\neg a=\neg x$ if and only if $a=x$.
(34) false ${ }_{T}$ value $\operatorname{at}(\mathfrak{C}, s)=$ false. The theorem is a consequence of (31) and (30).
(35) Let us consider elements τ_{1}, τ_{2} of \mathfrak{T} from the boolean sort of Σ. Then $\left(\tau_{1} \wedge\right.$ τ_{2}) value $\operatorname{at}(\mathfrak{C}, s)=\left(\tau_{1}\right.$ value $\left.\operatorname{at}(\mathfrak{C}, s)\right) \wedge\left(\tau_{2}\right.$ value at $\left.(\mathfrak{C}, s)\right)$. The theorem is a consequence of (29), (13), (23), and (26).
(36) $0_{\mathfrak{T}}^{I}$ value $\operatorname{at}(\mathfrak{C}, s)=0$. The theorem is a consequence of (14) and (21).
(37) $1_{\mathfrak{T}}^{I}$ value $\operatorname{at}(\mathfrak{C}, s)=1$. The theorem is a consequence of (15) and (21).
(38) $(-\tau)$ value $\operatorname{at}(\mathfrak{C}, s)=-\tau$ value $\operatorname{at}(\mathfrak{C}, s)$. The theorem is a consequence of (16), (22), and (25).
(39) $\quad\left(\tau_{1}+\tau_{2}\right)$ value $\operatorname{at}(\mathfrak{C}, s)=\tau_{1}$ value $\operatorname{at}(\mathfrak{C}, s)+\tau_{2}$ value at (\mathfrak{C}, s). The theorem is a consequence of $(17),(23)$, and (26).
(40) $\quad 2_{\mathfrak{T}}^{I}$ value $\operatorname{at}(\mathfrak{C}, s)=2$. The theorem is a consequence of (37) and (39).
(41) $\left(\tau_{1}-\tau_{2}\right)$ value at $(\mathfrak{C}, s)=\tau_{1}$ value at $(\mathfrak{C}, s)-\tau_{2}$ value at (\mathfrak{C}, s). The theorem is a consequence of (39) and (38).
(42) $\left(\tau_{1} \cdot \tau_{2}\right)$ value at $(\mathfrak{C}, s)=\left(\tau_{1}\right.$ value at $\left.(\mathfrak{C}, s)\right) \cdot\left(\tau_{2}\right.$ value at $\left.(\mathfrak{C}, s)\right)$. The theorem is a consequence of (29), (18), (23), and (26).
(43) $\quad\left(\tau_{1} \operatorname{div} \tau_{2}\right)$ value $\operatorname{at}(\mathfrak{C}, s)=\tau_{1}$ value at $(\mathfrak{C}, s) \operatorname{div} \tau_{2}$ value at (\mathfrak{C}, s). The theorem is a consequence of (19), (23), and (26).
(44) $\left(\tau_{1} \bmod \tau_{2}\right)$ value at $(\mathfrak{C}, s)=\tau_{1}$ value at $(\mathfrak{C}, s) \bmod \tau_{2}$ value at (\mathfrak{C}, s). The theorem is a consequence of (41), (42), and (43).
(45) $\operatorname{leq}\left(\tau_{1}, \tau_{2}\right)$ value at $(\mathfrak{C}, s)=\operatorname{leq}\left(\tau_{1}\right.$ value at $(\mathfrak{C}, s), \tau_{2}$ value at $\left.(\mathfrak{C}, s)\right)$. The theorem is a consequence of (20), (23), and (26).
(46) $\operatorname{true}_{\mathfrak{T}}$ value at $(\mathfrak{C}, u)=$ true. The theorem is a consequence of (11) and (21).
(47) Let us consider an element τ of \mathfrak{T} from the boolean sort of Σ. Then $\neg \tau$ value at $(\mathfrak{C}, u)=\neg(\tau$ value at $(\mathfrak{C}, u))$. The theorem is a consequence of (28), (12), (22), and (25).
(48) Let us consider a boolean set a and an element τ of \mathfrak{T} from the boolean sort of Σ. Then $\neg \tau$ value at $(\mathfrak{C}, u)=\neg a$ if and only if τ value at $(\mathfrak{C}, u)=a$. The theorem is a consequence of (47).
(49) false ${ }_{T}$ value $\operatorname{at}(\mathfrak{C}, u)=$ false. The theorem is a consequence of (47) and (46).
(50) Let us consider elements τ_{1}, τ_{2} of \mathfrak{T} from the boolean sort of Σ. Then $\left(\tau_{1} \wedge\right.$ $\left.\tau_{2}\right)$ value at $(\mathfrak{C}, u)=\left(\tau_{1}\right.$ value at $\left.(\mathfrak{C}, u)\right) \wedge\left(\tau_{2}\right.$ value at $\left.(\mathfrak{C}, u)\right)$. The theorem is a consequence of (28), (13), (23), and (26).
(51) $0_{\mathfrak{T}}^{I}$ value $\operatorname{at}(\mathfrak{C}, u)=0$. The theorem is a consequence of (14) and (21).
(52) $1_{\mathfrak{T}}^{I}$ value $\operatorname{at}(\mathfrak{C}, u)=1$. The theorem is a consequence of (15) and (21).
(53) $(-\tau)$ value at $(\mathfrak{C}, u)=-\tau$ value at (\mathfrak{C}, u). The theorem is a consequence of (16), (22), and (25).
(54) $\quad\left(\tau_{1}+\tau_{2}\right)$ value $\operatorname{at}(\mathfrak{C}, u)=\tau_{1}$ value at $(\mathfrak{C}, u)+\tau_{2}$ value at (\mathfrak{C}, u). The theorem is a consequence of (17), (23), and (26).
(55) $2 \frac{I}{T}$ value at $(\mathfrak{C}, u)=2$. The theorem is a consequence of (52) and (54).
(56) $\quad\left(\tau_{1}-\tau_{2}\right)$ value at $(\mathfrak{C}, u)=\tau_{1}$ value at $(\mathfrak{C}, u)-\tau_{2}$ value at (\mathfrak{C}, u). The theorem is a consequence of (54) and (53).
(57) $\quad\left(\tau_{1} \cdot \tau_{2}\right)$ value at $(\mathfrak{C}, u)=\left(\tau_{1}\right.$ value at $\left.(\mathfrak{C}, u)\right) \cdot\left(\tau_{2}\right.$ value at $\left.(\mathfrak{C}, u)\right)$. The theorem is a consequence of (28), (18), (23), and (26).
(58) $\quad\left(\tau_{1} \operatorname{div} \tau_{2}\right)$ value at $(\mathfrak{C}, u)=\tau_{1}$ value $\operatorname{at}(\mathfrak{C}, u) \operatorname{div} \tau_{2}$ value $\operatorname{at}(\mathfrak{C}, u)$. The theorem is a consequence of (19), (23), and (26).
(59) $\left(\tau_{1} \bmod \tau_{2}\right)$ value at $(\mathfrak{C}, u)=\tau_{1}$ value at $(\mathfrak{C}, u) \bmod \tau_{2}$ value at (\mathfrak{C}, u). The theorem is a consequence of (56), (57), and (58).
(60) $\operatorname{leq}\left(\tau_{1}, \tau_{2}\right)$ value at $(\mathfrak{C}, u)=\operatorname{leq}\left(\tau_{1}\right.$ value at $(\mathfrak{C}, u), \tau_{2}$ value at $\left.(\mathfrak{C}, u)\right)$. The theorem is a consequence of (20), (23), and (26).
(61) Let us consider a sort symbol a of Σ and an element x of (the generators of $G)(a)$. Then ${ }^{@} x$ value at $(\mathfrak{C}, s)=s(a)(x)$. The theorem is a consequence of (29).
(62) Let us consider a sort symbol a of Σ, a pure element x of (the generators of $G)(a)$, and a many sorted function u from FreeGenerator (\mathfrak{T}) into the sorts of \mathfrak{C}. Then ${ }^{@} x$ value at $(\mathfrak{C}, u)=u(a)(x)$.
Let us consider integers i, j and elements a, b of \mathfrak{C} from I. Now we state the propositions:
(63) If $a=i$ and $b=j$, then $a-b=i-j$.
(64) If $a=i$ and $b=j$ and $j \neq 0$, then $a \bmod b=i \bmod j$.
(65) Suppose G is \mathfrak{C}-supported and $f \in \mathfrak{C}$-Execution ${ }_{b \rightarrow \text { false }_{\mathscr{C}}}(\mathfrak{A})$. Then let us consider a sort symbol a of Σ, a pure element x of (the generators of $G)(a)$, and an element τ of \mathfrak{T} from a. Then
(i) $f(s, x:=\mathfrak{A} \tau)(a)(x)=\tau$ value at (\mathfrak{C}, s), and
(ii) for every pure element z of (the generators of G)(a) such that $z \neq x$ holds $f(s, x:=\mathfrak{A} \tau)(a)(z)=s(a)(z)$, and
(iii) for every sort symbol b of Σ such that $a \neq b$ for every pure element z of (the generators of $G)(b), f(s, x:=\mathfrak{A} \tau)(b)(z)=s(b)(z)$.
(66) Suppose G is \mathfrak{C}-supported and $f \in \mathfrak{C}$-Execution ${ }_{b \nrightarrow \text { false }}(\mathfrak{A})$. Then
(i) τ_{1} value at $(\mathfrak{C}, s)<\tau_{2}$ value at (\mathfrak{C}, s) iff $f\left(s, b \operatorname{gt}\left(\tau_{2}, \tau_{1}, \mathfrak{A}\right)\right) \in \operatorname{States}_{b \nrightarrow \text { false }}^{\mathcal{C}}($ the generators of $G)$, and
(ii) τ_{1} value at $(\mathfrak{C}, s) \leqslant \tau_{2}$ value at (\mathfrak{C}, s) iff $f\left(s, b \operatorname{leq}\left(\tau_{1}, \tau_{2}, \mathfrak{A}\right)\right) \in \operatorname{States}_{b \nrightarrow \text { false }_{\mathfrak{C}}}($ the generators of $G)$, and
(iii) for every $x, f\left(s, b \operatorname{gt}\left(\tau_{1}, \tau_{2}, \mathfrak{A}\right)\right)(I)(x)=s(I)(x)$ and $f\left(s, b \operatorname{leq}\left(\tau_{1}, \tau_{2}, \mathfrak{A}\right)\right)(I)(x)=s(I)(x)$, and
(iv) for every pure element c of (the generators of G)((the boolean sort of $\Sigma)$) such that $c \neq b$ holds $f\left(s, b \operatorname{gt}\left(\tau_{1}, \tau_{2}, \mathfrak{A}\right)\right)(($ the boolean sort of $\Sigma))(c)=s(($ the boolean sort of $\Sigma))(c)$ and $f\left(s, b \operatorname{leq}\left(\tau_{1}, \tau_{2}, \mathfrak{A}\right)\right)$ $(($ the boolean sort of $\Sigma))(c)=s(($ the boolean sort of $\Sigma))(c)$.
The theorem is a consequence of (31), (45), and (33).
Let i, j be real numbers and a, b be boolean sets. One can verify that $(i>j \rightarrow a, b)$ is boolean.

