Some Basic Properties of Some Special Matrices. Part III ${ }^{1}$

Xiquan Liang
Qingdao University of Science and Technology
China

Tao Wang
Qingdao University of Science and Technology
China

Summary. This article describes definitions of subsymmetric matrix, antisubsymmetric matrix, central symmetric matrix, symmetry circulant matrix and their basic properties.

MML identifier: MATRIX17, version: $\underline{7.12 .024 .174 .1136}$

The notation and terminology used here have been introduced in the following papers: [7], [9], [13], [6], [14], [1], [3], [18], [17], [4], [2], [8], [11], [12], [16], [15], [5], and [10].

1. Basic Properties of Subordinate Symmetric Matrices

For simplicity, we use the following convention: n denotes a natural number, K denotes a field, a, b denote elements of K, p, q denote finite sequences of elements of K, and M_{1}, M_{2} denote square matrices over K of dimension n.

Let K be a field, let n be a natural number, and let M be a square matrix over K of dimension n. We say that M is subsymmetric if and only if:
(Def. 1) For all natural numbers i, j, k, l such that $\langle i, j\rangle \in$ the indices of M and $k=(n+1)-j$ and $l=(n+1)-i$ holds $M_{i, j}=M_{k, l}$.
Let us consider n, K, a. Note that $(a)^{n \times n}$ is subsymmetric.
Let us consider n, K. Observe that there exists a square matrix over K of dimension n which is subsymmetric.

[^0]Let us consider n, K and let M be a subsymmetric square matrix over K of dimension n. Note that $-M$ is subsymmetric.

Let us consider n, K and let M_{1}, M_{2} be subsymmetric square matrices over K of dimension n. One can check that $M_{1}+M_{2}$ is subsymmetric.

Let us consider n, K, a and let M be a subsymmetric square matrix over K of dimension n. Note that $a \cdot M$ is subsymmetric.

Let us consider n, K and let M_{1}, M_{2} be subsymmetric square matrices over K of dimension n. One can verify that $M_{1}-M_{2}$ is subsymmetric.

Let us consider n, K and let M be a subsymmetric square matrix over K of dimension n. Observe that M^{T} is subsymmetric.

Let us consider n, K. Observe that every square matrix over K of dimension n which is line circulant is also subsymmetric and every square matrix over K of dimension n which is column circulant is also subsymmetric.

Let K be a field, let n be a natural number, and let M be a square matrix over K of dimension n. We say that M is anti-subsymmetric if and only if:
(Def. 2) For all natural numbers i, j, k, l such that $\langle i, j\rangle \in$ the indices of M and $k=(n+1)-j$ and $l=(n+1)-i$ holds $M_{i, j}=-M_{k, l}$.
Let us consider n, K. One can verify that there exists a square matrix over K of dimension n which is anti-subsymmetric.

The following proposition is true
(1) Let K be a Fanoian field, n, i, j, k, l be natural numbers, and M_{1} be a square matrix over K of dimension n. Suppose $\langle i, j\rangle \in$ the indices of M_{1} and $i+j=n+1$ and $k=(n+1)-j$ and $l=(n+1)-i$ and M_{1} is anti-subsymmetric. Then $\left(M_{1}\right)_{i, j}=0_{K}$.
Let us consider n, K and let M be an anti-subsymmetric square matrix over K of dimension n. Note that $-M$ is anti-subsymmetric.

Let us consider n, K and let M_{1}, M_{2} be anti-subsymmetric square matrices over K of dimension n. Observe that $M_{1}+M_{2}$ is anti-subsymmetric.

Let us consider n, K, a and let M be an anti-subsymmetric square matrix over K of dimension n. One can verify that $a \cdot M$ is anti-subsymmetric.

Let us consider n, K and let M_{1}, M_{2} be anti-subsymmetric square matrices over K of dimension n. One can check that $M_{1}-M_{2}$ is anti-subsymmetric.

Let us consider n, K and let M be an anti-subsymmetric square matrix over K of dimension n. One can verify that M^{T} is anti-subsymmetric.

2. Basic Properties of Central Symmetric Matrices

Let K be a field, let n be a natural number, and let M be a square matrix over K of dimension n. We say that M is central symmetric if and only if:
(Def. 3) For all natural numbers i, j, k, l such that $\langle i, j\rangle \in$ the indices of M and $k=(n+1)-i$ and $l=(n+1)-j$ holds $M_{i, j}=M_{k, l}$.

Let us consider n, K, a. Note that $(a)^{n \times n}$ is central symmetric.
Let us consider n, K. One can verify that there exists a square matrix over K of dimension n which is central symmetric.

Let us consider n, K and let M be a central symmetric square matrix over K of dimension n. One can verify that $-M$ is central symmetric.

Let us consider n, K and let M_{1}, M_{2} be central symmetric square matrices over K of dimension n. One can verify that $M_{1}+M_{2}$ is central symmetric.

Let us consider n, K, a and let M be a central symmetric square matrix over K of dimension n. Note that $a \cdot M$ is central symmetric.

Let us consider n, K and let M_{1}, M_{2} be central symmetric square matrices over K of dimension n. Observe that $M_{1}-M_{2}$ is central symmetric.

Let us consider n, K and let M be a central symmetric square matrix over K of dimension n. Observe that M^{T} is central symmetric.