Now we state the proposition:
(67) Suppose G is \mathfrak{C}-supported and $f \in \mathfrak{C}$ - Execution $_{b \nrightarrow \text { false }_{\mathfrak{C}}}(\mathfrak{A})$. Then
(i) $f(s, \tau$ is odd $(b, \mathfrak{A}))(($ the boolean sort of $\Sigma))(b)=\tau$ value at $(\mathfrak{C}, s) \bmod$ 2 , and
(ii) $f(s, \tau$ is even $(b, \mathfrak{A}))(($ the boolean sort of $\Sigma))(b)=(\tau$ value at $(\mathfrak{C}, s)+$ 1) $\bmod 2$, and
(iii) for every $z, f(s, \tau$ is $\operatorname{odd}(b, \mathfrak{A}))(I)(z)=s(I)(z)$ and $f(s, \tau$ is $\operatorname{even}(b, \mathfrak{A}))(I)(z)=s(I)(z)$.
The theorem is a consequence of (36), (40), (64), (31), (45), (44), and (1).
Let us consider $\Sigma, X, \mathfrak{T}, G$, and \mathfrak{A}. We say that \mathfrak{A} is elementary if and only if
(Def. 13) rng the assignments of $\mathfrak{A} \subseteq$ ElementaryInstructions $_{\mathfrak{A}}$.
Now we state the proposition:
(68) Suppose \mathfrak{A} is elementary. Then let us consider a sort symbol a of Σ, an element x of (the generators of $G)(a)$, and an element τ of \mathfrak{T} from a. Then $x:=_{\mathfrak{R}} \tau \in$ ElementaryInstructions ${ }_{\mathfrak{A}}$.
Let us consider Σ, X, \mathfrak{T}, and G. One can verify that there exists a strict if-while algebra over the generators of G which is elementary.

Let \mathfrak{A} be an elementary if-while algebra over the generators of G, a be a sort symbol of Σ, x be an element of (the generators of $G)(a)$, and τ be an element of \mathfrak{T} from a. Let us observe that $x:=\mathfrak{A} \tau$ is absolutely-terminating.

Now let Γ denotes the program

```
y:={\mathfrak{A}1\mp@subsup{1}{\mathfrak{T}}{I};
while bgt( (}m,0,\frac{I}{T},\mathfrak{A})\mathrm{ do
    if @ m is odd(b,\mathfrak{A})\mathrm{ then}
        y:={\mathfrak{A}\mp@subsup{}{}{@}y.\mp@subsup{@}{x}{}
    fi;
    m:={\mathfrak{A}}\mp@subsup{}{}{@}m\mathrm{ div 2 2
    x:={}\mp@subsup{\mathfrak{A}}{}{@}x\cdot@
done
```

Then we state the propositions:
(69) Let us consider an elementary if-while algebra \mathfrak{A} over the generators of G and an execution function f of \mathfrak{A} over \mathfrak{C}-States(the generators of G) and States $_{b \neq \mathrm{false}_{\mathbb{C}}}($ the generators of $G)$. Suppose
(i) G is \mathfrak{C}-supported, and
(ii) $f \in \mathfrak{C}$-Execution ${ }_{b \nrightarrow \text { false }}(\mathfrak{A})$, and
(iii) there exists a function d such that $d(x)=1$ and $d(y)=2$ and $d(m)=3$.
Then Γ is terminating w.r.t. f and $\{s: s(I)(m) \geqslant 0\}$. The theorem is a consequence of (66), (36), (61), (65), (40), and (43). Proof: Set $S T=$ \mathfrak{C}-States(the generators of G). Set $T V=$ States $_{b \nrightarrow \text { false }}($ the generators of $G)$. Set $P=\{s: s(I)(m) \geqslant 0\}$. Set $W=b \operatorname{gt}\left({ }^{@} m, 0_{\mathfrak{T}}^{I}, \mathfrak{A}\right)$. Define $\mathcal{F}($ element of $S T)=\$_{1}(I)(m)(\in \mathbb{N})$. Define $\mathcal{R}[$ element of $S T] \equiv \$_{1}(I)(m)>$

0 . Set $K=$ if ${ }^{@} m$ is $\operatorname{odd}(b, \mathfrak{A})$ then $\left(y:=\mathfrak{A}\left({ }^{@} y \cdot{ }^{@} x\right)\right)$.
Set $J=\left(K ; m:=\mathfrak{A}\left({ }^{@} m \operatorname{div} 22_{\mathfrak{T}}^{I}\right)\right) ; x:=\mathfrak{A}\left({ }^{@} x \cdot{ }^{@} x\right)$. P is invariant w.r.t. W and f. For every element s of $S T$ such that $s \in P$ and $f(f(s, J), W) \in T V$ holds $f(s, J) \in P$. P is invariant w.r.t. $y:=\mathfrak{A}\left(1_{\mathfrak{T}}^{I}\right)$ and f. For every s such that $f(s, W) \in P$ holds iteration of f started in $J ; W$ terminates w.r.t. $f(s, W)$.
(70) Suppose G is \mathfrak{C}-supported and there exists a function d such that $d(b)=0$ and $d(x)=1$ and $d(y)=2$ and $d(m)=3$. Then let us consider an element s of \mathfrak{C}-States(the generators of G) and a natural number n. Suppose $n=s(I)(m)$. If $f \in \mathfrak{C}$-Execution Effalse $_{\mathscr{C}}(\mathfrak{A})$, then $f(s, \Gamma)(I)(y)=$ $s(I)(x)^{n}$. The theorem is a consequence of (65), (66), (36), (61), (37), (40), (43), (67), (10), and (42). Proof: Set $\Sigma=\mathfrak{C}$-States(the generators of G). Set $W=\mathfrak{T}$. Set $g=f$. Set $\mathfrak{T}=\operatorname{States}_{b \nrightarrow \text { false }_{\mathscr{C}}}$ (the generators of $G)$. Set $s 0=f\left(s, y:=\mathfrak{A}\left(1_{W}^{I}\right)\right)$. Define $\mathcal{R}[$ element of $\Sigma] \equiv \$_{1}(I)(m)>0$. Set $\mathfrak{C}=b$ gt $\left({ }^{@} m, 0_{W}^{I}, \mathfrak{A}\right)$. Define \mathcal{P} [element of $\left.\Sigma\right] \equiv s(I)(x)^{n}=\$_{1}(I)(y)$. $\$_{1}(I)(x)^{\$_{1}(I)(m)}$ and $\$_{1}(I)(m) \geqslant 0$. Define $\mathcal{F}($ element of $\Sigma)=\$_{1}(I)(m)(\in$ $\mathbb{N})$. Set $I=$ if ${ }^{@} m$ is $\operatorname{odd}(b, \mathfrak{A})$ then $\left(y:=\mathfrak{A}\left({ }^{@} y .{ }^{@} x\right)\right)$.
Set $J=\left(I ; m:=\mathfrak{A}\left({ }^{@} m \operatorname{div} 2_{W}^{Y}\right)\right) ; x:=\mathfrak{A}\left({ }^{@} x \cdot{ }^{@} x\right)$. For every element s of Σ such that $\mathcal{P}[s]$ holds $\mathcal{P}[(g(s, \mathfrak{C})$ qua element of $\Sigma)]$ and $g(s, \mathfrak{C}) \in \mathfrak{T}$ iff $\mathcal{R}[(g(s, \mathfrak{C})$ qua element of $\Sigma)]$. Set $s_{1}=g(s 0, \mathfrak{C})$. For every element s of Σ such that $\mathcal{R}[s]$ holds $\mathcal{R}[(g(s, J ; \mathfrak{C})$ qua element of $\Sigma)]$ iff $g(s, J ; \mathfrak{C}) \in \mathfrak{T}$ and $\mathcal{F}((g(s, J ; \mathfrak{C})$ qua element of $\Sigma))<\mathcal{F}(s)$. Set $q=s$. For every element s of Σ such that $\mathcal{P}[s]$ and $s \in \mathfrak{T}$ and $\mathcal{R}[s]$ holds $\mathcal{P}[(g(s, J)$ qua element of $\Sigma)]$.

2. Calculation of Maximum

Let X be a non empty set, f be a finite sequence of elements of X^{ω}, and x be a natural number. Let us observe that $f(x)$ is transfinite sequence-like finite function-like and relation-like.

Let us note that every finite sequence of elements of X^{ω} is function yielding.
Let i be a natural number, f be an i-based finite array, and a, x be sets. Note that $f+\cdot(a, x)$ is i-based finite and segmental.

Let X be a non empty set, f be an X-valued function, a be a set, and x be an element of X. Let us observe that $f+\cdot(a, x)$ is X-valued.

The scheme $S c h 1$ deals with a non empty set \mathcal{X} and a natural number j and a set \mathfrak{B} and a ternary functor \mathcal{F} yielding a set and a unary functor \mathfrak{A} yielding a set and states that
(Sch. 1) There exists a finite sequence f of elements of \mathcal{X}^{ω} such that len $f=j$ and $f(1)=\mathfrak{B}$ or $j=0$ and for every natural number i such that $1 \leqslant i<j$ holds $f(i+1)=\mathcal{F}(f(i), i, \mathfrak{A}(i))$
provided

- for every 0 -based finite array a of \mathcal{X} and for every natural number i such that $1 \leqslant i<j$ for every element x of $\mathcal{X}, \mathcal{F}(a, i, x)$ is a 0 -based finite array of \mathcal{X} and
- \mathfrak{B} is a 0 -based finite array of \mathcal{X} and
- for every natural number i such that $i<j$ holds $\mathfrak{A}(i) \in \mathcal{X}$.

Now we state the propositions:
(71) Let us consider a non empty non void boolean signature Σ with arrays of type 1 with connectives from 11 and integers at 1 , sets J, L, and a sort symbol K of Σ. Suppose (the connectives of Σ)(11) is of type $\langle J, L\rangle \rightarrow K$. Then
(i) $J=$ the array sort of Σ, and
(ii) for every integer sort symbol I of Σ, the array sort of $\Sigma \neq I$.
(72) Let us consider a 1-1-connectives 11-array correct boolean correct non empty non void boolean signature Σ with integers with connectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1 , an integer sort symbol I of Σ, a boolean correct non-empty algebra \mathfrak{A} over Σ with integers with connectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1 , and elements a, b of \mathfrak{A} from I. If $a=0$, then init.array $(a, b)=\emptyset$.
(73) Let us consider an 11-array correct boolean correct non empty non void boolean signature Σ with arrays of type 1 with connectives from 11 and integers at 1 and an integer sort symbol I of Σ. Then
(i) the array sort of $\Sigma \neq I$, and
(ii) (the connectives of $\Sigma)(11)$ is of type \langle the array sort of $\Sigma, I\rangle \rightarrow I$, and
(iii) (the connectives of $\Sigma)(11+1)$ is of type \langle the array sort of $\Sigma, I, I\rangle \rightarrow$ the array sort of Σ, and
(iv) (the connectives of $\Sigma)(11+2)$ is of type \langle the array sort of $\Sigma\rangle \rightarrow I$, and
(v) (the connectives of $\Sigma)(11+3)$ is of type $\langle I, I\rangle \rightarrow$ the array sort of Σ.
(74) Let us consider a 1-1-connectives 11-array correct boolean correct non empty non void boolean signature Σ with arrays of type 1 with connectives from 11 and integers at 1 and integers with connectives from 4 and the sort at 1 , an integer sort symbol I of Σ, and a boolean correct non-empty algebra \mathfrak{A} over Σ with arrays of type 1 with connectives from 11 and integers at 1 and integers with connectives from 4 and the sort at 1 . Then
(i) (the sorts of \mathfrak{A})(the array sort of $\Sigma)=\mathbb{Z}^{\omega}$, and
(ii) for every elements i, j of \mathfrak{A} from I such that i is a non negative integer holds init.array $(i, j)=i \longmapsto j$, and
(iii) for every element a of (the sorts of \mathfrak{A})(the array sort of Σ), length ${ }_{I} a=$ $\overline{\bar{a}}$ and for every element i of \mathfrak{A} from I and for every function f such that $f=a$ and $i \in \operatorname{dom} f$ holds $a(i)=f(i)$ and for every element x of \mathfrak{A} from $I, a_{i \leftarrow x}=f+\cdot(i, x)$.