Let us consider n, K. Note that every square matrix over K of dimension n which is symmetric and subsymmetric is also central symmetric.

3. Basic Properties of Symmetric Circulant Matrices

Let K be a set, let M be a matrix over K, and let p be a finite sequence. We say that M is symmetry circulant about p if and only if the conditions (Def. 4) are satisfied.
(Def. 4)(i) $\quad \operatorname{len} p=\operatorname{width} M$,
(ii) for all natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M and $i+j \neq \operatorname{len} p+1$ holds $M_{i, j}=p(((i+j)-1) \bmod \operatorname{len} p)$, and
(iii) for all natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M and $i+j=\operatorname{len} p+1$ holds $M_{i, j}=p(\operatorname{len} p)$.
The following propositions are true:
(2) $(a)^{n \times n}$ is symmetry circulant about $n \mapsto a$.
(3) If M_{1} is symmetry circulant about p, then $a \cdot M_{1}$ is symmetry circulant about $a \cdot p$.
(4) If M_{1} is symmetry circulant about p, then $-M_{1}$ is symmetry circulant about $-p$.
(5) If M_{1} is symmetry circulant about p and M_{2} is symmetry circulant about q, then $M_{1}+M_{2}$ is symmetry circulant about $p+q$.
Let K be a set and let M be a matrix over K. We say that M is symmetry circulant if and only if:
(Def. 5) There exists a finite sequence p of elements of K such that len $p=$ width M and M is symmetry circulant about p.
Let K be a non empty set and let p be a finite sequence of elements of K. We say that p is first symmetry of circulant if and only if:
(Def. 6) There exists a square matrix over K of dimension len p which is symmetry circulant about p.
Let K be a non empty set and let p be a finite sequence of elements of K. Let us assume that p is first symmetry of circulant. The functor $\operatorname{SCirc} p$ yielding a square matrix over K of dimension len p is defined as follows:
(Def. 7) SCirc p is symmetry circulant about p.
Let us consider n, K, a. Note that $(a)^{n \times n}$ is symmetry circulant.
Let us consider n, K. Note that there exists a square matrix over K of dimension n which is symmetry circulant.

In the sequel D is a non empty set, t is a finite sequence of elements of D, and A is a square matrix over D of dimension n.

We now state the proposition
(6) Let p be a finite sequence of elements of D. Suppose $0<n$ and A is symmetry circulant about p. Then A^{T} is symmetry circulant about p.
Let us consider n, K, a and let M_{1} be a symmetry circulant square matrix over K of dimension n. Note that $a \cdot M_{1}$ is symmetry circulant.

Let us consider n, K and let M_{1}, M_{2} be symmetry circulant square matrices over K of dimension n. Note that $M_{1}+M_{2}$ is symmetry circulant.

Let us consider n, K and let M_{1} be a symmetry circulant square matrix over K of dimension n. Note that $-M_{1}$ is symmetry circulant.

Let us consider n, K and let M_{1}, M_{2} be symmetry circulant square matrices over K of dimension n. Observe that $M_{1}-M_{2}$ is symmetry circulant.

The following propositions are true:
(7) If A is symmetry circulant and $n>0$, then A^{T} is symmetry circulant.
(8) If p is first symmetry of circulant, then $-p$ is first symmetry of circulant.
(9) If p is first symmetry of circulant, then $\operatorname{SCirc}(-p)=-\operatorname{Sirc} p$.
(10) Suppose p is first symmetry of circulant and q is first symmetry of circulant and len $p=\operatorname{len} q$. Then $p+q$ is first symmetry of circulant.
(11) If len $p=\operatorname{len} q$ and p is first symmetry of circulant and q is first symmetry of circulant, then $\operatorname{SCirc}(p+q)=\operatorname{SCirc} p+\operatorname{SCirc} q$.
(12) If p is first symmetry of circulant, then $a \cdot p$ is first symmetry of circulant.
(13) If p is first symmetry of circulant, then $\operatorname{SCirc}(a \cdot p)=a \cdot \operatorname{SCirc} p$.
(14) If p is first symmetry of circulant, then $a \cdot \operatorname{SCirc} p+b \cdot \operatorname{SCirc} p=\operatorname{SCirc}((a+$ $b) \cdot p$).
(15) If p is first symmetry of circulant and q is first symmetry of circulant and len $p=\operatorname{len} q$, then $a \cdot \operatorname{SCirc} p+a \cdot \operatorname{SCirc} q=\operatorname{SCirc}(a \cdot(p+q))$.
(16) Suppose p is first symmetry of circulant and q is first symmetry of circulant and len $p=\operatorname{len} q$. Then $a \cdot \operatorname{SCirc} p+b \cdot \operatorname{SCirc} q=\operatorname{SCirc}(a \cdot p+b \cdot q)$.
(17) If M_{1} is symmetry circulant, then $M_{1}{ }^{\mathrm{T}}=M_{1}$.

Let us consider n, K. Note that every square matrix over K of dimension n which is symmetry circulant is also symmetric.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[8] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Karol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007, doi:10.2478/v10037-007-0024-5.
[11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[12] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[13] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[16] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.
[17] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[18] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received October 23, 2011

[^0]: ${ }^{1}$ Authors thanks Andrzej Trybulec and Yatsuka Nakamura for the help during writing this article.
 (C) 2012 University of Białystok CC-BY-SA License ver. 3.0 or later