The theorem is a consequence of (71).
Let a be a 0 -based finite array. Observe that length a is finite.
Let Σ be a 1-1-connectives 11-array correct boolean correct non empty non void boolean signature with integers with connectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1 and \mathfrak{A} be a boolean correct non-empty algebra over Σ with arrays of type 1 with connectives from 11 and integers at 1 and integers with connectives from 4 and the sort at 1. Observe that every non-empty subalgebra of \mathfrak{A} has arrays of type 1 with connectives from 11 and integers at 1.

Let \mathfrak{A} be a non-empty algebra over Σ. We say that \mathfrak{A} is integer array if and only if
(Def. 14) There exists an image \mathfrak{C} of \mathfrak{A} such that \mathfrak{C} is a boolean correct algebra over Σ with integers with connectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1 .
Let X be a non-empty many sorted set indexed by the carrier of Σ. One can verify that $\mathfrak{F}_{\Sigma}(X)$ is integer array as a non-empty algebra over Σ.

Note that every non-empty algebra over Σ which is integer array is also integer.

One can check that there exists an including Σ-terms over X non-empty strict free variable algebra over Σ which is vf-free and integer array.

One can check that there exists a non-empty algebra over Σ which is integer array.

Let \mathfrak{A} be an integer array non-empty algebra over Σ. Observe that there exists a boolean correct image of \mathfrak{A} which has integers with connectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1.

In this paper Σ denotes a 1-1-connectives 11-array correct boolean correct non empty non void boolean signature with integers with connectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11 and integers at $1, X$ denotes a non-empty many sorted set indexed by the carrier of Σ, \mathfrak{T} denotes a vf-free including Σ-terms over X integer array non-empty free variable algebra over Σ, \mathfrak{C} denotes a boolean correct non-empty image of \mathfrak{T} with arrays of type 1 with connectives from 11 and integers at 1 and integers with connectives from 4 and the sort at $1, G$ denotes a basic generator system over Σ, X, and $\mathfrak{T}, \mathfrak{A}$ denotes a if-while algebra over the generators of G, I denotes an integer sort symbol of Σ, x, y, m, i denote pure elements of (the generators of $G)(I), M, N$
denote pure elements of (the generators of G)(the array sort of $\Sigma), b$ denotes a pure element of (the generators of $G)(($ the boolean sort of $\Sigma))$, and s, s_{1} denote elements of \mathfrak{C}-States (the generators of G).

Let us consider Σ. Let \mathfrak{A} be a boolean correct non-empty algebra over Σ with arrays of type 1 with connectives from 11 and integers at 1 . Observe that every element of (the sorts of \mathfrak{A})(the array sort of Σ) is relation-like and function-like.

Note that every element of (the sorts of \mathfrak{A})(the array sort of Σ) is finite and transfinite sequence-like.

Let us consider an operation symbol o of Σ. Now we state the propositions:
(75) Suppose $o=($ the connectives of $\Sigma)(11)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle$ the array sort of $\Sigma, I\rangle$, and
(ii) the result sort of $o=I$.
(76) Suppose $o=($ the connectives of $\Sigma)(12)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle$ the array sort of $\Sigma, I, I\rangle$, and
(ii) the result sort of $o=$ the array sort of Σ.
(77) Suppose $o=($ the connectives of $\Sigma)(13)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle$ the array sort of $\Sigma\rangle$, and
(ii) the result sort of $o=I$.
(78) Suppose $o=($ the connectives of $\Sigma)(14)(\in($ the carrier' of $\Sigma))$. Then
(i) $\operatorname{Arity}(o)=\langle I, I\rangle$, and
(ii) the result sort of $o=$ the array sort of Σ.
(79) Let us consider an element τ of \mathfrak{T} from the array sort of Σ and an element τ_{1} of \mathfrak{T} from I.
Then $\tau\left(\tau_{1}\right)$ value at $(\mathfrak{C}, s)=(\tau$ value at $(\mathfrak{C}, s))\left(\tau_{1}\right.$ value at $\left.(\mathfrak{C}, s)\right)$. The theorem is a consequence of (29), (75), (23), and (26).
(80) Let us consider an element τ of \mathfrak{T} from the array sort of Σ and elements τ_{1}, τ_{2} of \mathfrak{T} from I. Then $\tau_{\tau_{1} \leftarrow \tau_{2}}$ value at $(\mathfrak{C}, s)=$
(τ value at $(\mathfrak{C}, s))_{\tau_{1} \text { value at }(\mathfrak{C}, s) \leftarrow \tau_{2} \text { value at }(\mathfrak{C}, s) \text {. The theorem is a consequence }}$ of (29), (76), (24), and (27).
(81) Let us consider an element τ of \mathfrak{T} from the array sort of Σ. Then $\operatorname{length}_{I} \tau$ value at $(\mathfrak{C}, s)=\operatorname{length}_{I}(\tau$ value at $(\mathfrak{C}, s))$. The theorem is a consequence of (29), (77), (22), and (25).
(82) Let us consider elements τ_{1}, τ_{2} of \mathfrak{T} from I. Then init.array $\left(\tau_{1}, \tau_{2}\right)$ value $\operatorname{at}(\mathfrak{C}, s)=\operatorname{init} . \operatorname{array}\left(\tau_{1}\right.$ value at $(\mathfrak{C}, s), \tau_{2}$ value at $\left.(\mathfrak{C}, s)\right)$. The theorem is a consequence of (29), (78), (23), and (26).
In the sequel u denotes a many sorted function from FreeGenerator (\mathfrak{T}) into the sorts of \mathfrak{C}.

Now we state the propositions:
(83) Let us consider an element τ of \mathfrak{T} from the array sort of Σ and an element τ_{1} of \mathfrak{T} from I.
Then $\tau\left(\tau_{1}\right)$ value at $(\mathfrak{C}, u)=(\tau$ value at $(\mathfrak{C}, u))\left(\tau_{1}\right.$ value at $\left.(\mathfrak{C}, u)\right)$. The theorem is a consequence of (28), (75), (23), and (26).
(84) Let us consider an element τ of \mathfrak{T} from the array sort of Σ and elements τ_{1}, τ_{2} of \mathfrak{T} from I.
 The theorem is a consequence of (28), (76), (24), and (27).
(85) Let us consider an element τ of \mathfrak{T} from the array sort of Σ. Then $\operatorname{length}_{I} \tau$ value at $(\mathfrak{C}, u)=\operatorname{length}_{I}(\tau$ value at $(\mathfrak{C}, u))$. The theorem is a consequence of (28), (77), (22), and (25).
(86) Let us consider elements τ_{1}, τ_{2} of \mathfrak{T} from I. Then init.array $\left(\tau_{1}, \tau_{2}\right)$
value at $(\mathfrak{C}, u)=\operatorname{init} . \operatorname{array}\left(\tau_{1}\right.$ value at $(\mathfrak{C}, u), \tau_{2}$ value at $\left.(\mathfrak{C}, u)\right)$. The theorem is a consequence of (28), (78), (23), and (26).
Let us consider Σ, X, \mathfrak{T}, and I. Let i be an integer. The functor $i_{\mathfrak{T}}^{I}$ yielding an element of \mathfrak{T} from I is defined by
(Def. 15) There exists a function f from \mathbb{Z} into (the sorts of $\mathfrak{T})(I)$ such that
(i) $i t=f(i)$, and
(ii) $f(0)=0_{\mathfrak{T}}^{I}$, and
(iii) for every natural number j and for every element τ of \mathfrak{T} from I such that $f(j)=\tau$ holds $f(j+1)=\tau+1_{\mathfrak{T}}^{I}$ and $f(-(j+1))=-\left(\tau+1_{\mathfrak{T}}^{I}\right)$.
Now we state the propositions:
(87) $0_{\mathfrak{T}}^{I}=0_{\mathfrak{T}}^{I}$.
(88) Let us consider a natural number n. Then
(i) $(n+1)_{\mathfrak{T}}^{I}=n_{\mathfrak{T}}^{I}+1_{\mathfrak{T}}^{I}$, and
(ii) $-(n+1)_{\mathfrak{T}}^{I}=-(n+1)_{\mathfrak{T}}^{I}$.
(89) $1_{\mathfrak{T}}^{I}=0_{\mathfrak{T}}^{I}+1_{\mathfrak{T}}^{I}$. The theorem is a consequence of (88) and (87).
(90) Let us consider an integer i. Then $i_{\mathfrak{T}}^{I}$ value at $(\mathfrak{C}, s)=i$. The theorem is a consequence of (87), (36), (37), (88), (39), and (38).
Let us consider $\Sigma, X, \mathfrak{T}, G, I$, and M. Let i be an integer. The functor $M(i, I)$ yielding an element of \mathfrak{T} from I is defined by the term
(Def. 16) ($\left.{ }^{@} M\right)\left(i_{\mathfrak{T}}^{I}\right)$.
Let us consider \mathfrak{C} and s. Note that s (the array sort of $\Sigma)(M)$ is function-like and relation-like.

Note that s (the array sort of $\Sigma)(M)$ is finite transfinite sequence-like and \mathbb{Z}-valued.

Observe that $\operatorname{rng}(s($ the array sort of $\Sigma)(M))$ is finite and integer-membered.
Let us consider an integer j. Now we state the propositions:
(91) Suppose $j \in \operatorname{dom}(s($ the array sort of $\Sigma)(M))$ and $M(j, I) \in($ the generators of $G)(I)$. Then $s($ the array sort of $\Sigma)(M)(j)=$ $s(I)(M(j, I))$.
(92) Suppose $j \in \operatorname{dom}(s($ the array sort of $\Sigma)(M))$ and $\left({ }^{@} M\right)\left({ }^{@} i\right) \in($ the generators of $G)(I)$ and $j={ }^{@} i$ value at (\mathfrak{C}, s). Then $(s($ the array sort of $\Sigma)(M))\left({ }^{(}{ }_{i}\right.$ value at $\left.(\mathfrak{C}, s)\right)=s(I)\left(\left(\left({ }^{@} M\right)\left({ }^{(}\right)\right)\right)$.
Let X be a non empty set. One can verify that X^{ω} is infinite.
Now we state the propositions:
(93) Now let Γ denotes the program

Let us consider an execution function f of \mathfrak{A} over \mathfrak{C}-States(the generators of G) and States $_{b \not b \text { false }}($ the generators of $G)$. Suppose
(i) $f \in \mathfrak{C}$-Execution ${ }_{b \rightarrow \text { false }}^{C}(\mathfrak{A})$, and
(ii) G is \mathfrak{C}-supported, and
(iii) $i \neq m$, and
(iv) $s($ the array sort of $\Sigma)(M) \neq \emptyset$.

Let us consider a natural number n. Suppose $f(s, \Gamma)(I)(m)=n$. Let us consider a non empty finite integer-membered set X. Suppose $X=$ $\operatorname{rng}(s($ the array sort of $\Sigma)(M))$. Then $M(n, I)$ value at $(\mathfrak{C}, s)=\max X$. The theorem is a consequence of (65), (36), (37), (74), (71), (66), (81), (61), (39), (79), and (90). Proof: Set $S T=\mathfrak{C}$-States(the generators of $G)$. Define $\mathcal{R}[$ element of $S T] \equiv s($ the array sort of $\Sigma)(M)=\$_{1}($ the array sort of $\Sigma)(M)$. Reconsider $s m=s$ as a many sorted function from the generators of G into the sorts of \mathfrak{C}. Reconsider $z=\operatorname{sm}$ (the array sort of $\Sigma)(M)$ as a 0 -based finite array of \mathbb{Z}. Define \mathcal{P} [element of $S T] \equiv \mathcal{R}\left[\$_{1}\right]$ and $\$_{1}(I)(i), \$_{1}(I)(m) \in \mathbb{N}$ and $\$_{1}(I)(i) \leqslant \operatorname{len} z$ and $\$_{1}(I)(m)<\$_{1}(I)(i)$ and $\$_{1}(I)(m)<$ len z and for every integer $m x$ such that $m x=\$_{1}(I)(m)$ for every natural number j such that $j<\$_{1}(I)(i)$ holds $z(j) \leqslant z(m x)$. Define $\mathcal{Q}[$ element of $S T] \equiv \mathcal{R}\left[\$_{1}\right]$ and $\$_{1}(I)(i)<\operatorname{length}_{I}{ }^{@} M$ value at (\mathfrak{C}, s). Set $s 0=s$. Set $s_{1}=f\left(s, m:=\mathfrak{A}\left(0_{\mathfrak{T}}^{I}\right)\right)$. Set $s_{2}=f\left(s_{1}, i:=\mathfrak{A}\left(1_{\mathfrak{T}}^{I}\right)\right)$. Consider $J 1, K 1, L 1$ being elements of Σ such that $L 1=1$ and $K 1=1$ and $J 1 \neq L 1$ and $J 1 \neq K 1$ and (the connectives of $\Sigma)(11)$ is of type $\langle J 1, K 1\rangle \rightarrow L 1$ and (the connectives of $\Sigma)(11+1)$ is of type $\langle J 1, K 1$, $L 1\rangle \rightarrow J 1$ and (the connectives of $\Sigma)(11+2)$ is of type $\langle J 1\rangle \rightarrow K 1$ and
(the connectives of $\Sigma)(11+3)$ is of type $\langle K 1, L 1\rangle \rightarrow J 1$. $\mathcal{P}\left[s_{2}\right]$. Define $\mathcal{F}($ element of $S T)=(\operatorname{len}(s 0$ (the array sort of $\left.\Sigma)(M))-\$_{1}(I)(i)\right)(\in \mathbb{N})$. $f\left(s_{2}, W\right) \in T V$ iff $\mathcal{Q}\left[f\left(s_{2}, W\right)\right]$. Now let Γ denotes the program
$J ;$
$K ;$
W

For every element s of $S T$ such that $\mathcal{Q}[s]$ holds $\mathcal{Q}[f(s, \Gamma)]$ iff $f(s, \Gamma) \in T V$ and $\mathcal{F}(f(s, \Gamma))<\mathcal{F}(s)$. For every element s of $S T$ such that $\mathcal{P}[s]$ and $s \in$ $T V$ and $\mathcal{Q}[s]$ holds $\mathcal{P}[f(s, J ; K)]$. For every element s of $S T$ such that $\mathcal{P}[s]$ holds $\mathcal{P}[f(s, W)]$ and $f(s, W) \in T V$ iff $\mathcal{Q}[f(s, W)] . M(n, I)$ value at (\mathfrak{C}, s) is a upper bound of X. For every upper bound x of $X, M(n, I)$ value $\operatorname{at}(\mathfrak{C}, s) \leqslant x$.

Now let Γ denotes the program
$J ;$
$i:={ }_{\mathfrak{A}}{ }^{@} i+1_{\mathfrak{T}}^{I}$

Now let Δ denotes the program


```
    J
done
```

Let us consider an elementary if-while algebra \mathfrak{A} over the generators of G and an execution function f of \mathfrak{A} over \mathfrak{C}-States(the generators of G) and States $_{b \nrightarrow \text { false }}($ the generators of $G)$. Suppose
(i) $f \in \mathfrak{C}$-Execution ${ }_{b \nrightarrow \text { false }_{\mathfrak{C}}}(\mathfrak{A})$, and
(ii) G is \mathfrak{C}-supported.

Let us consider elements τ_{0}, τ_{1} of \mathfrak{T} from I, an algorithm J of \mathfrak{A}, and a set P. Suppose
(iii) P is invariant w.r.t. $i:={ }_{\mathfrak{A}} \tau_{0}$ and f, invariant w.r.t. $b \operatorname{gt}\left(\tau_{1},{ }^{@}, \mathfrak{A}\right)$ and f, invariant w.r.t. $i:={ }_{\mathfrak{A}}\left({ }^{@}+1_{\mathfrak{T}}^{I}\right)$ and f, and invariant w.r.t. J and f, and
(iv) J is terminating w.r.t. f and P, and
(v) for every $s, f(s, J)(I)(i)=s(I)(i)$ and $f\left(s, b \operatorname{gt}\left(\tau_{1},{ }^{@}, \mathfrak{A}\right)\right)(I)(i)=$ $s(I)(i)$ and τ_{1} value $\operatorname{at}\left(\mathfrak{C}, f\left(s, b \operatorname{gt}\left(\tau_{1},{ }^{@}, \mathfrak{A}\right)\right)\right)=\tau_{1}$ value at (\mathfrak{C}, s) and τ_{1} value $\operatorname{at}(\mathfrak{C}, f(s, \Gamma))=\tau_{1}$ value $\operatorname{at}(\mathfrak{C}, s)$.

Then Δ is terminating w.r.t. f and P. The theorem is a consequence of $(61),(66),(65),(39)$, and (37). Proof: Set $W=b \operatorname{gt}\left(\tau_{1},{ }^{@},{ }_{i}, \mathfrak{A}\right)$. Set $L=i:={ }_{\mathfrak{A}}\left({ }^{@} i+11_{\mathfrak{T}}^{I}\right)$. Set $K=i:={ }_{\mathfrak{A}} \tau_{0}$. Set $S T=\mathfrak{C}$-States(the generators of $G)$. Set $T V=\operatorname{States}_{b \nrightarrow \mathrm{false}_{\mathfrak{C}}}($ the generators of $G)$. Now let Γ denotes the program

$J ;$
$L ;$
W

For every s such that $f(s, W) \in P$ holds iteration of f started in Γ terminates w.r.t. $f(s, W)$.
(95) Now let Γ denotes the program

```
\(m:=\mathfrak{A} 0_{\mathfrak{T}}^{I}\);
for \(i:={ }_{\mathfrak{A}} 1_{\mathfrak{T}}^{I}\) until \(b \operatorname{gt}\left(\operatorname{length}{ }_{I}{ }^{@} M,{ }^{@} i, \mathfrak{A}\right)\) step \(i:={ }_{\mathfrak{A}}{ }^{@} i+1_{\mathfrak{T}}^{I}\)
do
    if \(b \operatorname{gt}\left(\left({ }^{@} M\right)\left({ }^{@}\right),\left({ }^{@} M\right)\left({ }^{@} m\right), \mathfrak{A}\right)\) then
        \(m:={ }_{\mathfrak{A}}{ }^{\text {a }} \mathrm{i}\)
    fi
done
```

Let us consider an elementary if-while algebra \mathfrak{A} over the generators of G and an execution function f of \mathfrak{A} over \mathfrak{C}-States(the generators of G) and States $_{b \rightarrow \text { false }_{\mathcal{C}}}($ the generators of $G)$. Suppose
(i) $f \in \mathfrak{C}$-Execution ${ }_{b \rightarrow \text { false }}(\mathfrak{A})$, and
(ii) G is \mathfrak{C}-supported, and
(iii) $i \neq m$.

Then Γ is terminating w.r.t. f and $\{s: s($ the array sort of $\Sigma)(M) \neq \emptyset\}$. The theorem is a consequence of (74), (73), (65), (61), (81), and (94). Proof: Set $J=m:=\mathfrak{A}\left(0_{\mathfrak{T}}^{I}\right)$. Set $K=i:=\mathfrak{A}\left(1{ }_{\mathfrak{T}}^{I}\right)$. Set $W=b$ gt $\left(\right.$ length $\left._{I}{ }^{@} M,{ }_{i}, \mathfrak{A}\right)$. Set $L=i:=\mathfrak{A}\left({ }^{@} i+1+1_{\mathfrak{T}}^{I}\right)$. Set $N=b \operatorname{gt}\left(\left({ }^{@} M\right)\left({ }^{@} i\right),\left({ }^{@} M\right)\left({ }^{@} m\right), \mathfrak{A}\right)$. Set $O=$ $m:={ }_{\mathfrak{A}}\left({ }^{\left({ }^{i}\right)}\right.$. Set $a=$ the array sort of Σ. Set $P=\{s: s(a)(M) \neq \emptyset\}$. P is invariant w.r.t. J and $f . P$ is invariant w.r.t. K and $f . P$ is invariant w.r.t. W and $f . P$ is invariant w.r.t. L and $f . P$ is invariant w.r.t. N and $f . P$ is invariant w.r.t. O and f. Set $S T=\mathfrak{C}$-States(the generators of G). Set $T V=$ States $_{b \nrightarrow \mathrm{false}_{\mathcal{C}}}($ the generators of $G) . P$ is invariant w.r.t. if N then O and f. Now let Γ denotes the program

```
if N then
    O
fi;
L
```

For every $s, f(s$, if N then $O)(I)(i)=s(I)(i)$ and $f(s, W)(I)(i)=s(I)(i)$ and length ${ }_{I}{ }^{@} M$ value at $(\mathfrak{C}, f(s, W))=$ length $_{I}{ }^{@} M$ value at (\mathfrak{C}, s) and length ${ }_{I}{ }^{@} M$ value at $(\mathfrak{C}, f(s, \Gamma))=\operatorname{length}_{I}{ }^{@} M$ value at (\mathfrak{C}, s).

3. Sorting by Exchanging

In this paper i_{1}, i_{2} denote pure elements of (the generators of $\left.G\right)(I)$.
Let us consider Σ, X, \mathfrak{T}, and G. We say that G is integer array if and only if
(Def. 17) (i) $\left\{\left({ }^{@} M\right)(\tau)\right.$ where τ is an element of \mathfrak{T} from I : not contradiction $\} \subseteq$ (the generators of G)(I), and
(ii) for every M and for every element τ of \mathfrak{T} from I and for every element g of G from I such that $g=\left({ }^{@} M\right)(\tau)$ there exists x such that $x \notin$ $(\operatorname{vf} \tau)(I)$ and supp-var $g=x$ and (supp-term $g)$ (the array sort of $\Sigma)(M)=\left({ }^{@} M\right)_{\tau \leftarrow @_{x}}$ and for every sort symbol s of Σ and for every y such that $y \in(\operatorname{vf} g)(s)$ and if $s=$ the array sort of Σ, then $y \neq M$ holds $($ supp-term $g)(s)(y)=y$.
Now we state the proposition:
(96) If G is integer array, then for every element τ of \mathfrak{T} from $I,\left({ }^{@} M\right)(\tau) \in$ (the generators of $G)(I)$.
The functor $\langle\mathbb{Z}, \leqslant\rangle$ yielding a strict real non empty poset is defined by the term
(Def. 18) RealPoset \mathbb{Z}.
Let us consider Σ, X, \mathfrak{T}, and G. Let \mathfrak{A} be an elementary if-while algebra over the generators of G, a be a sort symbol of Σ, and τ_{1}, τ_{2} be elements of \mathfrak{T} from a. Assume $\tau_{1} \in$ (the generators of $\left.G\right)(a)$. The functor $\tau_{1}:=\mathfrak{A} \tau_{2}$ yielding an absolutely-terminating algorithm of \mathfrak{A} is defined by the term
(Def. 19) (The assignments of $\mathfrak{A})\left(\left\langle\tau_{1}, \tau_{2}\right\rangle\right)$.
Now we state the proposition:
(97) Let us consider a countable non-empty many sorted set X indexed by the carrier of Σ, a vf-free including Σ-terms over X integer array non-empty free variable algebra \mathfrak{T} over Σ, a basic generator system G over Σ, X, and \mathfrak{T}, a pure element M of (the generators of G)(the array sort of Σ), and pure elements i, x of (the generators of $G)(I)$. Then $\left({ }^{@} M\right)\left({ }^{(}\right) \neq x$. The theorem is a consequence of (73), (79), (61), and (74).
Let Σ be a non empty non void many sorted signature and \mathfrak{A} be a disjoint valued algebra over Σ. Note that the sorts of \mathfrak{A} is disjoint valued.

Let us consider Σ and X. Let \mathfrak{T} be an including Σ-terms over X algebra over Σ. We say that \mathfrak{T} is array degenerated if and only if
(Def. 20) There exists I and there exists an element M of (FreeGenerator $(\mathfrak{T}))($ the array sort of $\Sigma)$ and there exists an element τ of \mathfrak{T} from I such that $\left({ }^{@} M\right)(\tau) \neq \operatorname{Sym}(($ the connectives of $\Sigma)(11)(\in$ (the carrier' of $\Sigma)$), $X)$ - $\operatorname{tree}(\langle M, \tau\rangle)$.

Observe that $\mathfrak{F}_{\Sigma}(X)$ is non array degenerated.
Observe that there exists an including Σ-terms over X algebra over Σ which is non array degenerated.

Now we state the propositions:
(98) Suppose \mathfrak{T} is non array degenerated. Then $\operatorname{vf}\left(\left({ }^{@} M\right)\left({ }^{@} i\right)\right)=I$-singleton $i \cup$ (the array sort of Σ)-singleton M. The theorem is a consequence of (73). Proof: Set $\tau=\left({ }^{@} M\right)\left({ }^{@}\right)$. Reconsider $N=M$ as an element of (FreeGenerator (\mathfrak{T}))(the array sort of Σ). Consider m being a set such that $m \in X$ (the array sort of $\Sigma)$ and $M=$ the root tree of $\langle m$, the array sort of $\Sigma\rangle$. Consider j being a set such that $j \in X(I)$ and $i=$ the root tree of $\langle j, I\rangle .\{M\}=(\operatorname{vf} \tau)$ (the array sort of $\Sigma) .\{i\}=(\operatorname{vf} \tau)(I)$. For every sort symbol s of Σ such that $s \neq$ the array sort of Σ and $s \neq I$ holds $\emptyset=(\operatorname{vf} \tau)(s)$.
(99) Let us consider an elementary if-while algebra \mathfrak{A} over the generators of G and an execution function f of \mathfrak{A} over \mathfrak{C}-States(the generators of G) and States $_{b \rightarrow \text { false }_{\mathscr{C}}}($ the generators of $G)$. Suppose
(i) G is integer array and \mathfrak{C}-supported, and
(ii) $f \in \mathfrak{C}$-Execution ${ }_{b \nrightarrow \text { false }_{\mathfrak{C}}}(\mathfrak{A})$, and
(iii) X is countable, and
(iv) \mathfrak{T} is non array degenerated.

Let us consider an element τ of \mathfrak{T} from I. Then $f\left(s,\left({ }^{@} M\right)\left({ }^{(}\right):=\mathfrak{A} \tau\right)=$ $f\left(s, M:=\mathfrak{A}\left(\left({ }^{@} M\right)_{@_{i \leftarrow \tau}}\right)\right)$. The theorem is a consequence of (96), (98), (97), (4), (3), (62), (73), (61), (84), (65), and (80). Proof: Reconsider $H=$ FreeGenerator (\mathbb{T}) as a many sorted subset of the generators of G. Set $v=\tau$ value at (\mathbb{C}, s). Reconsider $p=\left({ }^{@} M\right)\left({ }^{@} i\right)$ as an element of G from I. Reconsider $g=s$ as a many sorted function from the generators of G into the sorts of \mathfrak{C}. Reconsider $g 1=f\left(s,\left({ }^{@} M\right)\left({ }^{@}\right):={ }_{\mathfrak{A}} \tau\right)$,
$g 2=f\left(s, M:=\mathfrak{A}\left(\left({ }^{@} M\right)_{\mathfrak{Q}_{\leftarrow \leftarrow \tau}}\right)\right)$ as a many sorted function from the generators of G into the sorts of \mathfrak{C}. Reconsider $M i=\left({ }^{@} M\right)\left({ }^{@} i\right)$ as an element of (the generators of $G)(I)$. Reconsider $m=M$ as an element of G from the array sort of Σ. Consider x such that $x \notin\left(\mathrm{vf}^{@}{ }_{i}\right)(I)$ and supp-var $p=x$ and (supp-term p)(the array sort of $\Sigma)(M)=\left({ }^{@} M\right){\varrho_{i} \leftarrow @_{x}}$ and for every sort symbol s of Σ and for every y such that $y \in(\operatorname{vf} p)(s)$ and if $s=$ the array sort of Σ, then $y \neq M$ holds (supp-term $p)(s)(y)=y . g 1=g 2$.
Let us consider $\Sigma, X, \mathfrak{T}, G, \mathfrak{C}, s$, and b. Let us observe that $s(($ the boolean sort of $\Sigma)(b)$ is boolean.

Now we state the proposition:
(100) Now let Γ denotes the program

```
while \(J\) do
    \(y:=\mathfrak{A}\left({ }^{@} M\right)\left({ }^{Q_{1}}\right) ;\)
    \(\left({ }^{@} M\right)\left({ }^{@} i_{1}\right):={ }_{\mathfrak{A}}\left({ }^{@} M\right)\left({ }^{@} i_{2}\right) ;\)
    \(\left({ }^{@} M\right)\left({ }^{@} i_{2}\right):={ }_{\mathfrak{A}}{ }^{@} y\)
done
```

Let us consider an elementary if-while algebra \mathfrak{A} over the generators of G and an execution function f of \mathfrak{A} over \mathfrak{C}-States(the generators of G) and States $_{b \nrightarrow \text { false }}^{c}($ the generators of $G)$. Suppose
(i) G is integer array and \mathfrak{C}-supported, and
(ii) $f \in \mathfrak{C}$-Execution ${ }_{b \nrightarrow \text { false }_{\mathfrak{C}}}(\mathfrak{A})$, and
(iii) \mathfrak{T} is non array degenerated, and
(iv) X is countable.

Let us consider an algorithm J of \mathfrak{A}. Suppose
(v) $f(s, J)($ the array sort of $\Sigma)(M)=s($ the array sort of $\Sigma)(M)$, and
(vi) for every array D of $\langle\mathbb{Z}, \leqslant\rangle$ such that $D=s($ the array sort of $\Sigma)(M)$ holds if $D \neq \emptyset$, then $f(s, J)(I)\left(i_{1}\right), f(s, J)(I)\left(i_{2}\right) \in \operatorname{dom} D$ and if inversions $D \neq \emptyset$, then $\left\langle f(s, J)(I)\left(i_{1}\right), f(s, J)(I)\left(i_{2}\right)\right\rangle \in$ inversions D and $f(s, J)(($ the boolean sort of $\Sigma))(b)=$ true iff inversions $D \neq \emptyset$.
Let us consider a 0 -based finite array D of $\langle\mathbb{Z}, \leqslant\rangle$. Suppose
(vii) $D=s($ the array sort of $\Sigma)(M)$, and
(viii) $y \neq i_{1}$, and
(ix) $y \neq i_{2}$.

Then
(x) $f(s, \Gamma)$ (the array sort of $\Sigma)(M)$ is an ascending permutation of D, and
(xi) if J is absolutely-terminating, then Γ is terminating w.r.t. f and $\left\{s_{1}\right.$ $: s_{1}($ the array sort of $\left.\Sigma)(M) \neq \emptyset\right\}$.

The theorem is a consequence of (73), (10), (61), (65), (99), (80), (74), and (79). Proof: Define \mathcal{F} (natural number, element of \mathfrak{C}-States(the generators of $G))=f\left(\$_{2},\left(\left(J ; y:=\mathfrak{A}\left(\left({ }^{@} M\right)\left({ }^{{ }_{i}} i_{1}\right)\right)\right) ;\left({ }^{@} M\right)\left({ }^{@_{i}} i_{1}\right):=\mathfrak{A}\left(\left({ }^{@} M\right)\left({ }^{\left({ }_{i}\right.} i_{2}\right)\right)\right)\right.$;
$\left.\left({ }^{@} M\right)\left({ }_{i} i_{2}\right):=\mathfrak{A}\left({ }^{@} y\right)\right)$. Set $S T=\mathfrak{C}$-States $($ the generators of $G)$. Consider g being a function from \mathbb{N} into $S T$ such that $g(0)=s$ and for every natural number $i, g(i+1)=\mathcal{F}(i,(g(i)$ qua element of $S T))$. Define $\mathcal{G}($ element $)=$ $g\left(\$_{1}(\in \mathbb{N})\right)$ (the array sort of $\left.\Sigma\right)(M)$. Consider h being a function from \mathbb{N} into \mathbb{Z}^{ω} such that for every element i such that $i \in \mathbb{N}$ holds $h(i)=\mathcal{G}(i)$. For every ordinal number a such that $a \in \operatorname{dom} g$ holds $h(a)$ is an array of $\langle\mathbb{Z}, \leqslant\rangle$. Set $T V=$ States $_{b \nrightarrow \text { false }_{\mathfrak{C}}}($ the generators of $G)$. Consider s_{1} such that $s=s_{1}$ and $s_{1}($ the array sort of $\Sigma)(M) \neq \emptyset$. Reconsider
$D=s($ the array sort of $\Sigma)(M)$ as a 0 -based finite non empty array of $\langle\mathbb{Z}, \leqslant\rangle$. Consider g being a function from \mathbb{N} into $S T$ such that $g(0)=s$ and for every natural number $i, g(i+1)=\mathcal{F}(i,(g(i)$ qua element of $S T)$). Define $\mathcal{G}($ element $)=g\left(\$_{1}(\in \mathbb{N})\right)($ the array sort of $\Sigma)(M)$. Consider h being a function from \mathbb{N} into \mathbb{Z}^{ω} such that for every element i such that $i \in \mathbb{N}$ holds $h(i)=\mathcal{G}(i)$. For every ordinal number a such that $a \in \operatorname{dom} g$ holds $h(a)$ is an array of $\langle\mathbb{Z}, \leqslant\rangle$. Define $\mathfrak{T}\left[\right.$ natural number] $\equiv h\left(\$_{1}\right) \neq \emptyset$. For every natural number i such that $\mathfrak{T}[i]$ holds $\mathfrak{T}[i+1]$. For every natural number a and for every array R of $\langle\mathbb{Z}, \leqslant\rangle$ such that $R=h(a)$ for every s such that $g(a)=s$ there exist sets x, y such that $x=f(s, J)(I)\left(i_{1}\right)$ and $y=f(s, J)(I)\left(i_{2}\right)$ and $x, y \in \operatorname{dom} R$ and $h(a+1)=\operatorname{Swap}(R, x, y)$. Define \mathcal{Q} [natural number] $\equiv h\left(\$_{1}\right)$ is a permutation of D. Define \mathcal{P} [natural number $] \equiv g\left(\$_{1}\right)($ the array sort of $\Sigma)(M)$ is an ascending permutation of D. There exists a natural number i such that $\mathcal{P}[i]$. Consider \mathfrak{B} being a natural number such that $\mathcal{P}[\mathfrak{B}]$ and for every natural number i such that $\mathcal{P}[i]$ holds $\mathfrak{B} \leqslant i$. Reconsider $c=h \upharpoonright \operatorname{succ} \mathfrak{B}$ as an array of \mathbb{Z}^{ω}. Set $T V=$ States $_{b \nrightarrow \text { false }}($ the generators of $G)$. Define $\mathcal{H}($ natural number $)=$ $f\left(g\left(\$_{1}-1\right), J\right)$. Consider r being a finite sequence such that len $r=\mathfrak{B}+1$ and for every natural number i such that $i \in \operatorname{dom} r$ holds $r(i)=\mathcal{H}(i)$. $\operatorname{rng} r \subseteq S T$. Reconsider $R=g(\mathfrak{B})($ the array sort of $\Sigma)(M)$ as an ascending permutation of D. Now let Γ denotes the program

```
\(y:=\mathfrak{A}\left({ }^{@} M\right)\left({ }_{i_{1}}\right) ;\)
\(\left({ }^{@} M\right)\left({ }_{i_{1}}\right):=\mathfrak{A}\left({ }^{@} M\right)\left({ }^{@} i_{2}\right) ;\)
\(\left({ }^{@} M\right)\left({ }^{@} i_{2}\right):={ }_{\mathfrak{A}}{ }^{@} y ;\)
\(J\)
```

For every natural number i such that $1 \leqslant i<\operatorname{len} r$ holds $r(i) \in T V$ and $r(i+1)=f(r(i), \Gamma)$.

References

[1] Grzegorz Bancerek. Mizar analysis of algorithms: Preliminaries. Formalized Mathematics, $15(3): 87-110,2007$. doi $10.2478 / \mathrm{v} 10037-007-0011-\mathrm{x}$
[2] Grzegorz Bancerek. Program algebra over an algebra. Formalized Mathematics, 20(4): 309-341, 2012. doi 10.2478/v10037-012-0037-6
[3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[4] Grzegorz Bancerek. Sorting by exchanging. Formalized Mathematics, 19(2):93-102, 2011. doi 10.2478/v10037-011-0015-4
[5] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an algebra. Formalized Mathematics, 6(2):279-287, 1997.
[6] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[7] Grzegorz Bancerek. Free term algebras. Formalized Mathematics, 20(3):239-256, 2012. doi 10.2478/v10037-012-0029-6
[8] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics, $5(2): 191-198,1996$.
[9] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[10] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[11] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[12] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
[13] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[14] Grzegorz Bancerek and Artur Korniłowicz. Yet another construction of free algebra. Formalized Mathematics, 9(4):779-785, 2001.
[15] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[16] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47-54, 1996.
[17] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[18] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[19] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[20] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[21] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[22] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131-143, 1997.
[23] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[24] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
[25] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
[26] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[27] Takashi Mitsuishi and Grzegorz Bancerek. Lattice of fuzzy sets. Formalized Mathematics, 11(4):393-398, 2003.
[28] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1): 67-74, 1996.
[29] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[30] Andrzej Trybulec. A scheme for extensions of homomorphisms of many sorted algebras. Formalized Mathematics, 5(2):205-209, 1996.
[31] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[32] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[33] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[34] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[35] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.
[36] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[37] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[38] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[39] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

Received November 9, 2012

